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Abstract
We study the problem of robust learning under clean-label data-poisoning attacks, where the at-
tacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algo-
rithm into making mistakes on specific test instances at test time. The learning goal is to minimize
the attackable rate (the probability mass of attackable test instances), which is more difficult than
optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can
achieve the optimal dependence on ε in its PAC sample complexity, i.e., O(1/ε). On the other
hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for lin-
ear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable
when the data distribution has zero margin and is robustly learnable in the case of positive margin
but requires sample complexity exponential in the dimension. For a general hypothesis class with
bounded VC dimension, if the attacker is limited to add at most t > 0 poison examples, the optimal
robust learning sample complexity grows almost linearly with t.
Keywords: adversarial machine learning, data poisoning, clean-label attack, PAC learning, sample
complexity.

1. Introduction

Data poisoning is an attack on machine learning algorithms where the attacker adds examples to
the training set with the goal of causing the algorithm to produce a classifier that makes specific
mistakes the attacker wishes to induce at test time. In this paper, we focus on clean-label attacks
in which an attacker, with knowledge of the training set S and the test instance x, injects a set of
examples labeled by the target function into the training set with the intent of fooling the learner
into misclassifying the test instance x. This type of attack is called a clean-label attack because the
attacker can only add correctly-labeled examples to the training set, and it has been proposed and
studied empirically by Shafahi et al. (2018).

In the realizable setting when the target function belongs to the hypothesis class H, any em-
pirical risk minimizer (ERM) will achieve error of Õ(VCdim(H)

m ) with training set size m. This
means that an ERM learner will still have error rate at most Õ(VCdim(H)

m ) even in the presence of
a clean-label attack; i.e., the attacker cannot significantly increase the overall error rate. However,
an attacker could still cause the ERM learner to make specific mistakes that the attacker wishes.
For example, consider an ERM learner for the hypothesis class of intervals over [0, 1] that predicts
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the positive interval of maximum length consistent with the training data, in the case that the target
function labels all of [0, 1] negative. Then any test instance not in the training set is attackable for
this ERM learner by an adversary that adds enough poison examples so that the interval that the test
instance is in becomes the largest interval in the training set. On the other hand, for any target inter-
val, for the ERM learner that outputs the smallest consistent interval, the attackable test instances
will only have probability mass O(1/m) (see Example 1 for more details). Also, notice that for
the hypothesis class of threshold functions over [0,∞), any ERM learner has a small portion of
attackable test instances because the disagreement region of all consistent hypotheses is small and
only test instances in the disagreement region are attackable.

From these examples, we can see that given an ERM learning algorithm A and a training set S,
the probability mass of the attackable region (the set of attackable test instances) is at least as large
as the error rate of the ERM learner and no greater than the disagreement region of all consistent
hypotheses, and it depends on the specific algorithm A. In this paper, we study the problem of
whether we can obtain a small rate of attackable test instances in binary classification. In the process
we find interesting connections to existing literature on the sample complexity of PAC learning, and
complexity measures arising in that literature. Specifically, we study this problem in the realizable
setting as it is unclear how to best define “clean-label” in the agnostic case.

Related work Clean-label data-poisoning attacks have been studied extensively in the literature
(Shafahi et al., 2018; Suciu et al., 2018), and Shafahi et al. (2018) show that clean-label attacks can
be very effective on neural nets empirically. For example, Shafahi et al. (2018) show that in natural
image domains, given the knowledge of the training model and of the test point to be attacked, the
attacker can cause the model retrained with an injection of clean-label poisoned data to misclassify
the given test instance with high success rate. Moreover, the attacker is able to succeed even though
the overall error rate of the trained classifier remains relatively unchanged.

Mahloujifar and Mahmoody (2017); Mahloujifar et al. (2018, 2019b) study a class of clean-
label poisoning attacks called p-tampering attacks, where the attacker can substitute each training
example with a correctly labeled poison example with independent probability p, and its variants.
Mahloujifar and Mahmoody (2019); Mahloujifar et al. (2019a); Etesami et al. (2020) consider a
more powerful adversary that can attack training examples of its choosing (rather than chosen at
random) and show that the attacker can increase the probability of failing on a particular test instance
from any non-negligible probability Ω(1/ poly(m)) to ≈ 1 by replacing Õ(

√
m) training examples

with other correctly labeled examples. In contrast, in our setting the attacker cannot modify any of
the existing training examples and can only add new ones. In addition, we mainly focus on attacks
with an unlimited budget.

Data poisoning without requiring the poisoned data to be clean has been studied extensively
(see Biggio et al. (2012); Barreno et al. (2006); Papernot et al. (2016); Steinhardt et al. (2017) for
a non-exhaustive list). Robustness to data poisoning with a small portion of poison examples has
been studied by Ma et al. (2019); Levine and Feizi (2020). The concurrent work of Gao et al. (2021)
studies the instance-targeted poisoning risk (which is the probability mass of the attackable region
in the classification task) by various attacker classes, which have a budget controlling the amount
of training data points they can change. They mainly focus on the relationship between robust
learnability and the budget.

There are other studied attacking methods, including perturbation over training examples (Koh
and Liang, 2017), perturbation over test examples (Szegedy et al., 2013; Goodfellow et al., 2014;
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Bubeck et al., 2019; Cullina et al., 2018; Montasser et al., 2019, 2020) and etc. Another different
notion of robust learning is studied by Xu and Mannor (2012), where the data set is partitioned into
several subsets and the goal is to ensure the losses of instances falling into the same subset are close.
Another line of related work is covariate shift, where the training distribution is different from the
test distribution (see Quionero-Candela et al. (2009) for an extensive study).

Notation For any vectors u, v, we let ‖u‖ denote the `2 norm of u and θ(u, v) denote the angle of
u and v. We denote by ei ∈ Rn the one-hot vector with the i-th entry being one and others being
zeros. We let Bn(c, r) = {x| ‖x− c‖ ≤ r} denote the the ball with radius r centered at c ∈ Rn
in the n-dimensional space and Γn(c, r) denote the sphere of Bn(c, r). We omit the supscript n
when it is clear from the context. For any a, b ∈ R, denote a ∧ b = min(a, b) and a ∨ b =
max(a, b). We use ln to represent natural logarithms and log to represent logarithms with base 2.
Given a data set S = {(x1, y1), . . . , (xm, ym)} with size m, for any hypothesis h, we let errS(h) =
1
m

∑m
i=1 1[h(xi) 6= yi] denote the empirical error of h over S. For a data distribution D, we

let errD(h) = E(x,y)∼D [1[h(x) 6= y]] denote the error of h. For any A ⊆ X , we let PD(A) =
P(x,y)∼D (x ∈ A) denote the probability mass ofA. The subscriptD is omitted when it is clear from
the context. For any data set S, we let SX = {x|(x, y) ∈ S} and for (x, y) ∼ D, we let DX denote
the marginal distribution of x. For a finite set of hypothesesH, we let Major(H) denote the majority
vote ofH and for simplicity denote Major(H, x) = Major(H)(x) , 1[

∑
h∈H h(x) ≥ d|H|/2e].

2. Problem setup and summary of results

Let X denote the instance space and Y = {0, 1} denote the label space. Given a hypothesis class
H ⊆ YX , we study the realizable case where there exists a deterministic target function h∗ ∈ H
such that the training set and the test set are realized by h∗. Let Dh∗ = {(x, h∗(x))|x ∈ X}
denote the data space where every instance is labeled by h∗. A learning algorithm A is a map
(possibly including randomization), from a labeled data set S (an unordered multiset) of any size,
to a hypothesis h, and for simplicity we denote by A(S, x) = A(S)(x) the prediction of A(S) at
an instance x. An attacker Adv maps a target function h∗, a training data set Strn and a specific test
instance x to a data set Adv(h∗, Strn, x) (a multiset) and injects Adv(h∗, Strn, x) into the training
set with the intent of making the learning algorithm misclassify x. We call Adv a clean-label
attacker if Adv(h∗, Strn, x) is consistent with h∗. Then for any deterministic algorithm A, we say
a point x ∈ X is attackable if there exists a clean-label attacker Adv such that

A(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x) .

To be clear, we are defining Strn ∪ Adv(h∗, Strn, x) as an unordered multiset. Formally, we define
clean-label attackable rate as follows.

Definition 1 (clean-label attackable rate) For a target function h∗, a training data set Strn and
a (possibly randomized) algorithm A, for any distribution D over Dh∗ , the attackable rate by Adv
for (h∗, Strn,A) is defined as

atkD(h∗, Strn,A,Adv) , E(x,y)∼D,A [1[A(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x)]] .

The clean-label attackable rate is defined by the supremum over all clean-label attackers, i.e.,

atkD(h∗, Strn,A) , sup
Adv

atkD(h∗, Strn,A,Adv) .
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Then we define our learning problem as follows.

Definition 2 ((ε, δ)-robust learnability) For any ε, δ ∈ (0, 1), the sample complexity of (ε, δ)-
robust learning of H, denoted by Mrbst(ε, δ), is defined as the smallest m ∈ N for which there
exists an algorithm A such that for every target function h∗ ∈ H and data distribution over Dh∗ ,
with probability at least 1− δ over Strn ∼ Dm,

atkD(h∗, Strn,A) ≤ ε .

If no such m exists, define Mrbst(ε, δ) = ∞. We say that H is (ε, δ)-robust learnable if ∀ε, δ ∈
(0, 1),Mrbst(ε, δ) is finite.

It is direct to see that the error of A(Strn) is the attackable rate by attacker Adv0 which injects an
empty set to the training set, i.e., Adv0(·) = ∅. Therefore, for any algorithm A, we have

atkD(h∗, Strn,A) ≥ atkD(h∗, Strn,A,Adv0) = errD(A(Strn)) ,

which indicates any hypothesis class that is not PAC learnable is not robust learnable. For any
deterministic A, let us define ATK(h∗, Strn,A,Adv) , {x ∈ X |A(Strn ∪ Adv(h∗, Strn, x), x) 6=
h∗(x)} the attackable region by Adv. For any ERM learner and any clean-label attacker Adv, we
have ATK(h∗, Strn,ERM,Adv) ⊆ DIS(VSH,Strn), where VSH,Strn is the version space of Strn,
i.e., the set of all hypotheses in H that classify Strn correctly and DIS(VSH,Strn) = {x|∃h, h′ ∈
VSH,Strn , h(x) 6= h′(x)} is the disagreement region of the version space. Therefore, we have

inf
A

atkD(h∗, Strn,A) ≤ PD(DIS(VSH,Strn)) .

However, large PD(DIS(VSH,Strn)) does not always result in large clean-label attackable rate. Be-
low is an example showing the gap between them.

Example 1 (Interval over [0, 1]) The hypothesis class H = {1[(a, b)] : 0 ≤ a ≤ b ≤ 1} ∪
{1[[a, b]] : 0 ≤ a ≤ b ≤ 1} contains all intervals on [0, 1]. We consider the following two learners.

• A1(S): return 1[∅] (the empty interval) if there are no positive examples in S and return the
consistent positive closed interval with minimum length otherwise.

• A2(S): return the consistent positive open interval with maximum length.

Both are ERM learners for H. For any h∗ ∈ H, let the data distribution D be a distribution
on Dh∗ and Strn ∼ Dm for any m > 0, then A1’s attackable rate is atkD(h∗, Strn,A1) =
errD(A1(Strn)) = Õ(1/m). However, consider algorithm A2 with h∗ = 1[∅]. For Strn =
{(x1, y1), . . . , (xm, ym)}, w.l.o.g. assume that x1 ≤ . . . ≤ xm and let x0 = 0, xm+1 = 1 for nota-
tion simplicity. Then for any x ∈ (xi, xi+1), the attacker can add enough poison data points to inter-
vals {(xj , xj+1)}j 6=i to make (xi, xi+1) be the interval with the maximum length. Therefore, so long
as D has no point masses, A2’s attackable rate is atkD(h∗, Strn,A2) = PD(DIS(VSH,Strn)) = 1.

Main results We summarize the main contributions of this work.

• In Section 3, we present results on robust learnability under assumptions based on some
known structural complexity measures, e.g., VC dimension d = 1, hollow star number ko =
∞, etc. In addition, we show that all robust algorithms can achieve optimal dependence on ε
in their PAC sample complexity.
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• In Section 4, we show that the n-dimensional linear hypothesis class with n ≥ 2 is not (ε, δ)-
robust learnable. Then we study the linear problem in the case where the data distribution D
has margin γ > 0. We propose one algorithm with sample complexity O(n(2/γ)n log(2/γ))
and show that the optimal sample complexity is eΩ(n). We propose another algorithm in
2-dimensional space with sample complexity O(log(1/γ) log log(1/γ)). We also show that
even in the case where γ is large and the attacker is only allowed to inject one poison example
into the training set, SVM requires at least eΩ(n) samples to achieve low attackable rate.

• In Section 5, we show that for any hypothesis classHwith VC dimension d, when the attacker
is restricted to inject at most t poison examples,H is robust learnable with sample complexity
Õ(dtε ). We also show that there exists a hypothesis class with VC dimension d such that any
algorithm requires Ω(dtε ) samples to achieve ε attackable rate.

3. Connections to some known complexity measures and PAC learning

In this section, we analyze the robust learnability of hypothesis classes defined by a variety of
known structural complexity measures. For some of these, we show they have the good property
that there exists an algorithm such that adding clean-label points can only change the predictions on
misclassified test instances and thus, the algorithm can achieve atk(h∗, Strn,A) ≤ err(A(Strn)).
For some other structure, we prove that there will be a large attackable rate for any consistent proper
learner. We also show the connection to optimal PAC learning in Section 3.2.

3.1. Connections to some known complexity measures

Hypothesis classes with VC dimension d = 1 are (ε, δ)-robust learnable. First, w.l.o.g., as-
sume that for every x 6= x′ ∈ X , there exists h ∈ H such that h(x) 6= h(x′) (otherwise, operate
over the appropriate equivalence classes). Then we adopt the partial ordering ≤Hf for any f ∈ H
over X proposed by Ben-David (2015) defined as follows.

Definition 3 (partial ordering ≤Hf ) For any f ∈ H,

≤Hf , {(x, x′)|∀h ∈ H, h(x′) 6= f(x′)⇒ h(x) 6= f(x)} .

By Lemma 5 of Ben-David (2015), ≤Hf for d = 1 is a tree ordering. Due to this structural property
of hypothesis classes with VC dimension d = 1, there is an algorithm originally proposed by Ben-
David (2015) (Algorithm 4 in Appendix A.1) such that adding clean-label poison points can only
narrow down the error region (the set of misclassified instances). Roughly, the algorithm finds a
maximal (by ≤Hf ) point x′ in the data such that h∗(x′) 6= f(x′), and outputs the classifier labeling
all x ≤Hf x′ as 1 − f(x) and the rest as f(x). We show that this algorithm can robustly learn H
using m samples, where

m =
2 ln(1/δ)

ε
.

The detailed algorithm and proof are given in Appendix A.1.

5



BLUM HANNEKE QIAN SHAO

Intersection-closed hypothesis classes are (ε, δ)-robust learnable. A hypothesis class H is
called intersection-closed if the collection of sets {{x|h(x) = 1}|h ∈ H} is closed under in-
tersections, i.e., ∀h, h′ ∈ H, the classifier x 7→ 1[h(x) = h′(x) = 1] is also contained in
H. For intersection-closed hypothesis classes, there is a general learning rule, called the Clo-
sure algorithm (Helmbold et al., 1990; Auer and Ortner, 2007). For given data S, the algorithm
outputs ĥ = 1[{x|∀h ∈ VSH,S , h(x) = 1}]. Since ĥ(x) = 1 implies h∗(x) = 1, and since
adding clean-label poison points will only increase the region being predicted as positive, we have
atk(h∗, Strn,Closure) = err(Closure(Strn)). Then by Theorem 5 of Hanneke (2016a), for any
intersection-closed hypothesis class H with VC dimension d, the Closure algorithm can robustly
learnH using m samples, where

m =
1

ε
(21d+ 16 ln(3/δ)) .

Unions of intervals are (ε, δ)-robust learnable. Let Hk = ∪k′≤k{1[∪k′i=1(ai, bi)]|0 ≤ ai <
bi ≤ 1,∀i ∈ [k′]} denote the union of at most k positive open intervals for any k ≥ 1. This
hypothesis class is a generalization of Example 1. There is a robust learning rule: output 1[∅]
if there is no positive sample and otherwise, output the consistent union of minimum number of
closed intervals, each of which has minimum length. More specifically, given input (poisoned) data
S = {(x1, y1), . . . , (xm′ , ym′)} with x1 ≤ x2 ≤ . . . ≤ xm′ w.l.o.g., for notation simplicity, let
y0 = ym′+1 = 0. Then the algorithm A outputs ĥ = 1[X] where X = ∪{[xi, xj ]|∀i ≤ l ≤ j ∈
[m′], yi−1 = yj+1 = 0, yi = yl = yj = 1}. The algorithm A can robustly learn union of intervals
Hk using m samples, where

m = O

(
1

ε
(k log(1/ε) + log(1/δ))

)
.

The detailed proof can be found in Appendix A.2.

Hypothesis classes with finite star number are (ε, δ)-robust learnable. The star number, pro-
posed by Hanneke and Yang (2015), can measure the disagreement region of the version space.

Definition 4 (star number) The star number s is the largest integer s such that there exist distinct
points x1, . . . , xs ∈ X and classifiers h0, . . . , hs with the property that ∀i ∈ [s], DIS({h0, hi}) ∩
{x1, . . . , xs} = {xi}; if no such largest integer exists, define s =∞.

By Theorem 10 of Hanneke (2016a), for any H with star number s, with probability at least 1 − δ
over Strn ∼ Dm, P(DIS(VSH,Strn)) ≤ ε where

m =
1

ε
(21s + 16 ln(3/δ)) .

As aforementioned, ATK(h∗, Strn,ERM,Adv) ⊆ DIS(VSH,Strn) for any clean-label attacker Adv
and thus any ERM can robustly learnH using m samples.

Hypothesis classes with infinite hollow star number are not consistently properly (ε, δ)-robust
learnable. The hollow star number, proposed by Bousquet et al. (2020), characterizes proper
learnability. For any set S = {(x1, y1), . . . , (xk, yk)}, Si = {(x1, y

′
1), . . . , (xk, y

′
k)} is said to be a

neighbor of S if y′i 6= yi and y′j = yj for all j 6= i, for any i ∈ [k].

6



ROBUST LEARNING UNDER CLEAN-LABEL ATTACK

Definition 5 (hollow star number) The hollow star number ko is the largest integer k such that
there is a set S = {(x1, y1), . . . , (xk, yk)} (called the hollow star set) which is not realizable byH,
however every set S′ which is a neighbor of S is realizable by H. If no such largest k exists, define
ko =∞.

For any hypothesis class H with hollow star number ko, for any consistent proper learner A, there
exists a target function h∗ and a data distributionD such that ifm ≤ b(ko − 1)/2c, then the expected
attackable rate

EStrn∼Dm [atk(h∗, Strn,A)] ≥ 1/4 ,

which implies PStrn (atk(h∗, Strn,A) > 1/8) ≥ 1/7 by Markov’s inequality. The construction of
the target function, the data distribution and the attacker is as described below. Consider a hollow
star set S as above, with size k. By definition, there exists a set of hypotheses {h1, . . . , hk} ⊆ H
such that each neighbor Si is realized by hi for any i ∈ [k]. Consider the target function being
hi∗ where i∗ is drawn uniformly at random from [k] and the marginal data distribution is a uniform
distribution over {xi|i ∈ [k] \ {i∗}}. For any b(k − 1)/2c i.i.d. samples from the data distribution,
there are at least k − b(k − 1)/2c instances in S not sampled. To attack an unseen instance xi, the
attacker adds all examples in S except xi, xi∗ . Then any algorithm cannot tell whether hi∗ or hi is
the true target and any consistent proper learner will misclassify {xi, xi∗} with probability 1/2.

For hypothesis classes with ko =∞, there is a sequence of hollow star sets with increasing sizes
{ki}∞i=1. Therefore, any hypothesis class with ko =∞ is not consistently properly robust learnable.
The detailed proof is included in Appendix A.3.

3.2. All robust learners are optimal PAC learners

There is an interesting connection between algorithms robust to clean-label poisoning attacks and
the classic literature on the sample complexity of PAC learning. Specifically, we can show that any
learning algorithm that is robust to clean-label poisoning attacks necessarily obtains the optimal
dependence on ε in its PAC sample complexity: that is, O(1/ε). This is a very strong property, and
not many such learning algorithms are known, as most learning algorithms have at least an extra
log(1/ε) factor in their sample complexity (see e.g., Haussler, Littlestone, and Warmuth, 1994;
Auer and Ortner, 2007; Hanneke, 2009, 2016b,a; Darnstädt, 2015; Bousquet, Hanneke, Moran, and
Zhivotovskiy, 2020). Thus, this property can be very informative regarding what types of learning
algorithms one should consider when attempting to achieve robustness to clean-label poisoning
attacks. This claim is formalized in the following result. Its proof is presented in Appendix A.4.

Theorem 1 Fix any hypothesis class H. Let A be a deterministic learning algorithm that always
outputs a deterministic hypothesis. Suppose there exists a non-negative sequence R(m) → 0 such
that, ∀m ∈ N, for every target function h∗ ∈ H and every distribution D over Dh∗ , for Strn ∼ Dm,
with probability at least 1/2, atkD(h∗, Strn,A) ≤ R(m). Then there exists an (R-dependent) finite
constant cR such that, for every δ ∈ (0, 1), m ∈ N, h∗ ∈ H, and every distribution D over Dh∗ , for
Strn ∼ Dm, with probability at least 1− δ, atkD(h∗, Strn,A) ≤ cR

m log 2
δ .

An immediate implication of this result (together with Markov’s inequality) is that any deter-
ministicA outputting deterministic predictors, if EStrn∼Dm [atkD(h∗, Strn,A)] ≤ R(m)/2→ 0 for
all h∗ ∈ H and D on Dh∗ , then for any h∗ ∈ H, D on Dh∗ , δ ∈ (0, 1), errD(A(Strn)) ≤ cR

m log 2
δ

with probability at least 1− δ. As mentioned, this is a strong requirement of the learning algorithm
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A; for instance, for many classes H, many ERM learning rules would have an extra log(m) fac-
tor (Hanneke, 2016a). This also establishes a further connection to the hollow star number, which
in some cases strengthens the result mentioned above (and detailed in Appendix A). Specifically,
Bousquet, Hanneke, Moran, and Zhivotovskiy (2020) have shown that when ko =∞, for any fixed
δ sufficiently small, any proper learning algorithm has, for some infinite sequence of m values, that
∃h∗ ∈ H and D on Dh∗ for which, with probability greater than δ, errD(A(Strn)) ≥ c log(m)

m for a
numerical constant c. Together with Theorem 1, this implies that for such classes, any deterministic
proper learning algorithm cannot have a sequence R(m) → 0 as in the above theorem. Formally,
using the fact that atkD(h∗, S,A) is non-increasing in S (see the proof of Theorem 1), we arrive
at the following corollary, which removes the “consistency” requirement from the result for classes
with ko =∞ stated above, but adds a requirement of being deterministic.

Corollary 1 If ko =∞, then for any deterministic proper learning algorithmA that always outputs
a deterministic hypothesis, there exists a constant c > 0 such that, for every m ∈ N, ∃h∗ ∈ H and
distribution D on Dh∗ such that EStrn∼Dm [atkD(h∗, Strn,A)] > c.

4. Linear hypothesis class

In this section, we first show that n-dimensional linear classifiersH = {1[〈w, x〉+ b ≥ 0]|(w, b) ∈
Rn+1} with n ≥ 2 are not robust learnable. Then we study a restrictive case where the support of
the data distribution has a positive margin to the boundary. We introduce two robust learners and
prove a robust learning sample complexity lower bound. In addition, we also show the vulnerability
of SVM.

4.1. Linear hypothesis class is not robust learnable

In this section, we show that the class of linear hypotheses is not robust learnable.

Theorem 2 For n ≥ 2, the class of linear hypotheses is not robust learnable.

Proof sketch We present the proof idea in the case of n = 3 here and for simplicity, we allow
the decision boundary to be either positive or negative. The construction details of limiting the
boundary to be positive and the construction for n = 2 are deferred to Appendix B.

Consider the case where X = Γ3(0, 1) is the sphere of the 3-dimensional unit ball centered at
the origin and the target function is uniformly randomly chosen from all linear classifiers with the
decision boundary at distance 1/2 from the origin, and the boundary labeled different from 0, i.e.,
h∗ ∼ Unif(H∗), whereH∗ = {1[〈w, x〉− 1

2 ≥ 0]| ‖w‖ = 1}∪ {1−1[〈w, x〉− 1
2 ≥ 0]| ‖w‖ = 1}.

W.l.o.g., suppose h∗ = 1[〈w∗, x〉 − 1
2 ≥ 0]. The data distribution is the uniform distribution over

the intersection of the decision boundary and the sphere, i.e., DX = Unif(Cw∗), where Cw∗ =
{x| 〈w∗, x〉 − 1

2 = 0} ∩ Γ3(0, 1). Then all training data come from the circle Cw∗ and are labeled
positive.

Given training data Strn ∼ Dm and a test point x0 ∈ Cw∗ (not in Strn,X ), the attacker constructs
a fake circle Cw′ tangent to Cw∗ at point x0, i.e., Cw′ = {x| 〈w′, x〉 − 1

2 = 0} ∩ Γ3(0, 1) where
w′ = 2 〈x0, w

∗〉x0−w∗. Then the attacker addsm i.i.d. samples from the uniform distribution over
Cw′ and labels them negative. Any algorithm cannot tell which circle is the true circle and which
one of {1[〈w∗, x〉 − 1

2 ≥ 0], 1 − 1[〈w′, x〉 − 1
2 ≥ 0]} is the true target. Hence, any algorithm will

misclassify x0 with probability 1/2.

8



ROBUST LEARNING UNDER CLEAN-LABEL ATTACK

Algorithm 1 Robust algorithm for 2-dimensional linear classifiers
1: input: data S
2: initialize l← 0, h← 2π and β ← l+h

2
3: if ∃b ∈ [−2, 2] s.t. (0, b) is consistent then output (0, b)
4: while @b ∈ [−2, 2] s.t. (β, b) is consistent with S do
5: if ∃β ∈ (l, l+h2 ) s.t. ∃b ∈ [−2, 2], (β, b) is consistent with S then let h← l+h

2 , β ← l+h
2

6: else let l← l+h
2 , β ← l+h

2
7: end while
8: return (β, b) with any consistent b

4.2. Linear hypothesis class is robust learnable under distribution with margin

In this section, we discuss linear classifiers in the case where the distribution has a positive margin.
Specifically, considering the instance spaceX ⊆ Bn(0, 1), we limit the data distributionD to satisfy
that ∀(x, y) ∈ supp(D), (2y− 1)(〈w∗, x〉+ b∗) ≥ γ ‖w∗‖ /2 for some margin γ ∈ (0, 2] and target
function h∗(x) = 1[〈w∗, x〉+ b∗ ≥ 0].

4.2.1. A LEARNER FOR ARBITRARY n > 0

The learner A fixes a γ/2-covering V of X , i.e., ∀x ∈ X , ∃v ∈ V, x ∈ B(v, γ/2), where |V | ≤
(2/γ)n. It is easy to check that such a V always exists. Then given input data S, the learner outputs
a classifier: for x ∈ B(v, γ/2), if ∃(x′, y′) ∈ S s.t. x′ ∈ B(v, γ/2), predicting h(x) = y′; otherwise,
predicting randomly. Note that Adv does not necessarily need to be restricted to such margin.

Theorem 3 The algorithm can robustly learn linear classifiers with margin γ using m samples
where

m =
(2/γ)n

ε

(
n ln

2

γ
+ ln

1

δ

)
.

Proof First, for every v ∈ V , at least one of y ∈ {0, 1} has D(x ∈ B(v, γ/2) : h∗(x) = y) = 0.
Then with probability at least 1 − |V | (1 − ε/ |V |)m over Strn ∼ Dm, for every ball B(v, γ/2)
with probability mass at least ε/ |V |, there exists (x′, y′) ∈ Strn such that x′ ∈ B(v, γ/2). Let
m = |V | ln(|V | /δ)/ε, we have with probability at least 1− δ, atk(h∗, Strn,A) ≤ ε.

4.2.2. A LEARNER FOR n = 2

In the 2-dimensional case, the hypothesis class can be represented as H = {hβ,b|β ∈ [0, 2π), b ∈
[−2, 2]} where hβ,b = 1[(cosβ, sinβ) · x + b ≥ 0]. When there is no ambiguity, we use (β, b) to
represent hβ,b. The target is h∗ = hβ∗,b∗ . Then we propose a robust algorithm based on binary-
search for the target direction β∗ as shown in Algorithm 1.

Theorem 4 For any data distribution D, let f(ε′′) = max{s ≥ 0|P({x|(cosβ∗, sinβ∗) · x +
b∗ ∈ [−s, 0]}) ≤ ε′′,P({x|(cosβ∗, sinβ∗) · x + b∗ ∈ [0, s]}) ≤ ε′′} for ε′′ ∈ [0, 1] denote the
maximum distance between the boundary and two parallel lines (on positive side and negative side
respectively) such that the probability between the boundary and either line is no greater than ε′′.
With probability at least 1− δ over Strn ∼ Dm, Algorithm 1 achieves

atk(h∗, Strn,A) ≤ log(
32

f(ε′′) ∧ 2
)2ε′ + 2ε′′ ,

9
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for any ε′′ ∈ [0, 1] using m samples where

m =
24

ε′
log

13

ε′
+

4

ε′
log

2

δ
.

Proof sketch First, by uniform convergence bound in PAC learning (Blumer et al., 1989), when
m ≥ 24

ε′ log 13
ε′ + 4

ε′ log 2
δ , every linear classifier consistent with Strn has error no greater than ε′. For

any fixed β, the probability mass of union of error region of all (β, b) consistent with the training
data is bounded by 2ε′. Then given a target (β∗, b∗), the binary-search path of β is unique and adding
clean-label poison examples will only change the depth of search. When h− l < arctan(f(ε′′)/2),
the attackable rate caused by deeper search is at most 2ε′′. Combining these results together proves
the theorem. The formal proof of Theorem 4 is included in Appendix C.

Theorem 5 For any γ ∈ (0, 2], Algorithm 1 can (ε, δ)-robustly learn 2-dimensional linear classi-
fiers with margin γ using m samples where

m =
48 log(64/γ)

ε
log

26 log(64/γ)

ε
+

8 log(64/γ)

ε
log

2

δ
.

Theorem 5 is the immediate result of Theorem 4 as f(0) = γ/2.

4.2.3. SVM REQUIRES eΩ(n)/ε SAMPLES AGAINST ONE-POINT ATTACKER

SVM is a well-known optimal PAC learner for linear hypothesis class (Bousquet et al., 2020). In
this section, we show that even in the case where γ ≥ 1/8 and the attacker is limited to add at most
one poison point, SVM requires eΩ(n)/ε samples to achieve ε attackable rate.

Theorem 6 For n-dim linear hypothesis class, for any ε < 1/16, there exists a target h∗ ∈ H and
a distribution D over Dh∗ with margin γ = 1/8 such that EStrn∼Dm [atkD(h∗, Strn,SVM)] > ε

when the sample size m < en/128

768ε ∨
1
8ε .

Proof sketch Consider the case where X = {x ∈ R3| ‖x‖ = 1, 〈x, e1〉 ≥ 0}∪{−e1} is the union
of a half sphere and a point −e1. The target function is h∗ = 1[〈w∗, x〉 ≥ −γ/2] with w∗ = e1

and margin γ = 1/8. Note that h∗ labels all points on the half sphere positive and −e1 negative.
Then we define the data distribution DX by putting probability mass 1 − 8ε on −e1 and putting
probability mass 8ε uniformly on the half sphere.

Then we draw training set Strn ∼ Dm and a test point (x0, y0) ∼ D. Condition on that x0

is on the half sphere, with high probability, 〈x0, w
∗〉 ≤ 1/8. Then we define two base vectors

v1 = w∗ and v2 = x0−〈x0,w∗〉w∗
‖x0−〈x0,w∗〉w∗‖ in the 2-dimensional space defined by w∗ and x0. With high

probability over the choice of Strn, for all positive training examples x on the half sphere, we have
〈x, v1〉 ≤ 1/8 and 〈x, v2〉 ≤ 1/8. Then the attacker injects a poison point at −γv1 +

√
1− γ2v2,

which is closer to x0 than all the positive samples in Strn. Since the poison point is classified as
negative by the target function, SVM will misclassify x0 as negative. The detailed proof can be
found in Appendix D.

4.2.4. LOWER BOUND

Here we show that robust learning of linear hypothesis class under distribution with margin γ > 0
requires sample complexity eΩ(n)/ε.

10



ROBUST LEARNING UNDER CLEAN-LABEL ATTACK

Theorem 7 For n-dimensional linear hypothesis class with n > 256, for any ε ≤ 1/16 and for
any algorithm A, there exists a target function h∗ ∈ H and a distribution D over Dh∗ with margin

γ = 1/8 such that EStrn∼Dm [atkD(h∗, Strn,A)] > ε when the sample size m ≤ e
n−1
128

192ε . For
convenience, here we relax the instance space by allowing X ⊆ Bn(0, 9/8).

The construction of the target function and the data distribution is similar to that in the proof of
Theorem 6. To attack a test instance x0, the attacker adds the reflection points of all training points
through the hyperplane defined by x0 and w∗ such that any algorithm will misclassify x0 with
probability 1/2. The detailed proof is included in Appendix E.

5. Results for finite-point attackers

In this section, instead of considering the case where the attacker can add a set of poison examples
of arbitrary size, we study a restrictive case where the attacker is allowed to add at most t poison
examples for some t <∞, i.e., |Adv(h∗, Strn, x0)| ≤ t for any h∗, Strn, x0. Following Definition 1
and 2, we define t-point clean-label attackable rate and (t, ε, δ)-robust learnability as follows.

Definition 6 (t-point clean-label attackable rate) For a target function h∗, a training data set
Strn and a (possibly randomized) algorithm A, for any distribution D over Dh∗ , the t-point clean-
label attackable rate is

atkD(t, h∗, Strn,A) , sup
Adv

atkD(h∗, Strn,A,Adv) s.t. |Adv(h∗, Strn, x)| ≤ t,∀x ∈ X .

Definition 7 ((t, ε, δ)-robust learnability) A hypothesis classH is (t, ε, δ)-robust learnable if there
exists a learning algorithmA such that ∀ε, δ ∈ (0, 1), ∃m(t, ε, δ) ∈ N such that ∀h∗ ∈ H,∀D over
Dh∗ , with probability at least 1− δ over Strn ∼ Dm,

atkD(t, h∗, Strn,A) ≤ ε .

5.1. Algorithms robust to t-point attacker

Robustness to a small number of poison examples has been studied by Ma et al. (2019); Levine and
Feizi (2020). Ma et al. (2019) show that differentially-private learners are naturally resistant to data
poisoning when the attacker can only inject a small number of poison examples. Levine and Feizi
(2020) propose an algorithm called Deep Partition Aggregation (DPA), which partitions the training
set into multiple sets by a deterministic hash function, trains base classifiers over each partition and
then returns the majority vote of base classifiers. They show that for any instance x, the prediction
on x is unchanged if the number of votes of the output exceeds half of the number of the total votes
by t. But the attackable rate of DPA is not guaranteed. Here we propose several algorithms similar
to DPA but with guarantees on the attackable rate. In Algorithm 2, we provide a protocol converting
any given ERM learner L to a learner with small t-point clean-label attackable rate.

Theorem 8 For any hypothesis class H with VC dimension d with any proper ERM learner L,
Algorithm 2 can (t, ε, δ)-robustly learnH using m samples where

m = O

(
dt

ε
log

dt

ε
+
d

ε
log

1

δ

)
.
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Algorithm 2 A robust protocol for t-point attacker
1: input: A proper ERM learner L, data S
2: divide S into 10t + 1 blocks {S(1), S(2), . . . , S(10t+1)} with size

⌊
|S|

10t+1

⌋
randomly without

replacement (throw away the remaining |S| − (10t+ 1)
⌊
|S|

10t+1

⌋
points)

3: return Major(H′) whereH′ = {L(S(i))|i ∈ [10t+ 1]}

Algorithm 3 A proper robust learner for t-point attacker given projection number kp
1: input: A proper ERM learner L, data S
2: Divide the data S into 10kpt+1 sets {S(1), S(2), . . . , S(10kpt+1)}with size

⌊
|S|

10kpt+1

⌋
randomly

without replacement (throw away the remaining |S| − (10kpt+ 1)
⌊

|S|
10kpt+1

⌋
points)

3: return ĥ = ProjH(H′), whereH′ = {hi = L(S(i))|i ∈ [10kpt+ 1]}

Proof sketch For every misclassified point x0 ∈ X , there are at least 5t + 1 classifiers among
{L(S(i))}10t+1

i=1 misclassifying x0. Since there are at most t blocks containing poison data, there are
at least 4t+1 non-contaminated classifiers (output by blocks without poison data) misclassifying x0.
Then t-point clean-label attackable rate is bounded by bounding the error of one non-contaminated
classifier. The detailed proof is provided in Appendix F.

As we can see, Algorithm 2 is improper even if L is proper. Inspired by the projection number
and the projection operator defined by Bousquet et al. (2020), we propose a proper robust learner
in Algorithm 3. First, let us introduce the definitions of the projection number and the projection
operator as follows. For a finite (multiset) H′ ⊆ H, for l ≥ 2, define the set XH′,l ⊆ X of all the
points x on which less than 1

l -fraction of all classifiers inH′ disagree with the majority. That is,

XH′,l =

{
x ∈ X :

∑
h∈H′

1[h(x) 6= Major(H′, x)] <
|H′|
l

}
.

Definition 8 (projection number and projection operator) The projection number ofH, denoted
by kp, is the smallest integer k ≥ 2 such that, for any finite multiset H′ ⊆ H there exists h ∈ H
that agrees with Major(H′) on the entire set XH′,k. If no such integer k exists, define kp = ∞. If
kp < ∞, the projection operator ProjH : H′ 7→ H is a deterministic map from H′ to H such that
ProjH(H′, x) = Major(H′, x),∀x ∈ XH′,kp .

Theorem 9 For any hypothesis class H with VC dimension d and projection number kp, with any
proper ERM learner L, Algorithm 3 can (t, ε, δ)-robustly learnH using m samples where

m = O

(
k2
pdt

ε
log

kpdt

ε
+
kpd

ε
ln

1

δ

)
.

The proof adopts the same idea as the proof of Theorem 8 and is included in Appendix G. For the
hypothesis class with infinite projection number, we can obtain a proper learner in a similar way:
randomly selecting bε |S|/3tc samples with replacement from input data set S and run ERM over the
selected data. We show that this algorithm can (t, ε, δ)-robustly learnH usingO( dt

ε2
log d

ε + d
ε log 1

δ )
samples. The details of the algorithm and the analysis can be found in Appendix G.
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5.2. Lower bound

Theorem 10 For any d ≥ 1 and ε ≤ 3
8 , there exists a hypothesis class H with VC dimension 5d

such that for any algorithm A, there exists a target function h∗ ∈ H and a data distribution D on
Dh∗ , such that EStrn∼Dm [atkD(t, h∗, Strn,A)] > ε when the sample size m < 3td

64ε .

Proof sketch Consider d disjoint spheres in R3 and the target function is chosen by randomly
selecting a circle on each sphere. Then label each circle differently from the rest of the sphere the
circle lies on. Specifically, we flip d independent fair coins, one for each circle to decide whether
the circle is labeled positive or negative. The data distribution puts probability mass t

8m uniformly
on each circle and 1− td

8m probability mass on an irrelevant point (not on any of the spheres). Then
we can show that with constant probability, every unseen point on each circle can be attacked by
an attacker similar to the one in the proof sketch of Theorem 2. The detailed proof is included in
Appendix H.

Remark 1 Actually, our algorithms above even work for t-point unclean-label attackers (where
the poison data are not necessarily labeled by the target function) as well, which indicates that
cleanness of poison examples does not make the problem fundamentally easier in the worst-case
over classes of a given VC dimension, in the t-point attack case (although it can potentially make a
difference for particular algorithms or particular classesH).

6. Discussion and future directions

In this paper, we show the impossibility of robust learning in the presence of clean-label attacks for
some hypothesis classes with bounded VC dimension, e.g., the class of linear separators, and the
robust learnability of some hypothesis classes characterized by known complexity measures, e.g.,
finite star number. There are several interesting open questions.

• The first question is what are necessary and sufficient conditions for (ε, δ)-robust learnability.
Finite star number is a sufficient but not necessary condition. Here is an example where the
instance space is X = N and the hypothesis class is H = {1[i]|i ∈ N} ∪ {0}. The star
number of H is s = ∞, but H is robust learnable since VCdim(H) = 1. One intriguing
possible complexity measure is the largest number k such that there is a set of distinct points
S = {x1, . . . , xk} ∈ X k and classifiers {h0, . . . , hk}, where for any i ∈ [k], there exists an
involutory function fi : X 7→ X (i.e., fi(fi(x)) = x, ∀x ∈ X ) such that fi(xi) = xi and
DIS({h0, hi}) ∩ {S ∪ fi(S)} = {xi}.

• For proper robust learning, we prove that any hypothesis class with infinite hollow star number
ko =∞ is neither consistently properly (ε, δ)-robust learnable nor deterministically properly
(ε, δ)-robust learnable. Compared with the fact that ko =∞ only brings an extra Ω(log(1/ε))
in the optimal PAC sample complexity (Bousquet et al., 2020), we see that the hollow star
number has a dramatically larger impact on proper robust learnability. On the other hand,
finite hollow star number does not suffice for robust learnability (e.g., Bousquet et al., 2020,
show linear classifiers on Rn have ko = n + 2), and it is unclear what is the necessary and
sufficient condition for proper robust learnability.

• For linear classifiers with margin γ > 0, the lower bound of the sample complexity presented
in Section 4 ignores the dependence on γ. For the two learners introduced in Section 4, the
one using the covering set has sample complexity of O(n(2/γ)n log(1/γ)) and the other one

13
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designed for the 2-dimension has sample complexity ofO(log(1/γ) log log(1/γ)). There is a
huge gap between the lower bound and the upper bound and thus far, the optimal dependence
on γ remains unclear.

• For finite-point attacks, we construct a hypothesis class such that the t-point clean-label at-
tackable rate is Ω( tm) in the proof of Theorem 10 and Algorithm 2 achieves O( t log(m)

m )
attackable rate. It is unclear to us for what kind of hypothesis class, there is an algorithm
able to achieve o( tm) attackable rate. At the same time, we are curious about its connection
to (ε, δ)-robust learnablility. Notice that in all the proofs of the negative results in this paper,
the attacker we construct never injects more than m poison examples. This triggers the fol-
lowing suspicion: are infinite-point attackers strictly more powerful than m-point attackers?
Specifically, we have the following conjecture.

Conjecture 1 (infinite to finite) For any hypothesis class H, for every target function h∗ ∈
H, data distribution D over Dh∗ , there exist a pair of constants c, c′ > 0 such that for any
m > 0, any training data Strn ∈ Dm

h∗ and any algorithm A, atkD(h∗, Strn,A) ≥ c iff
atkD(m,h∗, Strn,A) ≥ c′.

Assuming that this conjecture holds, hence for any hypothesis class H, if there exists an
algorithm A able to (t, ε, δ)-robustly learn H with attackable rate o( tm), then H is (m, ε, δ)-
robust learnable and thus, (ε, δ)-robust learnable.

• Another open question is whether abstention helps. Considering the case where the algorithm
is allowed to abstain on ε-fraction of inputs if the algorithm detects abnormality. That is to say,
the algorithm outputs a selective classifier (ĥ,CR(Strn)), where the prediction hypothesis ĥ
is a map from X to Y and CR(Strn) ⊆ X is the confidence region of the prediction. The
algorithm predicts A(Strn, x) = ĥ(x) if x ∈ CR(Strn) and A(Strn, x) =⊥ if x /∈ CR(Strn),
where ⊥ means the algorithm predicts “I don’t know”. Then for any deterministic algorithm,
we say a test instance x ∈ X is attackable if there is a clean-label attacker such that x is
predicted incorrectly as well as x is in the confidence region, i.e.,

A(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x) & x ∈ CR(Strn ∪Adv(h∗, Strn, x)) .

We define the event E(h∗, Strn,A,Adv, x, y) = {A(Strn ∪ Adv(h∗, Strn, x), x) 6= h∗(x) ∩
x ∈ CR(Strn ∪Adv(h∗, Strn, x))} and then define the selective attackable rate as

supAdv E(x,y)∼D,A [1[E(h∗, Strn,A,Adv, x, y)]] .

We are curious about the sample complexity required to achieve ε selective attackable rate
while keeping the probability mass of the confidence region P(x,y)∼D (x ∈ CR(S)) ≤ ε for
any input S ⊇ Strn.
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Appendix A. Proof of results in Section 3

A.1. Hypothesis class with VC dimension d = 1

For any f ∈ H, let max
≤Hf
x∈S0

x denote the maximal element w.r.t. the partial ordering ≤Hf in any

non-empty ordered finite set S0, i.e., ∀x′ ∈ S0, x
′ ≤Hf

(
max

≤Hf
x∈S0

x

)
. Then for any arbitratrily

chosen but fixed f ∈ H, the algorithm (originally proposed by Ben-David, 2015) is described as
follows.

Algorithm 4 Robust algorithm forH with VC dimension d = 1

1: input: data S
2: If every (x, y) ∈ S has y = f(x), return ĥ = f

3: Let xm = max
≤Hf
(x,y)∈S,y 6=f(x) x

4: ĥ(x) = 1− f(x) for x ≤Hf xm and ĥ(x) = f(x) otherwise

5: return ĥ

By Lemma 5 of Ben-David (2015), ≤Hf for d = 1 is a tree ordering. Thus, all points labeled
differently by f and h∗ should lie on one path, i.e., for every x, x′ ∈ X , if h∗(x) 6= f(x) and
h∗(x′) 6= f(x′), then x ≤Hf x′ or x′ ≤Hf x. Due to this structure property of hypothesis class
with VC dimenison 1, adding clean-label attacking points can only narrow down the error region of
Algorithm 4.

Theorem 11 For any H with VC dimension d = 1, Algorithm 4 can (ε, δ)-robustly learn H using
m samples, where

m =

⌈
2 ln(1/δ)

ε

⌉
.

Proof First, we prove that X = {x ∈ X |h∗(x) 6= f(x)} is totally ordered by ≤Hf . That is, for
every x, x′ ∈ X , if h∗(x) 6= f(x) and h∗(x′) 6= f(x′), then x ≤Hf x′ or x′ ≤Hf x. If it is not true,
then there exists h1, h2 ∈ H such that h1(x) 6= f(x), h1(x′) = f(x′) and h2(x′) 6= f(x′), h2(x) =
f(x). Then, {f, h∗, h1, h2} shatters {x, x′}, which contradicts that d = 1. Therefore the finite set
{x|(x, y) ∈ S, h∗(x) 6= f(x)} ⊆ {x ∈ X |h∗(x) 6= f(x)} is also an ordered set. If the set is not
empty, xm in the algorithm is well-defined.

Now note that either ĥ = f or else xm is defined and then every x with ĥ(x) 6= f(x) has
x ≤Hf xm, which implies h∗(x) 6= f(x) as well (since h∗(xm) 6= f(xm)). In particular, if every
(x, y) ∈ Strn has y = f(x) then the attackable region ATK(h∗, Strn,A,Adv) ⊆ X . Otherwise

let xStrn = max
≤Hf
(x,y)∈Strn,y 6=f(x) x, the maximal element in {x|(x, y) ∈ Strn, h

∗(x) 6= f(x)}, we
would have that ATK(h∗, Strn,A,Adv) ⊆ {x|xStrn ≤Hf x, h∗(x) 6= f(x)}.

In particular, if PD(X) ≤ ε the above facts imply atkD(h∗, Strn,A) ≤ ε. Otherwise if
PD(X) > ε, then we let Xε ⊆ X be any minimal set such that PD(Xε) ≥ ε

2 and for every
x′ ∈ X \ Xε and every x ∈ Xε, x′ ≤Hf x. If PD(Xε) ≥ ε, there exists an element x ∈ Xε

with probability mass at least ε
2 . When m ≥ 2 ln(1/δ)

ε , with probability at least 1 − δ, x is in
Strn and therefore ATK(h∗, Strn,A,Adv) ⊆ Xε \ {x}, so that atkD(h∗, Strn,A) ≤ ε

2 . Other-
wise, if ε

2 ≤ PD(Xε) < ε, then as long as Strn contains at least one example from Xε, then

18



ROBUST LEARNING UNDER CLEAN-LABEL ATTACK

ATK(h∗, Strn,A,Adv) ⊆ Xε, so that atkD(h∗, Strn,A) ≤ PD(Xε) < ε. Since Strn contains an
example from Xε with probability at least 1 − (1 − ε

2)m, when m ≥ 2 ln(1/δ)
ε we have that with

probability at least 1− δ, atkD(h∗, Strn,A) ≤ ε.

A.2. Union of intervals

Theorem 12 The algorithm described in Section 3 can (ε, δ)-robustly learn union of intervals Hk
using m samples, where

m = O

(
1

ε
(k log(1/ε) + log(1/δ))

)
.

Proof We denote the target function by h∗ = 1[∪k∗i=1(a2i−1, a2i)] with 0 = a0 ≤ a1 ≤ . . . ≤
a2k∗+1 = 1 and a2i−1 6= a2i,∀i ∈ [k∗] for some 0 ≤ k∗ ≤ k. In the following, we will construct
two classifiers consistent with the training set and then prove that the attackable rate of our algorithm
is upper bounded by the sum of the error rates of these two classifiers. For any i ∈ [k∗], we define
c+
i as the minimum consistent positive interval within (a2i−1, a2i), i.e.,

c+
i =


[

min
x∈(a2i−1,a2i):(x,y)∈Strn

x, max
x∈(a2i−1,a2i):(x,y)∈Strn

x

]
if Strn ∩ (a2i−1, a2i)× Y 6= ∅ ,

∅ otherwise .

Similarly, for i = 0, . . . , k∗, we define c−i as the minimum consistent negative interval within
[a2i, a2i+1]. Since x = 0 and x = 1 are labeled as 0 by every hypothesis in Hk, we would like c−0
to include x = 0 and ck∗− to include x = 1. Then we denote by Strn = Strn ∪ {(0, 0), (1, 0)} and
then define c−i as

c−i =


[

min
x∈[a2i,a2i+1]:(x,y)∈Strn

x, max
x∈[a2i,a2i+1]:(x,y)∈Strn

x

]
if (Strn) ∩ [a2i, a2i+1]× Y 6= ∅ ,

∅ otherwise .

Let us define two classifiers: h+
c = 1[∪k∗i=1c

+
i ] and h−c = 1 − 1[∪k∗i=0c

−
i ]. Then we extend Hk

to Hk = ∪k′≤k{1[∪k′i=1[ai, bi]]|0 ≤ ai < bi ≤ 1,∀i ∈ [k′]} ∪ Hk by including union of closed
intervals. Since both h+

c , h
−
c ∈ Hk are consistent with Strn and the VC dimension of Hk is 2k, by

classic uniform convergence results (Vapnik and Chervonenkis, 1974; Blumer et al., 1989), for any
data distribution D, with probability at least 1− δ over Strn ∼ Dm, err(h+

c ) ≤ ε
2 and err(h−c ) ≤ ε

2
where m = O(1

ε (2k log(1/ε) + log(1/δ))).
It is easy to see that the algorithm (even under attack) will always predicts 1 over c+

i as the
attacker cannot add negative instances into c+

i . Then for any attacker Adv and any i ∈ [k∗], for any
x ∈ ATK(h∗, Strn,A,Adv)∩(a2i−1, a2i), we will have x /∈ c+

i , which is classified 0 by h+
c . There-

fore, ATK(h∗, Strn,A,Adv)∩{x|h∗(x) = 1} ⊆ {x|h+
c (x) = 0, h∗(x) = 1}. We can prove a sim-

ilar result for ATK(h∗, Strn,A,Adv)∩{x|h∗(x) = 0}. If the algorithm (under attack) predicts 1 on
any x ∈ [a2i, a2i+1] for i = 1, . . . , k∗−1, then c−i = ∅ and h−c (x) = 1 6= h∗(x). Note that the algo-
rithm always correctly labels points in [0, a1] and [a2k∗ , 1] as there are no positively-labeled points in
these two intervals. Therefore, ATK(h∗, Strn,A,Adv)∩{x|h∗(x) = 0} ⊆ {x|h−c (x) = 1, h∗(x) =
0}. Then for any point in the attackable region, it is either in the error region of h+

c or in the error
region of h−c . That is, ATK(h∗, Strn,A,Adv) ⊆ {x|h+

c (x) 6= h∗(x)} ∪ {x|h−c (x) 6= h∗(x)}.
Hence, the attackable rate atk(h∗, Strn,A) ≤ err(h+

c ) + err(h−c ) ≤ ε.
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A.3. Hypothesis class with infinite hollow star number

Theorem 13 For any hypothesis classH with hollow star number ko ≥ 3, for any consistent proper
learnerA, there exists a target function h∗ and a data distributionD such that ifm ≤ b(ko − 1)/2c,
then EStrn∼Dm [atk(h∗, Strn,A)] ≥ 1/4 and PStrn∼Dm (atk(h∗, Strn,A) > 1/8) ≥ 1/7.

Proof ForHwith hollow star number ko, there is an unrealizable set S = {(x1, y1), . . . , (xko , yko)},
such that for each i ∈ {1, . . . , ko}, there exists hi ∈ H with {j ∈ [ko]|hi(xj) 6= yj} = {i}. The tar-
get function h∗ = hi∗ . For notation simplicity, we let i represent point xi and then h(i) = h(xi) for
any classifier h and any i ∈ [ko]. The marginal data distribution DX is a uniform distribution over
[ko] \ {i∗}. We define an attacker which injects all points except i, i∗ to attack point i if it is unseen.
Specifically, let Si∗,i = {(j, hi∗(j))|j ∈ [ko] \ {i∗, i}} denotes the set of all points excluding i, i∗

and we define the attacker as

Adv(hi∗ , Strn, i) =

{
Si∗,i if (i, yi) /∈ Strn ,

∅ else .

Given the input data set Strn∪Adv(hi∗ , Strn, i), if (i, yi) is not sampled in the training set, then any
algorithm cannot tell whether the true target function is hi or it is hi∗ . Since {(1, y1), . . . , (ko, yko)}
is unrealizable, any proper classifier consistent with Si,i∗ cannot predict i as hi∗(i) = yi and i∗ as
hi(i

∗) = yi∗ at the same time. Let Strn be m ≤ bko/2c i.i.d. samples from D and then we have

sup
i∗∈[ko]

EStrn∼Dm [atk(h∗, Strn,A)]

≥Ei∗∼Unif([ko]),Strn∼Dm [atk(h∗, Strn,A)]

≥Ei∗∼Unif([ko]),Strn∼Dm,(i,yi)∼D,A [1[A(Strn ∪ Si∗,i, i) 6= hi∗(i) ∩ i /∈ Strn,X ]]

≥Ei∗,i∼Unif([ko]\{i∗}) [EStrn∼Dm,A [1[A(Strn ∪ Si∗,i, i) 6= hi∗(i)|i /∈ Strn,X ]] · P (i /∈ Strn,X )]

≥ 1

(ko − 1)ko

ko∑
i∗=1

∑
i 6=i∗

EStrn∼Dm,A [1[A(Strn ∪ Si∗,i, i) 6= hi∗(i)|i /∈ Strn,X ]] · 1

2

=
1

2(ko − 1)ko

ko∑
i∗=1

∑
i 6=i∗

EStrn∼Unifm(Si∗,i),A [1[A(Strn ∪ Si∗,i, i) 6= hi∗(i)]]

=

∑
i∗<i EStrn∼Unifm(Si∗,i),A [1[A(Strn ∪ Si∗,i, i) 6= hi∗(i)] + 1[A(Strn ∪ Si∗,i, i∗) 6= hi(i

∗)]]

2(ko − 1)ko

≥ (ko − 1)ko
4(ko − 1)ko

=
1

4
.

For the second part, by Markov’s inequality, we have

PStrn∼Dm (atk(h∗, Strn,A) > 1/8) = 1− PStrn∼Dm (atk(h∗, Strn,A) ≤ 1/8)

≥1− 1− E [atk(h∗, Strn,A)]

7/8
=

1

7
,

which completes the proof.
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Theorem 14 If ko = ∞, then for any consistent proper learning algorithm A, for every m ∈ N,
∃h∗ ∈ H and distribution D on Dh∗ such that EStrn∼Dm [atkD(h∗, Strn,A)] ≥ 1/4.

Proof For any hypothesis class with ko = ∞, there exists a sequence of hollow star set {Si}∞i=1

with increasing size {ki}∞i=1 with k1 ≥ 3. Then following the proof of Theorem 13, for any
m ≤ b(ki − 1)/2c for some i, there exists a target function and a data distribution such that the
expected attackable rate is at least 1/4 with sample size m. Since ki →∞ as i→∞, this theorem
is proved.

A.4. Proof of Theorem 1

Here we present the proof of Theorem 1 establishing that any deterministic robust learner necessar-
ily obtains a sample complexity with O(1/ε) dependence on ε.
Proof of Theorem 1 Without loss of generality, we supposeR(m) ≤ 1 andR(m) is nonincreasing,
since we can always replace it with supm′≥m min{R(m′), 1}, which is monotone and inherits the
other assumed properties ofR. For convenience, let us also extend the functionR(m) to non-integer
values of m by defining R(α) = R(bαc), and defining R(0) = 1. Also define Log(x) = dlog2(x)e
for any x ≥ 1.

Fix any h∗ ∈ H. Since A is deterministic, note that for any finite multiset S ⊆ Dh∗ there is a
set ATKS ⊆ X corresponding to the points that would be attackable for A if Strn = S. Moreover,
we may note that the set ATKS is non-increasing in S (subject to S ⊆ Dh∗), since adding any
(x, y) ∈ Dh∗ to S is equivalent to constraining the adversary to include these points in its attack set.

Now we argue that R
(

m
Log(1/δ)

)
is a 1− δ confidence bound on atkD(h∗, Strn,A). For any dis-

tributionD onDh∗ , and any δ ∈ (0, 1), ifm < Log(1/δ) then we trivially have atkD(h∗, Strn,A) ≤
R
(

m
Log(1/δ)

)
. Otherwise, if m ≥ Log(1/δ), then letting Strn ∼ Dm, letting S1 be the first⌊

m
Log(1/δ)

⌋
elements of Strn, S2 the next

⌊
m

Log(1/δ)

⌋
elements of Strn, and so on up to SLog(1/δ),

each i ≤ Log(1/δ) has, independently, probability at least 1
2 of atkD(h∗, Si,A) ≤ R

(
m

Log(1/δ)

)
.

In particular, this implies that, with probability at least 1 − (1/2)Log(1/δ) ≥ 1 − δ, at least one
i ≤ Log(1/δ) will satisfy this inequality. Moreover, by the monotonicity property of ATK, we
know that ATKStrn ⊆

⋂
i≤Log(1/δ) ATKSi . Thus, with probability at least 1− δ,

atkD(h∗, Strn,A) = P(x,y)∼D(x ∈ ATKStrn) ≤ min
i≤Log(1/δ)

P(x,y)∼D(x ∈ ATKSi)

= min
i≤Log(1/δ)

atkD(h∗, Si,A) ≤ R
(

m

Log(1/δ)

)
.

The remainder of the proof follows a familiar “conditioning” argument from the literature on log
factors in the sample complexity of PAC learning (e.g., Hanneke, 2009, 2016a). Fix any distribution
D over Dh∗ . We proceed by induction on m, establishing for each m that ∀δ ∈ (0, 1), for Strn ∼
Dm, with probability at least 1−δ, atkD(h∗, Strn,A) ≤ c

m Log
(

1
δ

)
, where c is a finiteR-dependent

constant. Note that this suffices to establish the theorem by taking cR = c (assuming base 2 in the
log). The claim is trivially satisfied for m < 3 Log

(
1
δ

)
, as the claimed bound is vacuous (taking any

c ≥ 3). Now as an inductive hypothesis suppose m ≥ 3 Log
(

1
δ

)
is such that, for every m′ < m, for

Strn ∼ Dm
′
, for any δ ∈ (0, 1), with probability at least 1− δ, atkD(h∗, Strn,A) ≤ c

m′ Log
(

1
δ

)
.
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Fix any δ ∈ (0, 1) and let Strn ∼ Dm. Note that atkD(h∗, Strn,A) = P(x,y)∼D(x ∈ ATKStrn).
Let Sbm/2c be the first bm/2c of the data points in Strn, and let T = (S\Sbm/2c)∩(ATKSbm/2c×Y):
that is, T are the samples in the last dm/2e points in Strn that are in the attackable region when A
has training set Sbm/2c.

Since, conditioned on Sbm/2c and |T |, the examples in T are conditionally i.i.d. with each
sample having distribution D(·|ATKSbm/2c × Y) on Dh∗ , the property of R(·) established above
implies that with conditional (given Sbm/2c and |T |) probability at least 1− δ

3 , we have P(x,y)∼D(x ∈
ATKT |x ∈ ATKSbm/2c) ≤ R

(
|T |

Log(3/δ)

)
. By the law of total probability, this inequality holds with

(unconditional) probability at least 1− δ
3 .

Furthermore, a Chernoff bound (applied under the conditional distribution given Sbm/2c) and the
law of total probability imply that, with probability at least 1 − δ

3 , if P(x,y)∼D(x ∈ ATKSbm/2c) ≥
16
m ln 3

δ , then |T | ≥ P(x,y)∼D(x ∈ ATKSbm/2c)
m
4 . Combining these two events with monotonicity

of R, by the union bound, with probability at least 1 − 2
3δ, either P(x,y)∼D(x ∈ ATKSbm/2c) <

16
m ln 3

δ or P(x,y)∼D(x ∈ ATKT |x ∈ ATKSbm/2c) ≤ R
(
P(x,y)∼D(x ∈ ATKSbm/2c)

m
4 Log(3/δ)

)
.

Next, by monotonicity of ATKS , we have ATKStrn ⊆ ATKSbm/2c ∩ ATKT . Therefore,
atkD(h∗, Strn,A) ≤ P(x,y)∼D(x ∈ ATKSbm/2c)P(x,y)∼D(x ∈ ATKT |x ∈ ATKSbm/2c). Thus,
on the above event of probability at least 1− 2

3δ, either atkD(h∗, Strn,A) < 16
m ln 3

δ or

atkD(h∗, Strn,A) ≤ P(x,y)∼D(x ∈ ATKSbm/2c)R

(
P(x,y)∼D(x ∈ ATKSbm/2c)

m

4 Log(3/δ)

)
= atkD(h∗, Sbm/2c,A)R

(
atkD(h∗, Sbm/2c,A)

m

4 Log(3/δ)

)
.

By the inductive hypothesis, with probability at least 1− δ
3 , we have that atkD(h∗, Sbm/2c,A) ≤

c
bm/2c Log

(
3
δ

)
≤ 3c

m Log
(

3
δ

)
. For any α ≥ 1, define R′(α) = 1

α sup1≤α′≤α α
′R(α′), and note that

R(α) ≤ R′(α) for all α ≥ 1, and αR′(α) is nondecreasing in α ≥ 1. Therefore, on the above
event,

atkD(h∗, Sbm/2c,A)R

(
atkD(h∗, Sbm/2c,A)

m

4 Log(3/δ)

)
≤ 3c

m
Log

(
3

δ

)
R′
(

3c

4

)
≤ 9c

m
Log

(
1

δ

)
R′
(

3c

4

)
.

Now note that limα→∞R
′(α) = 0. To see this, for the sake of contradiction, suppose ∃ε > 0 and a

strictly increasing sequence αt ≥ 1 with αt →∞ such that R′(αt) ≥ ε, and let α′t be any sequence
with 1 ≤ α′t ≤ αt and 1

αt
α′tR(α′t) ≥ R′(αt)/2 ≥ ε/2. If there exists an infinite subsequence

ti with α′ti bounded above by some finite α, then limi→∞
1
αti
α′tiR

(
α′ti
)
≤ limi→∞

α
αti

= 0: a

contradiction. Otherwise, we have α′t → ∞, so that limt→∞
1
αt
α′tR(α′t) ≤ limt→∞R(α′t) = 0:

again, a contradiction. Thus, since we have just established that limα→∞R
′(α) = 0, there exists a

sufficiently large choice of c for which R′
(

3c
4

)
≤ 1

9 , so that 9c
m Log

(
1
δ

)
R′
(

3c
4

)
≤ c

m Log
(

1
δ

)
.

Altogether, by the union bound, we have established that with probability at least 1 − δ, either
atkD(h∗, Strn,A) < 16

m ln 3
δ or atkD(h∗, Strn,A) ≤ c

m Log
(

1
δ

)
. Taking c sufficiently large so that

c ≥ 16 ln(3e), both cases imply that atkD(h∗, Strn,A) ≤ c
m Log

(
1
δ

)
. The theorem now follows by
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the principle of induction.

Appendix B. Proof of Theorem 2

In this section, we first formally prove the statement in the case of n = 3, for which we already
provided a proof sketch in Section 4. In the proof sketch, we relax the definition of linear hypothesis
class by allowing the decision boundary to be either positive or negative. Here, we adopt the con-
vention that the boundary is only allowed to be positive. Then we prove the statement in the case of
n = 2, which requires a more delicate construction. Before proving Theorem 2, we first introduce
a lemma.

Lemma 1 For any hypothesis class H, any algorithm A and any m > 0, if there exists a uni-
versal constant c > 0, a distribution µ over H, and a set of distributions D(h) over Dh for every
h ∈ supp(µ), such that Eh∼µ,Strn∼D(h)m

[
atkD(h)(h, Strn,A)

]
≥ 2c, then H is not (ε, δ)-robust

learnable.

Proof First, take ε = c, we have by the definition of sup, there exists an h∗ ∈ H such that,

EStrn∼D(h∗)m
[
atkD(h∗)(h

∗, Strn,A)
]

≥ sup
h∈H

EStrn∼D(h)m
[
atkD(h)(h, Strn,A)

]
− ε

≥ Eh∼µ,Strn∼D(h)m
[
atkD(h)(h, Strn,A)

]
− ε

≥c .

Then by Markov’s inequality,

P
(
atkD(h∗)(h

∗, Strn,A) > c/2
)

= 1− P
(
atkD(h∗)(h

∗, Strn,A) ≤ c/2
)

≥1−
1− E

[
atkD(h∗)(h

∗, Strn,A)
]

1− c/2
≥ c

2− c
.

Hence,H is not (ε, δ)-robust learnable.

Proof of Theorem 2 in n = 3 We divide the proof into three parts: a) the construction of the
target function and the data distribution, b) the construction of the attacker and c) the analysis of the
attackable rate.

The target function and the data distribution. We denote by Γ = Γ3(0, 1) the sphere of the
3-dimensional unit ball centered at the origin. For some small 0 < η < 1/6, let Hη = {h(x) =
1[〈w, x〉 − 1

2 ≥ 0]| ‖w‖ = 1} ∪ {h(x) = 1[〈w, x〉 − 1−η
2 ≤ 0]| ‖w‖ = 1} denote a set of linear

classifiers with boundary 1/2 or 1−η
2 away from the origin. Let Kw = {x| 〈w, x〉 − 1

2 = 0} denote
the hyperplane of the boundary of h = 1[〈w, x〉− 1

2 ≥ 0] and Cw = Kw∩Γ denote the intersection
of Kw and Γ, which is a circle with radius

√
3/2 centered at w/2.

We consider the target function h∗ selected uniformly at random from Hη, which is equivalent
to: randomly picking w ∼ Unif(Γ) and randomly picking j ∼ Ber(1/2); if j = 1, letting h∗ =
h∗w,j = 1[〈w, x〉 − 1

2 ≥ 0]; otherwise letting h∗ = h∗w,j = 1[〈w, x〉 − 1−η
2 ≤ 0]. If the target

function h∗ = h∗w,j , the data distribution D = Dw,j is the uniform distribution over Cw × {j}.
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Note that all instances on the circle Cw are labeled as j by h∗w,j . We will show that the expected
attackable rate Eh∗∼Unif(Hη),Strn∼Dm [atkD(h∗, Strn,A)] ≥ 1/2. Combining with Lemma 1, we
prove Theorem 2 in n = 3.

The attacker. Then we define the attacker Adv in the following way. We first define a map
mx0 : Γ 7→ Γ for some x0 ∈ Γ such that mx0(x) = 2 〈x0, x〉x0 − x. Here, mx0(x) is the reflection
of x through the line passing the origin and x0. Note that mx0(mx0(x)) = x. This symmetric
property will help to confuse algorithms such that no algorithm can distinguish the training data and
the poisoning data. For Strn ∼ Dmw,j , we define mx0(Strn) = {(mx0(x), 1− y)|(x, y) ∈ Strn}, and
let

Adv(h∗w,j , Strn, x0) =

{
mx0(Strn) if Strn,X ∩ B(x0,

√
3η/2) = ∅ ,

∅ else.

Now we show that Adv is a clean-label attacker. In the second case of Adv(h∗w,j , Strn, x0) = ∅, it
is clean-labeled trivially. In the first case of Strn,X ∩ B(x0,

√
3η/2) = ∅, we discuss two cases:

• The target function h∗ = h∗w,j = 1[〈w, x〉− 1
2 ≥ 0] has its decision boundary 1

2 away from the
origin, i.e., j = 1. Then every training instance is labeled by 1 and for any training instance
x, 〈w,mx0(x)〉 − 1

2 = 〈x0, x〉 − 1 < 0. Hence Adv(h∗w,j , Strn, x0) is clean-labeled.

• The target function h∗ = h∗w,j = 1[〈w, x〉 − 1−η
2 ≤ 0] has its decision boundary 1−η

2 away
from the origin, i.e., j = 0. For each training instance x, since x /∈ B(x0,

√
3η/2), we have

‖x− x0‖22 ≥
3η
2 and thus, 〈x, x0〉 ≤ 1− 3η

4 . Then 〈w,mx0(x)〉− 1−η
2 = 〈x0, x〉− (1− η

2 ) ≤
1− 3η

4 − (1− η
2 ) < 0. Hence Adv(h∗w,j , Strn, x0) is clean-labeled.

Analysis. Let E1(h∗w,j , Strn, x0) denote the event of {A(Strn ∪ Adv(h∗w,j , Strn, x0), x0) 6=
h∗w,j(x0)} and E2(Strn, x0) denote the event of Strn,X ∩ B(x0,

√
3η/2) = ∅. It is not hard to

check that E2(Strn, x0) = E2(mx0(Strn), x0) due to the symmetrical property of the reflection. Be-
sides, conditional on E2(Strn, x0), the poisoned data set Strn ∪Adv(h∗w,j , Strn, x0) = mx0(Strn)∪
Adv(h∗mx0 (w),1−j ,mx0(Strn), x0) and thus, any algorithm A will behave the same (under attack)
at test instance x0 given training set Strn or mx0(Strn). Since h∗w,j(x0) 6= h∗mx0 (w),1−j(x0), we
know that 1[E1(h∗w,j , Strn, x0)] = 1[¬E1(h∗mx0 (w),1−j ,mx0(Strn), x0)] conditional on E2(Strn, x0).
Let fw,j(x) denote the probability density function of the marginal distribution of Dw,j (i.e., the
uniform distribution over Cw) and then we have fw,j(x) = fmx0 (w),1−j(mx0(x)). For any fixed x0,
the distributions of w and mx0(w) and the distributions of j and 1 − j are the same respectively.
The training set Strn are samples drawn from Dw,j , and hence we can view mx0(Strn) as samples
drawn from Dmx0 (w),1−j . Then for any algorithm A, we have

Eh∗w,j∼Unif(Hη),Strn∼Dmw,j

[
atkD(h∗w,j , Strn,A)

]
≥Ew∼Unif(Γ),j∼Ber(1/2),Strn∼Dmw,j ,(x,y)∼Dw,j ,A

[
1[E1(h∗w,j , Strn, x) ∩ E2(Strn, x)]

]
=

∫
x∈Γ

Ew∼Unif(Γ),j∼Ber(1/2),Strn∼Dmw,j ,A
[
fw,j(x)1[E1(h∗w,j , Strn, x) ∩ E2(Strn, x)]

]
dx (1)

=

∫
x∈Γ

E
w,j,Strn∼Dmw,j ,A

[
fmx(w),1−j(x)1[¬E1(h∗mx(w),1−j ,mx(Strn), x) ∩ E2(mx(Strn), x)]

]
dx (2)
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=

∫
x∈Γ

Ew,j,Strn∼Dmw,j ,A
[
fw,j(x)1[¬E1(h∗w,j , Strn, x) ∩ E2(Strn, x)]

]
dx (3)

=
1

2

∫
x∈Γ

Ew∼Unif(Γ),j∼Ber(1/2),Strn∼Dm,A [fw,j(x)1[E2(Strn, x)]] dx
η→0+−−−−→ 1

2
, (4)

where Eq. (2) uses the fact E2(Strn, x0) = E2(mx0(Strn), x0) and that conditional on E2(Strn, x0),
1[E1(h∗w,j , Strn, x0)] = 1[¬E1(h∗mx0 (w),1−j ,mx0(Strn), x0)]; Eq. (3) uses the fact that for any fixed
x0, the distributions of w and mx0(w) and the distributions of j and 1− j are the same respectively;
and Eq. (4) is the average of Eq. (1) and Eq. (3).

Proof of Theorem 2 in n = 2 Again, we divide the proof into three parts.

The target function and the data distribution. In 2-dimensional space, we denote by w =
(cos θ, sin θ) and represent the target function h∗ = 1[〈(cos θ∗, sin θ∗), x〉 + b∗ ≥ 0] by (θ∗, b∗).
Then the target function is selected in the following way: uniformly at random selecting a point o
from a 2-dimensional ball centered at 0 with some large enough radius r≥4, i.e., o ∼Unif(B2(0,r)),
then randomly selecting a direction θ∗ ∼ Unif([0, 2π)), and letting the target function be h∗ =
1[〈(cos θ∗, sin θ∗), x− o〉 ≥ 0]. Then for any m ∈ N, we construct the data distribution over 2m
discrete points, where all points are labeled the same and the distance between every two instances
is independent of h∗. Specifically, the data distribution D is described as follows.

• We randomly draw s ∼ Ber(1/2). We define two unit vectors v1 = (sin θ∗,− cos θ∗) and
v2 = (2s− 1) · (cos θ∗, sin θ∗). Here v1 is perpendicular to w∗ and v2 is in the same direction
as w∗ if s = 1 and in the opposite direction of w∗ if s = 0.

• Let Xm = {x1, . . . , x2m} be a set of 2m points. For notation simplicity, we also define x0

and x2m+1. Let x0 = o and for all i ∈ [2m+1], let xi = xi−1+l cos(βi−1)v1+l sin(βi−1)v2,
where βi = 7βi−1, β0 = 7−2m · π6 and l = 1

2m .

• Let the marginal data distribution be a uniform distribution over Xm. Note that if s = 1, all
training points lie on the positive side of the decision boundary and are labeled by 1; if s = 0,
all training points lie on the negative side and are labeled by 0.

Here (o, v1, v2) constructs a new coordinate system. For any x ∈ R2, we use x̃ = ((x−o)>v1, (x−
o)>v2) to represent x in this new coordinate system. Then the decision boundary of the target
function is represented as 〈x̃, ṽ2〉 = 0 and for any x ∈ Xm we have 〈x̃, ṽ2〉 > 0. It is worth noting
that for any i ∈ [2m], if the positions of three points xi−1, xi, xi+1 are fixed, then o, s, v1, v2 are all
fixed.

The attacker. For any xi ∈ Xm, we let bi = l
∑i

j=0 cosβj −
l(cosβi−1+cosβi)

∑i
j=0 sinβj

sinβi−1+sinβi
such that

zi = biv1 + o, xi−1 and xi+1 are collinear. We denote by Lxi the line passing zi and xi. Then for
any i ∈ [2m], let

˜RefLxi (x) =
2 〈x̃− z̃i, x̃i − z̃i〉
‖x̃i − z̃i‖22

(x̃i − z̃i)− x̃+ 2z̃i ,

be the reflection of x across Lxi as illustrated in Fig. 1.
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Figure 1: Illustration of RefLxi (·).

For Strn ∼ Dm, we let U = Xm \ Strn,X denote the set of points not sampled in Xm, where
|U | ≥ m. Then we define Adv as

Adv(h∗, Strn, xi) =

{
{(RefLxi (x), 1− y)|(x, y) ∈ Strn} if xi ∈ U ,
∅ else.

Now we need to show that Adv is a clean-label attacker. We will show that
〈

˜RefLxi (xj), ṽ2

〉
< 0

for all j 6= i ∈ [2m], which implies that the poison data is correctly labeled when xi ∈ U . First, we
claim that for any j 6= i, xj lie in the polytope above the line passing xi−1, xi+1, the line passing
xi−1, xi and the line passing xi, xi+1. Formally speaking, for any j 6= i, xj satisfies

〈(− sinβi−1 − sinβi, cosβi−1 + cosβi), x̃j − x̃i+1〉 ≥ 0 ,
〈(− sinβi−1, cosβi−1), x̃j − x̃i〉 ≥ 0 ,
〈(− sinβi, cosβi), x̃j − x̃i〉 ≥ 0 .

This claim is not hard to prove. At a high level, we prove this claim by that {βi}2mi=0 is monotonically
increasing and that the polygon defined by connecting every pair of neighboring points in Xm ∪
{x0, x2m+1} is convex. For the first constraint, it is satisfied trivially when j = i − 1, i + 1. If
j ≥ i+ 2, by direct calculation, we have

〈(− sinβi−1 − sinβi, cosβi−1 + cosβi), x̃j − x̃i+1〉

=

〈
(− sinβi−1 − sinβi, cosβi−1 + cosβi),

(
j−1∑
k=i+1

cosβk,

j−1∑
k=i+1

sinβk

)〉

=

j−1∑
k=i+1

cosβk

〈
(− sinβi−1 − sinβi, cosβi−1 + cosβi),

(
1,

∑j−1
k=i+1 sinβk∑j−1
k=i+1 cosβk

)〉

≥
j−1∑
k=i+1

cosβk 〈(− sinβi−1 − sinβi, cosβi−1 + cosβi), (1, tanβi+1)〉
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≥
∑j−1

k=i+1 cosβk

cosβi+1
(sin(βi+1 − βi−1) + sin(βi+1 − βi))

≥0 .

Similarly, if j ≤ i− 2, then

〈(− sinβi−1 − sinβi, cosβi−1 + cosβi), x̃j − x̃i+1〉
= 〈(− sinβi−1 − sinβi, cosβi−1 + cosβi), x̃j − x̃i−1〉

=−

〈
(− sinβi−1 − sinβi, cosβi−1 + cosβi),

 i−2∑
k=j

cosβk,
i−2∑
k=j

sinβk

〉

=

i−2∑
k=j

cosβk

〈
(sinβi−1 + sinβi,− cosβi−1 − cosβi),

(
1,

∑i−2
k=j sinβk∑i−2
k=j cosβk

)〉

≥
i−2∑
k=j

cosβk 〈(sinβi−1 + sinβi,− cosβi−1 − cosβi), (1, tanβi−2)〉

≥
∑i−2

k=j cosβk

cosβi−2
(sin(βi−1 − βi−2) + sin(βi − βi−2))

≥0 .

It is easy to check that xj satisfies the second and the third constraints using the same way of
computation, which is omitted here. Based on that xj lie in the polytope for all j 6= i, then we

only need to prove that
〈

˜RefLxi (x), ṽ2

〉
< 0 for the points lying on the faces of the polytope,

which are x̃ ∈ {x̃i+1 + η(cosβi, sinβi)|η ≥ 0}, x̃ ∈ {x̃i−1 − η(cosβi−1, sinβi−1)|η ≥ 0} and

x̃ ∈ {ηx̃i−1 + (1 − η)x̃i+1|η ∈ [0, 1]}. Since ˜RefLxi (·) is a linear transform, if we can show〈
˜RefLxi (xi−1), ṽ2

〉
< 0 and

〈
˜RefLxi (xi+1), ṽ2

〉
< 0, then we have

〈
˜RefLxi (x), ṽ2

〉
< 0 for

all points on the third face {ηx̃i−1 + (1 − η)x̃i+1|η ∈ [0, 1]}. Hence, we only need to prove the
statement for points lying on the first two faces.

For any two vectors u, v, we denote by θ(u, v) the angle between u and v. Then let us denote
by θ1 = θ(x̃i+1 − z̃i, x̃i − z̃i) the angle between x̃i+1 − z̃i and and x̃i − z̃i and θ2 = θ(x̃i − z̃i, ṽ1)
the angle between x̃i − z̃i and ṽ1. Then we have both θ1 ≤ βi ≤ π

6 and θ2 ≤ βi ≤ π
6 . Then

since ‖x̃i − x̃i−1‖ = ‖x̃i+1 − x̃i‖ = l and θ(x̃i+1 − x̃i−1, x̃i − x̃i−1) = (βi − βi−1)/2 due to the
construction, we have

sin θ1 =
‖x̃i − (x̃i+1 + x̃i−1)/2‖

‖x̃i − z̃i‖
=
l sin((βi − βi−1)/2)

‖x̃i − z̃i‖
=
l sin(3βi−1)

‖x̃i − z̃i‖
≥ 3βi−1l

2 ‖x̃i − z̃i‖
,

where the last inequality is by 3βi−1 ≤ π
6 . On the other hand, we have

sin θ2 =
l
∑i−1

k=0 sinβk
‖x̃i − z̃i‖

≤
l
∑i−1

k=0 βk
‖x̃i − z̃i‖

≤ 7βi−1l

6 ‖x̃i − z̃i‖
.

Combining these two equations, we have sin θ1 > sin θ2, which indicates that θ1 > θ2. Then since
βi − θ2 = θ(x̃i+1 − x̃i, x̃i − z̃i) ≥ θ1, we have βi > 2θ2. Let w̃i = x̃i−z̃i

‖x̃i−z̃i‖ denote the unit vector
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in the direction of x̃i − z̃i. For x̃ = x̃i+1 + η(cosβi, sinβi) with η ≥ 0,〈
˜RefLxi (x), ṽ2

〉
=2 〈x̃− z̃i, w̃i〉 〈w̃i, ṽ2〉 − 〈x̃− z̃i, ṽ2〉
=2 〈x̃i+1 − z̃i + η(cosβi, sinβi), w̃i〉 〈w̃i, ṽ2〉 − 〈x̃i+1 − z̃i + η(cosβi, sinβi), ṽ2〉
=2 ‖x̃i+1 − z̃i‖ cos θ1 sin θ2 − ‖x̃i+1 − z̃i‖ sin(θ1 + θ2) + 2η cos(βi − θ2) sin θ2 − η sinβi

= ‖x̃i+1 − z̃i‖ sin(θ2 − θ1) + η sin(2θ2 − βi)
<0 .

It is easy to check that βi−1 ≤ θ2 (let p̃ denote the intersection of the line passing x̃i−1 and x̃i and
the line 〈x̃, ṽ2〉 = 0, βi−1 = θ(x̃i − p̃, ṽ1) and θ2 is the external angle of triangle with vertices p̃, z̃i
and x̃i). Then for x̃ = x̃i−1 − η(cosβi−1, sinβi−1) with η ≥ 0,〈

˜RefLxi (x), ṽ2

〉
=2 〈x̃− z̃i, w̃i〉 〈w̃i, ṽ2〉 − 〈x̃− z̃i, ṽ2〉
=2 〈x̃i−1 − z̃i − η(cosβi−1, sinβi−1), wi〉 〈w̃i, ṽ2〉 − 〈x̃i−1 − z̃i − η(cosβi−1, sinβi−1), ṽ2〉
=2 ‖x̃i−1 − z̃i‖ cos θ1 sin θ2 − ‖x̃i−1 − z̃i‖ sin(θ1 + θ2)− 2η cos(βi−1 − θ2) sin θ2 + η sinβi−1

= ‖x̃i−1 − z̃i‖ sin(θ2 − θ1) + η sin(βi−1 − 2θ2)

<0 .

Now we complete the proof of
〈

˜RefLxi (xj), ṽ2

〉
< 0 for all j 6= i and that Adv is a clean-label

attacker. It is worth noting that Lx′i = Lxi , where Lx′i is defined over {x′j |j ∈ [2m]} in the same
way as Lxi defined over {xj |j ∈ [2m]}. This is because reflections of zi and xi over Lxi are
themselves. This symmetric property plays an important role in the analysis.

Analysis. Our probabilistic construction of the target function h∗ and the data distribution D and
the random sampling process of drawingm i.i.d. samples fromD is equivalent to: sampling a multi-
set of indexes Itrn ∼ Unif([2m]) first; then selecting the target function and the data distribution to
determine the positions of the m training points; mapping Itrn to Strn by adding instance-label pair
(xi, h

∗(xi)) to Strn for each i in Itrn. We let Iu = [2m] \ Itrn denote the indexes not sampled. As
we know from the construction, for any i ∈ [2m], once s and the positions of o and xi is determined,
the positions of other points in Xm and h∗ are determined. Then we consider an equivalent way of
determining the target function and the data distribution. That is, randomly selecting the position
of xi (dependent on the randomness of o, θ∗, s) and then considering the following two different
processes of selecting s and o.

• Given a fixed xi, randomly select s ∼ D(s|xi) and select o ∼ D(o|s, xi), where D(s|xi)
and D(o|s, xi) denote the conditional distributions of s and o respectively. Note that when xi
satisfies ‖xi‖ ≤ r − 2, D(s|xi) = Ber(1/2) and D(o|s, xi) = Unif(Γ2(xi, ri)) is a uniform
distribution over the circle with radius ri centered at xi, where ri is the distance between o
and xi and is a constant according to the definition.

• Given (xi, s, o) selected in the above process, if ‖xi‖ ≤ r − 2, we let s′ = 1 − s and
o′ = RefLxi (o) (where xi+1 and xi−1 is determined by (xi, s, o)); otherwise we let s′ = s
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and o′ = o. It is easy to check that the distribution of s′ conditional on xi is Ber(1/2) and the
distribution of o′ conditional on xi is Unif(Γ2(xi, ri)) if ‖xi‖ ≤ r − 2.

Therefore, the distributions of s and s′ and the distributions of o and o′ are the same given xi
respectively. Our following analysis depends on the event of ‖xi‖ ≤ r − 2, the probability of
which is P (‖xi‖ ≤ r − 2) ≥ P (‖o‖ ≤ r − 3) = (r−3)2

r2
. We let Strn(xi, s, o) denote the training

set by mapping Itrn to the positions determined by (xi, s, o) and let h∗(xi, s, o) denote the tar-
get function determined by (xi, s, o). Note that when ‖xi‖ ≤ r − 2 and xi is not in the train-
ing set, the poisoned data sets with the training sets generated in the above two different pro-
cesses are the same, i.e., Strn(xi, s, o) ∪ Adv(h∗(xi, s, o), Strn(xi, s, o), xi) = Strn(xi, s

′, o′) ∪
Adv(h∗(xi, s

′, o′), Strn(xi, s
′, o′), xi). This is due to the symmetric property of the attacker. Hence,

any algorithm will behave the same at point xi no matter whether the training set is Strn(xi, s, o) or
Strn(xi, s

′, o′). In addition, the target functions produced in the two different processes classify xi
differently when ‖xi‖ ≤ r− 2. Let E2(xi) denote the event of {‖xi‖ ≤ r− 2} and E(h∗,A, Strn, i)
denote the event of A(Strn ∪ Adv(h∗, Strn, xi), xi) 6= h∗(xi). Then for any i ∈ Iu, conditional on
E2(xi), for any algorithm A, we have

1[E(h∗(xi, s, o),A, Strn(xi, s, o), i)] = 1[¬E(h∗(xi, s
′, o′),A, Strn(xi, s

′, o′), i)] . (5)

Similar to the proof in the case of n = 3, we have the expected attackable rate

Eh∗,s,Strn∼Dm [atk(h∗, Strn,A)]

≥ 1

2m
Eo∼Unif({x:‖x‖≤r}),θ∗∼Unif(2π),s∼Ber(1/2),Strn∼Dm,A

∑
xi∈U

1[E(h∗,A, Strn, i)]


=

1

2m
EItrn∼Unif([2m])

[∑
i∈Iu

Exi,s,o,A [1[E(h∗(xi, s, o),A, Strn(xi, s, o), i)]]

]

≥ 1

2m
EItrn

[∑
i∈Iu

Exi [Es,o,A [1[E(h∗(xi, s, o),A, Strn(xi, s, o), i)]|xi]1[E2(xi)]]

]

=
1

4m

(
EItrn

[∑
i∈Iu

Exi [Es,o,A [1[E(h∗(xi, s, o),A, Strn(xi, s, o), i)]|xi]1[E2(xi)]]

]

+ EItrn

[∑
i∈Iu

Exi
[
Es′,o′,A

[
1[¬E(h∗(xi, s

′, o′),A, Strn(xi, s
′, o′), i)]|xi

]
1[E2(xi)]

]])
(6)

=
1

4m
EItrn

[∑
i∈Iu

Exi [1[‖xi‖ ≤ r − 2]]

]
(7)

≥m(r − 3)2

4mr2

≥ 1

64
,

when r ≥ 4. Here Eq. (6) holds due to Eq. (5) and Eq. (7) holds since the distributions of s and s′

and the distributions of o and o′ are the same given xi respectively. Combining with Lemma 1, we
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complete the proof.

Appendix C. Proof of Theorem 4

Proof The proof contains three steps. For notation simplicity, we sometimes use (β, b) to represent
the linear classifier hβ,b. We say an angle β is consistent with a data set S if there exists b ∈ [−2, 2]
such that (β, b) is consistent with S. Also, for an fixed β, we say an offset b is consistent with S if
(β, b) is consistent with S.

Step 1: For any fixed β, the probability mass of union of error region is bounded. For any
β, if there exists any b ∈ [−2, 2] such that (β, b) is consistent with Strn, from this set of consistent
b’s, we denote by bsup(β) the superior value of this set and binf(β) the inferior value of this set. By
uniform convergence bound in PAC learning (Blumer et al., 1989), when m ≥ 4

ε′ log 2
δ + 24

ε′ log 13
ε′ ,

we have that with probability at least 1 − δ, every linear classifier (β, b) consistent with Strn has
err(hβ,b) ≤ ε′. Then the probability mass of the union of error region of all (β, b) consistent with
Strn for a fixed β is

P({x|∃b ∈ [−2, 2], hβ,b(x) 6= h∗(x), ∀(x′, y′) ∈ Strn, y
′ = hβ,b(x

′)})

=P(
⋃

binf(β)≤b≤bsup(β)

{x|b is consistent & hβ,b(x) 6= h∗(x)})

= lim
δ→0+

P({x|hβ,binf(β)+δ(x) 6= h∗(x)} ∪ {x|binf(β) is consistent & hβ,binf(β)(x) 6= h∗(x)}

∪ {x|hβ,bsup(β)−δ(x) 6= h∗(x)} ∪ {x|bsup(β) is consistent & hβ,bsup(β)(x) 6= h∗(x)})
≤2ε′ .

If there does not exist any consistent b ∈ [−2, 2] for β, then P({x|∃b ∈ [−2, 2], hβ,b(x) 6=
h∗(x), ∀(x′, y′) ∈ Strn, y

′ = hβ,b(x
′)}) = 0.

Step 2: The binary-search path of β is unique and adding clean-label points can only change
the depth of the search. That is, for any fixed target function (β∗, b∗), for h − l = 2π, π, π2 , . . .,
if l+h

2 is not consistent with the input (poisoned or not) data set S, then there cannot exist β con-
sistent with the input data set S in both two intervals (l, l+h2 ) and ( l+h2 , h). Since β∗ is always
consistent with S, only the interval containing β∗ will contain β consistent with S. To prove this
statement, assume that any β ∈ {l, h, l+h2 } is not consistent with S and there exists (β1, b1) with
β1 ∈ (l, l+h2 ) and (β2, b2) with β2 ∈ ( l+h2 , h) consistent with S. If β2 − β1 ≤ π, let β3 = l+h

2 ;
otherwise, let β3 = l. Since (β1, b1) and (β2, b2) are consistent classifiers, for any α1, α2 ≥ 0,
1[(α1(cosβ1, sinβ1) + α2(cosβ2, sinβ2)) · x + α1b1 + α2b2 ≥ 0] is also a consistent classifier.
By setting α1 = sin(β2−β3)

sin(β2−β1) and α2 = sin(β3−β1)
sin(β2−β1) , we have (β3,

sin(β2−β3)b1+sin(β3−β1)b2
sin(β2−β1) ) is con-

sistent. If sin(β2−β3)b1+sin(β3−β1)b2
sin(β2−β1) ∈ [−2, 2], this contradicts that any β3 is not consistent with S;

else, since X ⊆ Bn(0, 1), there must exist b ∈ [−2, 2] such that (β3, b) is consistent, which is a
contradiction.

Step 3: When h− l < arctan(f(ε′′)/2), the attackable rate caused by deeper search is at most
2ε′′. We consider two cases: |b∗| > 1 and |b∗| ≤ 1. In the case of |b∗| > 1, the target function
classifies X all positive or all negative and thus, there always exists a consistent b for β = 0. The
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binary-search for β will not search in depth and output (0, b) for some consistent b. Therefore,
atk(h∗, Strn,A) ≤ P({x|∃b ∈ [−2, 2], h0,b(x) 6= h∗(x),∀(x′, y′) ∈ Strn, y

′ = h0,b(x
′)}) ≤ 2ε′.

In the case of |b∗| ≤ 1, let Az , {x|(cosβ∗, sinβ∗) · x + b∗ ∈ [−z, z]} for z ≥ 0. We
will show that when h − l ≤ arctan(z/2) for z ≤ 2, the classifier boundary Kβ,b must lie in
Az , i.e., Kβ,b , {x|(cosβ, sinβ) · x + b = 0, ‖x‖ ≤ 1} ⊆ Az . This indicates that when h −
l ≤ arctan(z/2), the algorithm can only make mistakes at points inside Az . If it is false, let
{q1, q2} = {x|(cosβ∗, sinβ∗) · x+ b∗ = 0} ∩ Γ(0, 1) with β∗ − θ((q2 − q1), e1) = π

2 (mod 2π)
if the intersection of the target function boundary and the unit circle has two different points; or
let q1 = q2 = q where {q} = {x|(cosβ∗, sinβ∗) · x + b∗ = 0} ∩ Γ(0, 1) if intersection of the
target function boundary and the unit circle has only one point. Similarly, we denote by {p1, p2}
the intersection of of Kβ,b and the unit circle. Since h − l ≤ arctan(1) = π

4 , the input data set
must contain both positive points and negative points and hence, Kβ,b ∩ Γ(0, 1) is not empty. We
let {p1, p2} = {x|(cosβ, sinβ) · x+ b = 0} ∩Γ(0, 1) with β − θ((p2− p1), e1) = π

2 (mod 2π) if
the intersection of the boundary of classifier (β, b) and the unit circle has two different points; or let
p1 = p2 = p where {p} = {x|(cosβ, sinβ) ·x+ b = 0}∩Γ(0, 1) if intersection of the boundary of
classifier (β, b) and the unit circle has only one point. The definitions of q1, q2, p1, p2 are illustrated
in Fig. 2. Then at least one of {p1, p2} is not in Az and w.l.o.g., assume that p2 /∈ Az . It is easy
to check that p1, p2 must lie on the same side of the boundary of the target function, otherwise
|β − β∗| = θ((p2 − p1), (q2 − q1)) > arctan(z/2), which contradicts h− l ≤ arctan(z/2). Then
there exists a consistent classifier h′ = 1[〈w, x− p2〉 ≥ 0] with w = (q12 − p22, p21 − q11) (whose
boundary is the line passing q1 and p2). Then let β′ denote the direction of h′, i.e., cosβ′ = q12−p22

‖w‖
and sinβ′ = p21−q11

‖w‖ , and we have |β′ − β∗| = θ(p2−q1, q2−q1) > arctan(z/2), which contradicts
that h− l ≤ arctan(z/2).

+

+
+

+

++

+

-
-

-

Figure 2: Illustration of p1, p2, q1, q2, h
′.

We let z = f(ε′′). When h − l ≤ arctan(f(ε′′)/2), the classifier can only make mistakes
inside Af(ε′′) and thus the attackable rate is upper bounded by 2ε′′. In addition, when h − l >

arctan(f(ε′′)/2), the binary-search has searched to at most the
⌊
log2( 2π

arctan(f(ε′′)/2))
⌋

+1-th depth,

which leads to at most 2ε′(
⌊
log2( 2π

arctan(f(ε′′)/2))
⌋

+ 1) attackable rate. Combining these results
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together, when m ≥ 4
ε′ log 2

δ + 24
ε′ log 13

ε′ , with probability at least 1− δ over Strn ∼ Dm, we have

atk(h∗, Strn,A) ≤2ε′
(⌊

log2

(
2π

arctan(f(ε′′)/2)

)⌋
+ 1

)
+ 2ε′′

≤2ε′ log2

(
4π

arctan(f(ε′′)/2)

)
+ 2ε′′

≤ log2(
4π

π/8(f(ε′′) ∧ 2)
)2ε′ + 2ε′′ (8)

= log2(
32

f(ε′′) ∧ 2
)2ε′ + 2ε′′ ,

where Eq. (8) holds because arctan(x/2) ≥ π/4 when x ≥ 2 and arctan(x/2) ≥ πx/8 when
x ∈ [0, 2].

Appendix D. Proof of Theorem 6

To prove Theorem 6, we first introduce a lemma on the behavior of uniform distribution on a unit
sphere.

Lemma 2 (Lemma 2.2 by Ball et al. (1997)) For any a ∈ [0, 1), for x ∼ Unif(Γn(0, 1)), with
probability at least 1− e−na2/2, we have 〈x, e1〉 ≤ a.

Proof of Theorem 6 One essential hardness for robust learning of linear classifiers in high dimen-
sion is that for a fixed test instance x0 on the sphere of a unit ball, with high probability over the
selection of a set of training points from the uniform distribution over the sphere, every training in-
stance has small component in the direction of x0 as shown by Lemma 2. Taking advantage of this,
the attacker can add a point (labeled differently from x0) which is considerably closer to x0 than all
of the training instances, thus altering the behavior of SVM at x0 as he wishes. In the following, we
prove the theorem based on this idea. We divide the proof into three parts: a) the construction of the
target function and the data distribution, b) the construction of the attacker and c) the analysis of the
attackable rate.

The target function and the data distribution. The target function is h∗ = 1[〈w∗, x〉 ≥ −γ/2]
with w∗ = e1 and margin γ = 1/8. We define the marginal data distribution DX by putting
probability mass 1 − 8ε on −e1 and putting probability mass 8ε uniformly on the half sphere of a
unit ball {x| ‖x‖ = 1, 〈x, e1〉 ≥ 0}. We let D+ denote the uniform distribution over this positive
half sphere. We draw m i.i.d. training samples Strn from D and then let S+

trn denote the positive
training samples. Let m+ =

∣∣S+
trn

∣∣ denote the number of positive training samples.

The attacker. For a given test instance x0 ∈ {x| ‖x‖ = 1, 〈x, e1〉 ≥ 0}, we define two base
vectors v1 = e1 and v2 = x0−〈x0,e1〉e1

‖x0−〈x0,e1〉e1‖2
. Note that v2 is well-defined almost surely. Then we

define an attacker Adv as

Adv(h∗, Strn, x0) =

{
{(−v2, 1)} if m+ = 0,

{(−γv1 +
√

1− γ2v2, 0)} else .

Since 〈w∗, v2〉 = 0 > −γ
2 and

〈
w∗,−γv1 +

√
1− γ2v2

〉
= −γ < −γ

2 , Adv is a clean-label
attacker.
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Analysis. For n ≤ 128, if m < 1
8ε ∨

en/128

768ε = 1
8ε and ε < 1/16, then P (m+ = 0) = (1− 8ε)m ≥

1
4 . Furthermore, if m+ = 0, SVM can only observe instance-label pairs of (−v1, 0) and (−v2, 1)

and then output ĥ(x) = 1[〈v1 − v2, x〉 ≥ 0]. Therefore, if 〈e1, x0〉 < 1√
2
, then x0 is attackable.

Therefore, for m < 1
8ε , we have

EStrn∼Dm [atk(h∗, Strn, SVM)] ≥ 8εPx∼D+

(
〈x, e1〉 <

1√
2

)
P
(
m+ = 0

)
≥ ε .

For n > 128, if m < 1
8ε , the analysis above works as well. Else suppose 1

8ε ≤ m ≤ en/128

768ε , we
know that E [m+] = 8mε, thus by Chernoff bounds, we have P (m+ > 32mε) ≤ e−24mε ≤ e−3.
Furthermore, by Lemma 2 and the union bound, drawing m0 i.i.d. samples S0 ∼ (D+)m0 , with
probability at least 1 − 3m0e

−n/128, every instance x ∈ S0 satisfies 〈x, v1〉 ≤ 1
8 and 〈x, v2〉 ≤ 1

8 .
Let E denote the event of {∀(x, y) ∈ S+

trn, 〈x, v1〉 ≤ 1
8 , 〈x, v2〉 ≤ 1

8 , 1 ≤ m
+ ≤ 32mε}. If E holds,

then there is a linear separator(√
1 + γ

2
v1 −

√
1− γ

2
v2

)>
x+

1

2

√
1 + γ

2
+

1

16

√
1− γ

2
≥ 0 ,

such that the distance between any point in Strn ∪ Adv(h∗, Strn, x0) and the linear separator is
no smaller than 3

8 −
√

7
64 ≥

1
4 . Hence the distance between the points and the seperator output

by SVM is also no smaller than 1
4 . When the test instance x0 satisfies 〈x0, v1〉 ≤ 1

8 , we have∥∥∥x0 − (−γv1 +
√

1− γ2v2)
∥∥∥ ≤ 1

4 and then x0 is misclassified as negative by SVM. Hence, we
have

EStrn∼Dm [atk(h∗, Strn,SVM)]

≥8εEStrn∼Dm [Px∼D+ (SVM(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x))]

≥8εEx∼D+,Strn∼Dm

[
1[∀(x′, y′) ∈ S+

trn,
〈
x′, v1

〉
≤ 1

8
,
〈
x′, v2

〉
≤ 1

8
, 〈x, v1〉 ≤

1

8
]

]
≥8εEx∼D+

[
EStrn [1[E ]|x]1[〈x, v1〉 ≤

1

8
]

]
≥8ε(1− 2e−n/128)(1− e−3 − e−8mε)(1− 96mεe−n/128)

≥ε ,

when 1
8ε ≤ m ≤ en/128

768ε and n > 128. Thus in all we have shown that if m < 1
8ε ∨

en/128

768ε then
EStrn∼Dm [atk(h∗, Strn, SVM)] > ε.

Appendix E. Proof of Theorem 7

Proof of Theorem 7 The proof combines the idea of constructing a set of symmetrical poisoning
instances in the proof of Theorem 2 and the idea that the training instances are far away from the
test point in the proof of Theorem 6. Again, we divide the proof into three parts as we did in the
previous proofs.
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The target function and the data distribution. We denote every point in Rn by (x, z) for x ∈
Rn−1 and z ∈ R. The target function h∗ is selected uniformly at random from H∗, where H∗ =
{1[〈(jw∗, 1), (x, z)〉 ≥ jγ/2]|j ∈ {±1}, w∗ ∈ Γn−1(0, 1)}. Let γ = 1

8 . For target function
h∗ = hw∗,j = 1[〈(jw∗, 1), (x, z)〉 ≥ jγ/2], the marginal data distribution Dw∗,j,X puts probability
mass 1 − 8ε on the point en, then put the remaining 8ε probability uniformly over the half sphere
of a (n− 1)-dimensional unit ball Γw∗,γ × {0}, where Γw∗,γ = Γn−1(γw∗, 1) ∩ {x| 〈w∗, x〉 ≥ γ}.
Then since every hypothesis in H∗ predicts en positively, we only need to focus on the half sphere
in the lower dimension. Note that the label of every point on the half sphere is determined by j. We
sample Strn ∼ Dmw∗,j and Strn,w∗,j denote the samples on Γw∗,γ×{0}×Y . Letmw∗,j = |Strn,w∗,j |.

The attacker. For any u1, u2 ∈ Rn−1\{0}, letKu1(u2) = {x| ‖u1‖2 〈u2, x〉−〈u1, u2〉 〈u1, x〉 =
0} denote the homogeneous (passing through the origin) hyperplane perpendicular to the vector
u2 − 〈u1, u2〉 u1

‖u1‖2
. For any given test instance (x0, 0) with x0 ∈ Γw∗,γ , we define two base

vectors v1 = w∗ and v2 = x0−〈x0,w∗〉w∗
‖x0−〈x0,w∗〉w∗‖ . Note that v2 is well-defined almost surely. Denote

Kx0 = Kx0(v1). Let x‖ = 〈x, v1〉 v1 + 〈x, v2〉 v2 denote x’s component on the hyperplane defined
by v1, v2 and x⊥ = x − x‖ denote the component perpendicular to v1, v2 and then we define

RefKx0 (x) , x⊥ +
2〈x‖,x0〉
‖x0‖2

x0 − x‖ as the reflection of x through Kx0 . Then we define an attacker
Adv as

Adv(hw∗,j , Strn, (x0, 0))

=

{
{((RefKx0 (x), 0), 1− y)|((x, 0), y) ∈ Strn} if E1(w∗, Strn, x0,mw∗,j) ,

∅ else ,

where

E1(w∗, Strn, x0,mw∗,j) =

{
∀(x, 0) ∈ Strn,X , 〈x,w∗〉 ≤

1

8
+ γ,

〈
x,

x0 − 〈x0, w
∗〉w∗

‖x0 − 〈x0, w∗〉w∗‖

〉
≤ 1

8

}
∩ {〈x0, w

∗〉 ≤ 1

8
+ γ} ∩ {mw∗,j ≤ 32mε} .

Here E1(w∗, Strn, x0,mw∗,j) is thought as a condition to attack x0. Then we show that Adv is a
clean-label attacker. If E1(w∗, Strn, x0,mw∗,j) holds, we have〈

RefKx0 (x), w∗
〉

=

〈
x⊥ +

2
〈
x‖, x0

〉
‖x0‖2

x0 − x‖, v1

〉

=

〈
x− 2 〈x, v1〉 v1 − 2 〈x, v2〉 v2 + 2(〈x, v1〉 〈x0, v1〉+ 〈x, v2〉 〈x0, v2〉)

x0

‖x0‖2
, v1

〉
=− 〈x, v1〉+ 2 〈x, v1〉 〈x0, v1〉2

1

‖x0‖2
+ 2 〈x, v2〉 〈x0, v2〉 〈x0, v1〉

1

‖x0‖2

≤− 〈x, v1〉+ 2(
1

8
+ γ)2 〈x, v1〉+ 2 · 1

8
〈x0, v1〉

≤
(

2(
1

8
+ γ)2 − 1

)
γ +

1

4
(
1

8
+ γ)

<0 ,
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where the last inequality holds since γ = 1
8 . Therefore, (RefKx0 (x), 0) is labeled different from

(x, 0) and Adv is a clean-label attacker.

Analysis. Observe that the probabilistic construction of the target function and the data distribu-
tion along with the random sampling of a test instance and the training set can be viewed in an
equivalent way: first drawing the number of training samples on the half sphere m′ from a binomial
distribution Bin(m, 8ε); then on a fixed known half sphere, drawing a test instance and the training
set with m′ samples on the half sphere and m−m′ samples on en; and finally randomly selecting a
coordinate system to decide the position of the true sphere and selecting a j to decide the labels of the
training samples. Formally, let us fix a half sphere Γn−1

+ = {x ∈ Γn−1(0, 1)| 〈x, e1〉 ≥ 0} and then
samplem′ ∼ Bin(m, 8ε), t0 ∼ Unif(Γn−1

+ ) andQtrn ∼ Unif(Γn−1
+ )m

′
. We denote by E3(Qtrn, t0)

the event of
{
∀q ∈ Qtrn, 〈q, e1〉 ≤ 1

8 ,
〈
q, t0−〈t0,e1〉e1
‖t0−〈t0,e1〉e1‖

〉
≤ 1

8

}
∩ {〈t0, e1〉 ≤ 1

8} ∩ {m
′ = |Qtrn| ≤

32mε}. Then we sample Tn−1 ∼ Unif(O(n − 1)), where O(n − 1) is the orthogonal group. Fi-
nally we sample j ∼ Unif({±1}). We denote by Rt0 the linear isometry that reflects across the
hyperplane Kγe1+t0(e1) in Rn−1, i.e., Rt0u = RefKγe1+t0 (e1)(u), for any u ∈ Rn.

Conditional on m′, t0 and Qtrn sampled in the above process, we consider two different coordi-
nate systems and j’s, which lead to two groups of random variables (j, Tn−1, w

∗, x0, Strn,X ,mw∗,j)

and (j̃, T̃n−1, w̃
∗, x̃0, S̃trn,X , m̃w̃∗ ,̃j). Here for any random variable in the first group, we add a tilde

to represent the corresponding random variable in the second group.

• In the first group, we have j, Tn−1, w
∗ = Tn−1e1, x0 = Tn−1(γe1+t0), Strn,X = Tn−1(γe1+

Qtrn)× {0} ∪ {en}m−m
′

and mw∗,j = m′.

• In the second group, we let j̃ = −j, T̃n−1 = Tn−1Rt0 , w̃
∗ = T̃n−1e1, x̃0 = T̃n−1(γe1 +

t0), S̃trn,X = T̃n−1(γe1 +Qtrn)× {0} ∪ {en}m−m
′

and m̃w̃∗ ,̃j = m′.

The above two groups provide two ways of realizing the random process of selecting h∗, (x0, 0)
and Strn,X : namely, h∗ = hw∗,j = 1[〈(jw∗, 1), (x, z)〉 ≥ jγ/2], (x0, 0), Strn,X and h∗ = hw̃∗ ,̃j =

1[
〈

(j̃w̃∗, 1), (x, z)
〉
≥ j̃γ/2], (x̃0, 0), S̃trn,X . Let S̃trn = {(x, hw̃∗ ,̃j(x))|x ∈ S̃trn,X } denote the

data set of instances in S̃trn,X labeled by hw̃∗ ,̃j . Note that (w∗, j, Strn, x0) and (w̃∗, j̃, S̃trn, x̃0) are
identical in distribution and that x0 = Tn−1(γe1 + t0) = Tn−1Rt0(γe1 + t0) = x̃0. We now argue
that Strn ∪ Adv(hw∗,j , Strn, (x0, 0)) and S̃trn ∪ Adv(hw̃∗ ,̃j , S̃trn, (x̃0, 0)) are identical conditional
on E3(Qtrn, γe1 + t0). To prove this, we propose and prove the following three claims.

Claim I E3(Qtrn, t0)⇔ E1(w∗, Strn, x0,mw∗,j)⇔ E1(w̃∗, S̃trn,X , x̃0, m̃w̃∗ .̃j).
Proof of Claim I This is true since Tn−1, Rt0 ∈ O(n − 1), thus they keep all the inner product
properties. In particular, for any (x, 0) ∈ Strn, x = Tn−1(γe1 + q) for some q ∈ Qtrn by definition
of Strn. Furthermore,

〈x,w∗〉 = 〈Tn−1(γe1 + q), Tn−1e1〉 = γ + 〈q, e1〉 .

Thus 〈x,w∗〉 ≤ 1
8 + γ ⇔ 〈q, e1〉 ≤ 1

8 . All the other equivalences can be derived similarly, thus
omitted here.
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Claim II For any homogeneous hyperplane Lu1 ∈ Rn−1 with normal vector u1, for any u2 ∈
Rn−1 , we have RefTn−1Lu1

(Tn−1u2) = Tn−1RefLu1 (u2).
Proof of Claim II We consider two cases. If u2 ∈ Lu1 , then we have,

RefTn−1Lu1
(Tn−1u2) = Tn−1u2 = Tn−1RefLu1 (u2).

Else if u2 /∈ Lu1 , we denote by u3 = RefTn−1Lu1
(Tn−1u2). Thus u3 is the only point such

that u3 6= Tn−1u2, 〈u3 − Tn−1u2, Tn−1u1〉 = 0 and ‖u3‖ = ‖Tn−1u2‖. These immediately
give us T>n−1u3 6= u2,

〈
T>n−1u3 − u2, u1

〉
= 0 and

∥∥T>n−1u3

∥∥ = ‖u2‖, which means T>n−1u3 =
RefLu1 (u2). Thus

RefTn−1Lu1
(Tn−1u2) = Tn−1T

>
n−1u3 = Tn−1RefLu1 (u2) ,

which completes the proof.

Claim III Conditional on E3(Qtrn, t0), the poisoned datasets Strn∪Adv(hw∗,j , Strn, (x0, 0)) and
S̃trn ∪Adv(hw̃∗ ,̃j , S̃trn, (x̃0, 0)) are identical.
Proof of Claim III Denote by K = Kγe1+t0(e1) the homogeneous hyperplane perpendicular to
e1 − 〈γe1 + t0, e1〉 γe1+t0

‖γe1+t0‖2
. Thus we have,

Tn−1K =

{
Tn−1x

∣∣∣∣ 〈x, e1 − 〈γe1 + t0, e1〉
γe1 + t0

‖γe1 + t0‖2

〉
= 0

}
=

{
x

∣∣∣∣ 〈x, Tn−1

(
e1 − 〈γe1 + t0, e1〉

γe1 + t0

‖γe1 + t0‖2

)〉
= 0

}
=

{
x

∣∣∣∣ 〈x,w∗ − 〈x0, w
∗〉 x0

‖x0‖2

〉
= 0

}
= Kx0(w∗) .

By Claim I, we know that E3(Qtrn, t0) and E1(w∗, Strn, x0,mw∗,j) are equivalent. Thus, conditional
on E3(Qtrn, t0),

Adv(hw∗,j , Strn, (x0, 0)) = {((RefKx0 (w∗)(x), 0), 1− j)|((x, 0), j) ∈ Strn}
= {((RefTn−1K(Tn−1(γe1 + q)), 0), 1− j)|q ∈ Qtrn}
= {((Tn−1RefK(γe1 + q), 0), 1− j)|q ∈ Qtrn} (9)

= {((Tn−1Rt0(γe1 + q), 0), 1− j)|q ∈ Qtrn}

= S̃trn \ {(en, 1)}m−m′ ,

where Eq. (9) holds by applying Claim II. Similarly, for Adv(hw̃∗ ,̃j , S̃trn, (x0, 0)), the plane of

reflection is Kx0(w̃∗) = K
T̃n−1(γe1+t0)

(T̃n−1e1) = T̃n−1Kγe1+t0(e1) = T̃n−1K and

Adv(hw̃∗ ,̃j , S̃trn, (x0, 0)) = {((RefKx0 (w̃∗)(x), 0), 1− j)|((x, 0), j̃) ∈ S̃trn}

= {((Ref
T̃n−1K

(T̃n−1(γe1 + q)), 0), j)|q ∈ Qtrn}

= {((Tn−1(γe1 + q), 0), j)|q ∈ Qtrn} (10)

= Strn \ {(en, 1)}m−m′ ,
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where Eq. (10) holds by applying Claim II and T̃n−1 = Tn−1Rt0 . Thus,

Strn ∪Adv(hw∗,j , Strn, (x0, 0)) = Strn ∪ S̃trn \ {(en, 1)}m−m′

= S̃trn ∪Adv(hw̃∗ ,̃j , S̃trn, (x̃0, 0)) .

Now we have proved that Strn ∪ Adv(hw∗,j , Strn, (x0, 0)) and S̃trn ∪ Adv(hw̃∗ ,̃j , S̃trn, (x̃0, 0))

are identical conditional on E3(Qtrn, γe1 + t0). Hence in this case any algorithm will behave the
same given the input data being either Strn or S̃trn. Let E2(A, Strn,Adv, h∗, x0) denote the event
A(Strn ∪ Adv(h∗, Strn, (x0, 0)), (x0, 0)) 6= h∗((x0, 0)). Since hw∗,j((x0, 0)) 6= hw̃∗ ,̃j((x0, 0)),
then conditional on E3(Qtrn, t0), for any algorithm A, we have

1[E2(A, Strn,Adv, hw∗,j , x0)] = 1[¬E2(A, S̃trn,Adv, hw̃∗ ,̃j , x̃0)] .

If m < 1
8ε , then we have Et0,m′,Qtrn [1[E3(Qtrn, t0)∪{m′ = 0}]] ≥ P (m′ = 0) = (1−8ε)m >

1
4 when ε ≤ 1/16. Else since E [m′] = 8mε, by Chernoff bounds, we have P (m′ > 32mε) ≤
e−24mε ≤ e−3. Furthermore, by Lemma 2 and the union bound, drawing m′ i.i.d. samples S0 ∼
Unif(Γn−1

+ ×{0})m′ , with probability at least 1− 3m′e−
n−1
128 , every (x, 0) ∈ S0 satisfy 〈x, e1〉 ≤ 1

8

and
〈
x, t0−〈t0,e1〉e1
‖t0−〈t0,e1〉e1‖

〉
≤ 1

8 . Thus in all, we have, for any algorithm A,

Ew∗,j,Strn∼Dmw∗,j ,(x,y)∼Dw∗,j ,A[atk(h∗, Strn,A)]

=Ew∗,j,Strn∼Dmw∗,j ,(x,y)∼Dw∗,j ,A[1[A(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x)]]

≥8εEw∗,j,Strn,x0∼Unif(Γw∗,γ),A[1[E2(A, Strn,Adv, hw∗,j , x0)]

· 1[E1(w∗, Strn, x0,mw∗,j) ∪ {mw∗,j = 0}]]
=8εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]ETn−1,j,A[1[E2(A, Strn,Adv, hw∗,j , x0)]]]

=4εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]ETn−1,j,A[1[E2(A, Strn,Adv, hw∗,j , x0)]]]

+ 4εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]ETn−1,j,A[1[¬E2(A, S̃trn,Adv, hw̃∗ ,̃j , x̃0)]]] (11)

=4εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]ETn−1,j,A[1[E2(A, Strn,Adv, hw∗,j , x0)]]]

+ 4εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]ETn−1,j,A[1[¬E2(A, Strn,Adv, hw∗,j , x0)]]] (12)

=4εEt0,m′,Qtrn [1[E3(Qtrn, t0) ∪ {m′ = 0}]]

≥

{
4ε(1− 2e−

n−1
128 )(1− e−3)(1− 96mεe−

n−1
128 ) when m ≥ 1

8ε

4ε(1− 8ε)m when m < 1
8ε

>ε,

when m ≤ e
n−1
128

192ε and n ≥ 257. Here Eq. (11) holds due to the fact that Adv will make Strn ∪
Adv(hw∗,j , Strn, (x0, 0)) and S̃trn∪SAdv(hw̃∗ ,̃j , S̃trn, (x̃0, 0)) identical conditional on E3(Qtrn, t0)

and Eq. (12) holds because (w, j, Strn, x0) is identical to (w̃∗, j̃, S̃trn, x̃0) in distribution. Thus in

all, we have shown that for n ≥ 256, if m ≤ e
n−1
128

192ε then for all algorithmA, the expected attackable
rate is Ew,j,Strn∼Dm [atk(h∗, Strn,A)] > ε. Thus there exists a target function h∗ ∈ H and a distri-
bution D over Dh∗ with margin γ = 1/8 such that EStrn∼Dm [atkD(h∗, Strn,A)] > ε.
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Appendix F. Proof of Theorem 8

We first introduce two lemmas for the proof of the theorem.

Lemma 3 For any hypothesis class H with finite VC dimensional d, any distribution D, with
probability at least 1− δ over Strn ∼ Dm, for all h ∈ H,

err(h)− errStrn(h) ≤
√

18d(1− errStrn(h))errStrn(h) ln(em/δ)

m− 1
+

15d ln(em/δ)

m− 1
.

Proof This lemma is a direct result of empirical Bennett’s inequality (Theorem 6 by Maurer and
Pontil (2009)) and Sauer’s lemma. Let Λ(·) denote the growth function of H. Then by empirical
Bennett’s inequality (Theorem 6 by Maurer and Pontil (2009)), we have with probability at least
1− δ over Strn ∼ Dm,

err(h)− errStrn(h) ≤
√

18(1− errStrn(h))errStrn(h) ln(Λ(m)/δ)

m− 1
+

15 ln(Λ(m)/δ)

m− 1
, ∀h ∈ H .

By Sauer’s lemma, Λ(m) ≤ ( emd )d, which completes the proof.

Lemma 4 For any hypothesis class H with finite VC dimensional d, a fixed data set S with m
elements, realizable by some h∗ ∈ H. Let S0 be a set with size m0 < m drawn from S uniformly at
random without replacement. Then with probability at least 1− δ, for all h ∈ H with errS0(h) = 0,
we have

errS(h) ≤ d ln(em/d) + ln(1/δ)

m0
.

Proof For any h ∈ H, we have

P (errS(h) > ε, errS0(h) = 0) ≤
(
m−k
m0

)(
m
m0

) ≤ (1− k/m)m0 ,

where k = dε ·me. By Sauer’s lemma, Λ(m) ≤ ( emd )d. Taking the union bound completes the
proof.

Proof of Theorem 8 Let m = |Strn| be the number of training samples. Let hi = L(S(i)) denote
the output hypothesis of block i. Let Nc = {i1, . . . , inc} ⊆ [10t + 1] denote the set of index of
non-contaminated blocks without poisoning points with nc = |Nc|. Each block has m0 =

⌊
m

10t+1

⌋
or m0 =

⌈
m

10t+1

⌉
data points (dependent on the actual number of poison points injected by the

attacker) and at least 9t + 1 blocks do not contain any poison points, i.e., nc ≥ 9t + 1. If a point
x is predicted incorrectly, then it is predicted incorrectly by more than 4t + 1 non-contaminated
classifiers. Given training data Strn, for any x ∈ X , any m0 and any t-point attacker Adv to make
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each block has m0 points, we have

PA (A(Strn ∪Adv(Strn, h
∗, x), x) 6= h∗(x))

=PA

(
10t+1∑
i=1

1[hi(x) 6= h∗(x)] ≥ 5t+ 1

)

≤PA

(∑
i∈Nc

1[hi(x) 6= h∗(x)] ≥ 4t+ 1

)

≤ 1

4t+ 1
ENc

[
EA

[∑
i∈Nc

1[hi(x) 6= h∗(x)]
∣∣Nc

]]
≤2.5ENc [EA [1[hi1(x) 6= h∗(x)]|Nc]] .

Notice here, if m0 is fixed, the randomness of A can be regarded as selecting Nc first and drawing
ncm0 samples uniformly at random from Strn without replacement to construct S(i1), S(i2) . . . , S(inc ).
More specifically, conditioned on Nc, the randomness of A on hi1 is only through drawing S(i1),
i.e., drawingm0 samples without replacement from the clean training examples Strn. The important
thing is that if m0 is fixed, this distribution does not depend on the attacker. Hence,

atk(t, h∗, Strn,A)

≤E(x,y)∼D

[
sup
Adv

PA (A(Strn ∪Adv(Strn, h
∗, x), x) 6= h∗(x))

]

≤E(x,y)∼D

 sup
Adv:m0=b m

10t+1c
PA (A(Strn ∪Adv(Strn, h

∗, x), x) 6= h∗(x))


+ E(x,y)∼D

 sup
Adv:m0=d m

10t+1e
PA (A(Strn ∪Adv(Strn, h

∗, x), x) 6= h∗(x))


≤2.5E(x,y)∼D

 sup
Adv:m0=b m

10t+1c
ENc [EA [1[hi1(x) 6= h∗(x)]|Nc]]

 (13)

+ 2.5E(x,y)∼D

 sup
Adv:m0=d m

10t+1e
ENc [EA [1[hi1(x) 6= h∗(x)]|Nc]]

 (14)

≤2.5ENc
[
ES(i1)

[
err (hi1)

∣∣∣Nc

]
;m0 =

⌊
m

10t+ 1

⌋]
+ 2.5ENc

[
ES(i1)

[
err (hi1)

∣∣∣Nc

]
;m0 =

⌈
m

10t+ 1

⌉]
. (15)

In the following, we will bound the error of hi1 for each value of m0. Let E denote the event of
errStrn(hi1) ≤ (d+1) ln(em/d)

m0
and by Lemma 4 we have PA (¬E|Nc) ≤ d

em . Then with probability
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at least 1− δ over the choice of Strn, for each fixed value of m0, we have

EA [err(hi1)|Nc]

=EA [err(hi1)1[E ]|Nc] + EA [err(hi1)1[¬E ]|Nc]

=EA [(err(hi1)− errStrn(hi1) + errStrn(hi1))1[E ]|Nc] + PA (¬E|Nc)

≤

√
18d ln(em/δ)(d+ 1) ln(em/d)

(m− 1)m0
+

15d ln(em/δ)

m− 1
+

(d+ 1) ln(em/d)

m0
+

d

em
(16)

≤1

2

(
6d ln(em/δ)

m− 1
+

6d ln(em/d)

m0

)
+

15d ln(em/δ)

m− 1
+

(d+ 1) ln(em/d)

m0
+

d

em

≤24d ln(em)

m0
+

19d ln(1/δ)

10tm0
, (17)

where Eq. (16) applies Lemma 3. Then when m0 ≥ 960d
ε ln 2640etd

ε + 19d ln(1/δ)
εt , we have that

EA [err(hi1)|Nc] ≤ 24d ln(em)
m0

+ 19d ln(1/δ)
10tm0

≤ 0.2ε. Combined with Eq. (13), we have that when

m ≥ (10t+1)(960d
ε ln 2640etd

ε + 19d ln(1/δ)
εt +1), the t-point attackable rate is atk(t, h∗, Strn,A) ≤ ε.

Appendix G. Proofs and discussions for (t, ε, δ)-robust proper learners

G.1. Proof of Theorem 9

Proof Similar to the proof of Theorem 8, we let m = |Strn| be the number of training samples, and
let Nc = {i1, . . . , inc} ⊆ [10tkp + 1] denote the set of index of blocks without poisoning points.

Each block has m0 =
⌊

m
10tkp+1

⌋
or m0 =

⌈
m

10tkp+1

⌉
data points and at least t(10kp − 1) + 1

blocks do not contain any attacking points, i.e., nc ≥ t(10kp − 1) + 1. Given any fixed x ∈ X ,
if
∑10tkp+1

i=1 1[hi(x) 6= h∗(x)] ≤ 10t <
10tkp+1

kp
, then x ∈ XH′,kp , thus ĥ(x) = Major(H′, x) =

h∗(x). Thus we have, given training data Strn, for any x ∈ X , any m0 and any t-point attacker Adv
to make each block has m0 points, we have

PA (A(Strn ∪Adv(Strn, h
∗, x), x) 6= h∗(x))

≤PA

10tkp+1∑
i=1

1[hi(x) 6= h∗(x)] ≥ 10t+ 1


≤PA

(∑
i∈Nc

1[hi(x) 6= h∗(x)] ≥ 9t+ 1

)

≤ 1

9t+ 1
ENc

[
EA

[∑
i∈Nc

1[hi(x) 6= h∗(x)]
∣∣∣Nc

]]

≤10

9
kpENc

[
EA
[
1[hi1(x) 6= h∗(x)]

∣∣∣Nc

]]
,
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which indicates

atk(t, h∗, Strn,A) ≤ 10

9
kpENc

[
EA [err(hi1) |Nc] ;m0 =

⌊
m

10tkp + 1

⌋]
+

10

9
kpENc

[
EA [err(hi1) |Nc] ;m0 =

⌈
m

10tkp + 1

⌉]
.

Then we bound EA [err(hi1)|Nc] in the same way as the proof of Theorem 8. Following the
same calculation process of Eq. (17), we have with probability at least 1 − δ, EA [err(hi1)|Nc] ≤
24d ln(em)

m0
+ 19d ln(1/δ)

10kptm0
by using Lemma 4 and Lemma 3. Then when m0 ≥ 960dkp

ε ln
2640etdk2p

ε +
19d ln(1/δ)

εt , we have EA [err(hi1)|Nc] ≤ 24d ln(em)
m0

+ 19d ln(1/δ)
10kptm0

≤ 0.2
kp
ε . Therefore, we have

that when m ≥ (10kpt + 1)(
960dkp
ε ln

2640etdk2p
ε + 19d ln(1/δ)

εt + 1), the t-point attackable rate is
atk(t, h∗, Strn,A) ≤ ε.

G.2. A proper learner for hypothesis class with no limitation over kp

Algorithm 5 A robust proper learner for t-point attacker
1: input: a proper ERM learner L, data S
2: uniformly at random pick

⌊
|S|

3t/ε

⌋
points S0 from S with replacement

3: return L(S0)

Theorem 15 For any hypothesis class with VC dimension d, with any proper ERM learner L, Al-
gorithm 5 can (t, ε, δ)-robustly learnH using m samples where

m = O

(
dt

ε2
log

d

ε
+
d

ε
log

1

δ

)
.

Proof Let E denote the event that every point in S0 is selected from the training data Strn. Let
m = |Strn| and h0 = L(S0). Let us denote the size of S0 by m0 =

⌊
|S|

3t/ε

⌋
, which can be

⌊
m

3t/ε

⌋
or
⌈
m

3t/ε

⌉
. Since PA (E) ≥ (1 − t

3tm0/ε
)m0 ≥ 1 − ln 4

3 ε, we have PA (¬E) ≤ ln 4
3 ε. Then for any

t-point attacker Adv, we have

PA (A(Strn ∪Adv(h∗, Strn, x), x) 6= h∗(x))

=PA (h0(x) 6= h∗(x) ∩ E) + PA (h0(x) 6= h∗(x) ∩ ¬E)

≤PA (h0(x) 6= h∗(x)|E) + PA (¬E)

≤PA (h0(x) 6= h∗(x)|E) +
ln 4

3
ε ,

which indicates atk(t, h∗, Strn,A) ≤ EA
[
err(h0)

∣∣∣E ;m0 =
⌊
m

3t/ε

⌋]
+EA

[
err(h0)

∣∣∣E ;m0 =
⌈
m

3t/ε

⌉]
+ ln 4

3 ε. Conditioned on E , S0 is a set of i.i.d. samples uniformly drawn from Strn. By classic
uniform convergence bound, errStrn(h0) ≤ 2

m0
(d log(2em0/d) + log(2/δ0)) with probability at
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least 1 − δ0 over the choice of S0 (for a fixed Strn). Let E1 denote the event of errStrn(h0) ≤
2
m0

(d + 1) log(2em0/d) and it is easy to check that PA (¬E1) ≤ d
em0

. Similar to the proof of
Theorem 8, with probability at least 1− δ, we have

EA [err(h0)|E ]

=EA [err(h0)1[E1]|E ] + EA [err(h0)1[¬E1]|E ]

≤

√
36d ln(em/δ)(d+ 1) log(2em0/d)

(m− 1)m0
+

15d ln(em/δ)

m− 1
+

2

m0
(d+ 1) log

2em0

d
+

d

em0
(18)

≤1

2

(
6d ln(em/δ)

m− 1
+

12d ln(2em0/d)

m0

)
+

15d ln(em/δ)

m− 1
+

6d ln(2em0/d)

m0
+

d

em0

≤13d ln(2em0/d)

m0
+

18d ln(em/δ)

m− 1

≤31d ln(2em0)

m0
+

18d ln(1/δ)

(3t/ε− 1)m0
,

where Eq. (18) adopts Lemma 3. When m0 ≥ 1120d
ε ln 560ed

ε + 72d ln(1/δ)
t , EA [err(h0)|E ] ≤ 0.25ε.

Hence, with probability at least 1− δ, the t-point attackable rate is atk(t, h∗, Strn,A) ≤ ε by using
m training samples where

m =
3t

ε

(
1120d

ε
ln

560ed

ε
+

72d ln(1/δ)

t
+ 1

)
.

Appendix H. Proof of Theorem 10

Proof of Theorem 10 Now we show that for any sample size m > 0, there exists a hypothesis
class H with VC dimension 5d, a target function h∗ ∈ H and a data distribution D on Dh∗ such
that EStrn∼Dm [atk(t, h∗, Strn,A)] ≥ min( 3td

64m ,
3
8). We start with proving this statement in the base

case of d = 1 and then extend it to d ≥ 2. We divide the proof into four parts: a) construction of the
hypothesis class, the target function and the data distribution in d = 1, b) computation of the VC
dimension of the hypothesis class, c) construction of the attacker, and d) generalization to d ≥ 1.

The hypothesis class, the target function and the data distribution. We denote by Γ = Γ3(0, 1)
the sphere of the 3-d unit ball centered at the origin. First, consider a base case where the domain
X = Γ ∪ 0, which is the union of the sphere of a unit ball centered at the origin and the origin.
For any point q ∈ Γ, We let Cq = Γ3(q, 1) ∩ Γ denote the circle of intersection of the sphere
of two unit balls. Then we define hq,1 = 1[Cq], which only classifies the circle Cq positive and
hq,0 = 1[Γ \ Cq] only classifies the circle and the origin negative. Our hypothesis class is H =
{hq,j |q ∈ Γ, j ∈ {0, 1}}. We draw our target h∗ uniformly at random from H, which is equivalent
to drawing q ∼ Unif(Γ) and j ∼ Ber(1/2). The marginal data distribution Dq,j,X puts probability
mass ζ ∈ (0, t

8m ] uniformly on the circle Cq and puts the remaining probability mass on 0, where
the value of ζ is determined later. We draw Strn ∼ Dmq,j .
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The VC dimension of the hypothesis class. Then we show that the VC dimension of H is 5.
Since all classifiers in H will classify 0 as negative, 0 cannot be shattered and thus, we only need
to find shattered points on the sphere. Then we show that H can shatter 5 points. It is not hard to

check that the following set of 5 points can be shattered:
{

(1
2 ,
√

3
2 cos(2kπ

5 ),
√

3
2 sin(2kπ

5 ))
}5

k=1
.

Then we show thatH cannot shatter 6 points. For any 6 points P = {p1, . . . , p6}, if the 6 points
can be shattered, then for any subset P1 ⊆ P with size 3, there exists a hypothesis classifying P1

as 0s and P \ P1 as 1s. That is, there exists a circle of radius
√

3
2 such that either only P1 is on the

circle or only P \ P1 is on the circle. Then we claim that no 4 points can be on a circle of radius√
3

2 . If there are 4 points, w.l.o.g., {p1, p2, p3, p4} on a circle of radius
√

3
2 , then {pi, p5, p6} has to

be on a circle Ci of radius
√

3
2 , where 1 ≤ j 6= i ≤ 4, pj /∈ Ci. But since the radius is fixed, there

are only two different circles passing through {p5, p6}. Hence, there exists 1 ≤ i 6= j ≤ 4 such that
Ci = Cj , which contradicts that pj /∈ Ci.

Then w.l.o.g., if {p1, p2, p3} is on a circle of radius
√

3
2 . Consider {p1, p2, p4} and {p3, p5, p6},

if {p1, p2, p4} is on a circle of radius
√

3
2 , then {p3, p4, p5, p6} is on a circle of radius

√
3

2 (to label

{p1, p2} different from {p3, p4, p5, p6}); if {p3, p5, p6} is on a circle of radius
√

3
2 , then there are

three sub-cases: {p1, p3, p5} is on a circle of radius
√

3
2 , {p2, p3, p5} is on a circle of radius

√
3

2 and

both {p2, p4, p6}, {p1, p4, p6} are on two circles of radius
√

3
2 . For the first case, {p1, p2, p4, p6}

is on a circle of radius
√

3
2 (to label {p3, p5} different from {p1, p2, p4, p6}). For the second case,

similarly {p1, p2, p4, p6} is on a circle of radius
√

3
2 . For the third case, {p1, p2, p3, p5} is on a circle

of radius
√

3
2 . Therefore, any 6 points cannot be shattered.

The attacker. We adopt the reflection function mx0(·) defined in the proof of Theorem 2 where
mx0(x) = 2 〈x0, x〉x0− x for x ∈ Γ. For Strn ∼ Dmq,j , we let Sq = Cq ∩ Strn,X denote the training
instances in Cq (with replicants) and we further define mx0(Strn) = {(mx0(x), 1 − y)|(x, y) ∈
Sq × Y}, and let

Adv(h∗, Strn, x0) =

{
mx0(Strn) if x0 /∈ Strn,X , |Sq| ≤ t ,
∅ else .

If x0 /∈ Strn,X , then hq,j is consistent with Strn ∪ Adv(hq,j , Strn, x0). That is, Adv(hq,j , Strn, x0)
is clean-labeled.

Analysis. Due to the construction, we have

EStrn∼Dmq,j [|Sq|] = mζ .

Then by Markov’s inequality, we have

PStrn∼Dmq,j (|Sq| ≥ t) ≤
mζ

t
<

1

4
.

Let E1(A,Adv, hq,j , Strn, x0) denote the event of {A(Strn ∪ Adv(hq,j , Strn, x0), x0) 6= hq,j(x0)}
and let E2(Strn, x0, q) denote the event of {|Sq| ≤ t ∩ x0 /∈ Strn,X }. It is easy to check that
E2(Strn, x0, q) = E2(mx0(Strn), x0,mx0(q)). Besides, conditional on E2(Strn, x0, q), we have the
poisoned data set Strn ∪ Adv(hq,j , Strn, x0) = mx0(Strn) ∪ Adv(hmx0 (q),1−j ,mx0(Strn), x0) and
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thus, any algorithmA will behave the same at the test instance x0 no matter whether the training set
is Strn or mx0(Strn). Since hq,j(x0) 6= hmx0 (q),1−j(x0), we have 1[E1(A,Adv, hq,j , Strn, x0)] =
1[¬E1(A,Adv, hmx0 (q),1−j ,mx0(Strn), x0)] conditional on E2(Strn, x0, q). Let fq(x) denote the
probability density function of Unif(Cq) and then we have fq(x) = fmx0 (q)(mx0(x)). For any fixed
x0, the distributions of q and mx0(q) and the distributions of j and 1− j are the same respectively.
Since Strn are samples drawn from Dmq,j , mx0(Strn) are actually samples drawn from Dmmx0 (q),1−j .
Then we have

Eh∗∼Unif(H),Strn∼Dm [atkD(t, h∗, Strn,A)]

=ζEq∼Unif(Γ),j∼Ber( 1
2

),Strn∼Dmq,j ,x∼Unif(Cq),A [1[E1(A,Adv, hq,j , Strn, x)]]

≥ζEq∼Unif(Γ),j∼Ber( 1
2

),Strn∼Dmq,j ,x∼Unif(Cq),A [1[E1(A,Adv, hq,j , Strn, x) ∩ E2(Strn, x, q)]]

=ζ

∫
x∈Γ

Eq∼Unif(Γ),j∼Ber( 1
2

),Strn∼Dmq,j ,A
[fq(x)1[E1(A,Adv, hq,j , Strn, x) ∩ E2(Strn, x, q)]] dx

=ζ

∫
x∈Γ

Eq∼Unif(Γ),j∼Ber( 1
2

),Strn∼Dmq,j ,A
[fmx(q)(x)1[¬E1(A,Adv, hmx(q),1−j ,mx(Strn), x)]

· 1[E2(mx(Strn), x,mx(q))]]dx

=ζ

∫
x
Eq∼Unif(Γ),j∼Ber( 1

2
),Strn∼Dmq,j ,A

[fq(x)1[¬E1(A,Adv, hq,j , Strn, x)] · 1[E2(Strn, x, q)]] dx

=
ζ

2

∫
x
Eq∼Unif(Γ),j∼Ber( 1

2
),Strn∼Dmq,j

[fq(x)1[E2(Strn, x, q)]] dx

>
3ζ

8
,

which completes the proof for d = 1 by setting ζ = min( t
8m , 1).

Extension to general d ≥ 1. To extend the base case to d > 1, we construct d separate balls and
repeat the above construction on each ball individually. For i ∈ [d], let Γi = Γ3(3ie1, 1) denote the
sphere of a ball with radius 1 centered at 3ie1. Consider the domainX = ∪i∈[d]Γi∪{0} as the union
of d non-overlapping unit balls and the origin. For qi ∈ Γi, let h1

qi = 1[Γ3(qi, 1) ∩ Γi] denote the
hypothesis classifying only points on the circle of Γ3(qi, 1)∩Γi positive and h0

qi = 1[Γi \Γ3(qi, 1)]
denote the hypothesis classifying only points on Γi positive except the circle Γ3(qi, 1) ∩ Γi. Let
hsq1,...,qd =

∑
i∈[d] h

si
qi , where s ∈ {0, 1}d denote the hypothesis combining all d balls and H =

{hsq1,...,qd |qi ∈ Γi, ∀i ∈ [d], s ∈ {0, 1}d}. We have the VC dimension ofH is 5d. Our target function
is selected uniformly at random fromH and similar to the case of d = 1, we assign probability ζ =
min(1

d ,
t

8m) to each circle on the balls and the remaining probability mass on the origin. Since every
ball is independent with other balls and thus, we have Eh∗∼Unif(H),Strn∼Dm [atkD(t, h∗, Strn,A)] >
3dζ
8 = min( 3td

64m ,
3
8).

In all, there exists a target function h∗ ∈ H and a data distribution D over Dh∗ such that
EStrn [atkD(t, h∗, Strn,A)] > ε when m < 3td

64ε for ε ≤ 3
8 .
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