

Advances in Mutation Detection using Loop-Mediated Isothermal Amplification

Marcelino Varona and Jared L. Anderson*

Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

1. Marcelino Varona
Department of Chemistry
Iowa State University
1605 Gilman Hall
Ames, IA 50011
obedv@iastate.edu
2. Jared L. Anderson
Department of Chemistry
Iowa State University
1605 Gilman Hall
Ames, IA 50011
andersoj@iastate.edu

1 **Abstract**

2 Detection of mutations and single-nucleotide polymorphisms is highly important for
3 diagnostic applications. Loop-mediated isothermal amplification (LAMP) is a powerful technique
4 for the rapid and sensitive detection of nucleic acids. However, LAMP traditionally does not
5 possess the ability to resolve single-nucleotide differences within the target sequence. Due to its
6 speed and isothermal nature, LAMP is ideally suited for point-of-care applications in resource
7 limited settings. Recently, different approaches have been developed and applied to enable single-
8 nucleotide differentiation within target sequences. This mini-review highlights advancements in
9 mutation detection using LAMP. Methods involving primer design and modification to enable
10 sequence differentiation are discussed. In addition, the development of probe-based detection
11 methods for mutation detection are also covered.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1 **Introduction**
2

3 Nucleic acids (NAs) play a prominent role as biomarkers for a wide range of diseases.
4 Since its development, polymerase chain reaction (PCR) has been broadly applied for NA
5 diagnostics and has become the gold standard for many applications. PCR leverages the unique
6 Watson-Crick base pairing of NAs to amplify specific sequences through multiple heating and
7 cooling cycles. To further increase PCR specificity, fluorescent probes including TaqMan and
8 molecular beacons are often used to discriminate single nucleotide differences within an amplified
9 sequence. This has allowed for the development of assays capable of discriminating single-
10 nucleotide polymorphisms (SNPs) for certain diagnostics such as cancer¹ and multi-drug resistant
11 tuberculosis (MDR-TB).²

12 While PCR is considered the gold standard for many diagnostic tests, there remain
13 formidable drawbacks that prevent its use in resource-limited settings and peripheral laboratories.
14 Significant hinderances include the need for sophisticated thermal-cycling equipment and imaging
15 modules for real-time detection. In addition, some PCR methods require extended incubation
16 periods (<1 h) and can suffer inhibition from molecules present in biological matrices.³ These
17 limitations increase the difficulty of developing PCR-based diagnostics that can be performed in
18 non-laboratory settings.

19 Isothermal amplification techniques have been developed and applied for NA detection in
20 order to circumvent the aforementioned drawbacks. These techniques include, but are not limited
21 to, recombinase polymerase amplification (RPA),⁴ rolling circle-amplification (RCA),⁵ and loop-
22 mediated isothermal amplification (LAMP).⁶ The isothermal nature of these methods eliminate the
23 need for complex thermal cycling equipment and high temperatures. In addition, several
24 colorimetric detection methods have been developed to allow for easy visualization and
25 identification of positive samples.^{7,8}

26 LAMP has been the most popular and widely implemented isothermal amplification
27 technique. It relies on 4-6 primers and a DNA polymerase possessing strong strand displacement
28 activity to amplify the target NA sequence. A general amplification schematic is shown in figure
29 1A. These characteristics have allowed LAMP to achieve equal or lower detection limits to PCR
30 for certain targets.⁹ However, due to the length of the primers and the concentration that is often
31 required, LAMP suffers from non-specific amplification arising from the formation of primer-
32 dimers.¹⁰

33 Traditional detection methods for LAMP include turbidimetry and the use of dyes to
34 identify when amplification has occurred. Popular dyes include metal indicators such as hydroxy
35 naphthol blue (HNB)⁷ and calcein,¹¹ which change color as the Mg²⁺ concentration decreases
36 during the progression of the amplification reaction. Other dyes, such as SYBR Green I,¹² exhibit
37 increased fluorescence in the presence of double-stranded DNA that is generated during
38 amplification. These traditional methods are unable to differentiate between amplification of the
39 desired sequence and spurious amplification occurring from primer-dimers. Careful primer design
40 and reaction optimization can be used to minimize non-specific amplification and avoid false
41 positive reactions. However, these strategies are unable to provide sufficient specificity when
42 attempting to achieve single-nucleotide differentiation in sequences. Differentiating these types of
43 sequences is highly desirable as they can be an indicator of disease. Therefore, tools capable of
44 rapidly and accurately identifying these sequences are highly desired.

45 LAMP provides a platform for the rapid identification of sequences that can be deployed
46 in resource-limited settings. Becherer et al. recently published a comprehensive review which

discusses advancements made for sequence-specific detection of LAMP.¹³ Herein, we discuss recent advances in the development of sequence-specific LAMP detection methods with particular emphasis on the differentiation of mutations/single-nucleotide differences. Several different strategies have been developed and can be broadly categorized into primer- and probe-based approaches. Primer-based methods rely on primer design and modification to achieve differentiation of similar sequences. Probe-based approaches typically involve the modification of LAMP primers with fluorophore/quencher pairs to provide a sequence-specific signal.

SNP detection using primer-based approaches

Single Enzyme Methods

Ding et al. reported a strategy for SNP detection called probe-enhanced loop-mediated isothermal amplification (PE-LAMP).¹⁴ This strategy relies on designing LAMP primers to contain the SNP within the region of one of the loop-primers. Differentiation between the wild-type and SNP sequence was achieved due to the difference in amplification speed. When the loop-primer that was a perfect complement to the sequence was present, the LAMP reaction was significantly accelerated compared to when the mismatch was in the reaction. One important parameter that was identified and optimized was the length of the loop-primer. It was found that the shortest (11 nucleotide (nt)) loop-primer tested yielded an amplification time difference of greater than 40 min between the perfect complement and SNP. This was likely due to the decreased melting temperature of the loop-primer and subsequent reduced stability when a mismatch was present. The method was paired with neutral-red dye for colorimetric detection allowing the SNP to be detected when it comprised only 0.1% of the total NA concentration in the sample.

A similar strategy was developed by Itonaga et al. and involved the incorporation of a peptide-nucleic acid (PNA) and locked nucleic acid (LNA) for the detection of KRAS mutations.¹⁵ This gene codes for a protein within the RAS/MAPK pathway which is responsible for relaying signals from the exterior of the cell to the nucleus. This assay involved the addition of a PNA sequence that was complementary to the wild-type allele. When the wild-type sequence was present, the PNA was able to bind resulting in a significant slowing of the reaction. In addition, a LNA that was complementary to the mutant sequence was included and this allowed for rapid amplification to occur only when the mutant allele was present. Calcein was used as the dye for detection which enabled the use of a real-time qPCR instrument as well as viewing the reaction containers with the naked eye. The assay was applied for the mutation detection of four distinct cell lines. Amplification was unable to be detected from two wild-type cell lines while positive reactions were observed for the two mutant cell lines tested. Moreover, several different ratios of mutant: wild type DNA were tested to identify the limit of detection of the method. It was found that the mutant could still be detected down to a 0.1% mutant to wild-type ratio.

An allele-specific LAMP (AS-LAMP) method was developed by Carlos et al. that utilized gold nanoparticles functionalized with single-stranded DNA (ssDNA) for the detection of a SNP responsible for lactose intolerance.¹⁶ This method consisted of performing two parallel LAMP reactions, which contained a F3 primer that was either complementary to the wild type or the mutant sequence. The SNP was placed in the 3' end to prevent amplification from occurring if a mismatched sequence was present. Gold nanoparticles served as the detection platform as their visual appearance changed based on the presence of the amplified target due to aggregation when the target was absent. A blue color indicated a negative reaction while a pink appearance revealed the presence of the target. The capability of the method to detect the mutation was tested using 6 biological samples of each genotype. This approach allowed for discrimination based on the

1 presence of the correct F3 primer as well as the addition of the ssDNA functionalized
2 nanoparticles. The ssDNA sequence was complementary to a portion of the LAMP amplicon
3 facilitating aggregation if the desired sequence was amplified, in addition to enabling
4 differentiation between spurious and specific amplification.

5 In another study, Malpartida-Cardenas et al. developed an AS-LAMP method for SNP
6 detection.¹⁷ Similar to the previous study, this work utilized two separate, parallel reactions to
7 independently identify the mutant and wild-type allele. The strategy involved the incorporation of
8 two extra primers, termed unmodified self-stabilizing primers (USSP), to delay amplification of
9 the mismatched sequence. These primers were designed to possess the SNP at the 5' end and target
10 the F1 and B1 regions of the LAMP target. In the mutant reaction, USSPs complementary to the
11 wild-type sequence were added while the reverse was done for the wild-type reaction. These
12 primers competed with the FIP and BIP primers during the loop-formation of the amplification
13 process, thereby delaying amplification when the complementary sequence was present. A general
14 overview of the method is represented in Figure 2. A wide range of parameters were optimized
15 and tested during the study to create universal-primer design guidelines. One interesting result was
16 a comparison of modified and unmodified USSPs. The modified primers contained a blocking
17 group on the 3' end and prevented extension from occurring. Surprisingly, it was found that the
18 modified primers performed comparably to their unmodified counterparts in some cases and worse
19 in others. This approach was successfully applied for the detection of two SNPs responsible for
20 resistance to artemisinin-based combination therapies in malaria treatment and *PIK3CA* p.H1047R
21 breast cancer mutation.

22 . Several other AS-LAMP assays have been developed following a similar strategy by
23 placing the SNP on the 5' end of both FIP and BIP primers to delay amplification of the untargeted
24 sequence. Zhang et al. developed an assay for the detection of CYP2C19 polymorphisms from
25 clinical samples.¹⁸ Tamura et al. developed and applied an AS-LAMP assay for the detection of
26 N526K *ftsI* mutation of β -lactamase-negative ampicillin-resistant *Haemophilus influenzae*.¹⁹ This
27 strategy was also applied for the detection and differentiation of wild-type and vaccine strains of
28 Mink Enteritis Virus.²⁰ Differentiation and genotyping of ABO blood types was also achieved with
29 an AS-LAMP method.²¹

30 An approach was developed by Yongkiettrakul et al. for SNP detection of antifoulant
31 resistant *Plasmodium falciparum* which employed a lateral-flow dipstick for detection.²² Primer
32 design was performed manually and contained the SNP location on the 5' end of the FIP and BIP
33 primers. A 5' modified fluorescein isothiocyanate (FITC) primer was used to enable detection on
34 the lateral flow devices. It was unclear which primer was modified with biotin to enable the
35 detection.

36 37 *Multiple enzyme methods*

38 In addition to utilizing primer-design to detect SNPs, several studies have developed
39 methods that incorporate additional enzymes in the reaction system. Du et al. developed a strategy
40 for the detection of the most common KRAS mutation (codon 12, G>T).²³ The assay involved the
41 RNase H2 enzyme and a modified BIP primer containing an RNA base at the SNP location and a
42 3' blocker to prevent extension. The RNase H2 enzyme binds to RNA-DNA duplexes and cleaves
43 the RNA strand, enabling extension of the primer if the perfect complement is present. If the
44 mismatched sequence is present, the amplification reaction is significantly delayed. Initial
45 experiments to demonstrate the specificity of the enzyme for the desired target were performed by
46 incubating a short oligonucleotide probe containing an internal FAM fluorophore, a 5' quencher,

1 and an RNA base in between the fluorophore-quencher pair. This probe was incubated with either
2 an oligonucleotide that was complementary to the probe or contained the SNP and the RNase H2
3 enzyme. Fluorescence was measured and observed to increase exponentially when the perfect
4 complement was present while increasing linearly when the mismatch was added. A mutation
5 abundance as low as 0.01% could be detected with this technique. The method was expanded and
6 shown to successfully discriminate between complement and mismatch when any RNA base was
7 used (e.g., rA, rU, rC, rG).

8 A different approach by Fu et al. incorporated a ligase to initiate the LAMP reaction and
9 differentiate between mismatches.²⁴ The assay consisted of two ligation substrates with each
10 forming a part of the stem-loop dumbbell structure required for LAMP. One substrate was
11 complementary to both the mutant and wild-type sequence and the other substrate contained the
12 SNP on the 3' end as well as another mismatch 2 bases away to further destabilize binding of non-
13 complementary sequences. When the mutant sequence was present, hybridization occurred which
14 allowed for the ligation reaction to occur and subsequent generation of the dumbbell structure. The
15 generated dumbbell was then transferred to a separate reaction container where LAMP was
16 performed with additional BIP and FIP primers. A few parameters tested and optimized included
17 the addition of a second mismatch in one of the ligation substrates. Several different conditions
18 were tested which placed the second mismatch 1,2,3,4, and 5 nucleotides away from the 3' SNP
19 determining mismatch. It was found that the largest difference in amplification time between the
20 mutant and wild-type sequences was achieved when the second mismatch was placed 2 bases
21 away. However, a drawback to this method was the need for an independent ligase reaction that
22 required a temperature program (30 heat and cool cycles), which increased the sample-handling
23 steps, total time, and complexity of instrumentation required.

25 **Probe-based approaches for SNP detection**

26 Higgins et al. developed a method which utilized a modified loop-primer probe and
27 endonuclease IV for SNP detection.²⁵ The probe consisted of the following three components: a
28 5' quencher, an abasic site, and an internal fluorophore. This approach exploits the enhanced
29 endonuclease activity when a double-stranded abasic site is present. When the mutant sequence
30 was present, the endonuclease cleaved the abasic site and allowed for the fluorophore to be
31 displaced by the polymerase, leading to an increase in observed fluorescence. If the wild-type
32 sequence was present, endonuclease activity was significantly reduced and little to no fluorescence
33 signal could be detected. The approach was successfully applied for the single-plex and multiplex
34 detection of different targets. Multiplexed detection could occur by choosing different
35 fluorophores in the modified loop-primer. This approach improves upon TEC-LAMP which
36 utilizes *Tth* endonuclease IV as the enzyme, as it was unable to differentiate between SNPs using
37 similar probes.

38 Another probe-based approach that has been developed involves the use of strand-
39 displacement probes to achieve discrimination between perfectly matched sequences and SNPs.²⁶
40 These probes were designed to target the single-stranded loop regions between the F1/F2 and
41 B1/B2 regions of the LAMP target. A representative schematic of the approach is shown in Figure
42 3. Strand-displacement probes were composed of two components: reporter F and reporter Q.
43 Reporter F was complementary to the target and is 3' or 5' modified with a fluorophore. Reporter
44 Q hybridizes with reporter F, contains a corresponding quencher, and is generally shorter than
45 reporter F by 10 nucleotides. In the presence of the target sequence, reporter F will bind to the
46 target leading to the displacement of reporter Q, resulting in an increase in the fluorescence

1 detected. The length of reporter F is critical in allowing rapid strand-exchange to occur under
2 LAMP conditions. The SNP-detection capabilities of the method was tested with BRAF V600E,
3 a mutation present in 90% of melanomas. Significantly higher fluorescence could be observed
4 when reporter F was complementary to the target sequence. Discrimination was most successful
5 at a temperature of 60 °C, as higher temperatures potentially reduced the stability of the reporter
6 F and Q duplex. The method was shown to successfully detect down to 5% of the mutant allele in
7 the presence of 95% wild-type sequence.

8 The aforementioned approach was subsequently modified by Du et al. for the detection of
9 the same target using low cost, commercially-available lateral-flow immunoassay strips
10 (pregnancy tests).²⁷ A modified reporter was conjugated with human chorionic gonadotropin
11 (hCG), which could be detected by the pregnancy strips. Two different approaches were employed,
12 as shown in Figure 4. It was found that the large LAMP amplicons were unable to migrate through
13 the lateral flow device. Therefore, in one approach, a LAMP positive reaction was indicated by a
14 negative test strip as the hCG modified reporter was bound to the amplicon and unable to migrate
15 through the lateral-flow device. Conversely, amplification of the mismatched sequence yielded a
16 positive signal in the test-band, as the reporter was not incorporated into the amplicon. Another
17 approach was developed to yield a positive test strip result in the presence of the target nucleic
18 acid and relied on a three-way junction reporter that contained a sequence complementary to the
19 target bound to a magnetic bead and a hCG modified sequence. In the presence of the
20 complementary sequence, the magnetic bead-labeled primer hybridized with the target and enabled
21 release of the hCG-labeled sequence. Upon magnetic separation, the hCG-labeled sequence could
22 be detected on the lateral-flow device. One disadvantage of strand-displacement probes is the
23 required pre-annealing step to make the probe. This adds an additional step to the process, which
24 increases assay complexity.

25 Recently, molecular beacons (MBs) have been demonstrated to impart sequence-
26 specificity to LAMP detection.²⁸ MBs are dually-labeled with a fluorophore-quencher pair that
27 possess a hairpin structure that remains closed until a target sequence is present. Upon
28 hybridization with the target, the probe ‘opens up’ and leads to an increase in fluorescence. In
29 absence of the target, the hairpin structure remains closed resulting in minimal fluorescence. These
30 probes have previously been shown to successfully detect SNPs using qPCR and show great
31 promise in LAMP assays.

32 Varona et al. demonstrated the successful visual detection of a SNP by the combined use
33 of a MB and HNB, a traditional non-specific indicator of amplification.²⁹ The strategy involved
34 the use of a transilluminator for the visual identification of positive reactions. Figure 5 shows a
35 representative image of the results. When a negative reaction occurred, strong red fluorescence
36 could be observed due to the presence of HNB. Strong green fluorescence was observed in the
37 presence of the perfect complement while the SNP sequence resulted in significantly decreased
38 green fluorescence. Several parameters were optimized in order to achieve the greatest visual
39 differentiation. The reaction temperature was found to be important to consider as it allows for
40 greater destabilization between the MB and the mismatched sequence. HNB concentration was
41 also varied in order to achieve a clear and distinct signal from the negative samples. A 1% mutation
42 abundance could be visually differentiated with this method.

43 In a subsequent study, an assay was designed for the detection of BRAF V600E with MB-
44 LAMP.³⁰ Two distinct MBs possessing two fluorophores (FAM and HEX) that were
45 complementary to either the wild-type (FAM) or mutant (HEX) alleles were designed. Endpoint
46 detection was performed with a plate reader, negating the need for real-time fluorescence

1 measurements and allowing for detection of 5% mutation abundance using this assay. In addition,
2 the method could be coupled with polymeric ionic liquid-based solid-phase microextraction for
3 the isolation of DNA from human plasma in clinically-relevant concentrations, demonstrating its
4 potential in clinical applications. The biggest challenge associated with MB-LAMP assay
5 implementation is the MB design. Loop-primers must be carefully chosen to maximize the stability
6 of the MB-to the target while destabilizing the mismatched sequence. In addition, careful
7 optimization of the stem must be made to achieve optimal results.

8 Ding et al. developed an interesting strategy with a MB-like probe containing an RNA
9 nucleotide in the SNP location as well as incorporating the use of RNase H2.³¹ In this approach,
10 the hairpin structure of the MB was eliminated and the probe became linearized during the
11 amplification process (61 °C). If the complementary (mutant) sequence was present, the RNase
12 H2 cleaves the RNA nucleotide, allowing for separation of the fluorophore-quencher pair and
13 accelerated amplification. Upon completion of the reaction and cooling to room temperature, high
14 fluorescence could be observed due to cleaving of the MB by the RNase. However, when the
15 mismatch (wild-type) was present and the RNase was unable to hydrolyze the probe, the MB
16 remained intact and formed the hairpin structure upon cooling. A significant decrease in the
17 observed fluorescence can be observed when reactions containing the wild-type sequence were
18 performed. A schematic of the method and visual appearance of the reaction containers is shown
19 in Figure 6. The developed approach was applied for the detection of a KRAS mutation with
20 successful detection being achieved utilizing real-time fluorescence detection and visually with a
21 transilluminator. Ten (10) copies per reaction could be positively identified and a mutation
22 abundance as low as 0.01% was successfully detected with both methods. Detection was achieved
23 from pure plasmid DNA as well as genomic DNA from KRAS mutant type cells (LS 174T cell).

24 Tani et al. previously developed a universal probe called the QProbe for the detection of
25 SNPs following PCR amplification using melt-curve analysis.³² This method was later applied for
26 SNP detection in LAMP by Ayukawa et al.³³ The QProbe is a short, 3' fluorophore-labeled LNA
27 oligonucleotide. The complementary sequence of the QProbe is added onto a short sequence that
28 is complementary to the desired target. A key aspect of the target sequence is the need for a guanine
29 base at the 5' end. When these conditions are satisfied, the target and its complement hybridize,
30 which brings the QProbe sequence in close proximity to the guanine base, leading to a quenching
31 of fluorescence. After amplification, a melt-curve is performed and the derivative of the
32 fluorescence calculated. Mismatches in the target sequence will lead to decreased duplex stability
33 and lower melting temperatures. A significant drawback to this method using LAMP is the need
34 for real-time fluorescence monitoring as well as precise thermal cycling equipment.

35 A similar strategy employed by Komura et al. also relied on differential annealing curves
36 to differentiate between SNPs.³⁴ In this approach, two separate probes were designed and each
37 contained either a fluorophore or quencher of a quencher pair. These probes were designed to bind
38 in close proximity to each other within the amplicon, allowing quenching when both probes bound
39 their respective targets. The quencher probe was designed to contain the SNP region. Following
40 LAMP, the annealing temperature could be determined by monitoring the fluorescence; as the
41 temperature decreased, the quencher probe was able to bind its complementary target at higher
42 temperatures than the mismatch, resulting in significant difference in the annealing temperature
43 and allowing for the differentiation of SNPs.

44

45 **Conclusions and Outlook**

1 LAMP is a powerful tool for the rapid amplification of NA sequences and holds great
2 promise for use in diagnostic applications. In particular, SNP detection remains a highly relevant
3 and significant field of research. LAMP has incredible potential for use in SNP detection due to
4 its speed and low detection limits. This is particularly the case for point-of-care applications or in
5 resource limited settings where affordable, rapid, and specific methods are highly desired or
6 absolutely required. This mini-review highlights various methodologies that have been developed
7 to enable fast and accurate SNP identification. The development of a robust, universal technique
8 for SNP detection could allow for LAMP-based systems to be more widely accepted in the
9 diagnostic industry. In addition, the development of digital LAMP assays capable of SNP
10 differentiation would be beneficial in order to provide highly quantitative information from what
11 is typically a qualitative technique.

12
13

14 **Acknowledgements**

15 J.L.A. acknowledges funding from the Chemical Measurement and Imaging Program at the
16 National Science Foundation (Grant No. CHE-1709372).

17

18 **Corresponding Author:**

19 Jared L. Anderson

20 Department of Chemistry

21 Iowa State University

22 1605 Gilman Hall

23 Ames, IA 50011

24 Tel.: +1 515-294-8356

25 E-mail address: andersoj@iastate.edu

26 ORCID: 0000-0001-6915-8752

27

28

29

30

31

32

33

34

35

36

37

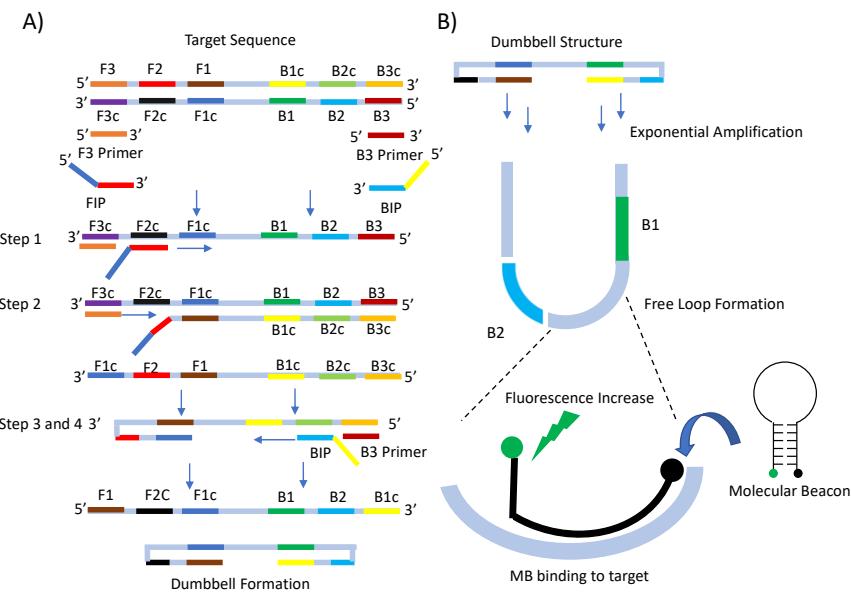
38

39

40

41

42


43

44

45

46

1
2
3
4
5
6

7
8
9
10
11
12
13

Figure 1. A) General schematic describing LAMP. B) Illustration of mechanism for MB-based specific detection of LAMP. Adapted with permission from ref. 29. Copyright 2019 American Chemical Society.

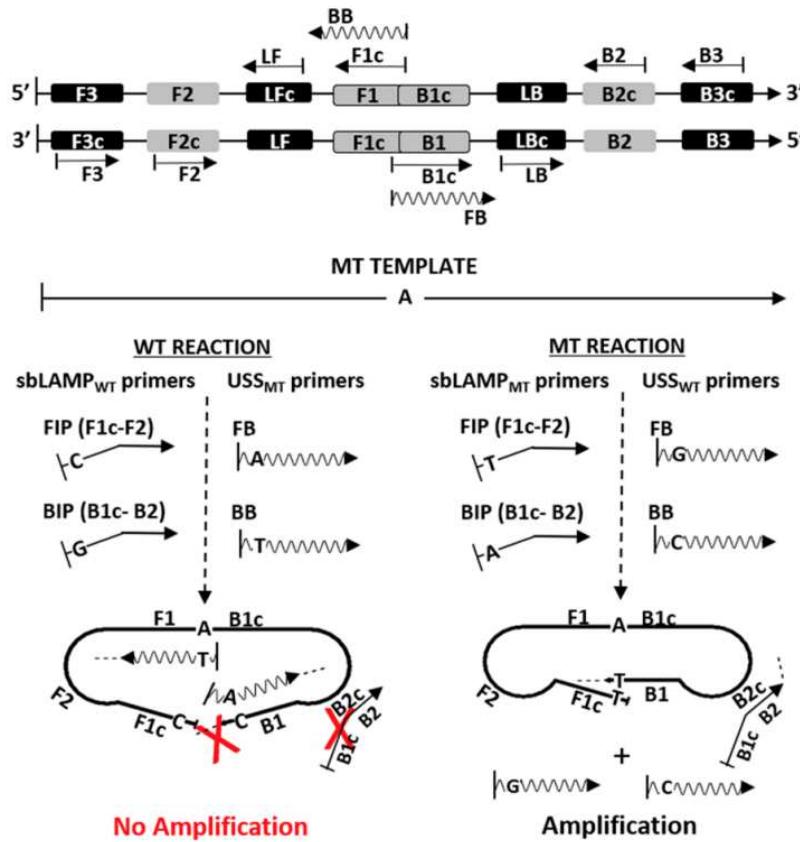


Figure 2. Allele-specific LAMP using unmodified, self-stabilizing primers for SNP detection.
Adapted with permission from ref. 17. Copyright 2018 American Chemical Society.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

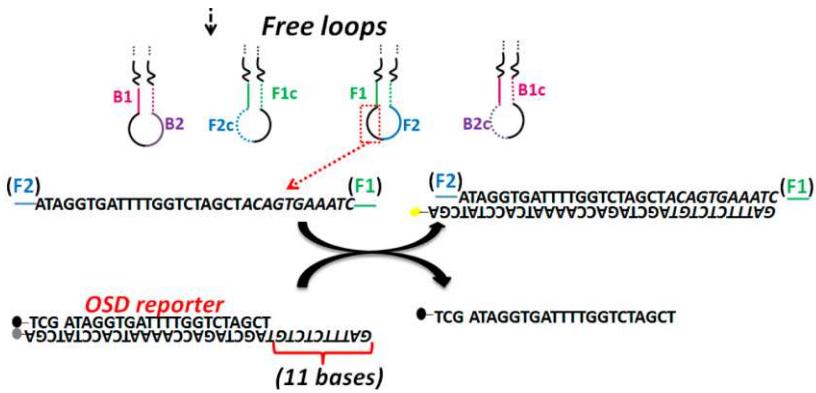
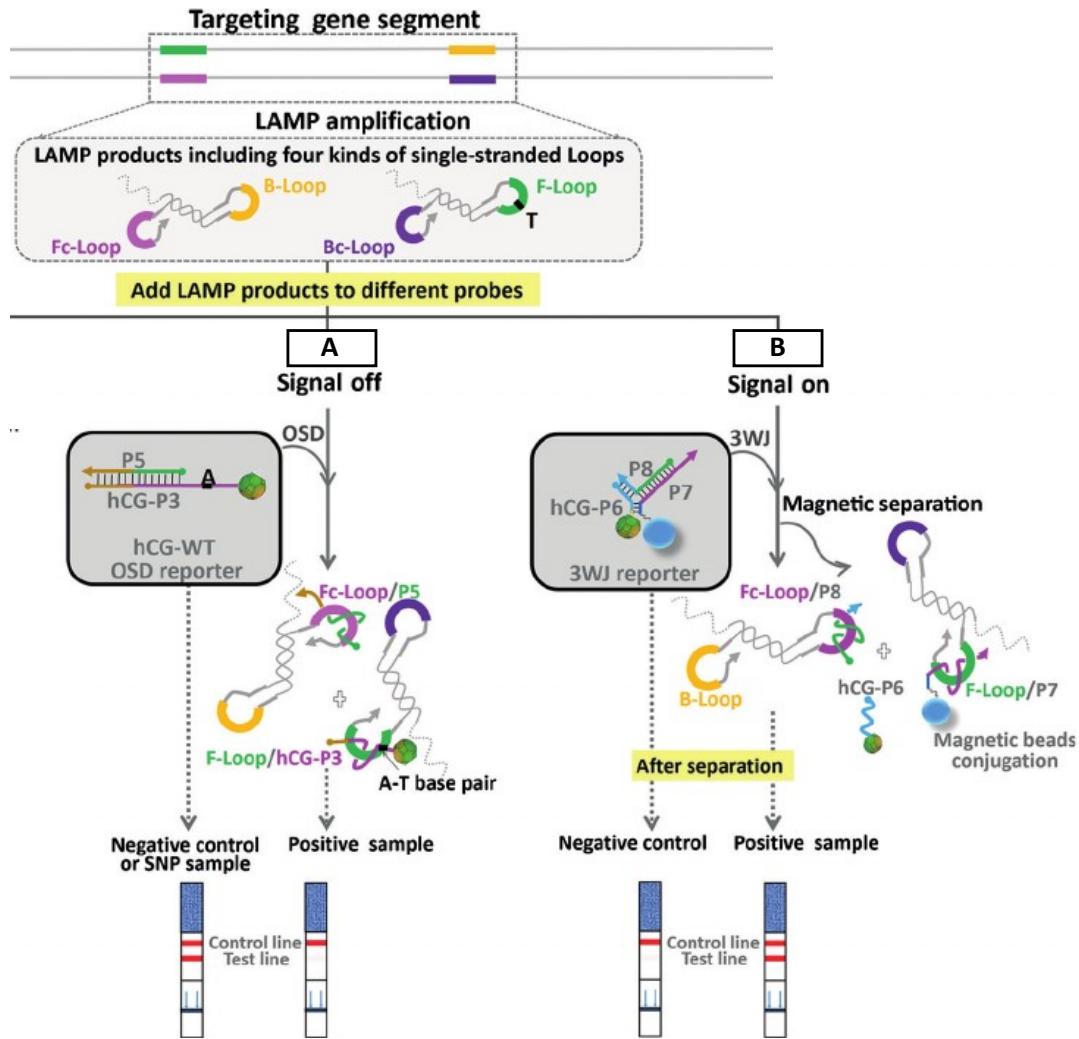



Figure 3. Schematic representing the specific detection of LAMP using OSD reporter probes. Adapted with permission from ref. 26. Copyright 2015 American Chemical Society.

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3 Figure 4. Overview of strand-displacement approaches to achieve detection of BRAF V600E on
4 commercially-available pregnancy test strips. A) hCG-modified probe binds to the LAMP
5 amplicon leading to a negative signal on the test strip. B) A three way junction is used that
6 displaces an hCG modified oligonucleotide during LAMP to yield a positive test strip when the
7 target is detected. Adapted with permission from ref. 27. Copyright 2016 Wiley-VCH.
8
9
10

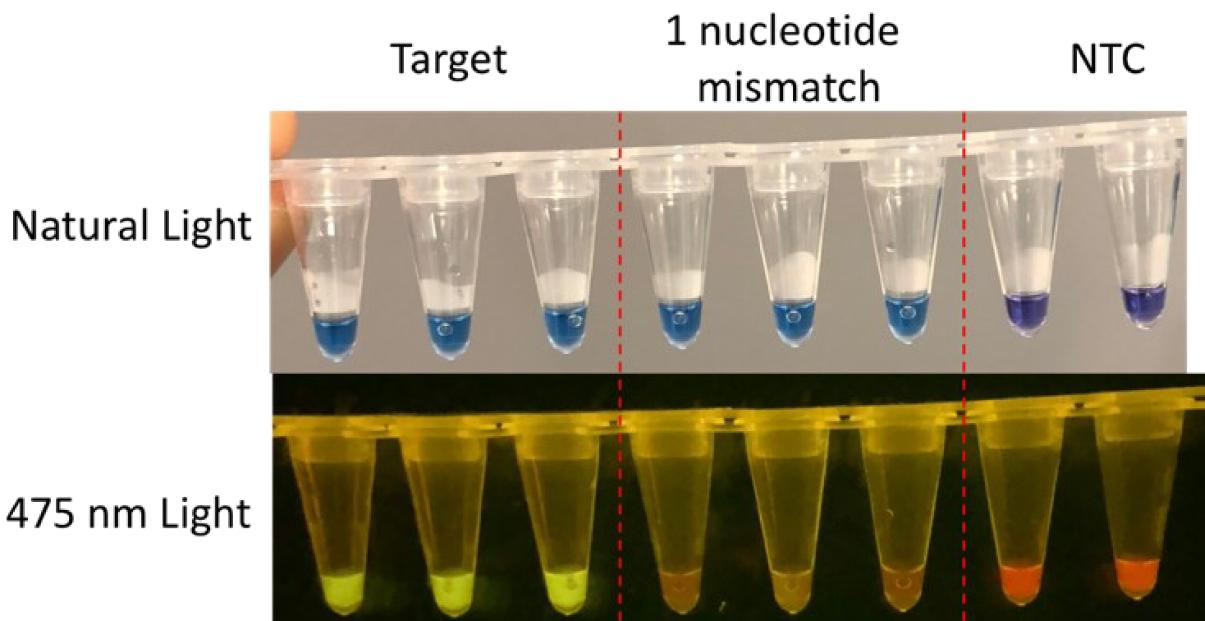


Figure 5. MB-LAMP reactions containing HNB for the target and single-nucleotide mismatch, as viewed by natural light and under 475 nm irradiation. Adapted with permission from ref. 29. Copyright 2019 American Chemical Society.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

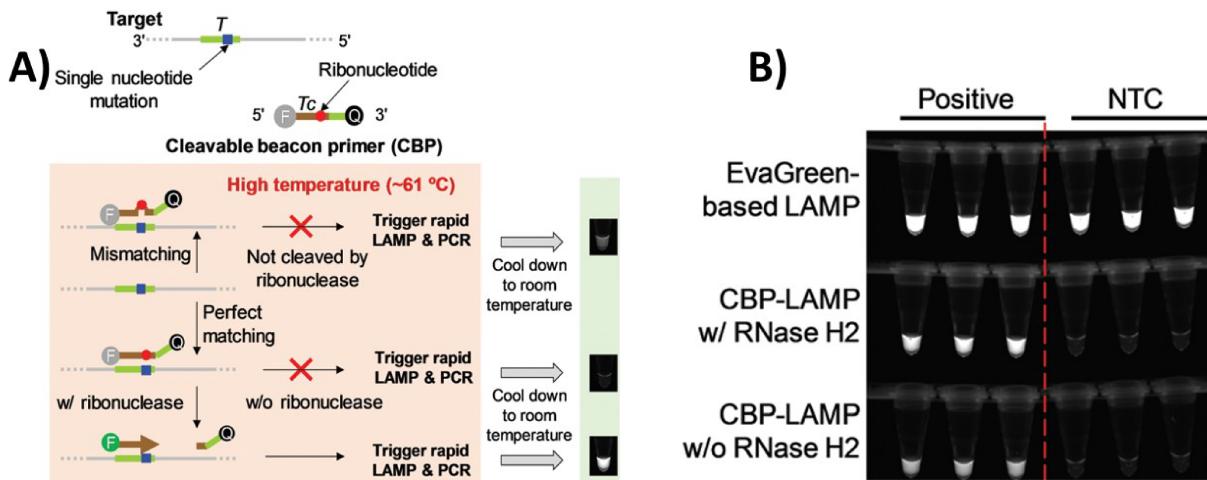


Figure 6. A) Schematic describing the utilization of cleavable beacon primer (CBP) and a ribonuclease for SNP detection. B) Images comparing the fluorescence from reaction containers containing EvaGreen or the CBP with or without RNase H2. Adapted with permission from ref. 31. Copyright 2019 Royal Society of Chemistry.

1 **References**

2 (1) Pratt, E. D.; Cowan, R. W.; Manning, S. L.; Qiao, E.; Cameron, H.; Schradle, K.;
3 Simeone, D. M.; Zhen, D. B. Multiplex Enrichment and Detection of Rare KRAS
4 Mutations in Liquid Biopsy Samples Using Digital Droplet Pre-Amplification. *Anal.
5 Chem.* **2019**, *91* (12), 7516–7523.

6 (2) Pandey, P.; Pant, N. D.; Rijal, K. R.; Shrestha, B.; Kattel, S.; Banjara, M. R.; Maharjan,
7 B.; Rajendra, K. C. Diagnostic Accuracy of GeneXpert MTB/RIF Assay in Comparison to
8 Conventional Drug Susceptibility Testing Method for the Diagnosis of Multidrug-
9 Resistant Tuberculosis. *PLoS One* **2017**, *12* (1).

10 (3) Demeke, T.; Jenkins, G. R. Influence of DNA Extraction Methods, PCR Inhibitors and
11 Quantification Methods on Real-Time PCR Assay of Biotechnology-Derived Traits. *Anal.
12 Bioanal. Chem.* **2010**, *396* (6), 1977–1990.

13 (4) Piepenburg, O.; Williams, C. H.; Stemple, D. L.; Armes, N. A. DNA Detection Using
14 Recombination Proteins. *PLoS Biol.* **2006**, *4* (7), e204.

15 (5) Ali, M. M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.-K.; Ankrum, J. A.; Le, X. C.; Zhao, W.
16 Rolling Circle Amplification: A Versatile Tool for Chemical Biology, Materials Science
17 and Medicine. *Chem. Soc. Rev.* **2014**, *43* (10), 3324–3341.

18 (6) Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.;
19 Hase, T. Loop-Mediated Isothermal Amplification of DNA. *Nucleic Acids Res.* **2000**, *28*
20 (12), E63.

21 (7) Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K. I. Colorimetric Detection of
22 Loop-Mediated Isothermal Amplification Reaction by Using Hydroxy Naphthol Blue.
23 *Biotechniques* **2009**, *46* (3), 167–172.

24 (8) Ding, X.; Wu, W.; Zhu, Q.; Zhang, T.; Jin, W.; Mu, Y. Mixed-Dye-Based Label-Free and
25 Sensitive Dual Fluorescence for the Product Detection of Nucleic Acid Isothermal
26 Multiple-Self-Matching-Initiated Amplification. *Anal. Chem.* **2015**, *87* (20), 10306–
27 10314.

28 (9) Khan, M.; Wang, R.; Li, B.; Liu, P.; Weng, Q.; Chen, Q. Comparative Evaluation of the
29 LAMP Assay and PCR-Based Assays for the Rapid Detection of Alternaria Solani. *Front.
30 Microbiol.* **2018**, *9* (SEP), 2089.

31 (10) Rolando, J. C.; Jue, E.; Barlow, J. T.; Ismagilov, R. F. Real-Time Kinetics and High-
32 Resolution Melt Curves in Single-Molecule Digital LAMP to Differentiate and Study
33 Specific and Non-Specific Amplification. *Nucleic Acids Res.* **2020**, *48* (7), e42–e42.

34 (11) Xu, G.; Zhao, H.; Cooper, J. M.; Reboud, J. A Capillary-Based Multiplexed Isothermal
35 Nucleic Acid-Based Test for Sexually Transmitted Diseases in Patients. *Chem. Commun.*
36 **2016**, *52* (82), 12187–12190.

37 (12) Njiru, Z. K.; Mikosza, A. S. J.; Armstrong, T.; Enyaru, J. C.; Ndung'u, J. M.; Thompson,
38 A. R. C. Loop-Mediated Isothermal Amplification (LAMP) Method for Rapid Detection
39 of Trypanosoma Brucei Rhodesiense. *PLoS Negl. Trop. Dis.* **2008**, *2* (2), e147.

40 (13) Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-
41 Mediated Isothermal Amplification (LAMP)—Review and Classification of Methods for
42 Sequence-Specific Detection. *Anal. Methods* **2020**, *12* (6), 717–746.

43 (14) Ding, S.; Chen, R.; Chen, G.; Li, M.; Wang, J.; Zou, J.; Du, F.; Dong, J.; Cui, X.; Huang,
44 X. One-Step Colorimetric Genotyping of Single Nucleotide Polymorphism Using Probe-
45 Enhanced Loop-Mediated Isothermal Amplification (PE-LAMP). *Theranostics* **2019**, *9*
46 (13), 3723.

1 (15) Itonaga, M.; Matsuzaki, I.; Warigaya, K.; Tamura, T.; Shimizu, Y.; Fujimoto, M.; Kojima, 2 F.; Ichinose, M.; Murata, S. Novel Methodology for Rapid Detection of KRAS Mutation 3 Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification. *PLoS One* **2016**, *11* 4 (3), e0151654.

5 (16) Carlos, F. F.; Veigas, B.; Matias, A. S.; Doria, G.; Flores, O.; Baptista, P. V. Allele 6 Specific LAMP-Gold Nanoparticle for Characterization of Single Nucleotide 7 Polymorphisms. *Biotechnol. Reports* **2017**, *16*, 21–25.

8 (17) Malpartida-Cardenas, K.; Rodriguez-Manzano, J.; Yu, L. S.; Delves, M. J.; Nguon, C.; 9 Chotivanich, K.; Baum, J.; Georgiou, P. Allele-Specific Isothermal Amplification Method 10 Using Unmodified Self-Stabilizing Competitive Primers. *Anal. Chem.* **2018**, *90* (20), 11 11972–11980.

12 (18) Zhang, C.; Yao, Y.; Zhu, J.-L.; Zhang, S.-N.; Zhang, S.-S.; Wei, H.; Hui, W.-L.; Cui, Y.- 13 L. Establishment and Application of a Real-Time Loop-Mediated Isothermal 14 Amplification System for the Detection of CYP2C19 Polymorphisms. *Sci. Rep.* **2016**, *6* 15 (1), 1–7.

16 (19) Tamura, S.; Maeda, T.; Misawa, K.; Osa, M.; Hamamoto, T.; Yuki, A.; Imai, K.; Mikita, 17 K.; Morichika, K.; Kawana, A. Development of a Highly Resolved Loop-Mediated 18 Isothermal Amplification Method to Detect the N526K FtsI Mutation of β -Lactamase- 19 Negative Ampicillin-Resistant *Haemophilus influenzae*. *J. Microbiol. Methods* **2017**, *141*, 20 108–114.

21 (20) Lin, P.; Wang, H.; Cheng, Y.; Song, S.; Sun, Y.; Zhang, M.; Guo, L.; Yi, L.; Tong, M.; 22 Cao, Z. Loop-Mediated Isothermal Amplification-Single Nucleotide Polymorphism 23 Analysis for Detection and Differentiation of Wild-Type and Vaccine Strains of Mink 24 Enteritis Virus. *Sci. Rep.* **2018**, *8* (1), 1–8.

25 (21) Zhang, C.; Zhu, J.; Yang, J.; Wan, Y.; Ma, T.; Cui, Y. Determination of ABO Blood 26 Group Genotypes Using the Real-time Loop-mediated Isothermal Amplification Method. 27 *Mol. Med. Rep.* **2015**, *12* (4), 5963–5966.

28 (22) Yongkiettrakul, S.; Kampeera, J.; Chareanchim, W.; Rattanajak, R.; Pornthanakasem, W.; 29 Kiatpathomchai, W.; Kongkasuriyachai, D. Simple Detection of Single Nucleotide 30 Polymorphism in *Plasmodium falciparum* by SNP-LAMP Assay Combined with Lateral 31 Flow Dipstick. *Parasitol. Int.* **2017**, *66* (1), 964–971.

32 (23) Du, W.-F.; Ge, J.-H.; Li, J.-J.; Tang, L.-J.; Yu, R.-Q.; Jiang, J.-H. Single-Step, High- 33 Specificity Detection of Single Nucleotide Mutation by Primer-Activatable Loop- 34 Mediated Isothermal Amplification (PA-LAMP). *Anal. Chim. Acta* **2019**, *1050*, 132–138.

35 (24) Fu, Y.; Duan, X.; Huang, J.; Huang, L.; Zhang, L.; Cheng, W.; Ding, S.; Min, X. 36 Detection of KRAS Mutation via Ligation-Initiated LAMP Reaction. *Sci. Rep.* **2019**, *9* 37 (1), 1–7.

38 (25) Higgins, O.; Smith, T. J. Loop-Primer Endonuclease Cleavage–Loop-Mediated Isothermal 39 Amplification Technology for Multiplex Pathogen Detection and Single-Nucleotide 40 Polymorphism Identification. *J. Mol. Diagnostics* **2020**, *22* (5), 640–651.

41 (26) Jiang, Y. S.; Bhadra, S.; Li, B.; Wu, Y. R.; Milligan, J. N.; Ellington, A. D. Robust Strand 42 Exchange Reactions for the Sequence-Specific, Real-Time Detection of Nucleic Acid 43 Amplicons. *Anal. Chem.* **2015**, *87* (6), 3314–3320.

44 (27) Du, Y.; Pothukuchi, A.; Gollihar, J. D.; Nourani, A.; Li, B.; Ellington, A. D. Coupling 45 Sensitive Nucleic Acid Amplification with Commercial Pregnancy Test Strips. *Angew. 46 Chemie - Int. Ed.* **2017**, *56* (4), 992–996.

1 (28) Liu, W.; Huang, S.; Liu, N.; Dong, D.; Yang, Z.; Tang, Y.; Ma, W.; He, X.; Ao, D.; Xu,
2 Y.; Zou, D.; Huang, L. Establishment of an Accurate and Fast Detection Method Using
3 Molecular Beacons in Loop-Mediated Isothermal Amplification Assay. *Sci. Rep.* **2017**, *7*
4 (1), 40125.

5 (29) Varona, M.; Anderson, J. L. Visual Detection of Single-Nucleotide Polymorphisms Using
6 Molecular Beacon Loop-Mediated Isothermal Amplification with Centrifuge-Free DNA
7 Extraction. *Anal. Chem.* **2019**, *91* (11), 6991–6995.

8 (30) Varona, M.; Eitzmann, D. R.; Pagariya, D.; Anand, R. K.; Anderson, J. L. Solid-Phase
9 Microextraction Enables Isolation of BRAF V600E Circulating Tumor DNA from Human
10 Plasma for Detection with a Molecular Beacon Loop-Mediated Isothermal Amplification
11 Assay. *Anal. Chem.* **2020**, *92* (4), 3346–3353.

12 (31) Ding, X.; Yin, K.; Chen, J.; Wang, K.; Liu, C. A Ribonuclease-Dependent Cleavable
13 Beacon Primer Triggering DNA Amplification for Single Nucleotide Mutation Detection
14 with Ultrahigh Sensitivity and Selectivity. *Chem. Commun.* **2019**, *55* (84), 12623–12626.

15 (32) Tani, H.; Miyata, R.; Ichikawa, K.; Morishita, S.; Kurata, S.; Nakamura, K.; Tsuneda, S.;
16 Sekiguchi, Y.; Noda, N. Universal Quenching Probe System: Flexible, Specific, and Cost-
17 Effective Real-Time Polymerase Chain Reaction Method. *Anal. Chem.* **2009**, *81* (14),
18 5678–5685.

19 (33) Ayukawa, Y.; Hanyuda, S.; Fujita, N.; Komatsu, K.; Arie, T. Novel Loop-Mediated
20 Isothermal Amplification (LAMP) Assay with a Universal QProbe Can Detect SNPs
21 Determining Races in Plant Pathogenic Fungi. *Sci. Rep.* **2017**, *7* (1), 1–9.

22 (34) Komura, R.; Kawakami, T.; Nakajima, K.; Suzuki, H.; Nakashima, C. Simultaneous
23 Detection of Benzimidazole-Resistant Strains of Fusarium Head Blight Using the Loop-
24 Mediated Isothermal Amplification-Fluorescent Loop Primer Method. *J. Gen. Plant
25 Pathol.* **2018**, *84* (4), 247–253.

26

27

28

29

30

31

32

33

34

35

36

37

38

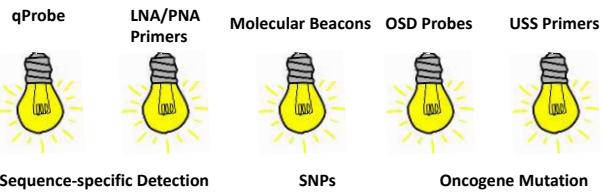
39

40

41

42

43


44

45

46

1 For Table of Contents Only

LAMP

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19