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Abstract

Galaxies are built by complex physical processes with significant inherent stochasticity. It is therefore surprising that the inferred
dark matter distributions in galaxies are correlated with the observed baryon distributions leading to various ‘Baryon-Halo conspir-
acies’. The fact that no dark matter candidate has been definitively identified invites a search for alternative explanations for such
correlations and we present an approach motivated by the behaviors of self organized patterns. We propose a nonlocal relativistic
Lagrangian theory for a ‘pattern field’ which acts as an ‘effective dark matter’, built on the idea that defects in this pattern field
couple to the baryonic matter distribution. The model applies to rotation supported systems and, for them, we compute galactic
rotation curves, obtain a radial acceleration relation with two branches, and deduce the Freeman limit for central surface brightness.
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1. Mass discrepancies and dark matter

Understanding the nature of dark matter is one of the great
intellectual challenges of our time. Dark matter is postulated
to explain discrepancies between the observed (non-relativistic)
motions of stars in galaxies, and galaxies in clusters, from the
predictions of Newtonian gravity [1]. Although long suspected
[2, 3], the hunt for additional ‘invisible’ matter became a se-
rious endeavor in the wake of the pioneering observations by
Vera Rubin and her colleagues [4, 5], demonstrating defini-
tively that the rotation velocity curves v(r) of galaxies flatten
out with increasing radius r instead of the expected Keplerian
decay v ≈

√
GM/r predicted by a balance of the gravitational

GM/r2 and centrifugal v2/r accelerations.
Our focus in this letter is on the structure and dynamics

of disk galaxies. In the conventional picture, disk galaxies
have two distinct components – a massive, three dimensional,
cold dark matter (CDM) halo, and a thin ‘2d’ disk, containing
stars/gas (baryons) that is in rotational equilibrium in the com-
bined gravitational field of the halo and the disk.

While the CDM model for dark matter works remarkably
well on cosmological scales, no DM particle has yet been
definitively identified. Additionally, there are several discrep-
ancies between CDM predictions and observations on galac-
tic or smaller scales [6]. N-body simulations give halos with
the “universal” Navarro-Frenk-White (NFW) profile ρNFW(R) =

ρ0
[(1+(R/RS )2)(R/Rs)]

[7], (R is the 3d radial coordinate). Observa-
tions, however, favor “cored” halos, e.g. the quasi-isothermal
profile ρqiso =

ρ0

(1+R2/R2
C ) , over the “cuspy” NFW profile [8].

A proxy for the distribution of baryonic matter in disk galax-
ies is given by the surface brightness profile. In the disks of
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galaxies, i.e. outside the bulge if one is present, the bright-
ness decays (approximately) exponentially from the center [9].
Assuming a constant mass-to-light ratio, the baryonic surface
density Σ = Σ0 exp(−r/r0), where r is the 2d radial coordinate
in the galactic plane, Σ0 is the (extrapolated) central surface
density and r0 is the (baryonic) scale length of the galaxy. The
Freeman “law” is observational evidence that Σ0 ≈ Σ

∗ is the
same for all high surface brightness (HSB) galaxies, indepen-
dent of their total mass [9]. Including low surface brightness
(LSB) galaxies gives a wider distribution of central densities,
with a rapid fall-off beyond Σ∗, defining the Freeman limit [10].

Observations reveal tight correlations and scaling relations
between the halo parameters ρ0,RC and the baryonic parame-
ters Σ0, r0 [11, 12]. Indeed, galaxies are surprisingly simple and
seemingly governed by a single dimensionless parameter [13].
Since galaxy formation is inherently stochastic this suggests an
important role for self-organizing dynamical processes [14].

For quasi-steady systems, many observations indicate that
the dynamically inferred DM halo is strongly correlated with
the baryon distribution [15]. Many of these relations are sub-
sumed by the radial acceleration relation (RAR) [16], which is
a “local” relation for the observed total acceleration gobs (from
halo + disk) and the purely baryonic contribution gbar. This re-
lation holds for a range of galaxies including dSphs, disk galax-
ies (S0 to dIrr) and giant ellipticals, and was first proposed in
[17] as the basis for ‘Modified Newtonian dynamics (MOND)’.
The successes of MOND in predicting various observed regu-
larities on galactic scales [18] have inspired interesting propos-
als for coupling baryons and DM [19] as well as a variety of
dark matter models that behave like MOND for galaxies and
like CDM on cluster and larger scales [20, 21]. There have also
been attempts to recover these scaling relations within ΛCDM
using cosmological simulations that include various baryonic
feedback mechanisms [22, 23].

Our aim in this letter is to propose specific self-organizing
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mechanisms for galactic dynamics. To this end, we present a
theory that allows us to compute rotation curves of galaxies, and
explain observed galaxy scaling relations including the RAR
and the Freeman limit. We are motivated in this endeavor by
the self-organizing properties of pattern forming systems and a
recognition that instability generated patterns might have a role
to play in galaxies [14]. In many situations, pattern structures
are topologically constrained by the presence of defects and are
not ground states. Therefore they can store energy. By coupling
the defects to the distribution of baryons, we get additional en-
ergy that can give rise to forces that produce effects attributed
to dark matter halos. In such a scenario, it is certainly plausible
that there should be correlations and scaling relations between
the halo and baryonic parameters.

2. Patterns, universality, defects and halos

Patterns are ubiquitous in nature and arise when, at some
stress threshold, a symmetric “ground state” destabilizes and
certain symmetry-breaking modes are preferentially amplified.
These modes compete for dominance through nonlinear inter-
actions and a set of winning configurations emerges. Generally,
whereas some symmetries are broken, others are not, leading to
the presence of defects that prevent the new state from being a
ground state, a true energy minimum.

A useful illustration is provided by the well-studied case of
high Prandtl number convection in a horizontal layer of fluid
heated from below. For a sufficiently large thermal gradient,
the conduction state becomes unstable to convective rolls which
transport heat more efficiently. At this transition the continuous
translation symmetry of the conductive state is broken and re-
placed by a discrete translation symmetry from the preferred
wavelength of the roll pattern. The preferred wavelength de-
pends only on a globally defined parameter – the Rayleigh num-
ber. However, because the rotational symmetry is not broken at
the transition, the orientations of the roll patches are chosen by
local biases, boundary conditions and other constraints.

If the system size is much greater than the chosen wave-
length, the resulting pattern is a mosaic of “locally” uniform
stripe patterns with different orientations which meet and meld
along defect lines and points in 2D (and planes and loops
in 3D). In more confined geometries such as cylinders or
spheroids where the boundaries may be heated, or in situations
where angular momentum conservation constraints might ap-
ply, the patterns, although locally stripe-like, can be target or
spiral shaped. The resulting defects have topological charges
reflecting the far-field geometry or constraints away from the
defects. They also have energy, associated with the fact that the
emerging pattern is not a true energy minimum but a metastable
state; metastable in the sense that either the topological con-
straints make the state a local minimum or that the time scale to
coarsen and “heal” the defects is extremely long.

Patterns and other collective phenomena are studied using
macroscopic order parameters that measure the amount of sym-
metry breaking. Order parameters are governed by universal
equations that reflect the underlying symmetries of the system

but are insensitive to the precise details of the microscopic inter-
actions in the system – a phenomenon called universality [24].
For systems that form stripe patterns by breaking translation
but not orientation invariance, the appropriate order parameter
is a phase ψ whose gradient k gives the local orientation of the
pattern. The microscopic fields are generally 2π periodic func-
tions of the phase ψ. Integrating over the microscopic degrees
of freedom gives a canonical form for the effective energy [25]

E =
Σ∗c2

k3
0

∫︂ [︂
(k2

0 − k2)2 + (∇ · k)2
]︂

dV, k = ∇ψ, (1)

where ψ is dimensionless, the preferred wavenumber |k| = k0,
Σ∗ is a (universal) surface density [12, 15], and the normaliz-
ing constant Σ

∗c2

k3
0

ensures dimensional consistency. Specifically,

we will take Σ∗ ≈ 136 M⊙/pc2 corresponding to an acceleration
scale a0 = 2πGΣ∗ ≈ 1.2 × 10−10m/s2, the empirically observed
universal acceleration scale in disk galaxies [17]. The ground
states E = 0 correspond to the plane waves ψ(x) = k ·x, |k| = k0.
If boundaries or other external constraints dictate that the phase
pattern be radial, ψ(x) = ψ(R) where R = |x|, we cannot be
in a ground state. Indeed, a calculation reveals that, mini-
mizing E with ψ = ψ(R), we get k → 0 as R → 0 and
ψ(R)→ k0R+const as R→ ∞. These target (spirals if the insta-
bility is to waves and (1) is modified appropriately) patterns are
robust because they cannot be continuously deformed into the
plane wave ground states. Their curvature radii are large com-
pared to the local pattern wavelength, so they are locally stripe
like and their macroscopic energies can be represented by (1).

What is important to us here is that the target pattern has an
energy density of the same form as a cored quasi-isothermal
halo with RC ∼ k−1

0 . Such halos describe the dark matter distri-
bution out to the edge of the optical disk in real galaxies, so this
suggests adding a term like (1) to the Lagrangian of a galaxy
can recover the effects of ‘dark matter’ [25, 26].

The additional action from (1) leads to the flattening of rota-
tion curves to a limiting value v∞ =

√
32πGΣ∗/k0 [26]. While

this result is encouraging important questions were left unan-
swered - (1) What determines the parameter k0?, (2) How do
we eliminate the assumption of spherical symmetry and model
more realistic disk galaxies? and, (3) What physical processes
might lead to a term like (1) in the action? We address these
questions in subsequent sections.

3. An effective Lagrangian for pattern dark matter

A proper formulation of our ideas requires the identification
of an appropriate Lagrangian. The Einstein-Hilbert Lagrangian
for the geometry of spacetime, along with the ‘dust’ Lagrangian
for CDM/baryons, and the cosmological constant for dark en-
ergy, describes ΛCDM. Alternative Lagrangians describe vari-
ous flavors of MOND [27, 28, 29], dark matter with novel mate-
rial properties – dipolar dark matter [30], superfluid dark matter
[31] and fuzzy dark matter [32], as well as “non-material” alter-
natives like emergent gravity [33]. Our goal is to formulate an
appropriate ‘pattern dark matter’ Lagrangian that encapsulates
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the physics discussed above. Our action is the sum of

SEH =
c4

16πG

∫︂
R
√
−g d4x, SM =

∫︂
ρBuαuα

√
−g d4x,

SP = −
Σ∗c2

k3
0

∫︂ {︂
(k2

0 − ∇
µψ∇µψ)2 + (∇µ∇µψ)2

}︂ √
−g d4x,

Sψ = −

∫︂
ρBc2V

[︂
k−2

0 ∇
βψ∇βψ

]︂ √
−gd4x, (2)

where ∇ represents the covariant derivative and uα is the 4-
velocity of the baryonic matter with density ρB. The model
includes the Einstein-Hilbert action SEH , the matter action SM ,
the pattern action SP as motivated by (1), and the interaction
term Sψ motivated by the empirical observation that the dark
matter halo couples to the local baryonic density ρB [34]. We
have introduced V(|k|2) ≥ 0, a convex potential that vanishes at
k = 0. Large values of ρB creates “defects” in ψ, like the spher-
ical target pattern with ∇ψ = 0 at the center. SP and Sψ come
with negative signs since they are ‘potential’ terms, i.e. akin to
W in the action S =

∫︁
(T −W) dt for classical particle systems.

What remains is the specification of k0 and the potential V .
Before we do so, however, we emphasize that, irrespective of
the choices we are about to make, the additional terms S p and
S ψ in the action automatically lead to three of the key out-
comes that characterize the behaviors usually associated with
dark matter. First, we find that the curvature term in S p leads to
an additional force which behaves as 1

r for large r and a flatten-
ing of the velocity rotation curve given by v2

∞ =
32πGΣ∗

k0
. Second,

the coupling between the pattern “dark matter” and the bary-
onic density leads to the Freeman limit with a maximum central
surface density on the universal scale Σ∗ for rotation supported
systems. Third, the model predicts a radial acceleration relation
(RAR) between the total gravitational acceleration gobs and the
baryonic contribution gbar, that has two branches.

Our choice for k0 is motivated by stability considerations for
a differentially rotating stellar disk v(r) = rΩ(r). WKB analysis
gives the dispersion relation for density waves [35]

ω(k)2 = σ2k2 − 2πGΣB|k| + κ2, κ2 =
2Ω
r

d
dr

(r2Ω), (3)

where σ is the radial velocity dispersion, κ is the epicyclic fre-
quency and ΣB is the local baryonic surface density.

Stability for a stellar disk requires that the Toomre parameter
Q = σκ

πGΣB
> 1. A positive κ2 implies that the specific angular

momentum r2Ω is increasing with r, and thus stabilizes the long
wavelengths k → 0. This is indeed Rayleigh’s criterion for
stability of rotating inviscid flows. Q describes the competition
between the stabilizing effects from κ2 > 0 and the destabilizing
effect of self-gravitation represented by GΣB. ν(r) = πGΣB

σ2 is the
“locally” preferred (fastest growing) wavenumber.

Since our model is an attempt to encode the effects of insta-
bility induced patterns and self-organization, we posit that the
phase ψ in our model is connected with the clumping instability
in baryons. We therefore seek to identify the pattern wavenum-
ber in (2) with ν(r). The ‘effective’ action in (2) is crude in
that it only allows for a ‘global’ wavenumber k0, so we will set
k0 = ν(r0) where r0 ∼ k−1

0 is a characteristic length scale.

If the system is rotation rather than pressure supported, the
random motions have to be smaller than the ordered rotational
velocity σ ≲ v(r). Since κ ∼ v(r)

r we get, to within an O(1)

constant, the radial dispersion is on the scale σ ∼
√︂

GMB
r and

v2
∞ ≳ GMB

r for r ∼ r0, the baryonic scale length, since an O(1)
fraction of the total mass is within this radius.

We adopt the self-organizing principle that, if Q < 1, the
stellar disk heats up until it reaches marginal stability Q = 1 at
a scale r0 ∼ k−1

0 . Multiplying the ‘halo estimate’ v2
∞ =

32πGΣ∗
k0

with the stability estimate v2
∞ ∼

GMB
r0

we get v4
∞ = 16µGMBa0,

where a0 = 2πGΣ∗ and µ is an O(1) constant.
A key empirical scaling relation for disk galaxies is the Bary-

onic Tully-Fisher relation v4
∞ = GMBa0 (BTFR) relating the

baryonic mass MB to v∞ with very little scatter over a wide
range of galaxies [36]. The stability analysis suggests that, de-
spite the approximate nature of our effective Lagrangian, it is
consistent with the BTFR. We can therefore obtain the effec-
tive parameter k0 for our model, by demanding that the halo
estimate v2

∞ =
32πGΣ∗

k0
agree with v4

∞ = 2πGMBΣ
∗. This yields

k0 = 16
√︁

2πΣ∗/MB, (4)

a value we will henceforth adopt. We stress that we do not claim
that the stability analysis constitutes a derivation of BTFR, but
simply argue that it lends credence to our calibration of k0.

4. A variational analysis of the model

Since galaxies are non-relativistic, v∞ ≪ c, the geometry
of space-time deviates from the flat Minkowskii space at O(ϵ)
where ϵ =

(︂
v∞
c

)︂2
. We obtain the (Newtonian) limit description

through a principled asymptotic expansion in the small parame-
ter ϵ. In a steady state, our system is described by the weak-field
metric, g = −(c2 + 2ϕ(x))dt2 + (1 − 2ϕ(x)/c2)(dx2 + dy2 + dz2),
where ϕ(x) is the total Newtonian potential. We note that ψ, x,k
are O(1), the spatial velocity v = dx

dt is O(
√
ϵ), and ρB, Σ∗ and

ϕ are O(ϵ). We can expand the action S and collect terms in
powers of c (equivalently ϵ) to get, S = c2S1 + S2,

S1 = −

∫︂
d3xdt

[︂
Σ∗k−3

0 [(k2
0 − |∇ψ|

2)2 + (∆ψ)2] + ρBV(|∇ψ|2)
]︂

S2 =

∫︂
d3xdt

[︄
ρB

(︄
v2

2
− ϕ

)︄
−
|∇ϕ|2

8πG
− 2ϕΣ∗k−3

0

(︂
|∇ψ|4 − k4

0

)︂
− 2ϕ

(︂
Σ∗k−3

0 (∆ψ)2 + ρBV ′(|∇ψ|2)|∇ψ|2
)︂]︂
. (5)

This formulation is completed by prescribing the potential V .
We illustrate the procedure for analyzing the variational

equations for the action in (2) by revisiting the example of
spherically symmetric compact clump of matter. Step 1: Pre-
scribe ρB(R) and solve the variational equations for S1, i.e. a
pattern formation problem. For a compact clump, and a generic
potential V with a global minimum at 0, ∇ψ ≈ 0 within the
source, so we get the target patterns that were discussed ear-
lier. Step 2: With the given ρB and ψ computed from the
previous step, solve for the gravitational potential ϕ. For a
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Figure 1: Huygens’ construction – the phase contours (solid curves in z > 0)
have a common evolute (solid curve in z < 0) and intersect the characteristics
(straight lines) orthogonally. The contours for z ≤ 0 are given by reflection. A
spherical target pattern (dashed phase contours) is shown for comparison. The
involutes are (approximately) spherical caps with centers off the plane z = 0.

compact dense clump, ∇ψ ≈ 0 where ρB ≠ 0, and outside
the clump, |∇ψ| ≈ 1,∆ψ ≈ 2R−1. Consequently, we get
∆ϕ ≈ 4πG(ρB + 8Σ∗k0/(b2 + k2

0R2)), b ∼ O(1),

gobs = ∇ϕ ≈
GMB

R2 +
32πGΣ∗

k0R

[︄
1 −

b
k0R

tan−1
(︄

k0R
b

)︄]︄
. (6)

Step 3: Solve for the steady state velocity from v2

R = gobs.
To model a disk galaxy, we now carry out these steps in

an axisymmetric setting, where all the fields only depend on
r =

√︁
x2 + y2 and z. The matter density ρB(r, z) ≈ ΣB(r)δ(z) is

concentrated close to the galactic plane z = 0.
In Step 1, extremizing S1, we have two contributions, the

pattern LagrangianSP which is an integral over all of space, and
the interaction Lagrangian Sψ = −2π

∫︁
ΣB(r)V(|ψr |

2)rdr which
is an integral over the galactic disk. Off the disk ψ satisfies the
Eikonal equation |∇ψ| = k0, as appropriate for stripe patterns.
Using Huygens’ principle, we obtain:

ψ(r, z) = min
s≥0

[︂
ψ(s, 0) + k0

√︁
(r − s)2 + z2

]︂
⇒ ψ [s + t cos θ(s),±t sin θ(s)] = ψ(s, 0) + k0t. (7)

where the second line follows for regions where the character-
istics r = s + t cos θ(s), z = ±t sin θ(s)) do not cross.

The geometry of this construction is illustrated in Fig. 1. The
phase fronts for z > 0 (resp. z < 0) are the involutes of a com-
mon evolute γ = (α(s),∓β(s)) and k−1

0 ψ is the local radius of
curvature [37, §12]. For the Eikonal solution, ∇ψ is discontin-
uous across the galactic plane z = 0. Indeed, in contrast to the
spherical target pattern, the contours given by the involutes in-
tersect the plane z = 0 at an angle θ(s) ≠ π

2 . This discontinuity
in ∇ψ is regularized as a phase grain boundary (PGB), a defect
well known in patterns, consisting of a boundary layer across
which ∇ψ changes smoothly as illustrated in Fig. 2.

Figure 2: Phase grain boundary (PGB). There is a jump in ∇ψ across the PGB.
This structure is smooth on the scale w, the width of the PGB. The stretching
and bending of the phase contours contribute to an effective surface energy.

We can estimate the (surface) energy density of a PGB as
follows. Since the boundary layer has width w, the curva-
ture and stretch of the phase contours are, respectively, ∆ψ ∼
k0w−1 sin θ(s), k2

0 − |∇ψ|
2 ∼ k2

0 sin2 θ(s). Eq. (1) now implies

ΣPGB ∼ w−1k2
0 sin2 θ(s) + wk4

0 sin4 θ(s).

Optimizing for w gives w ∼ 1
k0 sin θ(s) ,ΣPGB ∝ sin3 θ(s). A rig-

orous calculation along these lines yields ΣPGB =
8Σ∗
3 sin3 θ(s)

[38]. Using (4), the sum of Sψ and the PGB defect energy is

Sdisk = 2π
∫︂ [︄

8Σ∗

3
sin3 θ(s) + ΣB(s)V(k2

0 cos2 θ(s))
]︄

sds. (8)

We can extremize to get k2
0ΣB(s)V ′(cos2 θ(s)) = 4Σ∗ sin θ(s), a

local relation between the matter surface density, the character-
istic angle θ(s), and indirectly, also the common evolute γ.

We can now make an informed choice for the potential V .
The argument of V is |∇ψ|2 = k2

0 cos2 θ(s) ≤ k2
0 within the galac-

tic disk. To ensure |∇ψ|2 ≤ k2
0 in the presence of matter, a canon-

ical choice is the log barrier function V = −V0 ln(k2
0 − |∇ψ|

2)
[39], where V0 is an O(1) constant. Putting everything together,
we have the leading order (in ϵ = (v∞/c)2 small and k0

√
r2 + z2

large) solution of the variational equations for (2):

(r, z) = (s + t cos θ(s),±t sin θ(s)),

γ =

(︄
s +

cos θ(s) sin θ(s)
θ′(s)

,
sin2 θ(s)
θ′(s)

)︄
ΣB(s) =

4Σ∗

V0
sin3 θ(s)

|∇ψ| ≃ k0, ∆ψ ≃ 2k0
(︁
t − sin θ(s)/θ′(s)

)︁−1
≈ 2k0/

√︁
r2 + z2,

∆ϕ = ∆(ϕB + ϕP) ≃ 4πG
[︂
ΣB(r)δ(z) + 2Σ∗k−3

0 (∆ψ)2
]︂
,

v2 = r∂rϕ(r, 0) = r∂rϕB(r, 0) + r∂rϕP(r, 0). (9)

The curvature of the phase contours is ∆ψ and the effective
mass density in the pattern field ψ is 2Σ∗k−3

0 (∆ψ)2. The leading
order solution of ψ is given by (7) as long as the curvature ∆ψ ≲
k2

0, consistent with a ‘cored dark halo’.
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5. Phase surfaces as dark halos

We record a few observations. An important caveat is that
our equations describe equilibria for purely rotation supported
galaxies – no significant random motions or 3d structure, i.e.
no bulge or pseudobulge. In the current form, Eqs. (9) are con-
sequently limited to describing ‘pure disk’ LSB galaxies. For
such galaxies, (9) implies the Freeman limit ΣB ≤

4Σ∗
V0

[10] .
Although Eqs. (9) do not describe the central regions of HSB

galaxies, we expect that they do describe the disk component.
For HSB galaxies, the Freeman limit applies to the extrapo-
lated central density, obtained from the exponential disk region
ΣB = Σ0e−r/r0 and not for the “true” line-of-sight central surface
density, which can be substantially higher, and instead satis-
fies the central surface density relation CSDR [40, 19]. Further
work is needed to obtain these relations for HSB galaxies within
our framework as this will require extending our model.

The second equation in (9) expresses the common evolute γ
in terms of θ(s) which in turn is given by ΣB. This connects the
local matter distribution ΣB and the pattern ‘halo’.

We can also prescribe γ and use it to compute ΣB, ψ, ϕ and
v. A natural critical case is when the evolute degenerates to
a single point (0,−z0), so that θ(s) = arctan( z0

s ) and ΣB(s) =
4Σ∗
V0

(1+s2/z2
0)−3/2, corresponding to a Kuzmin disk. It is remark-

able that the surface density of a Kuzmin disk, a natural model
for galactic disks, arises from the surface energy ∝ sin3 θ(s) re-
lation for PGB defects, a formula that was originally derived in
a totally different context of patterns [38].

The mass of this ‘critical’ Kuzmin disk, MB = 8πΣ∗z2
0/V0, is

determined by z0, the length-scale in the evolute. The phase is
given by ψ(r, z) = k0(r2 + (|z| + z0)2)1/2 and the curvature of the
contours is 1/(r2 + (|z| + z0)2)1/2 ≤ z−1

0 so the eikonal approxi-
mation for the phase is valid for all (r, z). We can compute the
potential ϕ(r, 0) and the rotation velocity:

ϕ(r, 0)
2πGΣ∗z0

≈ −
4

V0
√︁

1 + ξ2
+ V−1/2

0 log(1 + ξ2) + · · · ,

v2(r)
2πGΣ∗z0

≈
4ξ2

V0(1 + ξ2)3/2 + 2V−1/2
0

ξ2

1 + ξ2 + · · · ,

gobs

2πGΣ∗
≈

4ξ
V0(1 + ξ2)3/2 + 2V−1/2

0
ξ

1 + ξ2 + · · · (10)

where ξ = r/z0 is the scaled radius, and the initial terms are
the (non-dimensional) baryonic contributions to the potential
(ϕbar), velocity (vdisk) and acceleration (gbar). The asymptotic
velocity v2

∞ = 4πV−1/2
0 GΣ∗z0 ≡ (GMBa0)1/2 where a0 = 2πGΣ∗.

Independent of the scale z0, the critical Kuzmin disks in our
theory satisfy a radial acceleration relation (RAR) since both
gbar
a0

and gobs
a0

only depend on the combination ξ = r/z0.
While the Kuzmin disk is a useful model, most real galaxies

are exponential disks [9]. Interestingly, exponential disks also
arise naturally in our theory. From (9), a “limiting” case for
a cored halo corresponds to θ′(s) = z−1

0 sin θ(s) which ensures
that ∆ψ ≥ 2k0z−1

0 . Solving for θ(s) and computing the corre-
sponding density ΣB using (9), we get,

ΣB(s) =
4Σ∗A3

V0

e−3s/z0

(1 + A2e−2s/z0/4)3 . (11)

Figure 3: Computed rotation curves. a0 = 3600 km2s−2kpc−1. We approxi-
mate the pattern DM density 2Σ∗k−1

0 (∆ψ)2 by the ℓ = 0 mode. We also plot the
rotation curve obtained from Eq. (12) for the RAR. Compare Fig. 7 in Ref. [41]

For A ≲ 1, this is the baryonic density of an exponential disk
ΣB = Σ0e−s/r0 with Σ0 =

4Σ∗A3

V0
, r0 =

1
3 z0, suggesting that the

self-organizing processes underlying our model might naturally
produce exponential disks if the dynamics drive the phase cur-
vatures to a constant (maximal) value on the galactic plane.

Rather than attempting to explain the origins of exponential
profiles for disk galaxies, our goal here is somewhat more lim-
ited, namely, we seek to compute the rotation curves for LSB
exponential disks within our theory. We henceforth set V0 = 4.
Combining (11) and (4) we obtain k0z0 = 48 A−3/2. Fig. 3
shows the numerically obtained rotation curves for a model ex-
ponential disk with r0 = 1 kpc,MB = 108M⊙ corresponding to
A ≈ 1/2. The rotation curve computed from our theory shows
that rises slowly, and continues to rise beyond 7r0. The shape
of the curve as well as the scale of the velocity is in good qual-
itative agreement with the observational curves in [41].

In Fig. 4, we plot the RAR for our theory applied to various
matter distributions (V0 is set to 4) and compare with the fit

gobs =
gbar

1 − e−
√

gbar/g†
(12)

for the choice g† = a0 [16]. Note that, for rotation supported
systems, the resulting RAR has two branches. In the absence
of a bulge/central mass, the baryonic contribution to the accel-
eration gbar has a peak value gmax at a few scale-lengths. For
g < gmax there are two values of r, one on either side of the
peak, with gbar(r) = g and (generically) different values of gobs,
giving two branches that meet at the peak acceleration. Our
theory therefore gives two branches for the RAR in agreement
with recent observations for dwarf disk and LSB galaxies [42].

Fig. 3 illustrates the comparison between the RAR predic-
tion, using (12) and v2

r = gobs, with the rotation curve from
our model. While the RAR prediction peaks and then declines
slightly, the rotation curve given by (9) continues to rise, albeit
slowly. The RAR prediction and our computed curve will both
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Figure 4: The radial acceleration relation (RAR) in our model for various dis-
tributions of matter. gobs and gbar are the total gravitational acceleration and the
baryonic contribution respectively. No parameters are fit: g† = a0 = 2πGΣ∗.
Compare Fig. 1 in Ref. [42].

asymptote to the same value v∞ given by the BTFR. However,
this, clearly, does not determine the entire rotation curve, which
therefore serves as a test for the validity of our theory, even al-
lowing for the (nonlocal) calibration for k0 in (4).

Importantly, the discrepancies between our predictions and
the RAR are significant in the ‘inner’ regions (within a scale
length). Besides the difficulties in resolving the rotation curves
on these scales, this region is strongly influenced by the galactic
bulge and/or a central black hole (if present). In particular, if the
baryonic acceleration gbar is monotonically decreasing in the
region that can be resolved by observations, it is likely that gobs
will be a monotonic function of gbar and discrepancies between
our model and the RAR given by (12) might be hard to detect.

6. Discussion

We have proposed an effective Lagrangian theory for dark
matter, by combining ideas from pattern formation with em-
pirical observations. We have introduced an additional “dark
field” ψ that plays the role of DM. In our theory, no structures
are formed on scales smaller than k−1

0 resulting in cored DM
halos in contrast to the cuspy halos formed by CDM.

Our theory is based on universal equations for pattern for-
mation and can thus describe a variety of instability generating
mechanisms. Our favored interpretation is that ψ is the order
parameter for a broken translational symmetry, with a charac-
teristic scale k−1

0 determined by the distribution of baryons. We
identify k0 with the most unstable wavenumber in the stability
analysis that leads to Toomre’s criterion [35], thereby directly
relating the ‘baryonic instability’ of a rotating disk to the pat-
tern instability that produces the ‘dark halo’ in our framework.

Ours is an effective, long wave theory, applicable on scales ≳
k−1

0 , rather than a fundamental theory, since k0 in (2) explicitly
depends on the baryonic mass MB of the host galaxy, as given

by Eq. (4). This nonlocality is to be expected and is indeed
unavoidable for an effective theory that is consistent with the
BTFR [43]. Our theory is “minimally” nonlocal through the
dependence of its action on a single global quantity MB.

With no additional fitting parameters, our parsimonious the-
ory retrodicts some of the observed regularities and scaling laws
for isolated, quasi-steady, rotation supported systems, including
the RAR and the existence of the Freeman limit.

There are two distinct sources for the new effects arising in
our theory. First, the curvature of the phase surfaces contributes
an additional energy (mass), consistent with cored halos. The
resulting gravitational acceleration dominates the baryonic con-
tribution gbar at large distances and flattens the rotation curves.
Second, for disk galaxies, the phase surfaces are spheroidal
rather than spherical and thus generate a phase grain bound-
ary on the galactic plane. This additional source yields the third
relation in Eq. (9), linking θ(s), the angle between the phase
surfaces and the galactic plane, to the density of the disk, Σ(s),
providing a natural explanation for the disk-halo connection in
galaxies [34, 41]. One consequence of this connection is that
exponential disks correspond to a constant curvature for the
phase surfaces on the galactic disk z = 0, and thus to a con-
stant ‘halo’ surface density [12].

A limitation of our current analysis is that it does not apply to
bulges, elliptic galaxies or other pressure supported systems. In
ongoing work we are investigating the use of a perfect fluid in
place of the dust Lagrangian for matter in Eq. (2), to extend our
analysis to systems with pressure supported components. We
are also evaluating the consequences of the potential instability
of the PGB when the angle θ(s) becomes too sharp [38].

Galaxy formation is a complex process, and involves a great
many effects [44, 45] not included in our simple model. In a
cosmological context galaxies are “nonlinear”, with the impli-
cation sometimes being that theorists can build models that de-
scribe the very largest scales of the universe, and not be too
concerned with tensions between theories and observations, or
“unexplained” regularities/scaling laws, on small “nonlinear”
scales [15]. We disagree with this point of view. We con-
tend that the robust scaling relations satisfied by galaxies are
not “accidental” and require robust explanations. Our model
offers conceptual insight into these relations by demonstrating
how a generic mechanism for coupling the dark field ψ, through
its defects, to the baryonic density ρB leads to self-organization.

Our model allows us to compute the rotation curves of ex-
ponential disk galaxies. The resulting phase contours for ex-
ponential disks are (approximately) spherical caps ψ ≈ (r2 +

(z + z0)2)1/2, as illustrated in Fig. 1, implying that the Kuzmin
disk solutions approximate the “dark halos” of disk galaxies
[47]. This universality [24] justifies our use of simplified phys-
ical models, with relatively few ingredients, in this preliminary
attempt to understand self-organization in galaxies.
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