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Slow Drift of Neural Activity as a Signature of
Impulsivity in Macaque Visual and Prefrontal Cortex
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Perceptual behavior naturally shifts over tens of minutes in a
discrimination task

A slow drift in visual area V4 is a neural correlate of this
behavior

Neurons in multiple brain areas (V4 and prefrontal cortex)
share the same slow drift

The slow drift acts as a brain-wide impulsivity signal,
overriding sensory evidence
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The ability to make a perceptual decision
depends both on sensory inputs and on
internal cognitive state. Cowley et al. find
a slow drift embedded in populations of
neurons in visual and prefrontal cortex.
Rather than biasing sensory evidence,
the slow drift reflects the likelihood of an
impulsive decision.
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SUMMARY

INTRODUCTION

Over the course of a day, we face many perceptual decisions
(e.g., a driver waiting for a traffic signal to turn green). These de-
cisions are influenced not only by information at hand (e.g., the
color of the traffic signal) but also by a myriad of internal factors
that influence our choices at the moment a decision is made
(e.g., fatigue from driving). These factors have timescales
ranging from many minutes (e.g., arousal) to seconds (e.g.,
spatial attention) to fractions of a second (e.g., recent visual stim-
ulus history), and, together, they define an “internal state.” When
an animal is tasked with making back-to-back perceptual deci-
sions in a laboratory setting, fluctuations in the internal state still
influence perceptual outcomes despite the constancy of the sta-
tistics of task variables. Indeed, many studies have investigated
how and to what extent internal states influence the outcome of a

decision ( ; ;
), as this provides insight into the cognitive
and neural mechanisms underlying decision making (
).

Perceptual decisions have often been characterized with
models that accumulate (noisy) sensory evidence, such as vari-
ants of the drift-diffusion model ( ;

; ), and there are neural sig-
natures of this accumulation process ( ;

; ). Decisions can be better character-
ized by extending these models to include factors such as an ur-
gency signal ( ; ;

), duration of fixation ( ), the expected
accuracy of a choice ( ), the number of
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alternative choices ( ), the reward or
choice history of previous trials ( ;

), or a model term describing errors (i.e., “lapses”)
that occur mdependently of sensory evidence (

; ). Less is known about the neural
signatures of these cognitive factors ( ).
Most of these models focus solely on short-term influences on
decisions (e.g., within a single trial or between consecutive trials)
despite the presence of long-term influences (i.e., over several
minutes to hours) on decisions, such as fatlgue (

), arousal( ;
; ; ), and satiety (

), among others. This motivates the question of how
such long-term changes in a subject’s internal state influence
the subject’s choices in a perceptual decision-making task.

In this work, we trained macaque monkeys to make hundreds
of perceptual decisions over the course of several hours. We
found that the animals’ behavior changed slowly during the
task, unprompted by task structure. These slowly changing be-
haviors included their tendency to report a change when none
had happened (i.e., the rate of false alarms), reaction time, and
pupil diameter. These behavioral measures covaried with each
other over the course of tens of minutes, indicating that they
have a shared neural origin. During the task, we simultaneously
recorded neural population activity from visual area V4 and pre-
frontal cortex (PFC), two brain areas that have been implicated in
forming perceptual decisions. We identified a slow fluctuation
(termed the “slow drift”) in V4 activity that covaried with the
slow changes in behavior. Surprisingly, we also found that PFC
neurons, despite their physical distance from V4, exhibited a
slow drift that was highly correlated with that of V4. We uncov-
ered evidence that this slow drift acts as an arousal or impulsivity
signal, which influences the final decision through a pathway in-
dependent of sensory evidence. In addition, we found evidence
that downstream areas remove or account for this slow drift to
prevent it from adversely affecting the sensory readout. This
may explain how perceptual decisions can be formed reliably
when sensory signals (e.g., V4 activity) drift so profoundly. Over-
all, this work identifies a slowly varying internal signal present in
both V4 and PFC (and likely throughout the cortex) and proposes
a role for this signal in the decision-making process.

RESULTS

We trained two adult, male rhesus monkeys (Macaca mulatta) to
perform an orientation-change detection task ( A). Re-
sults from a portion of data collected from this experiment
have been reported previously ( ). After an
initial flash of two Gabor stimuli, each succeeding flash had the
same probability (30% and 40% for monkeys 1 and 2, respec-
tively) that the orientation of one of the stimuli would change
(i.e., a flat hazard function). The animal was trained to detect a
change in the stimulus and saccade to it. A “hit” trial was one
in which the animal correctly made a saccade to the changed
stimulus and then received a reward. A “false alarm” trial was
one in which the animal incorrectly made a saccade to a stimulus
when no change occurred. To measure the animal’s ability to
detect a stimulus change, we used signal detection theory to
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calculate sensitivity of detection d’ (

; ). As expected, the animal’s sensi-
tivity increased as the change in orientation increased ( B,
“cued stimulus changed”). To probe the effects of spatial atten-
tion, we structured trials into alternating blocks such that for
each block a changed stimulus was 90% likely to occur at one
location ( A, “cued stimulus”) and 10% likely to occur
at the other location (i.e., the “uncued stimulus”). Animals were
more sensitive (based on d’) at detecting stimulus changes at
the cued location than changes that occurred at the uncued
location ( B, similar results for second monkey in

), suggesting that the animals deployed spatial attention
to the cued location.

Slow Fluctuations in Behavioral Variables Reveal the
Presence of a Shifting Internal State

Although task statistics remained constant throughout each
recording session (average session duration: 2.3 and 3.0 h for
monkeys 1 and 2, respectively), the animal’s internal state was
free to vary with the passage of time due to such factors as
satiety, fatigue, motivation, etc. Indeed, when we analyzed the
animal’s behavior across the entire session, we found fluctua-
tions in its behavior that were hidden from our previous analysis
( B) for which we collapsed across trials for the purpose
of measuring the effect of spatial attention. The time course of
two commonly analyzed behavioral variables—hit rate and false
alarm rate—slowly fluctuated together over the entire session
( C, example session, teal and purple lines). The difficulty
of the perceptual decisions, the 90% chance of stimulus
changes occurring at the cued location within a block, and the
uncertainty of when a change would occur yielded high false
alarm rates (~50% for this session and on average 30.2% and
40.5% for monkeys 1 and 2, respectively; see )-
Over the course of the session, a change to a more impulsive
behavioral state would result in more correct choices—but also
more false alarms—on the difficult trials. Conversely, a more
hesitant approach would yield a lower false alarm rate but also
reduce the likelihood of correctly detecting difficult stimulus dis-
criminations. For all sessions, we found that hit rate and false
alarm rate covaried ( D, black dots), indicating a fluctua-
tion between a more impulsive and more hesitant state. These
two variables drifted together on long timescales (hit rate:
13.4+1.3 min and 15.9+2.2 min for monkeys 1 and 2, respec-
tively; false alarm rate: 14.0 £ 1.3 min and 14.5 + 1.8 min for mon-
keys 1 and 2, respectively; mean +1 SEM over sessions; see

).

One possible explanation for these behavioral fluctuations
was that spatial attention was cued to each of the two stimuli
in blocks of trials ( C, green line, each block lasted, on
average, 20.4 and 23.7 min for monkeys 1 and 2, respe-
citvely), and the animal reacted to the switches between
blocks. This cueing occurred at the beginning of each block
(see ) and resulted in robust attentional effects
in both behavior and neural activity ( ). While
the blocks of cued trials could in principle have explained the
slow fluctuations in the animal’s behavior that we report here,
we found this not to be the case ( C, example session,
teal and purple lines have little to no covariation with green



Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

Neuron ¢ CellP’ress

A saccade to changed stimulus B 4
x
N\ - N 3 cued
A stimulus
.t L changed
. sensitivity 5
cued stimulus d/
(change of orientation X
more likely at this location) //// + \\\\ 1
uncued
” ol &« ¥ stimulus
. " 400 ms time changed
(% N _1| _ i monkfy1
.-t 300 ms-500 ms 1 3 6 15
orientation change (A8)
C cue-left D monkey 1 * monkey 2
cveright | | [ | [ ] [ | 06| * 06
0.9 (example session) 0.4 0.4 *
corr.
rate p =109 over o
(fraction time ’
of events)
05 0 0
s 020 hit hit false %2 hit it false
"0.25 1 2 3 35 vs. vs. alarm vs. vs. alarm
time of session (hours) false cue s false cue vs.
alarm cue alarm cue

Figure 1. Behavior Slowly Fluctuates during an Experimental Session

(A) Orientation-change detection task with cued attention. On each stimulus flash, either of two oriented gratings could change orientation. The animal’s task was
to saccade to the stimulus location whose orientation changed (orange arrow). The animal was previously cued as to which of the two stimulus locations was
more likely to change its orientation (cued stimulus location is indicated by dashed circle, which was not shown to the animal).

(B) The animal’s sensitivity d’ increased with larger orientation changes of the cued stimulus (blue dots: gray line indicates fit with Weibull function). For trials in
which the uncued stimulus changed, the animal’s sensitivity was lower (46 = 3°, black dot below blue dot, p < 0.002 for both monkeys, paired permutation test).
Dots indicate means over sessions, error bars indicate +1 SEM.

(C) A representative session in which the hit rate (teal line) and false alarm rate (purple line) slowly covaried over time (Pearson’s p=0.91, p <0.002, permutation
test). For this session, hit rate (o =0.10, p = 0.096) and false alarm rate (p = 0.23, p < 0.002) rates had little to no relationship with which stimulus location was cued
(top, green line).

(D) Correlations over time between hit rate, false alarm rate, and cued stimulus location (asterisks denote significance over chance levels, p < 0.05, permutation

test). Dots indicate medians over sessions, error bars indicate bootstrapped 90% confidence intervals.

See also

line; D, across all sessions, gray dots). We also found
that these behavioral shifts did not simply reflect the animal
becoming gradually fatigued over the course of the session
and “guessing” more at the end, as it was not the case that
hit rate and false alarm rate strictly increased during each ses-
sion ( ). Instead, because task statistics remained
constant throughout the session, these behavioral shifts likely
reflected a slow change in the animal’s internal state from
minute to minute within the session. Such fluctuations could
lead the animal to change its behavior—at different times hav-
ing a higher or lower impetus to make a choice (or conversely,
a higher or lower resistance to initiating a movement), leading
to correlated fluctuations in hit rate and false alarm rate.
Next, we asked whether these slow fluctuations in behavior
were large relative to the prominent behavioral effect of spatial
attention that we observed during our task. The behavioral shifts
of spatial attention involved large changes in hit rate (0.35+ 0.09
and 0.41+0.12 for monkeys 1 and 2, respectively; see
) but small changes in false alarm rate (0.05+ 0.04
and 0.03 +0.02) between trials in which the changed stimulus

occurred in the cued location versus the uncued location. In
contrast, the slow fluctuations in behavior had large changes in
both hit rate (0.32+0.12,0.34+0.10 for monkeys 1 and 2) and
false alarm rate (0.21 +0.09 and 0.32 + 0.09). These results sug-
gest that the animals’ behavior slowly changed across the ses-
sion on the order of tens of minutes, at a level that was on par
with (but uncorrelated with) the behavioral effects we measured
due to spatial attention.

The Activity of V4 Neurons Slowly Drift Together
We next considered whether a neural signature of this fluctuating
internal state might be found in the activity of cortical neurons
( A). We investigated two brain regions, visual area V4
and dorsolateral PFC. We selected these areas because past
work has suggested that perceptual decisions might be influ-
enced by noise in sensory neurons ( ) and
by top-down control mechanisms (

). In each animal, we implanted two 100-electrode “Utah”
arrays in the same hemisphere to simultaneously record the ac-
tivity of populations of neurons in V4 and PFC. We began by
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Figure 2. Neural Activity Slowly Drifts throughout a Session
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(A) We simultaneously recorded population activity from visual area V4, thought to transform stimulus input into sensory evidence, and from prefrontal cortex
(PFC), thought to be involved in cognitive control signals and decision making. We asked whether these brain areas exhibit a neural signature (orange) of the
observed slow fluctuations in behavior (Figure 1C).

(B) Time course of the activity of three neurons from a representative session. Each dot is the 400-ms-binned residual spike count (raw spike count minus mean
spike count averaged over stimulus repeats) for one stimulus flash. Dashed lines denote mean residual spike counts for the first 30 min. Insets: spike waveforms
corresponding to the three neurons. Each waveform is the mean spike waveform averaged across either the first hour of the session (lighter shade, “first hour”) or
the third hour of the session (darker shade, “last hour”). Lines are close to overlapping.

(C) Linear combination of the activity of the 48 simultaneously recorded neurons from the same session as in (B). Each gray dot is a linear combination (identified
using PCA; see STAR Methods) of the residual spike counts for one stimulus flash. These projections were then Gaussian smoothed to estimate the slow drift
(black line).

(D) Time courses of the slow drifts (computed in the same manner as in C) for all sessions for both monkeys.

See also Figure S4.

asking whether V4 activity contained a neural signature of the
slow behavioral fluctuations (Figure 1C).

First, we considered the activity of individual neurons. We
found that some neurons increased their activity (Figure 2B,
“neuron 1”), some neurons decreased their activity (Figure 2B,
“neuron 3”), and other neurons did not exhibit drift in their ac-
tivity (Figure 2B, “neuron 2”) during a typical session. We
ensured that this was not due to instability in neural record-
ings (see Figure 2B spike waveform insets, Figure S2, and
STAR Methods), or to small movements of the eyes (e.g., mi-
crosaccades) that shift the visual image on the retina (Fig-
ure S3). In addition, we confirmed that the basic properties
of the recorded V4 neurons (i.e., mean firing rates, Fano fac-
tors, and noise correlations) were consistent with previous
studies (Figure S4, as well as analysis published in Snyder
et al., 2018).

4 Neuron 108, 1-17, November 11, 2020

To quantify the coordinated drift in activity across the popula-
tion of simultaneously recorded neurons, we applied principal-
component analysis (PCA) to binned spike counts (after sub-
tracting each neuron’s mean response to the stimulus: see
STAR Methods) and found a dominant linear combination of
the neurons for which their activity drifted strongly. The weights
(also known as loadings) of this linear combination represent an
axis in the population activity space, which we define as the
“slow drift axis.” We then projected the activity onto the slow
drift axis (Figure 2C, gray dots) to reveal a substantial fluctuation
in neural activity over the course of the 3 h experimental session
(Figure 2C, black line). We define this fluctuation as a “slow drift.”

The time course of slow drift varied across sessions (Fig-
ure 2D), with a timescale of around 40 min (Figure S4,
32.8+3.1 and 43.5+2.7 min for monkeys 1 and 2, respectively;
see STAR Methods). The slow drift was different from the
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Figure 3. The Slow Drift of V4 Neural Activity Covaries with Slow Fluctuations in Behavior

(A) Two example sessions for monkey 1 (left) and monkey 2 (right) in which hit rate, false alarm rate, and the slow drift covaried together (between hit rate and false
alarm rate: p=0.63,0.84 for monkeys 1 and 2; between slow drift and hit rate: p=0.72,0.64; between slow drift and false alarm rate: p=0.27,0.67).

(B) Within each session, the slow drift and behavioral variables were correlated over time (asterisks correspond to a significance of p <0.002 over shuffling across
sessions, permutation test). Dots indicate medians over sessions, error bars indicate bootstrapped 90% confidence intervals.

(C) Across sessions, correlations between the magnitudes of fluctuations of the slow drift and behavioral variables. Slow drift magnitude was the within-session
variance over time of the slow drift. Behavioral variable magnitude was the within-session variance over time of that variable. All correlations were significant
(asterisks correspond to a significance of p <0.05 over chance levels, permutation test). The magnitude of pupil diameter was not included because pupil

diameter measurements were not comparable across sessions (see
See also

average of activity taken across neurons ( ), which has
been proposed as a way to estimate On/Off states and summa-
rize population activity using a single variable ( ;
; but see ). We analyzed the
weights of the linear combination (i.e., the slow drift axis) and
found that about 50% of neurons had activity that drifted
together in the same direction, about 25% drifted in the opposite
direction, and the remaining 25% had little to no slow drift (

). Thus, the slow drift would be difficult to detect using in-
dividual neurons recorded sequentially or the average of simulta-
neously recorded neurons because the slow drift is a
coordinated but diverse fluctuation across the population of
neurons.

The Slow Drift Covaries with Slow Fluctuations in
Behavior

We found that the slow drift is a prominent neural fluctuation with
a similar timescale (tens of minutes) as that of fluctuations in
behavior, as well as tightly coupled with both hit rate and false
alarm rate ( A). We sought to link our neural and behav-
ioral observations of slow drift more directly. We quantified this

).

relationship in two ways. First, within each session, we found
that fluctuations in the slow drift and multiple behavioral vari-
ables, including hit rate and false alarm rate, were correlated
over time within a session ( B; see also for indi-
vidual animals). That the slow drift was correlated with all five
behavioral variables tested suggested that the slow drift was
correlated with a behavioral pattern in which hit rate, false alarm
rate, and pupil diameter increase while trial duration and reaction
time decrease (or vice versa). Indeed, we found that the slow drift
was correlated with this pattern, which explained 60% of the
behavioral variance ( ). This pattern of correlations
among behavioral variables was consistent with an underlying
shift between an impulsive behavioral state, associated with
making more saccades with short reaction times while the pupil
is dilated, and a hesitant behavioral state, in which there are less
saccades, longer reaction times, and a more constricted pupil.

Second, across sessions, we found that the magnitude of
firing rate changes in the slow drift (measured as the variance
of the slow drift; see ) covaried with the magni-
tude of behavioral changes ( C; see for individ-
ual animals). Thus, on sessions where the slow drift substantially
fluctuated, there were also substantial behavioral changes.

Neuron 708, 1-17, November 11, 2020 5
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Figure 4. The Slow Drift in V4 Activity Is Larger than the Effect of Spatial Attention

(A) Neural responses (orange and green dots) along the slow drift axis were unrelated to how blocks of trials were cued (black lines versus orange and green lines,
|p] =0.06) in an example session. Dot color indicates whether the cued stimulus location was within (“cue-in,” orange) or outside (“cue-out,” green) the receptive
fields of the V4 neurons. Black lines indicate the mean activity along the slow drift axis within each cued block. The magnitude of firing rate changes of the slow
drift 02, 4ix Was measured as the variance of the vertical levels of the black lines.

(B) For the same session as in (A), responses along an attention axis capturing the largest difference between mean spike counts during cue-in versus cue-out
trials. The effect of attention a2,,, was measured as the variance of the mean value of responses averaged within each block, where the variance was taken across

blocks (i.e., the spread of the orange and green lines).
(C) Ratios 02, 4/ 0w ACross sessions. Medians (“med”) are also shown.

Taking both findings together, the slow drift appears to reflect
the fluctuations of an underlying internal state.

The Slow Drift Is Unrelated to and Larger than the Neural
Effect of Spatial Attention
To evaluate the origin of this neural effect, we asked to what
extent the slow drift relates to another well-known modulation
of the internal state of the animal, spatial attention (

; ; ),
which we cued to different locations in blocks of trials ( A).
We refer to trials for which the stimulus location was cued either
inside or outside the V4 receptive fields as “cue-in” or “cue-out”
trials, respectively ( A, orange and green lines). Similar to
how the slow fluctuations in behavior were not correlated with
the cued stimulus location ( C and 1D), we found that
the slow drift in neural activity did not covary with the timing of
the cued blocks (e.g., A, black lines versus orange and
green lines; mean |p|=0.18,0.15 for monkeys 1 and 2, both no
greater than expected by chance, p=0.71 and p=0.56, one-
sided permutation test). Thus, the slow drift was not a neural
signature of spatial attention.

Instead, we used spatial attention to interpret the size of the
firing rate modulations corresponding to the slow drift. We
measured the magnitude of firing rate changes as the variance
of the slow drift over time ( A, spread of black lines,
02w ar) @nd compared it to the variance of changes in re-
sponses across cue-in and cue-out blocks ( B, spread
of orange and green lines, ¢2,,,). Because the slow drift was con-
strained to be along one axis in firing rate space (i.e., the slow
drift axis), we also constrained the response changes due to
attention to be along an axis for which the responses most
differed between cue-in and cue-out blocks (i.e., the “attention
axis”; see ). For this example session, the size
of the slow drift was 5 times larger than the effect size of attention

6 Neuron 708, 1-17, November 11, 2020

(020w arift/ T2n =5)- The ratio of the size of the slow drift divided
by the effect size of attention was greater than 1 for both mon-
keys ( C, median ratios: 1.8 and 6.6 for monkeys 1 and
2, respectively, p <0.002, paired permutation test). These results
indicate that the slow drift is a prominent neural fluctuation that
leads to larger variation than that of the neural fluctuations due
to spatial attention.

Another important neural effect of attention is the decrease in
mean noise correlations of pairs of V4 neurons when spatial
attention is directed to their receptive field (

; ). We confirmed this was the case for
the recorded V4 neurons in this experiment ( ). Although
we found that the slow drift did not covary with spatial attention,
in any task the slow drift could affect measures of population ac-
tivity, including noise correlation ( )and the
outputs of dimensionality reduction ( ).
This is because the presence of the slow drift may strengthen or
weaken the measured effects of cognitive signals that also
modulate neural activity, possibly on much smaller timescales.
For example, when studying attention modulation in V4 activity,

found that their model needed a term to
account for a “slow drift” in V4 activity, consistent with the slow
drift observed in our recorded V4 activity, that otherwise masked
the smaller modulations of attention. Thus, accounting for slow
drifts in population activity and behavior can be critical when
measuring other neural and cognitive effects.

V4 and PFC Neurons Share the Same Slow Drift

The covariation between the slow drift in V4 activity and behav-
ioral variables ( ) suggests that the slow drift could play a
role in the decision-making process. However, it is unclear how
the slow drift propagates through the neural circuit to ultimately
influence the decision outcome. To better understand this, we
recorded neural activity in PFC, simultaneous with the V4
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(A) The slow drift of PFC neurons (red) and slow drift of V4 neurons (black) for the 6 most correlated and 6 least correlated sessions for each monkey.

(B) Within each session, the V4 and PFC slow drifts had a larger correlation over time than that for a control in which PFC activity followed a smooth random walk
(asterisk denotes p <0.002, permutation test). Triangles indicate medians (“med”).

(C) Across sessions, the magnitude of fluctuations of the V4 slow drift was correlated with that of the PFC slow drift (0 =0.60, p <0.002, permutation test).
Magnitude was measured as the variance of the slow drift over time within a session. Each dot represents one session. The correlation was not solely due to the
outlying session (magnitude of V4 slow drift =0.2), as its removal still led to a significant correlation (p=0.43, p <0.005, permutation test).

recordings ( A). PFC is a brain area relevant to integrating
sensory evidence and forming decisions (

; ; ), and subregions of
PFC receive direct projections from V4 (8 m:

; 9/464: )-

One p035|b|||ty is that PFC has no slow drift, suggesting that
the slow drift is a local signal within the neural circuitry for visual
processing. Another possibility is that PFC has a slow drift but
that this slow drift does not covary with the V4 slow drift, indi-
cating that multiple local signals co-exist within the brain. Finally,
it could be that PFC has a slow drift that covaries with the V4 slow
drift, suggesting that the slow drift has a global presence in
the brain.

To test these possibilities, we applied the same analyses to
the PFC activity as we did to the V4 activity (i.e., PCA was
applied separately to V4 and PFC activity; see

). Visually, we found that PFC activity had a slow drift
that was remarkably similar to the V4 slow drift on a session-
by-session basis ( A, black and red lines). We quanti-
fied the relationship between the V4 and PFC slow drifts in
two ways. First, within each session, we found that the V4
slow drift strongly covaried with the PFC slow drift over time
( B, orange histogram, median |p| =0.96,0.93 for
monkeys 1 and 2, p <0.002, permutation test). These correla-

tions were significantly greater than those expected from a
control in which PFC had a slow drift unrelated to the V4
slow drift ( B, gray histogram, median |p| =0.68,
significantly less than the median of the real data, p <0.002,
permutation test). We simulated these control slow drifts
by generating smooth, random time courses over time from
a Gaussian process with a timescale similar to that of
the slow drift (45 min; see ). We confirmed that
longer timescales also yielded a median correlation signifi-
cantly below that of the real data (1 h timescale, median
lp| =0.81, p<0.002, permutation test), indicating that the
observed correlations between V4 and PFC slow drifts were
not simply due to spurious correlations between smooth,
random signals.

Second, across sessions, we found that the magnitude of fluc-
tuations of the V4 slow drift correlated with that of the PFC slow
drift ( C, p=0.68,0.60 for monkeys 1 and 2). Magnitude
was measured for each brain area separately as the variance
of the slow drift within a session (same metric as in C).
Thus, when the V4 slow drift had large fluctuations, the PFC
slow drift also tended to have large fluctuations for the same ses-
sion. This finding that PFC had a slow drift that closely matched
that in V4 suggests that the slow drift has a global presence in
the brain.
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Figure 6. Two Models of How the Slow Drift Could Influence the Decision-Making Process

(A) The sensory bias model. The slow drift biases sensory evidence (e.g., V4 activity), and this biased evidence propagates through the decision pathway (possibly
through multiple stages of processing) to reach a downstream area (e.g., PFC). The slow drift could arise from feedforward sensory noise (e.g., slow fluctuations in
LGN or V1) or from top-down feedback (e.g., a slow modulation originating from PFC) (right inset).

(B) Simulations of the sensory bias model, for which hit rate, false alarm rate, and the slow drift covary over time.

(C) The covariation of the simulated variables in (B) could also be observed in real data (an example session shown). Parameters of the model were not fit to data,

and thus, we do not expect an exact match of lines between panels.

(D) Under the sensory bias model, false alarms occur in two ways. First, sensory noise (e.g., feedforward noise from retina or LGN) may corrupt stimulus input
(e.g., sinusoidal gratings) and push sensory evidence (e.g., V4 activity, black lines) to pass a decision threshold (dashed line), leading to a perceived change in
stimulus and a false alarm (leftmost red FA). Second, the slow drift may bias sensory evidence to pass the decision threshold, also leading to a false alarm

(rightmost red FA).

(E) For simulations of the sensory bias model, we measured the extent to which simulated V4 activity (with or without the slow drift) predicted false alarms (see
STAR Methods). Decoding accuracy decreased when the slow drift was subtracted from the simulated V4 activity (red dot below black dot, p <0.002, paired

permutation test). Dots indicate means, error bars indicate +1 SD over 50 runs.

8 Neuron 708, 1-17, November 11, 2020

(legend continued on next page)



Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,

Neuron

The Influence of the Slow Drift on the Decision-Making
Process

In previous sections, we identified a slow drift in V4 and PFC ac-
tivity that was related to slow behavioral fluctuations. These re-
sults shed light on the possible roles the slow drift can play in
the neural circuit governing decision making. One possibility is
that the slow drift reflects a signal that biases sensory evidence
to be closer to or farther from a decision threshold. For example,
an increase in the slow drift could bias evidence closer to this
threshold, leading to an increase in both hit rate and false alarm
rate (i.e., a change in criterion). This is consistent with our obser-
vations that hit rate, false alarm rate, and the slow drift covaried
together ( B). This possibility can also explain the pres-
ence of the slow drift in both V4 and PFC: the slow drift biases
sensory evidence (e.g., V4 activity), which is then propagated
through the decision circuit (which may include multiple stages
of processing) and eventually is read out by a downstream
area that helps to form the decision (e.g., PFC) ( A). The
slow drift could arise in sensory areas from bottom-up feedfor-
ward sensory noise ( A, right inset, 1, from the sensory
periphery) or from top-down feedback signals ( A, right
inset, 2, from downstream areas), both of which are thought to
induce choice probabilities ( ).

To test this sensory bias hypothesis, we simulated a simple
decision-making model in which V4 activity was thresholded to
determine the final decision ( ; see ).
We biased the simulated V4 activity to be closer to or farther
from a decision threshold by adding a slow drift that varied
across simulated trials. We confirmed that the outputs of the
sensory bias model ( B) were consistent with our real
data ( C, representative session) in that hit rate, false
alarm rate, and slow drift covaried together. Next, we developed
an analysis to probe how errors occur on a trial-by-trial basis.
Under the sensory bias model, false alarms occur because
both sensory noise and the slow drift can push sensory evidence
(i-e., V4 activity) past a decision threshold ( D). Thus, sub-
tracting the slow drift from V4 activity removes an important
signal on which the final decision depends. Indeed, in our simu-
lations, we found that subtracting the slow drift from V4 activity
led to a decrease in how well V4 activity predicted the occur-
rence of false alarms within a trial ( E, red dot below black
dot).

To see whether this effect held for real data, we performed the
following analysis. We first computed how well V4 activity pre-
dicted the occurrence of a false alarm versus a correctly rejected
flash within a trial. We considered responses during a 175 ms

¢ CellP’ress

time window between stimulus onset and saccade onset (see

). We found that these responses predicted false
alarms above chance ( F, black dots above dashed line,
p <0.05 for both monkeys, one-sample t test). Next, we sub-
tracted the estimate of the slow drift from V4 activity, re-trained
the decoder, and computed the decoding accuracy. We found
that subtracting the slow drift significantly increased decoding
accuracy ( F, red dots above black dots). This result did
not support the sensory bias model (compare E to 6F).

That the slow drift is a neural fluctuation that does not bias sen-
sory evidence is not completely surprising. Previous work has re-
ported neural fluctuations in sensory cortical neurons that are
seemingly unrelated to sensory encoding but rather related to
factors such as locomotion ( ), arousal (

; ), eye movement (
), fidgeting ( ), and thirst (

). However, it is unclear how a downstream area could
reliably decipher sensory evidence in the presence of constantly
drifting neural activity. One intriguing possibility is that the down-
stream areas that read out activity from sensory areas may
somehow account for these fluctuations.

Inspired by this possibility, we hypothesized that the slow drift
reflects a separate decision process, independent of sensory ev-
idence, that leads the animal to be more or less likely to make a
saccade (i.e., an increase or decrease in both hit rate and false
alarm rate). In previous work, similar behavioral processes
have been described as urgency in a drift diffusion model (

; ), exploration in a multisensory
discrimination task ( ), and impulsivity in a
response inhibition framework ( ). For
our purposes, we term this process “impulsivity,” which reflects
the animal’s tendency to make a decision without incorporating
sensory evidence ( G). Under this model, the slow drift
acts as an impulsivity signal, increasing or decreasing the likeli-
hood of making a saccade independent of sensory evidence. It
does this by directly influencing downstream areas that form
the decision, overriding the sensory evidence. The slow drift
might be attributed to a brain-wide release of nheuromodulators
( G, right inset), consistent with our findings that V4 and
PFC slowly drift together ( ). This neuromodulator could
arise from brainstem nuclei and influence both sensory process-
ing areas as well as the downstream areas in which the final de-
cision is formed. To prevent the slow drift from interfering with
the sensory readout process (i.e., what occurs in the sensory
bias model), the impulsivity model removes the slow drift from
its perceptual readout ( G, red X). The brain may perform

(F) For the real data, subtracting the slow drift from V4 activity increased decoding performance (red dots above black dots, asterisks correspond to p < 0.05,
paired permutation test). Dots indicate means over sessions, error bars indicate +1 SEM.

(G) The impulsivity model. The slow drift directly influences downstream areas to increase or decrease the likelihood of an impulsive decision (i.e., a saccade
made independently from sensory evidence). The slow drift is present in sensory evidence (e.g., V4 activity), and a downstream area along the decision pathway
removes the slow drift from its readout of upstream activity (red X). The slow drift could arise from a brain-wide release of neuromodulators (right inset).

(H) The impulsivity model reproduced the finding in real data that hit rate, false alarm rate, and the slow drift covary over time (cf. C).

(I) Under the impulsivity model, false alarms occur in two ways. First, like in the sensory bias model, sensory noise may lead to a false alarm (leftmost red FA).
Second, the slow drift may increase the likelihood of an impulsive decision (orange die), leading to a false alarm (rightmost red FA).

(J) Under the impulsivity model, decoding accuracy of predicting false alarms from V4 activity increased when we subtracted the slow drift from simulated V4
activity (red dot above black dot, p <0.002, paired permutation test), consistent with the real data (cf. F). Dots indicate means, error bars indicate + 1 SD over

50 runs.
See also

Neuron 708, 1-17, November 11, 2020 9



Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,

¢ CellP’ress

this removal by having a downstream area access a copy of the
slow drift via the same neuromodulator that modulates V4 and
subtract this modulation from its sensory readout. For example,
if the decision involves a readout of PFC activity, the slow drift
(which is present in PFC, ) can be subtracted out during
this readout (e.g., via inhibitory connections).

We simulated the impulsivity model ( ; see

) and found that the slow drift produced by the model
covaried with hit rate and false alarm rate ( H), consistent
with the real data ( C). Under this model, some false
alarms occur due to sensory noise ( I, perceptual deci-
sion, left FA) while others occur due to impulsivity ( I,
impulsive decision, right FA). We next asked whether subtracting
the slow drift from V4 activity increased decoding performance,
as observed in the real data ( F). In this model, the slow
drift obscures the sensory evidence in V4 activity (i.e., stimulus
input + sensory noise), upon which the decision to saccade or
not is based (i.e., whether the sensory evidence crosses a
threshold). This is different from the sensory bias model, for
which the sensory evidence comprises stimulus input + sensory
noise + the slow drift. It then follows that for the impulsivity
model, subtracting the slow drift from V4 activity would improve
our predictions of false alarms that arise from perceptual deci-
sions because we remove a “nuisance” variable that otherwise
obscured the sensory evidence. Indeed, we found this to be
the case ( J, red dot higher than black dot). Thus, the
impulsivity model is more consistent with the real data than the
sensory bias model (cf. J and 6F).

There are two important components of the impulsivity model,
and, without both, the model would fail to be consistent with
real data. First, without the slow drift acting as an impulsivity
signal, the model would fail to have fluctuations in its behavioral
output (i.e., teal and purple lines would be flat in H). Sec-
ond, without the removal of the slow drift from readouts of V4 ac-
tivity, the model would fail to show an increase in decoding accu-
racy when the slow drift is subtracted from V4 activity (i.e., red dot
would not be above black dot in J). Thus, both of these
components allow the impulsivity model to capture aspects of
the real data that the sensory bias model cannot. In the sensory
bias model, by contrast, because the slow drift is a component
of the sensory evidence that influences the decision-making pro-
cess, subtraction of the slow drift reduces the ability to predict
behavior.

Why Is It Helpful to Remove Slow Drift from Sensory
Activity?

Our results are more consistent with the impulsivity model in
which a downstream area likely removes the slow drift from its
readout of V4 activity. Why would the brain employ such a mech-
anism? One reason is that if not removed, the slow drift could
corrupt sensory information encoded by V4 activity and negatively
impact perception and non-impulsive decisions. Consider the
following illustrative example. The responses of two V4 neurons
to different natural images encode information about these im-
ages along a “stimulus-encoding” axis ( A, left, dashed
black line). If the slow drift lies along an axis that is not aligned
with the stimulus-encoding axis ( A, middle, dashed black
and purple lines are not aligned), the response encoding remains
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reliable along the stimulus-encoding axis. However, if the slow
drift lies along the stimulus-encoding axis ( A, right, dashed
black and purple lines are aligned), the response encoding would
be corrupted because the slow drift perturbs the responses over
time independent of which stimulus is shown. Although we
considered only one stimulus-encoding axis for this example, a
population of neurons likely uses multiple stimulus-encoding
axes, each encoding different properties of the natural images.

Given recent theoretical studies that predict that most neural
fluctuations do not corrupt stimulus encoding (

; ; ) and
experimental studies that provide evidence for this prediction
( ; ), we predicted
that the slow drift would not lie along any of the stimulus-encod-
ing axes. We tested this hypothesis in a separate set of experi-
ments in which monkeys performed a fixation task while viewing
many natural images (see ). We applied PCA to
the trial-averaged responses to identify axes along which they
varied the most ( ; ) and
defined these axes as the “stimulus-encoding axes.” The re-
sponses along the top two stimulus-encoding axes appeared
to encode complex features of the images, as nearby responses
corresponded to similar high-level features ( B, images of
blue backgrounds, eyes, cardinals, dogs, arranged fruits, etc.).

Next, we asked whether V4 activity during this fixation task
contained a slow drift as in the change detection task (cf.

). Using the same approach to identify the slow drift as
before, we found a slow drift in the V4 responses ( C).
This suggests that the presence of the slow drift was not depen-
dent on the type of task (change detection versus active fixation)
or stimulus set (sinusoidal gratings versus natural images) but
rather occurs across multiple contexts.

We then tested whether the slow drift axis was aligned with the
top stimulus-encoding axes. We computed the fraction of slow
drift variance (i.e., variance of the slow drift across time within
a session) captured by each of the top stimulus-encoding axes
( D, orange) and compared that to a chance level for
which the slow drift lies along a random axis ( D, gray).
We found that the total fraction of slow drift variance captured
by the top 12 stimulus-encoding axes was significantly greater
than the fraction expected if the slow drift lay along a random
axis ( E; see for individual sessions). We also
performed this same analysis on neural activity from the orienta-
tions presented in the final flash of each trial during the change
detection task (i.e., 16 different grating orientations) and found
in these data that the slow drift axis was also aligned to the top
stimulus-encoding axes ( )

These results indicate that a slow drift is present in V4 activity
across multiple experimental contexts and lies along axes that
contain stimulus information likely used by downstream areas.
If not removed, the slow drift could corrupt this stimulus informa-
tion ( A, right, unreliable encoding). This supports the
notion that downstream areas account for the slow drift and re-
move it from their readouts of V4 activity in order to preserve reli-
able encoding. Thus, these results are consistent with the impul-
sivity model, of which an important component is this removal of
the slow drift. Indeed, removing some of the neural fluctuations in
readouts of visual cortical activity is likely one of the mechanisms
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Figure 7. The Slow Drift Axis Is Aligned to Stimulus-Encoding Axes

(A) lllustration of how the slow drift may influence the stimulus encoding of two V4 neurons. Without slow drift (left), a downstream area may read out the responses
along a stimulus-encoding axis (dashed black line) and faithfully recover stimulus information (e.qg., fruit, eye, bird). If the slow drift axis (middle, dashed purple line)
is not aligned to the stimulus-encoding axis, the encoding remains reliable. If the slow drift axis is aligned to the stimulus-encoding axis (right), the encoding is
corrupted by the slow drift and is unreliable because the slow drift displaces responses over time, independent of which stimulus is shown.

(B) Repeat-averaged V4 responses to 2,000 natural images (gray dots) along the first two stimulus-encoding axes (identified by applying PCA to the responses of
129 neurons for this session). Selected images were overlaid on top of their corresponding responses, and colored outlines denote similarimages that resulted in
similar responses.

(C) Linear combination of the activity of the 129 simultaneously recorded neurons from the same session as in (B). Same conventions as in Figure 2C. Each gray
dot corresponds to the residual spike counts (raw spike counts minus repeat-averaged responses) binned over each trial and projected onto the slow drift axis.
These projections are then Gaussian smoothed (black line) to identify the slow drift.

(D) The fraction of slow drift variance captured by each stimulus-encoding axis (orange) for the same session as in (B) and (C). A fraction closer to 1 indicates that
the stimulus-encoding and slow drift axis are more aligned. The top two stimulus-encoding axes (k = 1,2) correspond to the two axes in (B). The top 12 stimulus-
encoding axes captured 77 % of the slow drift variance, significantly higher than if the slow drift lay along a randomly chosen axis (gray, captured on average 9% of
the slow drift variance, p <0.002, proportion of 500 runs whose fraction was greater than that of the slow drift). The small fraction observed for the randomly
chosen axes stems from the fact that a random axis is unlikely to align with 12 other axes in a high-dimensional space (where the dimensionality is equal to the
number of neurons, 129 in this case).

(E) Summary of results (five sessions from two monkeys, 75 to 129 neurons for each session). The fraction of slow drift variance captured by the top 12 stimulus-
encoding axes (green dots) was significantly greater for each session than if the slow drift lay along a random axis (p < 0.002, proportion of 500 runs whose fraction
was greater than that of the slow drift, gray distribution corresponds to 500 runs for session with smallest fraction, distributions for other sessions were similar).
See also Figure S7.

by which the brain maintains stable and robust representation of  related to task conditions, reflecting a fluctuating internal state.

the visual environment. We discovered a neural signature of this internal state in the
form of a slow drift in neural activity that covaried over time
DISCUSSION with the slow fluctuations of behavior. We found that the slow

drift is a brain-wide signal present in both V4 and PFC. We further
While monkeys perform perceptual decisions, there are slow asked what role the slow drift plays in the decision-making pro-
changes in their behavior over the course of tens of minutes un-  cess and found that our data were consistent with a model in
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which the slow drift is removed from readouts of sensory evi-
dence but still influences the ultimate decision as an impulsivity
signal. Our work thus reveals that much of the apparent “noise”
in the responses of cortical neurons is in fact a neural signature of
a fluctuating cognitive factor, evident only when considering the
temporal sequence of trials within each session.
Many studies have reported large, ongoing fluctuations in neu-
ral activity that are independent of sensory stimulation (
; ; ). These
fluctuations evolve on different timescales, from hundreds of mil-
liseconds ( ; ; ;
) to seconds ( ; ;
) to minutes or longer (
; ). Studies have found that these fluctu-
ations correlate with experimental and behavioral variables,
including pupil d|ameter( ; ;

; ), eye movements (
), locomo-
tion ( ; ;

), wakefulness ( ;

; ), attention ( ;

; ), task difficulty (

), and learning ( ;

). In addition, these fluctuations may have a computational
purpose, such as changing the structure of noise correlations to
improve the fidelity of stimulus encoding (

, ; ; ), passing in-
formation from one brain area to another ( ,

; ), or integrating sensory evidence
with feedback from higher cortical areas (

). For example, On states of V4 activity, during which
the firing rates of many V4 neurons are elevated, have higher
behavioral performance than Off states ( ). It
could be the case that the slow drift and the slow fluctuations
in behavior reported here arise from long sequences of either
On states and Off states, but our analyses suggest that this is
not the case ( ). In addition, the slow drift does not
appear to be related to changes in synchronized/desynchron-
ized states in V4 activity, as these states were found not to drift
over trials or correlate with pupil diameter ( ).
Instead of improving the fidelity of local neural computations, it
appears the slow drift operates on a timescale detrimental for
processing stimuli that change rapidly.

It is unclear whether every fluctuation is useful to downstream
processing, and it stands to reason that the brain might have
developed mechanisms to deal with such internal noise. One
possible mechanism for noise removal is the pooling of neurons
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that encode redundant information by averaging their act|V|ty in
order to reduce trial-to-trial variability ( ;

). A second related mechanism is that a
downstream readout may be configured to ignore much of the
trial-to-trial variability of neural activity ( ;

; ). Such a mechanism
might restrict the noise to be along dimensions in population ac-
tivity space not read out by downstream regions. This mecha-
nism has been proposed to separate neural signals in the visual
cortex ( ; ;

; ; ), motor
system ( ; ;

; ; ), and oculo-
motor system ( ), as well as a way to perform
economic choice evaluation ( ). Our obser-

vation that the slow drift aligns well with stimulus-encoding di-
mensions suggests that this mechanism might not be able to
eliminate the “noisy” fluctuations of the slow drift. Our work sug-
gests yet a third type of noise removal, whereby downstream
areas remove noisy neural fluctuations from their readouts.
This removal could be carried out by a downstream area (e.g.,
PFC) accessing a separate copy of the slow drift and either sub-
tracting out this copy via inhibition ( ) or dividing
out this copy via normalization ( ).
This copy may be accessed through the influence of a neuromo-
dulator or by a downstream area keeping a running estimate of
the slow drift in working memory ( ). Our work
points to potential mechanisms to remove noise as an important
area of focus in future studies on the impact of neural variability
on perception and behavior.

Our findings raise an interesting conundrum: why does the
brain modulate visual cortical activity (i.e., the slow drift) and
then remove this signal downstream rather than have no modu-
lation of visual cortical activity at all? One possible explanation
for the existence of the slow drift and its internal removal is
that through evolution the underlying neural mechanisms gov-
erning perception evolved in a coordinated manner with the
mechanisms that govern the animal’s internal state in order to
achieve high fidelity of stimulus readout while allowing for
brain-wide releases of neuromodulators ( ). The
slow drift may also be closely connected to the global fluctua-
tions observed in sleep ( ;

). For example, the slow drift may represent a fluctuating
state between high and low levels of alertness, with correspond-
ing differences in neuromodulation.

The observed correlation between hit rate and false alarm rate
( D) implies that shifts in criterion occurred (i.e., shifts of
the decision threshold in signal detection theory). Previous
work has shown that activity in PFC ( ),
but not V4 ( ), is associated with shifts
in criterion. Here, we found that activity in V4 and PFC was
related to criterion (i.e., the slow drift covaried with both hit
rate and false alarm rate). Although on the surface these results
might appear to be contradictory, they are not. Instead, this dif-
ference can be attributed to the fact that Luo and Maunsell spe-
cifically measured a spatially selective criterion signal, defined
by their task structure, whereas we measured a global criterion
shift independent of task structure. In particular, our findings
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suggest that a shift in criterion is not necessarily due to a bias in
sensory evidence (i.e., a change in decision threshold) but
instead can be explained by separate decision processes unre-
lated to sensory evidence, such as impulsivity. That V4 may have
multiple signals that co-exist and influence behavior differently is
not unexpected. Indeed, in addition to local criterion and impul-
sivity, neural fluctuations in V4 relate to reward expectation (

), attentional effort ( ),
eye movements ( ;

; ; ), and
task difficulty ( ), suggesting that V4 is
part of a flexible, multifaceted circuit.

In this work, the slow drift covaried with hit rate, false alarm
rate, pupil diameter, and reaction time. Another important
behavioral variable is the rate of small eye movements, or micro-
saccades ( ; ).
Because microsaccades shift the visual stimulus relative to the
receptive field of a visual cortical neuron, microsaccades can
modulate the firing rates of visual cortical neurons (

). Furthermore, the responses of V4 neurons might directly
be influenced by the saccade plan through corollary discharge
( ; ;

). We ruled out these possible causes for the observed
slow drift in neural activity in control analyses, in which we still
observed the presence of the slow drift both in the absence of vi-
sual stimuli and when the eyes remained extraordinarily still

). This is not to say that the slow drift is independent of mi-
crosaccade rate. Indeed, as an impulsivity signal, slow drift may
lead to changes in the likelihood of making such small eye move-
ments (e.g., an animal may make more microsaccades during an
impulsive state than during a hesitant state).

What is the source of the slow drift? Given that the slow drift is
a brain-wide signal that covaries with pupil diameter ( B),
it is conceivable that the slow drift arises from the release of neu-
romodulators throughout the brain. One candidate neuromodu-
lator is norepinephrine, which is distributed by the locus coeru-
leus (LC) to many different brain areas on a similar timescale
as that of the slow drift ( ;

). It has also been proposed that
the LC modulates arousal, as the activity of LC neurons has
been linked to behavioral variables that reflect arousal, such as
pupil diameter ( ; ;

) and task performance (

; ). Another candidate neuromodulator is
acetylcholine, which is released by the basal forebrain and has
been shown to relate to pupil diameter and locomotion (

). Further experiments that include electro-
physiological recordings from relevant nuclei and experimental
manipulation of the levels of different neuromodulators are
needed to identify the source of the slow drift.

The decision pathway that transforms the sensory evidence
arriving at the retina to a behavioral output of oculomotor neu-
rons likely involves multiple stages of processing across the hier-
archy of the visual cortex. If the slow drift arises from the brain-
wide release of neuromodulator, then it seems likely the stages
of visual cortical processing most involved in discriminating the

¢ CellP’ress

features of visual stimuli (e.g., V1, V4, IT) are all influenced by
this neuromodulator. Given that IT reads out V4 activity (

), does IT also inherit the slow drift from its
readout of V4? If so, this could potentially double the size of
the slow drift at each stage of the hierarchy (i.e., receiving two
sources of slow drift: from its input from an upstream area and
from the brain-wide release of neuromodulator). This might
lead us to expect the size of the slow drift to be larger in down-
stream areas, consistent with findings that the strength of gain
modulations increases along the visual cortical pathway (

). Another possibility is that each stage of processing
performs a removal of the slow drift from its input (i.e., its readout
of upstream activity) via local operations including normalization
( ) or subtraction via inhibitory con-
nections ( ). If so, the size of the slow drift would
remain essentially constant across different stages of the hierar-
chy. Future work is needed to tease apart these possibilities.

As studies continue to investigate richer, more naturalistic
behavior and the underlying cognitive influences, there has
been an increasing use of terms such as arousal, motivation,
effort, urgency, impulsivity, etc. It is often unclear which label
to place on a particular observed change in behavior and/or neu-
ral activity ( ). Regardless of the label applied
to our data, the slow drift we identified represents a substantial
change in neural activity associated with profound fluctuations
in behavior during perceptual decisions. This signal was most
evident when considering how neurons change their activity
together, accounted for a large fraction of the apparent noise
in neural activity from trial to trial, and could be found only
when we considered the time ordering of trials within a session.
Our observation that slow drift is a widespread signal in cortex
means that recognizing and accounting for it may be critical in
any study that attempts to link cortical activity to behavior.
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National Primate Research Center
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MATLAB MathWorks RRID: SCR_001622; https://www.
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Custom spike-sorting software Kelly et al., 2007 https://github.com/smithlabvision/
spikesort

Other

96-electrode array Blackrock Microsystems https:/www./blackrockmicro.com/

neuroscience-research-products/neural-
data-acquisition-systems/

Eyelink 1000 eye tracker SR Research RRID: SCR_009602; https://www.sr-
research.com

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Matthew
A. Smith (mattsmith@cmu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Code and data are available by request to the Lead Contact (mattsmith@cmu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experimental details have been described previously (Snyder et al., 2018). Three adult male animals (Macaca mulatta) were used for
this study. Experimental procedures were approved by the Institutional Animal Care and Use Committee of the University of Pitts-
burgh and were performed in accordance with the United States National Research Council’s Guide for the Care and Use of Labo-
ratory Animals.

METHOD DETAILS

Electrophysiology
We recorded extracellular activity from populations of V4 and prefrontal cortex (PFC) in two awake, head-fixed monkeys. After each
animal was trained to perform an orientation-change detection task, we chronically implanted two 96-electrode arrays (Blackrock
Microsystems; 1 mm in electrode length, 400-um spacing in a 10x 10 grid). For monkey 1 (‘Pe’), we implanted in right V4 and right
PFC. For monkey 2 (‘Wa’), we implanted in left V4 and left PFC. V4 arrays were implanted on the prelunate gyrus medial to the inferior
occipital sulcus (Snyder et al., 2018), where receptive fields were approximately 7°, 5.25° eccentricity in monkeys 1, 2. PFC arrays
were implanted in area 8Ar on the prearcuate gyrus immediately anterior to the arcuate sulcus and medial to the principal sulcus (see
Figure 1in Khanna et al., 2019a). Electrodes of 1 mm in length would reach approximately the middle layers of V4, where the cortical
thickness is close to 2 mm, and the superficial layers of PFC, where the cortical thickness is close to 3 mm (Seidlitz et al., 2018). How-
ever, the precise layer of our recordings was not verified because it would have required sacrificing the animals for histology.
Voltage signals were spike sorted with semi-supervised sorting algorithms (Shoham et al., 2003) and visually inspected using
custom MATLAB software (Kelly et al., 2007), taking into account waveform shapes and inter-spike interval distributions (https://
github.com/smithlabvision/spikesort). Our data consisted of both well-isolated single units and multi-units, and we refer to each
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unit as a “neuron.” After applying rigorous spike waveform controls (see below), each session had 7-54 recorded V4 neurons (24-54
for monkey 1 and 7-35 for monkey 2) with a median of 32 V4 neurons (40, 20 neurons for monkeys 1, 2). For recordings in PFC (for
which the same spike waveform controls were applied), each session had 41-93 recorded PFC neurons (41-93 for monkey 1 and 41-
85 for monkey 2) with a median of 60 PFC neurons (60, 58 neurons for monkeys 1, 2).

Orientation-change detection task

We trained each animal to perform an orientation-change detection task in which each trial comprised a sequence of flashes, where
each flash had two Gabor patch stimuli (one presented in each visual hemifield). After fixating, the animal was rewarded with water or
juice for correctly detecting a change in stimulus by making a saccade to the changed stimulus (i.e., a “hit”). Any incorrect decisions,
such as breaking fixation, missing a changed stimulus, or making a saccade to an unchanged stimulus, resulted in no reward and a
1 s time out before the next trial began. The display was a gamma-corrected flat-screen cathode ray tube monitor positioned 36 cm
from the animal’s eyes with a resolution of 1024 x 768 pixels, refreshed at a frame rate of 100 Hz. The background of the display was
50% luminance (gray). The gaze of the animal was tracked using an infrared eye tracking system (EyeLink 1000; SR Research,
Ottawa, Ontario), and monitored online by experimental control software to ensure fixation within ~1° of the central fixation point
throughout each trial. Any trials in which the animal broke this fixation window without regard to the task (e.g., saccades that did
not end in one of the two stimulus locations) were removed from our analyses.

Stimulus details

Presented visual stimuli were achromatic, drifting Gabor patches scaled and positioned to roughly cover the aggregate receptive
fields (RFs) of the recorded V4 neurons. For monkey 1, Gabor stimuli had a diameter of visual angle 7.02°, and were centered
7.02° below and 7.02° to the left of fixation. For monkey 2, stimuli had a diameter of 4.70° and were centered 2.35° below and
4.70° to the right of fixation. Gabor stimuli were full-contrast with a spatial and temporal frequency that elicited robust responses
from the population overall (i.e., not optimized for any particular neuron). For monkey 1, frequencies were 0.85 cycles/° and 8 cy-
cles/s. For monkey 2, frequencies were 0.85 cycles/° and 7 cycles/s. During the task, we presented a Gabor stimulus at the estimated
RF location and simultaneously at the mirror-symmetric location in the opposite hemifield.

Trial details

The trial structure of the task was as follows. At the start of the trial, the animal fixated at a centrally-located yellow dot (0.6° in diam-
eter) on a blank, isoluminant screen. Each trial comprised a sequence of flashes, where each flash was a 400 ms presentation of two
Gabor stimuli, one in each visual hemifield, followed by a blank screen lasting for 300-500 ms (uniformly distributed). For each trial, the
orientation angle of one stimulus was randomly chosen to be 45° or 135°, and the orientation of the stimulus in the opposite hemifield
was orthogonal (either 135° or 45°, respectively). Subsequent flashes in the sequence each had a fixed probability (30%, 40% for
monkeys 1, 2) of the change in orientation of one of the stimuli (i.e., the “target”). Stimulus sequences continued until either the animal
made an eye movement (i.e., a “hit” or a “false alarm”) or the animal remained fixating for 400 ms after a target appeared (i.e., a
“miss”). The average sequence length (i.e., the number of flashes per trial, determined either by when a target was presented or
when the animal made a false alarm) was 2.9, 2.7 flashes for monkeys 1, 2. The longest sequence length was 20, 14 flashes for mon-
keys 1, 2. For most of our analyses, we consider the stimulus flashes that occur after the first stimulus flash and before the final stim-
ulus flash in a trial’s sequence (i.e., sequence positions 2, ..., M — 1 for a sequence with M flashes), which we designate as sample
stimuli.

Cueing blocks of trials to probe attention

To probe the effects of spatial attention, trials were blocked in an alternating fashion. Within a “cue-in” block, 90% of the stimulus
changes (“valid” trials, randomly chosen) occurred for the stimulus inside the RFs of the recorded V4 neurons, while the remaining
10% of stimulus changes (“invalid” trials) occurred in the opposite visual hemifield. For valid trials, the orientation change was
randomly chosen to be 1°, 3°, 6°, or 15° in either the clockwise or anti-clockwise direction. For invalid trials, we restricted the orien-
tation change to be only 3° randomly in either the clockwise or anti-clockwise direction. This restriction was necessary in order to
provide enough trials to reasonably estimate the animal’s rate of detecting stimulus changes for these infrequent trials. The other
type of block was “cue-out,” which had the same task structure and percentages as cue-in blocks except that for valid trials of
cue-out blocks, the stimulus change occurred outside the RFs of the recorded V4 neurons.

Each block lasted until the animal made 80 correct detections in that block, at which point the type of block (cue-in or cue-out)
switched. To alert the animal to the direction to attend in each block, each block began with a set of initial trials in which only the
valid stimulus was presented (with no stimulus in the opposite hemifield). These initial trials lasted until the animal correctly detected
5 orientation changes, after which pairs of stimuli were presented for the remainder of the block. These initial trials were excluded
from all analyses. Block type (left or right cue) alternated within a session, with the first block type counterbalanced across sessions.
The average number of trials within each block was 179, 224 trials for monkeys 1, 2. Monkey 1 completed 25 sessions of the exper-
iment; monkey 2 completed 24 sessions. After excluding sessions for equipment failure (for 2 sessions, the photodiode signal used to
align eye-tracking and neural data was unexpectedly lost) and sessions with 5 neurons or less (4 sessions), we analyzed 24 sessions
completed by monkey 1, and 19 sessions completed by monkey 2.

We reported how the animal’s sensitivity d’ increased for larger changes in grating orientation ( B; ). From the hit
rate and false alarm rate estimates (see below), we also computed sensitivity as d’ = ¢(hit rate) — ¢(false alarm rate), where ¢( -) is
the inverse cumulative distribution function of the Gaussian distribution, following previous studies ( ;
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). We note that our task is not a true two-alternative forced choice task, as for each stimulus flash the animal
could choose to make a saccade to one of two targets or remain fixating. However, the animal almost always made a saccade to the
cued location for false alarm or incorrect trials (greater than 99% of all false alarm and incorrect trials). Thus, we assume that the
choice of the animal followed statistics similar to those of a two-alternative forced choice task (a “go/no go” task in our case),
and we report sensitivity. Previous work has found that an increase in sensitivity (i.e., the animal performs better at detecting a stim-
ulus change) and also a decrease in criterion (i.e., the animal is more likely to make a saccade and thus increases its hit rate and false
alarm rate) can occur concurrently in a spatial attention task ( ). The behavior in our task is consistent with the
results of this previous work: Sensitivity increased ( B, 3°) and criterion decreased (mean Ac = — 0.46, —0.64 between valid
and invalid trials for monkeys 1, 2). This suggests that in our task the spatial cue resulted in both the ability to more finely detect a
stimulus change (i.e., an increase in sensitivity) as well as a shift in bias to be more likely to choose the cued location (i.e., a decrease
in criterion).

Quantifying the slow fluctuations in behavior

We analyzed two common metrics of the animal’s behavior: hit rate and false alarm rate. Hit rate was defined as the number of correct
saccades toward a target divided by the total number of times a target appeared. False alarm rate was defined as the number of
saccades toward a sample stimulus (i.e., not a target) divided by the total number of presented sample stimuli (excluding the initial
stimulus presentation, which was never a target).

The overall false alarm rates were high for our task (30.2%, 40.5% for monkeys 1, 2) relative to previous studies with similar tasks
(e.g.,<10% reportedin ; ). Interestingly, our observed rates were close to the likeli-
hood of a change for each flash (30%, 40% for monkeys 1, 2). Thus, one could think of the animal’s behavior as selecting targets with
a likelihood very close to the actual change likelihood. However, it is clear the animal was not guessing as it had excellent perceptual
performance ( B). There are multiple differences between our task and previous tasks that could explain the higher false alarm
rates for our task. For example, our task was challenging (mean 6.25° orientation changes), leaving the animal often uncertain as to
whether a stimulus change had occurred. In addition, because we did not use any catch trials, and 90% of cued trials were valid
within a block, the animal could be almost certain of the location when planning to make a saccade. For these reasons, the observed
false alarm rates for our task were higher than those reported in some previous studies that employed catch trials or a different dis-
tribution of difficulties to explicitly discourage the animal from making false alarms. We view the observed high false alarm rates to be
a feature of the task, allowing us to observe large changes in the false alarm rate over the course of the session.

We took running hit rate and false alarm rate estimates in 30 min windows, shifting the window in 6 min increments. The long dura-
tion of the time windows (30 min) was necessary to ensure reliable estimates of rate over a relatively small number of trials (~300 trials
per 30 min; some periods had many fewer trials due to the animal briefly resting). We computed correlations between hit rate and
false alarm rate over time within a session ( D), and compared them to correlations when we shuffled rates across sessions
(within-session time points remained unshuffled). We truncated longer sessions to have the same number of time points as the
shorter sessions (discarding any time points that occur after the shorter session ended).

To assess the magnitudes of the slow fluctuations in hit rate and false alarm rate, we compared their absolute changes relative to
the shifts in hit rate and false alarm rate due to spatial attention. To measure the behavioral effect size of attention, we computed the
hit rate separately for valid and invalid trials across all blocks for each session, and took the difference between the two. To measure
the behavioral effect size of the slow fluctuations, we computed the hit rate for each block, and took the maximum difference across
all pairs of blocks for that session. We measured differences in false alarm rate in the same manner. For this comparison, we only
considered trials for which a stimulus change of +3° occurred or would occur if the animal had not false alarmed. This was because
invalid trials had stimuli that only changed =+ 3°.

Next, we assessed the timescale of these slow fluctuations in behavior. We re-estimated hit rate and false alarm rate as above
except shifting windows in 1 min increments (instead of 6 min increments) for greater time resolution. Then, we performed Gaussian
smoothing on the running estimates with standard deviations (i.e., timescales) ranging from 1 min to 60 min in 1 min increments. For
each candidate timescale, we computed a cross-validated R? based on leaving out randomly-chosen time points for each fold (10-
folds in total) and then predicting the value of each held-out point by taking a Gaussian weighted average of its neighbors. We found
the timescale that maximizes this R2. We then increased the timescale until the R2 dropped to 75% of the peak R?. We define this as
the timescale of the slow fluctuations in behavior. We provide intuition for this approach in Figure S4. We confirmed that the estimated
timescales were similar for different durations of time windows (e.g., 20 min instead of 30 min).

Estimating slow drift in neural activity

To estimate the slow drift in V4 and PFC activity, we first computed residual spike counts by taking the spike counts of each repeat of
the same stimulus (binned in a 400 ms epoch starting 50 ms after stimulus onset) and subtracting the mean spike counts averaged
across repeats of that stimulus orientation (either 45° or 135°). We then took a running average of the residual spike counts in a 20 min
time window, where each window was offset in time from the previous window by 6 min. We chose a 20 min time window (as opposed
to the 30 min window chosen for the running estimates of behavioral variables) because here we could reliably estimate the slow drift
with a smaller window. Different values of the time window width and window offset yielded similar results. We applied principal
component analysis (PCA) to the running average of residual spike count vectors (20 to 40 vectors per session, where the length

e3 Neuron 708, 1-17.e1-e8, November 11, 2020



Please cite this article in press as: Cowley et al., Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex,
Neuron (2020), https://doi.org/10.1016/j.neuron.2020.07.021

Neuron ¢ CellP’ress

of each vector equaled the number of neurons), and defined the unit-length vector of weights (i.e., loadings) of the top principal
component (PC) as the slow drift axis. We found that on average the slow drift axis explained ~70% of the variance of the running
average of residual activity (69%, 77% for monkeys 1, 2). We then projected the residual spike counts (400 ms bins) onto this
axis. Next, we performed Gaussian smoothing (with a timescale of 9 min; different values yielded similar results), and defined the
Gaussian-smoothed projections as the slow drift. The specified time window width, window offset, and smoothing timescale
were chosen in a reasonable range and not optimized. We chose to use PCA instead of factor analysis (FA) ( ;

), because the length of the time windows (20 min) likely averaged away most Poisson-like response variability that would
otherwise be better described by FA. Using FA instead of PCA yielded results similar to those presented here.

Aligning the V4 slow drift across sessions
The sign of the slow drift was arbitrary because PCA identifies the orientation of the slow drift axis in the population activity space up
to a 180° rotation. Thus, without an alignment procedure, the sign of the correlation between the V4 slow drift and a behavioral var-
iable was arbitrary. To combine the correlations across sessions ( B), we needed a way to align the slow drift axis that was
consistent across sessions. One possibility was to flip the sign of the slow drift such that the sum of its axis weights was positive.
However, this procedure did not account for the possibility that different sessions may have different proportions of recorded neurons
with positive or negative weights (and hence making this flipping procedure sensitive to which neurons happened to be recorded in
that session). Instead, we adopted a different procedure that established an absolute reference across sessions based on the sample
stimuli of the experiment (i.e., grating orientation angles of 45° or 135°). The reasoning behind this alignment procedure was that the
slow drift was likely aligned to the stimulus representation of the population of neurons, and because our arrays were implanted in one
location and remained there, and the response properties of nearby neurons are similar and likely remain constant over time, this
alignment was similar across sessions. We aligned the orientation of the slow drift axis such that the projections of the mean spike
counts of the two sample stimuli along the slow drift axis always yielded a higher projection value for the 45° stimulus than that for the
135° stimulus. Importantly, this alignment was independent of any observed behavioral variables, and thus any correlation between
the slow drift and a behavioral variable over the session cannot be due to this alignment procedure. This alignment procedure was
used in B and .

There were a small number of sessions in which the population responses to the two orientation angles were not well differentiated.
In these cases, the alignment procedure did not produce a meaningful result. To identify and remove those sessions which would
have otherwise reduced our ability to observe the relationship between neural effects and behavior, we decoded the stimulus identity
(45° or 135°) from the population responses using a linear SVM in a cross-validated manner. When computing the correlations
between the slow drift and behavioral variables ( B), we included only sessions with a decoding accuracy greater
than 55% (20/24 sessions for monkey 1, 16/19 sessions for monkey 2). Note that we could have flipped the slow drift such that
the higher projection value was for the 135° stimulus instead of the 45° stimulus. This would result in a change of sign with the
same magnitudes for all correlations (i.e., in B, correlations for hit rate, false alarm rate, and pupil diameter would be negative,
and correlations for trial duration and reaction time would be positive).

Controlling for neural recording instabilities

The slow drift could have arisen from non-neural sources, such as neural recording instabilities. Such instabilities may cause the
spike waveforms to gradually change shape throughout a session, and thus affect our spike sorting procedure. For example, if
the spike waveform changes over time, spike sorting may be more likely to miss spikes at different times of the session, leading
to a slow drift. To ensure that the observed slow drift was not due to neural recording instabilities, we used the following two criteria
for the inclusion of a V4 or PFC neuron in our analyses.

First, we included only neurons whose spike waveform was stable throughout the session. To do so, we divided the session into 10
non-overlapping time bins of equal size, and computed the mean spike waveform in each bin as well as the mean spike waveform
across the entire session. Then, we computed the squared norm of the difference between each bin’s mean waveform and the overall
mean waveform. The percent waveform variance was computed as the largest squared norm across bins divided by the variance of
the overall mean waveform. Example mean spike waveforms and their corresponding percent waveform variances are shown for V4

and PFC neurons in . We removed neurons from our analyses whose percent waveform variance was above 10%. We
confirmed that the remaining neurons with the largest percent waveform variances were not more likely to contribute to the slow drift
than other neurons ( )

Second, we excluded any neurons for which there was an abrupt change in activity during the session. For each neuron, we divided
the session into 20 non-overlapping time bins of equal size, and computed the mean spike count within each bin. If the change in
activity between any two consecutive time bins was greater than 25% of the maximum activity of that neuron (i.e., the largest of
the mean spike count values across the 20 bins), the neuron was excluded from all analyses.

Measuring behavioral variables and relating them to the slow drift

To characterize the animal’s behavior, we measured hit rate and false alarm rate (described previously), as well as the following three
quantities: 1. Pupil diameter was the mean diameter of the pupil (arbitrary units) during each stimulus flash measured with the EyeLink
eye-tracking software (EyeLink 1000; SR Research, Ottawa, Ontario). 2. Trial duration was the total amount of time taken to complete
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a trial. Because the animal could choose to saccade to an unchanged stimulus flash (thus ending the trial), the animal’s false alarm
rate influenced trial duration. We computed trial duration by taking the difference between the stimulus onset of the initial flash and
saccade onset (or, when no saccade, the end time of the final flash). 3. Reaction time was computed only for correct trials (i.e., “hits”)
as the time between the onset of the changed stimulus in the final flash and saccade onset (the time at which the eyes left the fixation
window).

A running mean of each behavioral variable was taken (except pupil diameter, for which a running median was taken) with 30 min
overlapping windows in 6 min intervals. The long length of the time window was necessary to have reasonable estimates of hit rate
and false alarm rate. For fair comparison between behavioral variables and the slow drift, we also estimated the slow drift as a running
mean of residual spike counts along the slow drift axis with the same time window and intervals as those for the behavioral variable
estimates (i.e., Gaussian smoothing was not performed here).

We used the running estimates of the behavioral variables and slow drift for two comparisons. First, to assess whether the slow
drift and behavioral variables showed similar time courses during a session, we computed the correlation over time between the
slow drift and each behavioral variable (hit rate, false alarm rate, pupil diameter, trial duration, and reaction time). To compute the
“shuffled” distributions of correlations between the slow drift and behavioral variables, we randomly shuffled slow drifts across
sessions and re-computed correlations (200 runs), truncating the longer time series by discarding time points after the shorter
times series finished. Second, we assessed if sessions for which the slow drift strongly varied (i.e., had a large magnitude) cor-
responded to sessions for which the behavioral variables also strongly varied. We measured the magnitude of the slow drift as its
variance over time within a session. We normalized the slow drift by the number of neurons for each session to account for dif-
ferences in the number of neurons across sessions. The variances of pupil diameter across sessions were not comparable
because the eye-tracking software output arbitrary units of pupil diameter, and those units changed somewhat from session to
session as the tracker position was adjusted. Thus, although values of pupil diameter were comparable within a session, values
of pupil diameter were not comparable across sessions. We did not include the variance of pupil diameter in our results ( C;

).

Measuring whether neural responses vary more strongly with the slow drift versus attention

To understand how large were the neural activity changes related to the slow drift, we compared it to the size of activity changes
related to spatial attention. For spatial attention, we first defined the attention axis as the axis in populatlon activity space that
connects the mean response on cue-in trials to that on cue-out trials ( ;

). The mean is taken over repeats of the same sample stimulus for a given cue condition. To assess the size of atten-
tion’s effect on spike counts for a given session, we computed the mean response along the attention axis for each block of trials
( B, orange and green lines), and took the variance across blocks (02,,,). To measure the size of the slow drift, we computed
the mean slow drift value for each block ( A, black lines), and computed the variance of these mean values across the
blocks for each session (2, 4i)- We compared the relative sizes of the slow drift and attentional effects by taking the ratio
020w arift/ - A ratio greater than 1 indicates that the size of the slow drift was larger than the modulation in responses due to
attention. Ratios were computed separately for sample stimuli with 45° or 135° orientations, and results were aggregated across
orientations and sessions ( C). To control for the possibility that the attention axis was aligned to the slow drift axis (and
hence the slow drift could leak into the estimates of the attentional effect), we subtracted the estimate of the slow drift from re-
sponses before projecting them along the attentional axis. For most sessions, we found that the slow drift axis and the attention
axis were largely unaligned (i.e., this subtraction procedure often did not change the value of ¢2,,). Note that ¢2,, included the
variance between cue-in and cue-out blocks (i.e., between orange and green lines) as well as the variance within cue-in and
cue-out blocks separately (i.e., between orange lines and between green lines). This latter variance is necessary to ensure a
fair comparison with the size of the slow drift but implies that ¢2. is an overestimate. Thus, the true ratios are likely to be
even larger than reported in C.

attn

Comparing the slow drift between brain areas V4 and PFC

To compare the correlation between the V4 slow drift and PFC slow drift over time ( B), we computed the correlation
between the slow drift identified for each brain area separately. Then, we took the absolute value of the correlation because
its sign is arbitrary. We compared the measured correlations to those computed when the PFC slow drifts were simulated
as random smooth time courses. Each random time course was drawn from a Gaussian process (GP,

) using the squared exponential covariance function with a timescale similar to that of the slow drift (45 min, )-
Time points of the random time courses were sampled at the same sampling frequency as the slow drift (with a period of
0.6 min). Correlations between V4 slow drifts and these smooth random time courses were expected to be larger than 0 (

B, median |p| =0.68) because we took absolute correlations. We also considered larger GP timescales and found that the

correlations of the real data ( B, median |p| =0.96) were still significantly larger than those for simulated slow drifts with a
1 h timescale (median |p| =0.81, p<0.002, permutation test). We also computed the correlation between the magnitudes of V4
and PFC across sessions ( C). Magnitude was defined as the variance of the slow drift (either in V4 or PFC) within a

session. We normalized the slow drift by the number of neurons to account for differences in the number of neurons recorded
in each session.
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Models of perceptual decision-making

We propose two models of perceptual decision-making ( ; ). Both models take as input the stimulus Xjnpuie {0,1}
(where Xinput = 0 for a sample stimulus and Xinput = 1 for a changed stimulus) and feedforward perceptual noise enoise N (0,d2), and
output a decision variable de {0,1} (where d =0 represents keeping fixation and d =1 represents making a saccade). Similar to
the experiment, each simulated trial comprised a sequence of stimulus flashes where each flash had a 40% chance of changing
from Xinput = 0 t0 Xinput = 1. In @ correct trial, the model outputs decision d =0 when Xinput =0, and outputs d =1 when Xinput = 1.

Both models also have a slow drift variable s = (1 /2)sin(2=(1 /3500)(t +2200)), where t=1, ..., 2000 indicates the trial index. We
chose this sine function so that s slowly varies over 2,000 trials; other smooth functions are possible. We define v =Xinput + €noise +
which represents V4 activity and provides sensory evidence to decision d. In addition to the e,4ise NOise, we included another source
of noise that directly influenced d, whereby, for each flash, there was a probability s that d =1 or d =0 (both equally likely), indepen-
dent of any other variables in the model. This output noise reflects other internal processes in the brain from which we cannot record
that may affect an animal’s decision.

Sensory bias model

For the sensory bias model ( A), the decision is based directly on v, where d=1if v>0.5, else d =0. An increase in s places v
closer to the decision threshold of 0.5, thereby increasing the chance of a false alarm. Conversely, a decrease in s places v further
from the decision threshold of 0.5, thereby requiring a higher value of enoise to cause a false alarm.

Impulsivity model

For the impulsivity model ( G), the slow drift s directly influences decision d independent of the sensory evidence encoded in
V4 activity v. Mathematically, the slow drift determines an impulsivity signal m~Bernoulli(p(s)), where p(s) is the probability of
saccade given the slow drift s. We set p(s)=(1/2)(s +0.5), which increases linearly as s increases. The decision is d= 1if m=
1. The decision is also dependent on perceptual readout p =v — s, where the slow drift has been removed. Thus, d=1if p> 0.5
orm=1, else d =0. Note that the slow drift s does not bias the sensory evidence because s is removed from the V4 activity v. Instead,
the slow drift only influences the decision d by overriding the perceptual readout p via the impulsivity signal m.

Model simulations

We ran each model for 2,000 trials, and computed the hit and false alarm rates with running estimates over the 2,000 trials (500-trial
window length, where each window was offset by 50 trials). We matched the overall false alarm rate for each model (34%) to the
animals’ false alarm rates (~30%, ~40% for monkeys 1, 2) by choosing an appropriate value for the sensory noise parameter (o=
0.35) as well as for the output noise parameter (s = 70%).

Decoding V4 responses to predict the occurrence of false alarms

Because the outputs of both models were consistent with the finding that hit rate, false alarm rate, and the slow drift covary together
( B, 6C, and 6H), we sought an analysis in which we could test a prediction that differentiated the two models. In particular,
we focused on how false alarms (i.e., d = 1 when Xinput = 0) occurred for each model. Under the sensory bias model, slow drift s con-
tributes to decision d through the perceptual readout of V4 activity v. Thus, we would expect that for false alarms, d would be more
accurately predicted from v than from v — s (i.e., subtracting the slow drift contribution from v). On the other hand, for the impulsivity
model, slow drift s contributes to decision d through the impulsivity signal m but not the perceptual readout p (becausep= v — s, so
the contribution of s does not reach d). The slow drift s acts as perceptual noise in V4 activity v, obscuring the true perceptual signal p
(i.e., v=p +s, indicating v comprises the perceptual signal p and the “noisy” slow drift s). In this case, we would expect that for false
alarms (i.e., p > 0.5 when Xinput = 0), d would be more accurately predicted from v — s than from v, which differs from the sensory bias
model. We first performed a decoding analysis to verify that our expectations about these models were correct, and then performed a
similar analysis for the real data to test which model’s predictions were most consistent with the real data.

Verifying model predictions

We performed the following decoding analysis for each model ( E and 6J). First, we decoded whether or not a false alarm
occurred from v using a threshold decoder (linear SVM). Next, we decoded from v — s instead of v. Finally, we compared the two
decoding accuracies to determine if the decoding accuracy would be higher (as predicted by the sensory bias model) or lower
(as predicted by the impulsivity model) when decoding from v than from v — s. Note that we decoded flashes that were either false
alarms (i.e., d =1 when xinpyt = 0) or correctly-rejected flashes (i.e., d = 0 when xiqp.t = 0) that directly preceded the false alarm flashes.
These correctly-rejected flashes were chosen for two reasons. First, they ensured we had an equal number of false alarm and non-
false alarm flashes. Second, they forced the decoder to only consider within-trial fluctuations (i.e., enoise) but not across-trial fluctu-
ations (i.e., slow drift s). If we had instead considered across-trial fluctuations by including any correctly-rejected flash, we would not
be able to differentiate between the models, as decoding accuracy for both models would be higher for v than for v — s. This is
because s contains information about the overall probability of a false alarm during a session that could be used to predict the occur-
rence of a false alarm within a session (but not within a trial), and subtracting s would discard this information. We provide further
intuition about this point in Figure S6.

Decoding analysis for the real data

We performed a similar decoding analysis for the real data as we did for each model ( F). The animal’s decision was to
saccade (i.e., d =1) or not to saccade V4 population responses projected onto the slow drift axis (i.e., v is a 1-dimensional signal,
see below). For s, we used our estimates of the slow drift of V4 activity (i.e., the population responses projected onto the slow drift
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axis and then smoothed). We then decoded v and v — s in the same manner as described for the models, using a linear SVM decoder
with leave-one-out cross-validation.

For v, we processed V4 activity in the following way. Because decoding accuracy of neural activity predicting false alarms have
been reported to be only slightly above chance (e.g., choice probability was found to be ~54%, as reported in

) and we were considering a small time window of activity (i.e., 175 ms), we leveraged the temporal information of the V4
responses. We computed spike count vectors of the V4 activity in non-overlapping 1 ms time bins (starting at stimulus onset and
ending at 175 ms after stimulus onset), and performed Gaussian smoothing with a 10 ms standard deviation for each neuron.
Note that compared to estimating the slow drift, the smoothing here is a different order of magnitude (10 ms versus 9 min) and
has a different purpose. The reason for smoothing here is to account for small jitters of spike times between flashes that may occur
due to the 1 ms bin widths. Trials for which a saccade occurred within 175 ms after stimulus onset were removed (less than 15% of all
false alarm trials). The spike count vectors were then projected onto the slow drift axis. Thus, v corresponded to a 175-dimensional
vector of projected spike counts (where 175 is the number of 1 ms time bins). For the slow drift s, we used the same procedure as
described above, except that we binned activity in 175 ms time bins (instead of 400 ms time bins) and included responses to the final
flashes. To obtain v — s, we formed a 175-dimensional vector where each element was the value of s.

We considered the same type of flashes (i.e., false alarms and their preceding correctly-rejected flashes) as those for the models.
False alarm trials were limited to cue-in trials only, and each trial was required to have 3 or more stimulus flashes in total. To gain more
statistical power, we doubled the number of data points by aggregating false alarm trials across the two orientations of stimuli (45°
and 135°) in the following way. For stimulus flashes with a given grating orientation, we subtracted out the mean spike count response
(the PSTH on a millisecond timescale) to the preceding correctly-rejected flash from the spike count responses to both the false alarm
and correctly-rejected flashes. This ensured that the overall mean response to the correctly-rejected flash was the same for both
orientations. We then analyzed all stimulus flashes together regardless of orientation.

The fact that we can weakly predict false alarms from visual cortical activity ( F, ~52%, significantly greater than the chance
level of 50%, p < 0.05 for both monkeys, one sample t test) is consistent with previous work that repor‘ted choice probabilities (~55%)
for neurons in MT, V1, V2, and V4 ( ; ; ). However, the

observed decoding accuracies are not directly comparable to previously-reported choice probabilities because most previous work
computes choice probabilities for a single neuron (here, we use a population of neurons), considers neural activity taken over large
time windows (e.g., 1 s compared to 175 ms used here), and uses two-alternative forced choice tasks rather than our sequential task
that required long periods of fixation. In an additional analysis, we confirmed that the resulting decoding accuracies were not a by-
product of visual response adaptation due to the fact that the final flash always followed the second-to-final flash ( ).

Determining whether the slow drift has the potential to corrupt stimulus encoding

We sought to assess whether the slow drift could corrupt stimulus encoding. To do so, we measured to what extent the slow drift lies
within the “stimulus-encoding subspace,” defined as the subspace spanned by the mean responses to many natural images. The
rationale is that, if the slow drift lies within the stimulus-encoding subspace, then the corrupted neural response to an image (i.e.,
corrupted by the slow drift) could be interpreted downstream as a different image.

To identify the stimulus-encoding subspace, we presented a large collection of natural images, which were selected using an
adaptive procedure. We opted for an adaptive stimulus selection procedure because we were limited in how many images we could
show per session (i.e., ~2,000 images), and a small set of randomly-chosen images cannot fully represent the space of all possible
natural images ( )- In a set of closed-loop experiments separate from those of the orientation-change detection task,
we employed an adaptive stimulus selection algorithm, called Adept, to choose a set of 2,000 natural images (out of a candidate set
of 20,000) that elicited large and diverse responses ( ). We recorded V4 activity in an adult, male rhesus macaque
(Macaca mulatta, monkey 3, ‘Wi’) using a Utah electrode array. Surgical and electrophysiology procedures were the same as for the
other two monkeys, described above. For another monkey (monkey 1), we did not use adaptive stimulus selection but rather
randomly selected 550 images to show.

After choosing the collection of stimuli to show for one recording session, for subsequent sessions we presented the images in
random order while the animals performed an active fixation task. The description of this active fixation task is as follows. After
the animal fixated for 150 ms on a yellow dot (same display parameters as those for the orientation-change detection task) to initiate
a trial, the animal remained fixating while a stimulus clip of images was presented in the RFs of the recorded V4 neurons. After the
stimulus clip finished, the animal was required to maintain fixation for 700 ms, after which the fixation dot vanished and a target dot
appeared ~10 visual degrees from the location of the fixation dot. The animal received a water reward for correctly making a saccade
to the target dot (within a target window of visual angle 5°). For monkey 3, each stimulus clip consisted of 10 natural images randomly
selected from the 2,000 Adept-chosen natural images (no image could repeat within the same stimulus clip), and each image was
shown for 100 ms. For monkey 1, each stimulus clip comprised three images (of the 550), and each image was presented for
200 ms, interleaved with 200 ms of isoluminant blank screen.

Identifying the stimulus-encoding axes

We identified the stimulus-encoding axes using the following procedure. We computed spike counts in 100 ms bins (for monkey 3) or
200 ms bins (for monkey 1), starting 50 ms after stimulus onset to account for the time it takes sensory information to reach V4. We
did not consider responses to an image that had 5 or fewer repeats. We defined the stimulus-encoding axes as the dimensions in
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population activity space in which the repeat-averaged responses have the greatest variance. We identified these axes using PCA,
taking the weight vectors of the top K principal components as the top K stimulus-encoding axes. For our work, we chose K= 12
because this number of stimulus-encoding axes captured a large fraction of stimulus response variance (i.e., variance of repeat-aver-
aged responses taken across images) for each session (62%, 60%, 59% for days 1, 2, 3 of monkey 3, and 70%, 72% for days 1, 2 of
monkey 1).

Because repeats were not necessarily equally-spaced throughout a session, we controlled for the possibility that the slow drift
“leaked” into the estimation of the stimulus-encoding axes. To do this, we first applied PCA to the repeat-averaged responses
and considered all N PCs, where N is the number of neurons. For each PC, we subtracted any “slow drift” from the raw responses
along that PC (where the slow drift for each PC was estimated from projected responses using Gaussian smoothing with a 9 min
standard deviation). Finally, we re-computed the repeat-averaged responses for which the slow drift was subtracted, and re-applied
PCA to these responses. Results were almost identical when we did not perform this removal procedure, suggesting that little to no
slow drift had leaked into the repeat-averaged responses (i.e., there were enough repeats to average out the presence of the
slow drift).

Comparing the slow drift axis to the stimulus-encoding axes

We first estimated the slow drift of the responses to natural images. We estimated the slow drift axis using the same procedure as that
for the orientation-change experiment. Note this slow drift was not necessarily the same as that removed from each stimulus-encod-
ing axis of the repeat-averaged responses in the previous section, as this slow drift could be along an axis orthogonal to the stimulus-
encoding axes. Finally, we measured the extent to which the slow drift axis was aligned to the stimulus-encoding axes by computing
the fraction of slow drift variance captured by each stimulus-encoding axis. The slow drift variance was the variance of the slow drift
over time within a session. A fraction close to 1 indicates that the slow drift axis largely overlaps with the stimulus-encoding axis. A
fraction close to 0 indicates that the slow drift axis was close to orthogonal to the stimulus-encoding axis. For reference, we rotated
the slow drift axis to a random orientation in population activity space (i.e., “random axis”), and re-computed this fraction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, all statistical hypothesis testing was conducted with permutation tests, which do not assume any para-
metric form of the underlying probability distributions of the sample. All tests were two-sided and non-paired, unless otherwise noted.
We computed p-values with 500 runs, where p <0.002 indicates the highest significance achievable given the number of runs per-
formed. Permutation tests were performed either for differences in means or differences in medians (the latter used when outliers
existed), as noted by context in the text. All correlations were performed with Pearson’s correlation p, unless otherwise stated.
We computed the significance of p,,, Of the actual data with a ‘shuffle test’ by running 500 shuffles of the samples and re-computing
,d;huﬁle for the jth shuffle. The p-value was measured as the proportion of shuffles with ;/;hume greater than or equal to p,q,, for allj, for a
one-sided hypothesis test. Error bars in figures represent either + 1 SEM when estimating means or bootstrapped 90% confidence
intervals when estimating medians, as stated. Error bars are for visualization purposes only, and not used for hypothesis testing. No
statistical methods were used to predetermine sample sizes, but our sample sizes are similar to those of previous related publications

(e-g. ; ; )-
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