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measuring how neurons covary.
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SUMMARY

Two commonly used approaches to study interactions among neurons are spike count correlation, which de-
scribes pairs of neurons, and dimensionality reduction, applied to a population of neurons. Although both ap-
proaches have been used to study trial-to-trial neuronal variability correlated among neurons, they are often
used in isolation and have not been directly related. We first established concrete mathematical and empirical
relationships between pairwise correlation and metrics of population-wide covariability based on dimension-
ality reduction. Applying these insights to macaque V4 population recordings, we found that the previously
reported decrease in mean pairwise correlation associated with attention stemmed from three distinct
changes in population-wide covariability. Overall, our work builds the intuition and formalism to bridge be-
tween pairwise correlation and population-wide covariability and presents a cautionary tale about the infer-
ences one can make about population activity by using a single statistic, whether it be mean pairwise corre-

lation or dimensionality.

INTRODUCTION

A neuron can respond differently to repeated presentations of the
same stimulus. These variable responses are often correlated
across pairs of neurons from trial to trial, measured using spike
count correlations (rsc, also referred to as noise correlation; Cohen
and Kohn, 2011). Studies have reported changes in spike count
correlation across various experimental manipulations and cogni-
tive phenomena, including attention (Cohen and Maunsell, 2009;
Mitchell et al., 2009; Herrero et al., 2013; Gregoriou et al., 2014;
Ruff and Cohen, 2014a; Snyder et al., 2018), learning (Gu et al.,
2011; Jeanne et al., 2013; Ni et al., 2018), task difficulty (Ruff
and Cohen, 2014b), locomotion (Erisken et al., 2014), stimulus
drive (Maynard et al., 1999; Kohn and Smith, 2005; Smith and
Kohn, 2008; Miura et al., 2012; Ponce-Alvarez et al., 2013; Ruff
and Cohen, 2016b), decision making (Nienborg et al., 2012),
task context (Bondy et al., 2018), anesthesia (Ecker et al., 2010),
adaptation (Adibi et al., 2013), and more (Figure 1A). Spike count
correlation also depends on timescales of activity (Bair et al.,

2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Mitchell
et al., 2009; Runyan et al., 2017), neuromodulation (Herrero
et al., 2013; Minces et al., 2017), and properties of the neurons
themselves, including their physical distance from one another
(Lee et al., 1998; Smith and Kohn, 2008; Smith and Sommer,
2013; Ecker et al.,, 2014; Solomon et al.,, 2015; Rosenbaum
et al., 2017), tuning preferences (Lee et al.,, 1998; Romo et al,,
2003; Kohn and Smith, 2005; Huang and Lisberger, 2009), and
neuron type (Qi and Constantinidis, 2012; Snyder et al., 2016).
Theoretical work has posited that changes in correlations affect
neuronal computations and sensory information coding (Zohary
et al., 1994; Shadlen and Newsome, 1998; Abbott and Dayan,
1999; Averbeck et al., 2006; Moreno-Bote et al., 2014; Sharpee
and Berkowitz, 2019; Rumyantsev et al., 2020; Bartolo et al,,
2020). Given such widespread empirical observations and theo-
retical insight, spike count correlation has been and remains
instrumental in our current understanding of how neurons interact.

Most studies compute the average spike count correlation
over pairs of recorded neurons for different experimental
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conditions, periods of time, neuron types, etc. A decrease in this
mean correlation is commonly attributed to a reduction in the
size (or gain) of shared co-fluctuations (

; ), e.9., a decrease in the
strength of “common shared input” that drives each neuron in
the population. However, other distinct changes at the level of
the entire neuronal population can manifest as the same
decrease in mean pairwise correlation ( B). For example,
a common input that drives the activity of all neurons up and
down together could be altered to drive some neurons up and
other neurons down. Alternatively, that first common input signal
might remain the same, but a second input signal could be intro-
duced that drives some neurons up and others down. It is difficult
to differentiate these distinct possibilities using a single summary
statistic, such as mean spike count correlation.

Distinguishing among these changes to the population-wide
covariability might be possible by considering additional statis-
tics that measure how the entire population of neurons co-fluc-
tuates together. In particular, one may use dimensionality reduc-
tion to compute statistics that characterize multiple distinct
features of population-wide covariability (

). Dimensionality reduction has been used to investigate de-
cision making ( ; ;
; ), motor control (
; ), learning ( ;
; ), sensory coding (
; ), spatial attention (

), interactions between brain areas (

; ), and network models
( ; ;

), among others. As with mean spike count correla-
tion, the statistics computed from dimensionality reduction can
also change with attention ( ;

), stimulus drive ( ;

; ), motor output (

), learning ( ), and anesthesia (

). However, unlike mean spike count correlation
(henceforth referred to as a “pairwise metric”), which averages
across pairs of neurons, the statistics computed from dimen-
sionality reduction (henceforth referred to as “population met-
rics”) consider the structure of population-wide covariability
( C). Although dimensionality reduction is often applied
to trial-averaged activity (removing trial-to-trial variability), here,
we focus on using dimensionality reduction to study trial-to-trial
variability (around the trial-averaged mean). An example of a
commonly reported population metric is dimensionality (

). Dimensionality is used to assess whether the number of
population co-fluctuation patterns (possibly reflecting the num-
ber of common inputs) changes across experimental conditions
( B, condition 1 versus condition 2, right panel). Thus,
population metrics could help to distinguish among the distinct
ways in which population-wide covariability can change, espe-
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cially those that lead to the same change in mean spike count
correlation ( B).

Both pairwise and population metrics aim to characterize how
neurons covary, and both can be computed from the same spike
count covariance matrix ( C). Still, studies rarely report
both, and the relationship between the two is not known. In
this study, we establish the relationship between pairwise met-
rics and population metrics both analytically and empirically us-
ing simulations. We find that changes in mean spike count corre-
lation could correspond to several distinct changes in population
metrics, including (1) the strength of shared variability (e.g., the
strength of a common input), (2) whether neurons co-fluctuate
together or in opposition (e.g., how similarly a common input
drives each neuron in the population), or (3) the dimensionality
(e.g., the number of common inputs). Furthermore, we show
that a rarely reported statistic—the standard deviation of spike
count correlation—provides complementary information to the
mean spike count correlation about how a population of neurons
co-fluctuates. Applying this understanding to recordings in area
V4 of macaque visual cortex, we found that the previously re-
ported decrease in mean spike count correlation with attention
stems from multiple distinct changes in population-wide covari-
ability. Overall, our results demonstrate that common ground ex-
ists between the literatures of spike count correlation and dimen-
sionality reduction and provides a cautionary tale for attempting
to draw conclusions about how a population of neurons covaries
using one, or a small number of, statistics. Our framework builds
the intuition and formalism to navigate between the two ap-
proaches, allowing for a more interpretable and richer descrip-
tion of the interactions among neurons.

RESULTS

Defining pairwise and population metrics
We first define the metrics that we will use to summarize (1) the
distribution of spike count correlations (i.e., pairwise metrics)
and (2) dimensionality reduction of a population covariance ma-
trix (i.e., population metrics). For pairwise metrics, we consider
the mean and standard deviation (SD) of rs; across all pairs of
neurons, which summarize the rg distribution ( C, bottom
left panel). For population metrics, which are derived from factor
analysis (FA), we consider loading similarity, percent shared vari-
ance (abbreviated to %sv), and dimensionality (described below
and in more detail in ). These metrics each
describe some aspect of population-wide covariability and
thus represent natural, multivariate extensions of rgc.
Toillustrate these three population metrics, consider the activity
of a population of neurons over time ( A, spike rasters). If
the activity of all neurons goes up and down together, we would
find the pairwise spike count correlations between all pairs of neu-
rons to be positive. A more succinct way to characterize this pop-
ulation activity is to identify a single time-varying latent co-fluctu-
ation that is shared by all neurons ( A, blue line). The way in
which neurons are coupled to this latent co-fluctuation is indicated
by a loading for each neuron. In this example, because the latent
co-fluctuation describes each neuron’s activity going up and
down together, the loadings have the same sign ( A, green
rectangles). We refer to the latent co-fluctuation’s corresponding
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Figure 1. How do spike count correlations
between pairs of neurons (i.e., pairwise met-
rics) relate to how the entire population co-
fluctuates (i.e., population metrics)?

(A) Four example experiments in which mean spike
count correlation (rsc mean) has been observed to
change between experimental conditions. These
include spatial attention (macaque visual area V4;

), perceptual learning (macaque
dorsal medial superior temporal area;
), locomotion (mouse visual area V1;
), and stimulus drive (rat anterior piriform
cortex; ).
(B) The same change in rsc mean (from 0.2 to 0.1
between conditions 1 and 2) could correspond to
multiple distinct changes in the activity of the
population of neurons. Condition 2, left: a decrease
in rec mean could correspond to some neurons
becoming anti-correlated with others in the popu-
lation; in this case, some neurons that were previ-
ously positively correlated are now anti-correlated
with the rest of the population (bottom rows of
raster plot). Condition 2, middle: a decrease in rg
mean could correspond to a decrease in how
strongly neurons co-fluctuate together; in this case,
neurons covary as in condition 1, but each neuron
does not co-fluctuate with other neurons as
strongly. Condition 2, right: a decrease in rsc mean
could correspond to the introduction of another
“mode” of covariation (i.e., an increase in the
dimensionality of population activity); in this case,
neurons in the top half of the raster covary as in
condition 1, but neurons in the bottom half of the
raster covary in a manner independent from those
in the top half.
(C) Pairwise (rsc) and population (dimensionality
reduction) metrics both arise from the same spike
count covariance matrix, but the precise relation-
ship between these two sets of metrics remains
unknown. Top row: each element of the spike count
covariance matrix corresponds to the covariance
across responses to repeated presentations of the
same stimulus for two simultaneously recorded
neurons (e.g., neurons i and j, left inset). Bottom
row: pairwise metrics (left) typically summarize the
distribution of spike count correlation with the
mean (rsc mean); in this work, we propose addi-
tionally reporting the standard deviation (rsc SD).
Population metrics (right) of the spike count
covariance matrix are identified by applying
dimensionality reduction to the population activity
(e.g., gray plane depicts a low-dimensional space
describing how neurons covary; see also
). By understanding the relationship between
pairwise and population metrics, we can better
interpret how changes in pairwise statistics (e.g.,
experiments in A) correspond to changes in pop-
ulation metrics and vice versa.

set of loadings as a co-fluctuation pattern. A co-fluctuation
pattern can be represented as a direction in the population activity
space, where each coordinate axis corresponds to the activity of
one neuron ( A, right panel).

The first population metric is loading similarity, a value be-
tween 0 and 1 that describes to what extent the loadings
differ across neurons within a co-fluctuation pattern. A
loading similarity close to 1 indicates that the loadings
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Figure 2. Intuition about population metrics: loading similarity, percent shared variance (%sv), and dimensionality

(A) Population activity (where each row is the spike train for one neuron over time; simulated data) is characterized by a latent co-fluctuation (blue) and a co-
fluctuation pattern made up of loadings (green rectangles). Each neuron’s time-varying firing rate is a product of the latent co-fluctuation and that neuron’s loading
(which may either be positive or negative). One may also view population activity through the lens of the population activity space (right plot), where each axis
represents the activity of one neuron (n1,n», ng represent neuron 1, neuron 2, and neuron 3). In this space, a co-fluctuation pattern corresponds to an axis whose

orientation depends on the pattern’s loadings (right plot, blue line).

(B) Population activity with a lower loading similarity than in (A). The loadings have both positive and negative values (i.e., dissimilar loadings), leading to neurons
that are anti-correlated (compare top rows with bottom rows of population activity). Changing the loading similarity will rotate a pattern’s axis in the population

activity space (bottom plot, “rotate axis”).

(C) Population activity with a lower %sv than in (A). The latent co-fluctuation shows smaller amplitude changes over time than in (A), which leads to a lower %sv.
Changing %sv leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in A).

(D) Population activity with a dimensionality of 2, compared to a dimensionality of 1 in (A). Adding a new dimension leads to a new latent co-fluctuation (orange
line) and a new co-fluctuation pattern (“added new pattern”). Each neuron’s time-varying firing rate is expressed as a weighted combination of the latent co-
fluctuations, where the weights correspond to the neuron’s loadings in each co-fluctuation pattern. Here, each dimension corresponds to a distinct subset of
neurons (top rows versus bottom rows); in general, this need not be the case, as each neuron typically has non-zero weights for both dimensions. In the population

activity space (bottom plot), the activity varies along the two axes (i.e., a 2D plane) defined by the two co-fluctuation patterns. See also

. The spike trains

shown in this figure were created for the sole purpose of illustrating the population metrics in this figure and were not used in subsequent analyses. The spike
trains were generated by first creating latent co-fluctuations using Gaussian processes. These latent co-fluctuations were then linearly combined using loading
weights (drawn from a standard normal distribution), yielding a time-varying firing rate for each neuron. Spike trains were generated according to an inhomo-
geneous Bernoulli process based on the time-varying firing rates. The intended duration of each spike train plotted is around 10 s.

have the same sign and are of similar magnitude ( A,
green rectangles). A loading similarity close to O indicates
that many of the loadings differ, either in magnitude, sign,
or both ( B, green and pink squares). In this case,
some neurons may have positive loadings and co-fluctuate
in the same direction as the latent co-fluctuation ( B,
top rows of neurons show high firing rates when blue line is
high and low firing rates when blue line is low), whereas
other neurons may have negative loadings and co-fluctuate
in the opposite direction as the latent co-fluctuation (

B, bottom rows of neurons show low firing rates
when blue line is high and high firing rates when blue line
is low). One can view changing the loading similarity as
rotating the direction of a co-fluctuation pattern in popula-
tion activity space ( B, bottom plot).

4 Neuron 109, 1-15, September 1, 2021

The second population metric is percent shared variance or
%sv, which measures the percentage of spike count variance
explained by the latent co-fluctuation. This percentage is
computed per neuron and then averaged across all neurons in
the population ( ). A %sv close to 100% in-
dicates that the activity of each neuron is tightly coupled to the
latent co-fluctuation, with a small portion of variance that is inde-
pendent to each neuron ( A). A %sv close to 0% indicates
that neurons fluctuate almost independently of each other and
their activity weakly adheres to the time course of the latent
co-fluctuation ( C). By changing %sv, one does not
change the co-fluctuation pattern in population activity space
( , blue lines are the same in panels A and C) but rather
the strength of the latent co-fluctuation ( C, blue line
has smaller amplitude than in panel A).
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—D) The simulation procedure to assess how systematic changes in population metrics lead to changes in pairwise metrics.
A) We first systematically varied one of the population metrics while keeping the others fixed. For example, we can increase the loading similarity from a low value
left, blue) to a high value (right, green), while keeping %sv and dimensionality fixed.
B) Then, we constructed covariance matrices corresponding to each value of the population metric in (A) (see STAR Methods), without generating synthetic data.
C) For each covariance matrix from (B), we directly computed the correlations (i.e., the rg; distributions).
D) We computed rsc mean and rs; SD from the ry distributions in (C) and then assessed how the change in a given population metric from (A) changed pairwise

metrics. In this case, the increase in loading similarity increased rsc mean and decreased rs; SD (blue dot to green dot).

(E) Varying loading similarity with a fixed %sv of 50% and dimensionality of 1. Each dot corresponds to the ryc mean and r; SD of one simulated covariance matrix
with specified population metrics (dots are close together and appear to form a continuum). The color of each dot corresponds to the loading similarity (see STAR
Methods), where a value of 1 indicates that all loading weights have the same value.

(F) Varying %sv. The same setting as in (E), except we consider two different values of percent shared variance (50% and 30%).

(G) Varying dimensionality (i.e., number of co-fluctuation patterns) while sweeping loading similarity between 0 and 1 and keeping %sv fixed at 50%. In this
simulation, the relative strengths of each dimension uniform across dimensions (i.e., flat eigenspectra; see STAR Methods).

See also Figure S7.

The third population metric is dimensionality. We define
dimensionality as the number of co-fluctuation patterns (or di-
mensions) needed to explain the shared variability among neu-
rons (see STAR Methods). The variable activity of neurons may
depend on multiple common inputs, e.g., top-down signals like
attention and arousal (Rabinowitz et al., 2015; Cowley et al.,
2020) or spontaneous and uninstructed behaviors (Stringer
etal., 2019b; Musall et al., 2019). Furthermore, these common in-
puts may differ in how they modulate neurons. This may result in
two or more dimensions of the population activity (Figure 2D,
blue and orange latent co-fluctuations). For illustrative purposes,
each dimension might correspond to a single group of tightly
coupled neurons (Figure 2D, neurons in top rows have non-
zero loadings for pattern 1, whereas neurons in bottom rows
have non-zero loadings for pattern 2). However, in general,
each neuron can have non-zero loadings for multiple patterns.
In population activity space, adding a new dimension adds a
new axis along which neurons covary (Figure 2D, orange line).
We use the term “dimension” to refer either to a latent co-fluctu-
ation or its corresponding co-fluctuation pattern, depending on
context.

Varying population metrics to assess changes in
pairwise metrics

Given that both pairwise and population metrics are computed
from the same spike count covariance matrix (Figure 1C), a
connection should exist between the two. We establish this
connection by deriving mathematical relationships and carrying
out simulations. In simulations, we assessed how systematically
changing one of the population metrics (e.g., increasing loading
similarity; Figure 3A) changes the spike count covariance matrix
(Figure 3B) and the corresponding rs; distribution (Figure 3C),
which we summarized using its mean and standard deviation (Fig-
ure 3D). The covariance matrix was parameterized in a way that al-
lowed us to create covariance matrices with specified population
metrics (see STAR Methods). Thus, our simulation procedure
does not simulate neuronal activity but rather creates covariance
matrices that are consistent with the specified population metrics.
Loading similarity has opposing effects on rsc mean

and SD

We first asked how the loading similarity of a single co-fluctuation
pattern (i.e., one dimension) affected rsc mean and SD. Intuitively, a
high loading similarity indicates that the activity of all neurons

Neuron 709, 1-15, September 1, 2021 5
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increases and decreases together ( A), resulting in values of
rsc that are all positive and similar in value. Indeed, in simulations,
we found that high loading similarity corresponded to large rec
mean and rg; SD close to 0 ( E, green dots near horizontal
axis). On the other hand, a low loading similarity indicates that,
when some neurons increase their activity, others decrease their
activity ( B), resulting in some positive rs; values (for pairs
that change their activity in the same direction) and some negative
rsc values (for pairs that change their activity in opposition). In sim-
ulations, a low loading similarity indeed corresponded to an rg
mean close to 0 and a large rg; SD ( E, blue dots near ver-
tical axis). By varying the loading similarity, we surprisingly
observed an arc-like trend in the rsc mean versus rc SD plot (

E). In , we derive the analytical relationship be-
tween loading similarity and rsc. In , we show mathe-
matically why the rsc mean versus rsc SD relationship follows a
circular arc.

Decreasing %sv reduces rsc mean and SD

We next asked how %sv, which measures the percentage of each
neuron’s variance that is shared with other neurons in the popula-
tion, is related to rsc mean and SD. Intuitively, one might expect %
sv and rsc mean to be closely related because rg; measures the
degree to which the activity of two neurons is shared (

). We investigated this in simulations and found
that how closely %sv and rs; mean were related depended on
the loading similarity. When loading similarity was high ( F,
green dots), there was a direct relationship between %sv and r
mean (specifically, %sv equals rsc mean). However, when loading
similarity was low ( F, blue dots), the relationship between
%sv and rsc mean was less direct. Namely, rsc mean remained
close to zero, regardless of %sv. This illustrates that rsc mean
and %sv are not the same. It is possible for a population of neu-
rons with high %sv (e.g., F, blue dots in outer arc) to
have smaller r¢c mean than a population with lower %sv (e.g.,

F, green dots in inner arc).

These relationships that we have shown through simulation
can be captured mathematically. First, if we have knowledge
of the loading weights in the co-fluctuation pattern, the rs; be-
tween a pair of neurons can be expressed in terms of the %sv
and loading values of the two neurons ( )

Py = \/Bidsign(wiw;), (Equation 1)
where pj is the rsc between neurons i andj, ¢; and ¢; are the %sv
of each neuron (expressed as a proportion per neuron, in
contrast to %sv in F, which shows the average %sv
across all neurons), and w; and w; are the loadings of the neurons
in the co-fluctuation pattern. The rsc mean is the average of p;
values across all neuron pairs. From , we observe
that, when loading similarity is high (i.e., most loading weights
have the same sign), %sv and rsc mean are directly related
(i-e., pj = /#4;). However, when loading similarity is low (i.e.,
some loading weights are positive and others are negative), rsc
mean is small, regardless of %sv, because some pairs have
sign(w;w;) = + 1 and others have sign(w;w;) = — 1.

Second, if we have information about the rsc SD (instead of
loading weights), we can establish the following relationship be-
tween %sv, rsc mean, and rsc SD ( ):
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%sv = \/(rSC mean)® + (re. 5.d.)%.

In other words, in the rsc mean versus rsc SD plot, %sv is re-
flected in the distance of a point from the origin ( F).
This relationship holds, regardless of the loading similarity. The
intuition is that the %sv corresponds to the magnitude of rgc
values (i.e., the |p;| from ).

These findings highlight the pitfalls of considering a single sta-
tistic (e.g., rsc mean) on its own and the benefits of considering
multiple statistics (e.g., both rsc mean and SD) when trying to
draw conclusions about how neurons covary. By considering
r«c mean and SD together, one can gain insight into the loading
similarity ( E) and the %sv ( F) of a neuronal pop-
ulation. Thus far, we have only considered the specific case
where activity co-fluctuates along a single dimension in the firing
rate space. We next considered how pairwise metrics change in
the more general case where neuronal activity co-fluctuates
along multiple dimensions.

Adding more dimensions tends to reduce rsc mean

and SD

We sought to assess how dimensionality (i.e., the number of co-

fluctuation patterns) is related to pairwise metrics. In simulations,

we increased the number of co-fluctuation patterns (compare
A to 2D; see ), while sweeping loading

similarity and fixing the total %sv. We found that increasing

dimensionality tended to reduce rsc mean and SD ( G,

dots for larger dimensionalities lay closer to the origin than

dots for smaller dimensionalities).

It seems counterintuitive that adding a new way in which neu-
rons covary reduces the magnitude of rs. The intuition is that, if
multiple distinct (i.e., orthogonal) dimensions exist, then a neuron
pair interacts in opposing ways along different dimensions. For
example, consider two neurons with loadings of the same sign
in one co-fluctuation pattern and opposite sign in the second
pattern. If only the first dimension exists, the two neurons would
go up and down together and be positively correlated. If only the
second dimension exists, the two neurons would co-fluctuate in
opposition and be negatively correlated. When both dimensions
exist, the positive correlation from the first dimension and the
negative correlation from the second dimension offset, and the
resulting correlation between the neurons would be smaller
than if only the first dimension were present. We formalize the
above intuition in . We also show analytically that
increasing dimensionality tends to move points closer to the
origin in the rg¢ mean versus rsc SD plot (i.e., decrease rg
mean and SD; ).

Anincrease in dimensionality does not imply that both rsc mean
and rsc SD necessarily decrease. For example, in the case where
the first dimension has high loading similarity, adding more dimen-
sions means it is less likely for rsc SD to be O ( G, compare
dot closest to horizontal axis for “1 dim.” to that for “2 dims.”). The
intuition is that, if the first dimension has a loading similarity of 1,
the loading weights for all neurons are the same and thus rsc
values between all pairs are the same, resulting inrsc SD of 0. Add-
ing an orthogonal dimension to this pattern necessarily means
adding a pattern with low loading similarity ( ), making
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Figure 4. Relative strengths of dimensions
affect rsc distributions

With dimensionality of 2, we systematically varied
the relative strengths of the two dimensions with a
fixed total %sv of 50%. We considered two sce-
narios: (1) one dimension has high loading similarity
and the other dimension has low loading similarity
(A) and (2) both dimensions have low loading sim-
ilarity (B). Each dot represents one simulated
covariance matrix and rs¢ distribution. The colors of
the dots indicate different relative strengths be-
tween the two dimensions, and numbers next to
each cloud of dots indicate the ratio between the
relative strength associated with each dimension.
For example, in (A), red dots correspond to the high
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low sim. * *“lowsim.
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loading similarity dimension being 19 times stron-
ger (95:5) than the low loading similarity dimension.
Black dots correspond to the low loading similarity

03 04 05

dimension being 19 times stronger (5:95) than the high loading similarity dimension. In (B), because both patterns have low loading similarity, clouds for 80:20
and 95:5 are very similar to clouds for 20:80 and 5:95, respectively, and are thus omitted for clarity. See also

it less likely for rsc across all pairs to be the same. Therefore, rsc SD
is unlikely to be 0 for two dimensions ( G; the smallest rg¢
SD for 2 dims. is around 0.2). Still, in G, the dots for 2
dims. are closer to the origin than the dots for 1 dim., implying
that, even if roc SD increases with an increase in dimensionality,
the rc mean must decrease to a larger extent ( ). As
another example, in the case where the first dimension has low
loading similarity, adding a second dimension with high loading
similarity would increase rsc mean. The r¢c SD would decrease
to a larger extent than the increase in rsc mean such that the dot
for two dimensions is closer to the origin than that for one dimen-
sion ( ).

The relative strength of each dimension impacts
pairwise metrics

In the previous simulation ( G), we assumed that each
dimension explained an equal proportion of the overall shared
variance (e.g., for two dimensions, each dimension explained
half of the shared variance; see ). However, it is
typically the case for recorded neuronal activity that some di-
mensions explain more shared variance than others; in other
words, neuronal activity co-fluctuates more strongly along
some patterns than others ( ;

; ; ). We sought to
assess the influence of the relative strength of each dimension
on pairwise metrics.

We reasoned that stronger dimensions would play a larger role
than weaker dimensions in determining the rsc distribution and
pairwise metrics. Extending to multiple dimensions,
we show that the ryc between a pair of neurons can be expressed
as the sum of a contribution from each constituent dimension
( ). The stronger a dimension, the larger the magni-
tude of its contribution to rsc and thus the larger its impact on
rsc mean and SD.

To test this empirically, we performed a simulation with two di-
mensions while systematically varying the relative strength of
each dimension. We considered two scenarios: (1) one dimen-
sion has a pattern with high loading similarity and one dimension
has a pattern with low loading similarity ( A) and (2) both

dimensions have patterns with low loading similarity ( B).
Note that both dimensions cannot have patterns with high
loading similarity because they would not be orthogonal (

)-

In scenario (1), where one dimension’s pattern has high
loading similarity and the other has low loading similarity, rsc
mean and rsc SD reflect the loading similarity of the dominant
dimension ( A). When the dimension with a high loading
similarity pattern dominated, rsc mean was large and ryc SD
was small ( A, red dots are close to horizontal axis).
When the dimension with a low loading similarity pattern domi-
nated, rsc mean was small and ry; SD was large ( A, black
dots are close to vertical axis). When the two dimensions were of
equal strength (i.e., neither dimension dominated), rsc mean and
rsc SD were both intermediate values ( A, light gray dots
are between red and black dots). Thus, the dimensions along
which neuronal activity co-fluctuates more strongly have a
greater influence on pairwise metrics ( ).

In scenario (2), where both dimensions have patterns of low
loading similarity, rsc mean was low and r¢c SD was high (

B), similar to when there is one dimension with low loading
similarity ( E, blue dots). When we made one dimension
stronger than the other, rsc mean remained low and rs; SD re-
mained high ( B, light gray dots and black dots are
both close to vertical axis) because both patterns had low
loading similarity. However, the radius of the arc increased (

B, black dots farther from the origin than light gray dots)
and was close to the arc that would have been produced with
a single dimension ( G, 1dim.). Thus, whereas changing
the number of dimensions causes discrete jumps in the arc
radius ( G), changing the relative strength of each
dimension allows for rsc mean and rsc SD to vary continuously
between the arcs for different dimensionalities. Put another
way, changing the relative strength of each dimension varies
the “effective dimensionality” of population activity in a contin-
uous manner. Neuronal activity for which one dimension dom-
inates another ( B, black dots) has a lower effective
dimensionality than when both dimensions have equal strength
( B, light gray dots).
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Figure 5. Summary of relationship between pairwise and population
metrics

A change in rsc mean and rsc SD may correspond to changes in loading sim-
ilarity, %sv, dimensionality, or a combination of the three. Shaded regions
indicate the possible r¢c mean and r¢; SD values for different dimensionalities;
increasing dimensionality tends to decrease rsc mean and rs; SD (shaded re-
gions for larger dimensionalities become smaller). Within each shaded region,
decreasing %sv decreases both r,c mean and SD radially toward the origin.
Finally, rotating co-fluctuation patterns such that the loadings are more similar
(going from low to high loading similarity) results in moving clockwise along an
arc such that r¢c mean increases and rsc SD decreases. We also note two
subtle trends. First, there are more possibilities for loading similarity to be low
than high (Math Note E), suggesting that rsc SD will generally tend to be larger
than rsc mean if neuronal activity varied along a randomly chosen co-fluctu-
ation pattern (shading within each region is darker near the vertical axis than
the horizontal axis). Second, this effect becomes exaggerated for higher
dimensional neuronal activity, as many dimensions can have low loading
similarity but only one dimension can have high loading similarity (Math Note
E). Thus, it becomes progressively unlikely for rsc SD to be 0 as dimensionality
increases (shaded regions for larger dimensionalities lifted off the horizon-
tal axis).

Reporting only a single statistic provides an incomplete
description of population covariability

summarizes the relationships that we have established
between pairwise metrics and population metrics. Rotating a co-
fluctuation pattern from a low loading similarity to a high loading
similarity increases rsc mean and decreases rsc SD along an arc
( , arrow outside pink arc). Decreasing %sv decreases
both r¢c mean and SD ( , arrow pointing toward origin),
and increasing dimensionality also tends to decrease rsc mean
and SD ( , pink to yellow shaded regions).

These results provide a cautionary tale that using a single sta-
tistic on its own provides an opaque description of population-
wide covariability. For example, a change in rsc mean could
correspond to changes in loading similarity, %sv, dimension-
ality, or a combination of the three. Likewise, reporting dimen-
sionality on its own would be incomplete because the role of a
dimension in explaining population-wide covariability depends
how much shared variance it explains and the loading similarity
of its co-fluctuation pattern. For example, consider a decrease in
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dimensionality by 1. This would have little impact on population-
wide covariability if the removed dimension explains only a small
amount of shared variance, whereas it could have a large impact
if the removed dimension explains a large amount of shared
variance.

Considering multiple statistics together provides a richer
description of population-wide covariability. For example, in
the case where population activity co-fluctuates along a single
dimension, rsc mean and rsc SD can be used together to approx-
imate %sv (using distance from the origin) and deduce whether
loading similarity is low (rsc SD > rsc mean) or high (rsc mean > rec
SD), whereas rsc mean alone would not provide much informa-
tion about %sv or loading similarity (cf. ). In the next sec-
tion, we further demonstrate using neuronal recordings how
relating pairwise and population metrics using the framework
we have developed ( ) provides a richer description of
how neurons covary than using a single statistic (e.g., rsc
mean) alone.

Case study: V4 neuronal recordings during spatial
attention
When spatial attention is directed to the receptive fields of neu-
rons in area V4 of macaque visual cortex, rsc mean among those
neurons decreases ( ;
; ; , ). This
decrease has often been attributed to a reduction in shared mod-
ulations among the neurons. However, we have shown both
mathematically and in simulations that several distinct changes
in population metrics (e.g., decrease in loading similarity,
decrease in %sv, or an increase in dimensionality) could underlie
this decrease in rsc mean ( ). Here, we sought to assess
which aspects of population-wide covariability underlie, and
how each of them contribute to, the overall decrease in rgc mean.

We analyzed activity recorded simultaneously from tens of
neurons in macaque V4 while the animal performed an orienta-
tion-change detection task ( A; previously reported in

). To probe spatial attention, we cued the an-
imal to the location of the stimulus that was more likely to change
in orientation. As expected, perceptual sensitivity increased for
orientation changes in the cued stimulus location ( A,
inset, red dot above black dot). “Attend-in” trials were those in
which the cued stimulus location was inside the aggregate
receptive fields (RFs) of the recorded V4 neurons, whereas
“attend-out” trials were those in which the cued stimulus loca-
tion was in the opposite visual hemifield.

For pairwise metrics, rsc mean decreased when attention was
directed into the RFs of the V4 neurons ( B, left panel),
consistent with previous studies ( ;

). We further found that roc SD was lower for attend-in trials
than for attend-out trials, an effect not reported previously (
B, right panel).

The decrease in both rgc mean and rsc SD could arise from
several different types of distinct changes in population-wide co-
variability ( ). To compute the population metrics, we
applied FA separately to attend-out and attend-in trials (see

). FA is the most basic dimensionality reduction
method that characterizes shared variance among neurons
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Figure 6. An observed decrease in rsc mean
of macaque V4 neurons during a spatial
attention task corresponds to changes in
multiple population metrics

(A) Experimental task design. On each trial, mon-
keys maintained fixation while Gabor stimuli were
presented for 400 ms (with 300-500 ms in between
presentations). When one of the stimuli changed
orientation, animals were required to saccade to
the changed stimulus to obtain a reward. At the
beginning of a block of trials, we performed an
attentional manipulation by cuing animals to the
location of the stimulus that was more likely to
change for that block (dashed circle denotes the
cued stimulus and was not presented on the
screen). The cued location alternated between
blocks. Animals were more likely to detect a
change in stimulus at cued rather than uncued
locations (inset in bottom right, p < 0.002 for both
animals; data for monkey 1 are shown). During this
task, we recorded activity from V4 neurons whose
receptive fields (RFs) overlapped with one of the
stimulus locations.

(B) rsc mean (left panel) and rsc SD (right panel)
across recording sessions for two animals. Black
denotes “attend-out” trials (i.e., the cued location
was outside the recorded V4 neurons’ RFs), and
red denotes “attend-in” trials (i.e., the cued loca-
tion was inside the RFs). Data were pooled across
both animals to compute p values reported in titles
for comparison of attend-out (black) and attend-in
(red). For individual animals, r,c mean was lower
for attend-in than attend-out (p < 0.001 for each
animal). rsc SD was also lower for attend-in than
attend-out (p < 0.05 for monkey 1 and p = 0.148 for
monkey 2).

(C) Population metrics identified across recording
sessions for two animals (same data as in B). Black
denotes attend-in trials; red denotes attend-out
trials. Data were again pooled across animals to
compute p values reported in titles for comparing
attend-out and attend-in. %sv was lower for
attend-in than attend-out (p < 0.001 for monkey 1
and p < 0.02 for monkey 2). Loading similarity was
lower for attend-in than attend-out (p < 0.001 for
monkey 1 and p = 0.162 for monkey 2). Dimen-
sionality was lower for attend-in than attend-out
(p = 0.113 for monkey 1 and p = 0.174 for monkey
2). In (A)~(C), dots indicate means and error bars
indicate 1 SEM, both computed across recording
sessions. See also Figure S2.

(D) Summary of the real data results. Attention
decreases both r¢c mean and rg. SD (black dot to
red dot). These decreases in pairwise metrics
correspond to a combination of decreases in %sv,
loading similarity, and dimensionality (dashed ar-
rows).

See also Figures S3, 54, and S6.

(Cunningham and Yu, 2014) and is consistent with how we
created covariance matrices in Figures 3 and 4. We found three
distinct changes in population metrics. First, neuronal activity
during attend-in trials had lower %sv than during attend-out tri-
als (Figure 6GC, left), consistent with previous interpretations that

attention reduces the strength of shared modulations (Rabino-
witz et al., 2015; Ecker et al., 2016; Huang et al., 2019; Ruff
et al., 2020). Second, we also found lower loading similarity for
attend-in trials than attend-out trials for the dominant dimension
(i.e., the dimension that explains the largest proportion of the
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Figure 7. Population metrics and informa-
tion coding

For illustrative purposes, we consider the re-
sponses of two neurons to two different stimuli.
(A) In “condition 1” (e.g., attend-out in our V4 an-
alyses), the two neurons have positively correlated
trial-to-trial variability (blue and orange clouds
each have positive correlation) and a stimulus en-
coding space (black arrow) defined by the span of
the trial-averaged responses (blue and orange

D dots). Then, we consider how changes in trial-to-

trial neuronal variability (i.e., shapes of the clouds)
from one experimental condition to another (e.g.,
spatial attention) can influence decoding of the two
stimuli. For simplicity, we construct examples in
which the stimulus encoding space remains con-
stant between the two conditions. We illustrate
here the changes in population metrics that we

y

neuron 2

neuron 1 neuron 1

decrease
loading similarity

decrease percent
shared variance

observed in our V4 data ( D).

(B) First, a decrease in percent shared variance
(both clouds are smaller in size) results in more
accurate decoding of the population responses to
the two stimuli (the blue and orange ellipses are
less overlapping here than in A).

neuron 1

decrease
dimensionality

(C) Second, a decrease in the loading similarity of the strongest dimension (both clouds have been rotated to have negative correlation) also leads to an
improvement in decoding performance. In this case, the improvement stems from the fact the stimulus encoding space (black arrow) and the strongest

dimension of trial-to-trial variability (negative correlation) are misaligned (

; ; )-

(D) Third, a decrease in dimensionality (the less dominant dimension has been squashed for both clouds) could either improve or have no impact on decoding
performance. Here, the dimension that was squashed (negative correlation direction) was orthogonal to the stimulus encoding dimension (black arrow), leading to
no impact on decoding performance. In general, all else being equal, higher dimensional trial-to-trial variability (distinct from high-d signal; )is
more likely to overlap with stimulus encoding dimensions and thus limit the amount of information encoded.

shared variance; C, middle; see also B). This
implies that, with attention, neurons in the population co-fluc-
tuate in a more heterogeneous manner (i.e., more pairs of neu-
rons co-fluctuate in opposition and fewer pairs co-fluctuate
together). Third, we found that dimensionality was slightly lower
for attend-in than attend-out trials ( C, right). Thus, on
average, a smaller number of distinct shared signals were pre-
sent when attention was directed into the neurons’ RFs. The
small change in dimensionality is consistent with the relative
strength of each dimension (i.e., eigenspectrum shape) being
similar for attend-in and attend-out ( A). Taken together,
this collection of observations of both pairwise and population
metrics leads to a more refined view of how attention affects
population-wide covariability.

The pairwise ( B) and population ( C) metrics
are computed based on the same recorded activity, and each
represents a different view of population activity. The central
contribution of our work is to provide a framework by which to
understand these two perspectives and five different metrics in
a coherent manner. Using the relationships between pairwise
and population metrics we have established in the rsc mean
versus rsc SD space ( ), we can decompose the decrease
in rsc mean and SD into (1) a small decrease in dimensionality
( D, small dashed arrow), (2) a decrease in loading similar-
ity ( D, medium dashed arrow), and (3) a substantial
decrease in %sv ( D, large dashed arrow). We quantify
these contributions in . The rsc mean and SD decreased
despite the decrease in dimensionality (which alone would have
tended to increase rsc mean and SD) because of the larger con-
tributions of loading similarity and %sv to pairwise metrics in
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these V4 recordings. We have also applied the same analysis
to population recordings in visual area V1 (

; available on ) and found that,
although rsc mean and SD both decreased (like in the V4 record-
ings), the population metrics changed in a different way
compared to the V4 recordings ( ). Together, these an-
alyses demonstrate the need for considering both pairwise and
population metrics together when studying correlated variability,
with a bridge that allows one to navigate between the two.

DISCUSSION

Coordinated variability in the brain has long been linked to the
neural computations underlying a diverse range of functions,
including sensory encoding, decision making, attention,
learning, and more. In this study, we sought to relate two major
bodies of work investigating the coordinated activity among neu-
rons: studies that measure spike count correlation between pairs
of neurons (rsc) and studies that use dimensionality reduction to
measure population-wide covariability. We considered three
population metrics and established analytically and empirically
that (1) increasing loading similarity corresponds to increasing
rsc mean and decreasing rsc SD, (2) decreasing %sv corre-
sponds to decreasing both rsc mean and SD, and (3) increasing
dimensionality tends to decrease rsc mean and SD. Applying this
understanding to recordings in macaque V4, we found that the
previously reported decrease in mean spike count correlation
associated with attention stemmed from a decrease in %sv, a
decrease in loading similarity, and decrease in dimensionality.
This analysis revealed that attention involves multiple changes
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in how neurons interact that are not well captured by a single sta-
tistic alone. Overall, our work demonstrates that common
ground exists between the literatures of spike count correlation
and dimensionality reduction approaches and builds the intuition
and formalism to navigate between them.

Our work also provides a cautionary tale for attempting to
summarize population-wide covariability using one, or a small
number of, statistics. For example, reporting only rsc mean is
incomplete because several distinct changes in population-
wide covariability can correspond to the same change in rg
mean. In a similar vein, reporting only dimensionality is incom-
plete because it does not indicate how strongly the neurons co-
vary or their co-fluctuation patterns. For this reason, we recom-
mend reporting several different pairwise and population metrics
(e.g., the five used in this study along with the eigenspectrum of
the shared covariance matrix), as long as they can be reliably
measured from the data available. This not only allows for a
deeper and more complete understanding of how neurons co-
vary, but also it allows one to make tighter connections to previ-
ous literature that uses the same metrics. Future work may seek
to revisit previous results of correlated neuronal variability that
are based on a single statistic (e.g., rs¢ mean) and reinterpret
them within a framework that considers multiple perspectives
and statistics of population-wide covariability, such as that pre-
sented here.

There are some situations where it is not feasible to reliably
measure population statistics, such as recording from a small
number of neurons in deep brain structures ( ;

) or when the number of trials is small relative to
the number of neurons recorded ( ). In such sit-
uations, the rg; can be measured between pairs of neurons re-
corded in each session and then averaged across sessions to
obtain the r¢c mean. Based on our findings, we recommend
that studies that report rsc mean also report roc SD because
the latter provides additional information about population-
wide covariability. For example, in the special case of one latent
dimension (typically not known in advance for real data),
measuring rsc mean and rsc SD allows one to estimate the
loading similarity and %sv (cf. E and 3F). In general,
even when there is more than one latent dimension in the popu-
lation, rsc SD provides value in situating the data in the rsc mean
versus rsc SD plot ( ). Changes in r¢c mean and SD can
then inform changes in population metrics based on the relation-
ships established in this work (cf. D).

The reason that our work, and many previous studies, have
focused on trial-to-trial variability is that it has important implica-
tions for information coding. Early work on information-limiting
correlations typically focused on r¢c mean (e.g.,

; ), which reflects the strength of
shared variability among neurons. Recent theoretical work (
; ; )
and experimental evidence ( ;

) have shown that it is not only the strength of shared
trial-to-trial variability but also the directions of shared variability
relative to stimulus tuning ( A) that need to be considered
for information coding. These properties of shared trial-to-trial

¢ CellP’ress

variability are precisely what are measured by the population
metrics used here. In particular, the %sv measures how strongly
trial-to-trial variability is shared among neurons ( B),
loading similarity measures the direction(s) of variability (

C), and dimensionality measures how many different direc-
tions of variability exist in the data ( D). By considering
these three population metrics together, along with the way in
which mean population responses vary across conditions (i.e.,
the stimulus-encoding directions), we can more incisively char-
acterize how trial-to-trial variability impacts information coding
than by using r¢c mean alone. Understanding how patterns of
shared variability are related to (e.g., align with or are orthogonal
to) patterns of stimulus encoding and downstream readouts will
be likely critical for understanding information coding in
the brain.

We considered three population metrics—dimensionality, %
sv, and loading similarity —that summarize the structure of pop-
ulation-wide covariability and are rooted in well-established
concepts in existing literature. First, dimensionality has been
used to describe how neurons covary across conditions (i.e.,
an analysis of trial-averaged firing rates;

; ; ), as well as how neu-
rons covary from trial to trial ( ;

). We focused on the latter in our study to con-
nect with the rg literature, which also seeks to understand the
shared trial-to-trial variability between neurons. To focus on
the shared variability among neurons, we used FA to measure
dimensionality. Another commonly used dimensionality reduc-
tion method, principal-component analysis (PCA), although
appropriate for studying trial-averaged activity, does not distin-
guish between variability that is shared among neurons and
variability that is independent to each neuron. Second, investi-
gating the loading similarity has provided insight about whether
shared variability among neurons arises from a shared global
factor that drives neurons to increase and decrease their act|V|ty
together ( ; ; ;

) or whether the co-fluctuations involve a more intricate
pattern across the neuronal population ( ;

; ). Third, we have previ-
ously reported %sv for area V1 ( ), area
M1 ( ), and network models (

; ). Conceptually, %sv and rg
mean are both designed to capture the strength of shared vari-
ability in a population of neurons. Thus, we might initially think
that there should be a one-to-one correspondence between
the two quantities. Indeed, if the population activity is described
by one co-fluctuation pattern with a high loading similarity, there
is a direct relationship between %sv and rsc mean ( F).
However, in general, %sv and rsc mean do not have a one-to-
one correspondence between them ( F, moderate or
low loading similarity).

We focus here on studying trial-to-trial activity fluctuations that
are shared between neurons. Many studies have considered the
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source of these shared fluctuations in the context of pairwise
correlations ( )- Most commonly, pairwise
correlations have been suggested to originate through common
input ( ; ). Howev-
er, there are, in fact, numerous mechanisms that can shape the
trial-by-trial shared variability of neuronal populatlons |nc|ud|ng
neuromodulation ( ; ;

), coupled inhibition ( ), or
distinct patterns of neuronal connectivity (

). These mechanisms likely produce distinct signa-
tures in population metrics, such as %sv, loading similarity,
and dimensionality. The framework that we have developed
here can be applied to spiking network models with different un-
derlying mechanisms of shared cortical variability to |dent|fy sig-
naturesin populatlon metrics ( ;

; ; ). We can
then assess whether any of those signatures are present in
neuronal recordings to gain insight into the underlying mecha-
nisms of shared variability in the brain.

Although pairwise correlation and dimensionality reduction
have most commonly been computed based on spike counts,
several studies have also computed these metrics on neuronal
activity recorded usmg other modalities, such as calcium imag-
ing ( ; ;

; ; )-
The relationships that we established here between pairwise
and population metrics are properties of covariance matrices
in general and do not rely on or assume recordings of neuronal
spikes. Thus, the intuition built here can be applied to other
recording modalities.

Our work here focused on studying interactions within a
single population of neurons. Technological advances are
enabling recordings from multiple distinct populations simulta-
neously, including neurons in different brain areas, neurons in
different cortlcal layers, or different neuron types (e.g.,

; ; ). Studies are dis-
secting the interactions between these distinct populations us-
ing palr\lee correlation ( ;

; ) and dimensionality
reduction ( ; ;

; ). As we have shown here for
a single population of neurons, considering a range of metrics
from both the pairwise correlation and dimensionality reduction
perspectives and understanding how they relate to one another
will provide rich descriptions of how different neuronal popula-
tions interact.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Rhesus macaque (Macaca mulatta) 1 animal from Covance, 1 from Tulane N/A
National Primate Research Center

Software and algorithms

MATLAB MathWorks RRID: SCR_001622; https://www.mathworks.com/
products/matlab.html

Custom spike-sorting software Kelly et al., 2007 https://github.com/smithlabvision/spikesort

Code to reproduce simulations Original code https://zenodo.org/record/5028023

Code to compute activity statistics Original code https://zenodo.org/record/5028018

Other

96-electrode array Blackrock Microsystems http://www.blackrockmicro.com/neuroscience-
research-products/neural-data-acquisition-systems/

Eyelink 1000 eye tracker SR research RRID: SCR_009602; https://www.sr-research.com/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Byron M. Yu (byronyu@
cmu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Original code has been deposited at Zenodo and is publicly available as of the date of publication. DOls are listed in the key resources
table. Additional information or data are available upon request from the lead contact (byronyu@cmu.edu).

METHOD DETAILS

Spike count covariance matrix
Both pairwise metrics and population metrics are computed directly from the spike count covariance matrix = of size nx n for a pop-
ulation of n neurons. Each entry in = is the covariance between the activity of neuron i and neuron j:

=5 = cov(x;,x;) =E[(x; — ;) (x; — )] (Equation 2)

where X; and x; represent the activity of neurons / and j, respectively, and w; and y; represent the mean activity of neurons i and j,
respectively. The variance of the ith neuron is equal to =;.

Pairwise metrics
We computed the spike count correlation (rsc) between neurons i and j directly from the spike count covariance matrix:
3

(Equation 3)
2%

P =

5

We then summarized the distribution of r¢; values across all pairs of neurons in the population with two pairwise metrics: the roc mean
and r¢c standard deviation (SD).
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Population metrics
The metrics we use for characterizing population-wide covariability are based on factor analysis (FA; ;

; ; ; ; ; ; ),
a dimensionality reduction method. We chose FA because it is the most basic dimensionality reduction method that explicitly sep-
arates variance that is shared among neurons from variance that is independent to each neuron. This allows us to relate the popu-
lation metrics provided by FA to spike count correlation, which is designed to measure shared variability between pairs of neurons.
One might consider using principal component analysis (PCA), but it does not distinguish shared variance from independent vari-
ance. Thus, FA is more appropriate than PCA for studying the shared variability among a population of neurons.

Decomposing the spike count covariance matrix

FA decomposes the spike count covariance matrix X into a low-rank shared covariance matrix, which captures the variability shared
among neurons in the population, and an independent variance matrix, which captures the portion of variance of each neuron un-
explained by the other neurons ( A):

2 = Zghared + ¥ (Equation 4)
where Sgharede R™*" is the shared covariance matrix for n neurons, and We R™*" is a diagonal matrix containing the independent vari-
ance of each neuron. The low-rank shared covariance matrix can be expressed using the eigendecomposition as ( A):

Zshared = uau’ (Equation 5)

where Ue R™9 and Ae R?*9, with d <n. The rank (i.e., dimensionality) of the shared covariance matrix, d, indicates the number of
latent variables. Each column of U is an eigenvector and represents a co-fluctuation pattern containing the loading weights of
each neuron (i.e., how much each neuron contributes to that dimension). The matrix A is a diagonal matrix where each diagonal
element is an eigenvalue and represents the amount of variance along the corresponding co-fluctuation pattern (e.g., in A
has larger eigenvalue than 2C).

Based on this matrix decomposition, we defined the three metrics that describe the population-wide covariability:

o Loading similarity: the similarity of loading weights across neurons for a given co-fluctuation pattern. Scalar value between
0 (the weights are maximally dissimilar, defined precisely below) and 1 (all weights are the same).

o Percent shared variance (%sv): the percentage of each neuron’s variance that is explained by other neurons in the popula-
tion. Percentage between 0% and 100%.

o Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer value.

We give the precise definitions of these population metrics below and in B.

Loading similarity
We sought to define loading similarity such that, for a given co-fluctuation pattern, if the weights for all neurons are the same, we
would measure a loading similarity of 1. When the weights are as different as possible, we would measure a loading similarity of
0. We define the loading similarity based on the variance across the n weights (for n neurons) in a co-fluctuation pattern ux. The small-
est possible variance is 0; the largest possible variance, for a unit vector uy, is 1/n ( )- Thus, we define loading similarity for
a co-fluctuation pattern uxe R” as:

var(ug) var(ug)

loading similarity (ug) =1 — M, var(ve) =1- 1/n (Equation 6)

where the loading similarity is computed on unit vectors (i.e., ux has a norm of 1). The notation var(uk) denotes that the variance is
being taken across the n elements of the vector ugk. The denominator of acts as a normalizing factor, bounding the loading
similarity value between 0 and 1.

The loading similarity distinguishes between a co-fluctuation pattern along which all neurons in the population have the same
weight in which case they change their activity up and down together ( A; loading similarity of 1), from one in which weights
are different and some neurons increase their activity when others decrease their activity ( B; loading similarity of 0). The
loading weights we use here are closely related to ‘population coupling’ ( ) and ‘modulator weights’ (

). For some types of shared fluctuations, these weights are similar across neurons in a population (i.e., high loading sim-
ilarity; ; ). For other types of shared fluctuations, the weights vary sub-
stantially across neurons in the population (i.e., Iow loading similarity; ; ).

We show in why, if one dimension has high loading similarity, the other dimensions must have low loading similarity.
The reason is that co-fluctuation patterns are defined to be mutually orthogonal. If one co-fluctuation pattern has all weights close to
the same value (i.e., high loading similarity), then all other co-fluctuation patterns must have substantial diversity in their weights (i.e.,
low loading similarity) to satisfy orthogonality.
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Percent shared variance

The percent shared variance (%sv) measures the percentage of each neuron’s spike count variance that is explained by other neu-
rons in the population ( ; ; ). Equivalently, we can think of %sv in terms of
latent co-fluctuations. Because latent co-fluctuations capture the shared variability among neurons, the %sv measures how much of
each neuron’s variance is explained by the latent co-fluctuations. The activity of neurons may be tightly linked to the latent co-fluc-
tuation (e.g., A), in which case a large percentage of each neuron’s variance is shared with other neurons, or may only be
loosely linked to the latent co-fluctuation (e.g., C), in which case a small percentage of each neuron’s variance is shared
with other neurons. Mathematically, we define the %sv for a neuron i:

%sv for neuron i = @400% =i-100% (Equation 7)
i i i

where s; is the /" entry along the diagonal of the shared covariance matrix ( A, Zshared), and ¥; is the /" entry along the di-

agonal of the independent covariance matrix ( A, ). A %sv of 0% indicates that the neuron does not covary with (i.e., is

independent of) other neurons in the population, whereas a %sv of 100% indicates that the neuron’s activity can be entirely ac-

counted for by the activity of other neurons in the population. To compute %sv for an entire population of neurons, we averaged

the %sv of the individual neurons. All %sv values reported in this study are the %sv for the neuronal population.

Dimensionality
Dimensionality refers to the number of latent co-fluctuations needed to describe population-wide covariability. For example, the pop-
ulation-wide covariability can be described by one latent co-fluctuation ( A) or by several latent co-fluctuations ( D). In
the population activity space, dimensionality corresponds to the number of axes along which the population activity varies (see
D, bottom inset). Mathematically, the dimensionality is the rank of the shared covariance matrix (i.e., the number of columns in U,
A).

Creating the spike count covariance matrices with specified population metrics

To relate pairwise and population metrics, we created spike count covariance matrices of the form in with specified pop-

ulation metrics. Importantly, we did not simulate spike counts, nor fit a factor analysis model to simulated data. Rather, we created

covariance matrices using (4) and computed pairwise correlations directly from the entries of the covariance matrix, as shown in (3).

Across simulations ( and 4), we simulated with n =30 neurons and set independent variances (i.e., diagonal elements of ¥ in
yto 1.

Specifying co-fluctuation patterns to obtain different loading similarities

Each co-fluctuation pattern u is a vector with n=30 entries (one entry per neuron). We generated a single co-fluctuation pattern
by randomly drawing 30 independent samples from a Gaussian distribution with a mean of 2.5. We choose a nonzero mean so
that we could obtain co-fluctuation patterns with loading similarities close to 1 when drawing from the Gaussian distribution
(i.e., a mean of 0 would have resulted in almost all co-fluctuation patterns having a loading similarity close to 0). To get a range
of loading similarities between 0 and 1, we used different standard deviations for the Gaussian. For a small standard deviation
value, all entries in the co-fluctuation pattern are close to 2.5, resulting in a high loading similarity. For larger standard devia-
tions, some loading weights are positive and some negative, with large variability in their values, resulting in co-fluctuation pat-
terns with low loading similarity. We increased the Gaussian standard deviation from 0.1 to 5.5 with increments of size 0.1. For
each increment, we generated 50 patterns and normalized them to have unit norm. In total, we created a set of 2,750 random
patterns.

The following procedure describes the construction of shared covariance matrices with one co-fluctuation pattern. We chose a
single pattern u;e R3°*" (i.e., U has only 1 column) from the set of 2,750. We constructed the shared covariance matrix by computing
UAU”, where A was chosen to achieve a desired percent shared variance (see below). The covariance matrix was then computed
according to . We created a covariance matrix, yielding a spread of loading similarities between 0 and 1 ( E and
3F). In the next section, we describe the procedure for creating a covariance matrix with more dimensions.

Specifying the percent shared variance

To achieve a given %sv, either the independent variance or the amount of shared variability (i.e., the eigenvalues) of each
dimension can be adjusted. In the main text, we set the independent variance of each neuron to W; = 1, and changed the total
amount of shared variability by multiplying each eigenvalue (each diagonal element in A from ) by the same constant
value, a. To obtain a specified %sv, we identified a by searching through a large set of possible values (from 10~* to 10% with
step size 1073). We allowed for a tolerance of ¢ = 102 between the desired %sv and the %sv that was achieved after scaling the
eigenvalues by a. In other analyses (not shown), we allowed the independent variances to be different across neurons (e.g.,
drawn from an exponential distribution), and the relationships between pairwise and population metrics were qualitatively
similar to those in the main text.
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Increasing dimensionality

To assess how changing dimensionality affects pairwise metrics, we created covariance matrices whose shared covariance matrix
comprised more than 1 dimension. To create a shared covariance matrix with d dimensions, we randomly chose d patterns from the
set of 2,750 we had generated above (see ). We then orthog-
onalized the chosen patterns using the Gram-Schmidt process to obtain d orthonormal (i.e., orthogonal and unit length) co-fluctu-
ation patterns Ue R3°*9. We formed the shared covariance matrix using UAU", where Ac R?*? is a diagonal matrix containing the
eigenvalues (i.e., the strength of each dimension; see ‘Specifying the relative strengths of each dimension’ below). We repeated
this procedure to produce 3,000 sets of d orthonormal patterns (i.e., 3,000 different U matrices), each of which was used to create
a shared covariance matrix. The spike count covariance was computed according to

Specifying the relative strengths of each dimension
In simulating shared covariance matrices with more than one dimension, we chose the relative strength of each dimension by spec-

ifying the eigenspectrum (diagonal elements of A in ). We worked with three sets of eigenspectra. First, a flat eigenspec-
trum had eigenvalues that were all equal ( G). Second, for two dimensions, we varied the ratio of the two eigenvalues between
95:5, 80:20, 50:50, 20:80, and 5:95 ( ). Third, we considered an eigenspectrum in which each subsequent eigenvalue falls off
according to an exponential function ( ). Only the relative (and not the absolute) eigenvalues (i.e., the shape of the eigens-

pectrum) affect the results, because the eigenspectrum was subsequently scaled to achieve a desired %sv (see ‘Specifying the
values of percent shared variance’).

Analysis of V4 neuronal recordings from a spatial attention task

Electrophysiological recordings

We analyzed data from a visual spatial attention task reported in a previous study ( ). Briefly, we implanted a 96-
electrode “Utah” array (Blackrock Microsystems; Salt Lake City, UT) into visual cortical area V4 of an adult male rhesus macaque
monkey (data from two monkeys were analyzed; in our study, monkey 1 corresponds to “monkey P” and monkey 2 corresponds
to “monkey W” from ). After recording electrode voltages (Ripple Neuro.; Salt Lake City, UT), we used custom
software to perform offline spike sorting ( , freely available at ). This
yielded 93.2 + 8.9 and 61.9 + 27.4 candidate units per session for monkey 1 and 2, respectively. Experiments were approved by
the Institutional Animal Care and Use Committee of the University of Pittsburgh and were performed in accordance with the United
States National Research Council’s Guide for the Care and Use of Laboratory Animals.

To further ensure the isolation quality of recorded units, we removed units from our analyses according to the following criteria.
First, we removed units with a signal-to-noise ratio of the spike waveform less than 2.0 ( ). Second, we removed units
with overall mean firing rates less than 1 Hz, as estimates of ry. for these units tends to be poor ( ). Third, we
removed units that had large and sudden changes in activity due to unstable recording conditions. For this criterion, we divided the
recording session into ten equally-sized blocks and for each unit computed the difference in average firing rate between adjacent
blocks. We excluded units with a change in average firing rate greater than 60% of the maximum firing rate (where the maximum
is taken across the ten equally-sized blocks). Fourth, we removed an electrode from each pair of electrodes that were likely electri-
cally-coupled. We identified the coupled electrodes by computing the fraction of threshold crossings that occurred within 100 ps of
each other for each pair of electrodes. We then removed the fewest number of electrodes to ensure this fraction was less than 0.2 (i.e.,
pairs with an unusually high number of coincident spikes) for all pairs of electrodes. Fifth, we removed units that did not sufficiently
respond to the visual stimuli used in the experiment. Evoked spike counts (i.e., a neuron’s response after stimulus presentation) were
taken between 50 ms to 250 ms after stimulus onset, and spontaneous spike counts (i.e., a neuron’s response during a blank screen)
were taken in a 200 ms window that ended 50 ms before stimulus onset. For each unit, we computed a sensitivity measure d’ between
evoked and spontaneous activity:

d = HMevoked — Mspontaneous

1 2 2
\/§ (Jevoked + Uspomaneous)

. . ' 2 > T
for mean spike counts ueyoked @N Kspontaneous AN SPike count variances og, oy eq aNA T5pontanecus- YWe removed units with d’ < 0.5 from

analyses, as these units had spontaneous and evoked responses that were difficult to distinguish.

After applying these five criteria, 44.5 + 11.3 and 18.8 + 6.7 units per session (mean + s.d. over sessions) remained for monkeys 1
and 2, respectively. Although these remaining units likely contained both single-unit and multi-unit activity, we refer to each unit as a
neuron for simplicity. In this study, we restricted analyses to sessions with at least 10 neurons remaining after applying the above
criterion (23 sessions for monkey 1, and 14 sessions for monkey 2).

Visual stimulus change-detection task

Animals were trained to perform a change-detection task with a spatial attention cue to the location of the visual stimulus that was
more likely to change ( ). In the visual change-detection task ( A), animals fixated a central dot while Gabor
stimuli were presented in two locations on a computer screen. One location was chosen to be within the aggregate receptive fields
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(RFs) of the recorded V4 neurons (mapped prior to running the experiment), and the other location was placed at the mirror symmetric
location in the opposite hemifield. Animals maintained fixation while a sequence of Gabor stimuli were presented. Each drifting Gabor
stimulus (oriented at either 45° or 135°) was presented for 400 ms, followed by a blank screen presented for a random interval (be-
tween 300 and 500 ms). The sequence continued, with a fixed probability for each presentation, until one of the two stimuli changed
orientation when presented (i.e., the ‘target’). Upon target presentation, animals were required to make a saccade to the target to
earn a juice reward. We manipulated spatial attention in the experiment by cueing the more probable target location in blocks. At
the beginning of each block, the cue was denoted by presenting only one Gabor stimulus at the more probable target location
(90% likely), and requiring animals to detect orientation changes at this location for 5 trials. Consistent with the results of previous
studies, we found that animals had greater perceptual sensitivity for orientation changes at the cued (i.e., attended) location than
the uncued location ( A, inset in the bottom right) and shorter reaction times ( ).

Data processing and computing spike counts

We first separated the trials into two groups: (1) “attend in” trials, for which the cued stimulus was inside the recorded neurons’ RFs
and (2) “attend out” trials, for which the cued stimulus was outside the RFs. Since the initial orientation of the stimulus at the cued
location could be one of two values (i.e., 45° or 135°), we further divided trials, resulting in a total of 4 groups of trials per session
(attend in & 45°, attend out & 45°, attend in & 135°, attend out & 135°). Each combination of cued location and stimulus orientation
was treated as an independent sample. The same neurons were used for each of the 4 groups within each session, ensuring a fair
comparison between the attend-in and attend-out conditions.

We analyzed all stimulus presentations for which the target stimulus did not change. For each stimulus presentation, we took spike
counts in a 200 ms window starting 150 ms after stimulus onset. For each of the 4 groups, we formed a spike count matrix Xe R"*¢,
containing the spike counts of the n recorded neurons for the t trials belonging to that group. These spike count matrices were then
used to compute both the pairwise and population metrics (described below). For all analyses ( ), we excluded recording ses-
sions with fewer than 10 neurons. Additionally, because population metrics depend on the number of trials ( ),
for each session we equalized the number of trials across the 4 groups by randomly subsampling from groups with larger numbers of
trials.

Computing pairwise metrics for V4 spike counts

We computed pairwise metrics on each combination of attention state (‘attend in’ and ‘attend out’) and stimulus orientation. We
computed the correlation as described above in ’ and then computed rsc mean and rgc SD For each attention state,
we averaged the rsc mean and rg; SD over sessions and different stimulus orientations.

Computing population metrics for V4 spike counts
We fit the parameters of a factor analysis model (see A) to each spike count matrix X (as described above) using the expec-
tation-maximization (EM) algorithm ( ). For each session, this was performed separately for each attention state
and stimulus orientation. Using the FA parameters, we then computed the three population metrics ( B). For dimensionality,
we first found the number of dimensions d that maximized the cross-validated data likelihood. We fit an FA model with d dimensions,
and then found the number of dimensions required to explain 95% of the shared variance, termed dspareq ( ). We
report dspareq DeCause it tends to be a more reliable estimate of dimensionality than the number of dimensions that maximizes the
cross-validated data likelihood. We computed %sv as described by . We report the loading similarity as defined in
for the co-fluctuation pattern that explained the most shared variability (i.e., the eigenvector with the largest eigenvalue; see
for why the loading similarity of this dimension is most informative), since it contributes most to describing the popula-
tion-wide covariability. For ‘attend in’ and ‘attend out’ conditions, we averaged the population metrics across sessions and stimulus
orientations.
Much of our work focuses on systematically changing a single population metric and assessing changes in pairwise metrics (
A-3D). When analyzing neuronal recordings, one needs to fit factor analysis to the recordings in order to estimate the popu-
lation metrics. When estimating the population metrics together, it could be the case that changes in one population metric impacts
or biases the estimation of another population metric. We characterized these estimation errors in . Moreover, in ,
we show that our main findings ( ) are the same when estimating population metrics from Poisson simulated data, which
resembled realistic neuronal activity.

Statistics
We employed paired permutations tests for all statistical comparisons of pairwise metrics and population metrics between ‘attend-in’
and ‘attend-out’ conditions ( B and 6C). First, for a given metric, we computed its value separately for each stimulus type (i.e.,

45° or 135°), condition (i.e., attend-in or attend-out), and session. We then averaged the difference between attend-in and attend-out
across stimulus types and sessions. To compute a null distribution, we randomly permuted the pair of attend-in and attend-out labels
for each stimulus type and condition combination and recomputed the average difference. We ran 10,000 permutations to obtain a
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null distribution of 10,000 samples. We computed p-values as the proportion of samples in the null distribution that were more
extreme than the average difference in the data, corresponding to p <0.0001 as the highest attainable level of significance in our sta-
tistical analyses.

Math Notes

A) Relationship between correlation, loading similarity, and %sv (one latent dimension)

We establish here the mathematical relationship between ry;, loading similarity, and %sv. This will provide the formalism for under-
standing why decreasing %sv decreases both rsc mean and SD ( F), that a high loading similarity corresponds to large rec
mean and low rsc SD ( E), and that a low loading similarity corresponds to small rsc mean and large rsc SD ( E).

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector [w1,ws, ..., wn}Te R ), Ae R, bethe
strength of the co-fluctuation pattern (i.e., eigenvalue of the shared covariance matrix), and We R"*" be a diagonal matrix specifying
the independent variance of each neuron (y4,¥5»,...,¥,). Then the covariance matrix of the population activity is (see
and ):

S = Sehared + T =WAW' + W

From this, we observe that 3 = Zspareq,j = AWiw; for the off-diagonal entries (i.e., if i=/). Along the diagonal, Zsnareq,i = Aw,? and 3 =
Jw? + ;. The correlation (i.e., rsc if = is a spike count covariance matrix) between neurons i and j can be written as:

i AW,'W/'

ij
pj = =
v/ Zi Zjj \/(AW,'Z""//:‘)(AVVI‘Z*'%)

Aw? w?
W2+ \| Aw? + 4

sign(w;w;)

=/ dig;sign(w,w;) (Equation 8)
where ¢; and ¢; represent the %sv (as proportions) for neurons i and j, respectively, and sign(w;w;) = + 1 if w;w; >0 or — 1 if w;w; < 0.
The last line follows from the fact that %sv for neuron i is defined in as:
> . w2
¢y = =Shareddl Wi (Equation 9)

S w4y,

and 9 provide a basis for understanding the relationships between rs., %sv, and loading similarity. The rsc mean and SD
are computed across all pairs of neurons p;, for i <j.

For establishing a relationship between pairwise metrics and %sv, consider decreasing the overall %sv of the population while
keeping the loadings w; fixed. This corresponds to decreasing A in , Which implies ¢; for each neuron decreases, and
thus the product \/quj decreases for all pairs. The magnitude of each p; decreases (i.e., each p; moves closer to 0). As such,
decreasing %sv of the population decreases the distance of a point from the origin in the rsc mean versus rg; SD plot, all else being
equal ( F).

For establishing a relationship between pairwise metrics and loading similarity, consider two extreme cases: 1) when loading sim-
ilarity is 1 (as high as possible) 2) when it is 0 (as low as possible). We first assume that each neuron has the same independent vari-
ance y; for simplicity, as we did in . Alloading similarity of 1 corresponds to each w; = + # oreachw; = — % In either case,
sign(w;w;) is always + 1. Furthermore, ¢; is the same for every neuron and \/M: %sv (i.e., the %sv of the population, expressed as
a proportion) for every pair of neurons. Thus, all p;; = %sv for all pairs of neurons j and . In this case, rsc mean = %sv and rsc SD = 0. If
the independent variances y; are different across neurons, we can still get each sign(w;w;) = + 1 and each ¢; to be the same by setting
eachw; = +./y;oreachw; = — /¥;. This would also result in pj= %sv for all pairs of neurons i and j, and thus rsc mean = %sv and rc
SD = 0. In this case, the loading similarity is still high (all w; are the same sign; we can show that load. sim.>0.5), but not equal to 1.

Now, consider a scenario in which half the loadings are +% and the other half are —# (and assume again that y; are the same for

every neuron). This is one way to obtain a loading similarity of 0. In this case, ¢; are still the same for every neuron, so  /¢;¢; = %sv for

all pairs. However, sign(wjw;) = — 1 for% pairs, and sign(w;w;) = +1 for% — Jpairs. We can show that rc mean = — :{%’ and, by using
Equation 10 from below, rsc SD = %sv , /1 — (n—11)2' Thus, for a large number of neurons n, this case (where loading sim-

ilarity = 0) corresponds to small negative rsc mean (close to 0), and large rsc SD (close to the %sv). As an example, for 30 neurons and
%sv = 50%, this corresponds to rsc mean = —0.0172 and rsc SD = 0.4997.
With this analysis, we have established that for one latent dimension:
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® Decreasing %sv decreases the magnitudes of correlations (i.e., each p; closer to 0). rsc mean and SD both decrease (as seen
empirically in F).

o Starting from a loading similarity near 1, a decrease in loading similarity involves flips in the signs of some correlations (i.e.,
some p; become — p;). rsc mean decreases but rs; SD increases (as seen empirically in F).

® Bothrsc mean and %sv measure shared variance among neurons, but they are not always equal. shows that the two
quantities are equal if all sign(w;w;) are the same (i.e., when loading similarity is high). However, in general rc mean and shared
variance (%sv) are not the same—e.g., when loading similarity is low, or when there are multiple dimensions ( ).

In this section, we consider the extremes of loading similarity. In the next section, we analyze how gradual changes in loading sim-
ilarity affect rc mean and SD for a fixed %sv.
B) Circular arc in rsc mean versus rsc SD plot for one latent dimension and fixed %sv
We establish here mathematically that gradually varying the loading similarity for one latent dimension and fixed %sv results in an arc-
like relationship between r¢c mean and rsc SD, and that the radius of the arc is approximately equal to the %sv ( E and 3F).

We use the same notation as in . Let E[.] and Var(.) denote the mean and variance across all neurons or all pairs of neu-
rons, depending on context. In particular, we are interested in E[p] = rsc mean, /Var(p) = rsc SD, where the expectation and variance
are computed across p;; for all pairs of neurons in a given population (i.e., the upper triangle of the correlation matrix, p; fori> j).

Let c be the distance of a point (corresponding to one instance of the population activity covariance matrix) from the origin in the rec

mean versus rsc SD plot (i.e., c= \/(rSC mean)2 + (rsc s.d.)z. We want to know whether c is the same for all population activity covari-

ance matrices with one latent dimension and fixed %sv. This would correspond to a point being equidistant from the origin, and thus a
circular arc. We can write ¢ as:

c? = (rse mean)® + (rse s.d.)?
=E[p]® + Var(p)
=Ep)” + E[p*] —E[o)”
=E[p’]

Thus, the squared distance (i.e., squared radius) is equal to E[p?], the mean of p,-lz- across all pairs in the population. Let m be the num-

ber of pairs (i.e., m = @). Now, using and 9 derived in

WD

/ 1j=i+1

Ciptes (wd)(wp)

MiFS0w? +4) (Aw,? + 1//,->

:_Z Z bid

i=1j=i+1

where ¢; and ¢; are the %sv of neurons i and j (expressed as proportions), as defined in . We can show that

2> Z, i1 = S 12, 10y — S L2 Intumvely, if we have a symmetric matrix ® with entries ®(i,j) = #;¢;, and we want
to find the sum of the off-diagonal elements (237 Z, i+10i9;), then we can take the sum of all elements and subtract the diagonal
elements (371> /L1y — > i_1¢7). Using this equwalence it follows:

Z > o

I 1j=i+1

%@w %)
- (D > -3t )
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1
n—1

(nE[¢]? — Var(¢) — E[¢]?)

1 2
T ((n—1)E[¢]" — Var(¢))

=E[¢]* ———Var(¢)

n-1

= (%sv)® — ! T Var(9) (Equation 10)

This provides an equation for the squared radius (i.e., squared distance from the origin) of a point in the rsc mean versus r¢c SD plot. In
the above derivation, E[¢] and Var(¢) are taken across the percent shared variance of each neuron in the population ¢;. Thus, E[¢] is
equal to our population metric %sv. Now, we will bound Var(¢), which by definition is greater than or equal to 0. Since 0< ¢; < 1, one
instance where the maximum variance occurs is when there are an equal number of ¢; =0 and ¢; =1 (and E[¢] = 0.5). Then,

Var() = -3 (¢, - 05"
i=1

:% (gm — 057+ g(o - 05))

’
= (0.25n)

=0.25

So 0< Var(¢)<0.25. For a small number of neurons n, the second termin is non-negligible. For example, for a model with
6 neurons and %sv = 50%, the radius of the data points may vary between 0.4472 and 0.5. As the number of neurons increases, the
second terms becomes negligible, and data points lie approximately along an arc with radius equal to %sv. For example, for 30 neu-
rons as in our simulations and a %sv of 50%, the radius only varies between 0.4913 and 0.5.

To summarize, computes the distance from the origin of a point for a given population of neurons. For a fixed %sv,
Var(¢) can be the same or differ across many simulation runs. If Var(¢) =0 or is the same across runs, then the points will lie perfectly
along an arc, with radius specified by . However, if Var(¢) is different across runs, the distances of each point from the
origin will differ slightly, so they will lie close to, but not exactly along, an arc.

With this analysis, we have shown that in the case of one latent dimensions:

® A point (i.e., corresponding to a given population of neurons, simulated or real) on the rsc mean versus rsc SD plot has distance
from the origin (i.e., radius) less than or equal to %sv.

e If the %sv for individual neurons (¢;) are all the same (see ), then the radius equals %sv.

® As the number of neurons increases, the radius becomes asymptotically closer to %sv.

C) Relationship between correlation, loading similarity, and %sv (multiple latent dimensions)
In , we established a mathematical relationship between ryc, loading similarity, and %sv in the case of one latent dimen-
sion. Here, we generalize to include multiple dimensions in order to better understand the relationship between rsc and
dimensionality. We demonstrate here that the general relationships between rg;, %sv, and loading similarity for one latent dimension
also hold true for multiple latent dimensions. For multiple latent dimensions, the relative strengths of each dimension is an important
consideration—a stronger dimension plays a bigger role in determining the rg; distribution. Finally, we consider the relationship be-
tween dimensionality itself and ryc. We will discover below that increasing dimensionality tends to decrease the magnitude of rs
values.

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let w be the co-fluctuation pattern (i.e.,
loading vector w1, wo, ..., w,,]Te R™") with eigenvalue ,, let v be another pattern orthogonal tow ([vy, va, ..., v,,]T eR™"; v Lw), with
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eigenvalue 1, and let We R"*" be a diagonal matrix specifying the independent variance of each neuron (¥4, s, ...,¥,). Then the
covariance is = = Sghared + ¥ = S+ 3, + W = Wi, W' +vA, v + . On the off-diagonals entries (i.e., if i#j), Zj = Ayw;w; + A,vjv;.
Along the diagonal, Zshared.i = Zw.i + Zvii = W2 + A,V and Zjj = AyW? + A,V7 + ;.
Because the shared covariance matrix Zgpareq Can be expressed as a sum of two component matrices =, + =,, we can express the
%sv of neuron i (¢;) as
2:shared.ii 2w,ii E:v.ii

¢, = =_" 4
' S Sy

2 2
B AwW; N AV
W2+ A V24 AgW2 + AVE +

=™ + ¢

where ¢,('”) is the %sv variance of neuron i explained by dimension w and ¢f") is the %sv variance of neuron i explained by dimen-
sion v.
With this decomposition of ¢;, and following similar steps as in

= /o ¢ sign(wiw;) + /61" ¢ sign(viv;) (Equation 11)

where %sv values (¢) are represented as proportions. relates rgc, %sv, and loading similarity for the case of two latent
dimensions. Next, we compare these relationships for one versus two latent dimensions.

We will show that, for two latent dimensions, the relative strength of each dimension (i.e., the ratio 4, : 4,) is an important consid-
eration. For two latent dimensions, decreasing the overall %sv by decreasing both ™) and ¢ equally (e.g., v =4, and both
decrease equally) pushes each p; closer to 0; rsc mean and SD will decrease. This is similar to what happens for one latent dimension
when %sv is decreased. On the other hand, even if the overall %sv is held constant, but ¢<W) increases relative to ¢(") (i.e., increase
the strength of w relative to v), pairwise correlations could change. Each p; will largely be determined by »™) and w; rec mean and SD
will be more similar to what they would be if only w existed ( A). In other words, each p; for two latent dimensions is the sum of
the p; that would have been produced by each of the two constituent dimensions on their own. The dimension with larger relative
strength A will have larger ¢; the stronger dimension will play a larger role in determining each value of p; and thus the resulting
rsc distribution.

Using this logic, we can deduce that increasing the loading similarity of one of the dimensions would increase rsc mean and
decrease ryc SD for the same reasons as for one latent dimension ( ). Doing so for a relatively stronger dimension would
result in larger changes in rg; than doing so for a relatively weaker dimension.

We have shown how having multiple latent dimensions can affect the relationship between ryc, %sv, and loading similarity. Now,
we show that dimensionality itself and rs¢ are related —a larger dimensionality tends to decrease rsc mean and SD. To see this, we can
generalize for d <n orthogonal latent dimensions uy, ..., uge R".

d
1= o) sign )
k=1
Considering the sign of one term, p; could have the same sign for sign(ukuy) across all dimensions uy, ..., uq; in this case, a larger
dimensionality acts to increase the correlation between neurons i and j (p;) above the level corresponding to a single dimension.
However, because the loading vectors uy, ..., ug are orthogonal, a pair of neurons j and j is likely to have many sign(uuy;) of opposite
sign across dimensions; in this case, a larger dimensionality pushes the correlation between neurons i and (p;) closer to 0. Thus, we
would expect the magnitude of correlations to decrease as more dimensions are added (i.e., a tendency for r¢c mean and SD to
decrease; G). In the next section, we show this relationship mathematically.
D) Increasing dimensionality decreases arc radius
We establish here that increasing dimensionality results in a decrease in the radius of the arc in the rsc mean versus rsc SD plot (
G). We extend the math for an arc for one latent dimension ( ) to multiple latent dimensions. We will refer to the one
latent dimension as the ‘1-d case’ and multiple (k) latent dimensions as the ‘k-d case’.
We use the same notation as in . Consider the distance c of a point (corresponding to one instance of the population
activity covariance matrix) from the origin in the rsc mean versus rs; SD plot. From ,c2 = Elp 2]. For this 2-d case, the
correlation between neurons i and j is p; = P Wi+ AuVivy Thus we can write p7 as:

Zj
V iiEj, \/() w2+ 4, V2 + ;) (Aw w2+) v2+\pj)
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(AwwWiw; + Avv,vj)2
(AwW2 + A V2 + ;) (AWWI? + Avvj? + ¢j>

202002 22,2
AgW; Wi+ A A 2WiW ViV + A V7Y

2 _
P =

(AwW? + 2, V2 + ;) (Awwj? + V2 + 1//,)

Ay (W,-ZV/? — 2w, W,V + W/-ZV,?)

- ¢i¢j h 2 2 2 2
(AwW? + A V2 + ) (Aww/ + Avvj + 1//,»)
oy Ay (Wiv; — wyv)?
=iy —
(AwW? + 2, V2 + ;) (AWW/? + V2 + x//j)
where the % shared variance of neuron i in this 2-d case is ¢; = 25";—’*" = %
Then letting m be the number of pairs in the population, and following similar stepﬁs to in , we arrive at:
Z >0
M (Equation 12)
(%) BRESES (W0 — wiv)?
= (%sv) 7 var(®) >

M55 QawW? + AV + ;) (AWW/? +AVE+ d//)

Not including the negative sign in front, note that this final term is non-negative (given that 1, and A, are non-negative, as for any
covariance matrix). Thus, comparing the final line in to the final line from Equation 10, we observe that the distance
of the point for the 2-d case in the rsc mean versus rs; SD plot is necessarily smaller than or equal to the distance for the corresponding
1-d case.

More generally, for a k-dimensional case we can show that:

n-1 n v — )2
E[p°] = (%sv)* - 1 7var(@) - 12 > Py (Wi¥; = W3¥3) (Equation 13)
n m f=1j:f+1(/1ww,-2+Avv,2+1p,)</1ww]?+/1vv]?+¢j)

where the sum }_ is taken over all unique pairs of loading vectors (w,v). Indeed, as more latent dimensions are subsequently added,
wyv

the radius of the rsc mean versus rsc SD plot decreases ( G). Intuitively, this final term accounts for how population activity
covaries along many different dimensions in the high-d firing rate space. As more orthogonal dimensions are added, population ac-
tivity is further pulled in different directions in the high-d space, more interaction terms come into play, and the magnitude of corre-
lations is further decreased. This tends to decrease both ric mean and rs; SD, explaining why the radius of the arc in the rsc mean
versus rsc SD plot tends to decrease as dimensionality increases.

We note that rsc mean and rsc SD do not necessarily both need to decrease. For example, consider a pattern with a loading sim-
ilarity of 1; loading weights for all neurons would have the same value, rsc across all pairs would be the same value, and thus rsc SD
would be 0 (see ). When a second pattern of necessarily low loading similarity (see ) is added, rs; values
across pairs of neurons would differ, and rg; s.d. would be larger than 0. Therefore, rsc SD can increase when going from the 1-d
case to the 2-d case. However, the corresponding decrease in rsc mean would be larger in magnitude than the increase in rsc SD,

resulting in an overall decrease in arc radius ( G, 1 to 2 dimensions, data points closest to the horizontal axis).
The third term in can also help explain variability of the radius (E[0?]) across different random instantiations with the
same population metrics ( G and 4). Consider a fixed %sv. For the 1-d case, the radius is determined by the first two terms of

the above equation, and any variability in radius will be caused by different values of Var(¢) across different instantiations. For the 2-d
case, the third term also plays a factor in determining the radius, and this term varies across different random instantiations, typically
to a larger degree than the second term for large numbers of neurons n (see ). Thus, the 2-d and k-d cases have greater
variability in E[p?] than 1-d cases ( G and 4). Other subtle factors can affect the variability of E[p?]. For example, variability in
E[p?] can increase or decrease depending on the relative strengths of each dimension and their corresponding loading similarities
( and S1). This can be explained by the third component of , in particular by the terms involving 4, and 4,.
E) Properties of loading similarities across different co-fluctuation patterns
We asked whether there was a relationship between the loading similarities of different co-fluctuation patterns in the same model. In
our simulations and V4 data analysis, we ensured that we obtain unique co-fluctuation patterns by constraining dimensions to be
orthogonal. Thus, we might conjecture that if one pattern has high loading similarity (e.g., [1, ..., 1]), then another pattern in the
same model necessarily has low loading similarity (e.g., [1,—1,1,—1,...,—1,1]). Indeed, this is true because the sum across the
loading similarities of each pattern in a model is at most 1. We show this property of loading similarity here.

Let w and v be vectors representing two co-fluctuation patterns in the same model. We use the notation w-v to refer to the element-
wise product between w and v, resulting in a vector that is the same size as w and v. Furthermore, we use E|w|, Var(w), and Cov(w)
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as shorthand to refer to computations across the elements of a vector (and not as operations on a random variable): e.g., E[w] =
IS~ ,w;, and Coviw,v] = E[w -v] — E[W]E[V] = 157w, — (%27:1W,> (%Z,’Lm). Also, in this section we refer to the loading sim-
ilarity of vector w as /s(w) for shorthand.

We first show a constraint on loading similarities for a model with two co-fluctuation patterns (i.e., loading vectors for each dimen-
sion). Let n be the number of neurons and let w, ve R” be two loading vectors. As in our simulations and data analysis (see Methods),
w and v are orthogonal unit vectors: 3°7_ w? = 1, 3°7_.v? = 1, and >/ w;v; = 0. Then, using these constraints,

Cov(w,v)=E[w - v] — E[W]E[v]

1 n

=—> wy; — EWIE[V]
n i=1

= — E[W|Ev]

Var(w) =E|w - w] — E[w}]? (Equation 14)

1 n

= EZ;W,'Z — E[w]?
1 2

=5 Elw]

Because correlation is bounded between —1 and 1, we know that |Cov(w, V)| <./Var(w)Var(v). It follows that:

Cov¥(w,v)  <Var(w)Var(v)

EWwWPEN? < (1 E[w]2> G - EM2>

-
0 <—- % (E[w]2 +E[V]2) (Equation 15)
nEw)® +nEV? <A1

Is(w) +Is(v) <1

The last step follows from the definition of loading similarity:

_, Varw)_ l-Ewf_
Is(w)=1-— n =1- n =nE|w]
The final inequality in proves the intuition provided at the beginning of this section-if Is(w) is large, then Is(v) must be

small (at most 1 — /s(w)). More strongly, if Is(w) = 1, then Is(v) = 0.

Generally, for a model with d dimensions and patterns uy,...,uqge R", we can show that Zf: 4Is(uj) <1. To see this, we can construct
amatrix C with entries ¢; = Cov(u;, uj) = — E[ui]E[uj] fori#j, and ¢; = Var(u;) =1 — Elu;]? (derived from the constraints in ).
Note that Ce R9*9, with variances on the diagonal and covariances on off-diagonals, is a covariance matrix, which implies det(C) > 0.
For a 3-d model,

det(C) = %

which implies /s(u1) +/s(uz2) +/s(uz) < 1. In general, for a d-dimensional model (with d <n):

det(C) :17"1—*1 <1 - <i nE[uif)) >0

ils(ui)£1

(1 —nE[w]” = nE[u,)* — nE[us]?) >0

(Equation 16)

has several implications:

o If one knows the loading similarities of all dimensions uy, ..., ug in @ model, then the maximum possible loading similarity of any
new dimensionis 1 — Zfz1ls(ui). It follows that two dimensions with high loading similarity cannot co-exist in the same model.
o If one dimension has /s = 1, then all other dimensions in the model (or that would be added to the model) necessarily have Is =

NG
there are many possibilities for a pattern to have Is(u) = 0. More loosely, there are relatively few ways for a pattern to have high
loading similarity, but many more ways for a pattern to have low loading similarity.

7
0. Note that there is only one possibility for a patternto have/ls=1 (i.e.,u = {ﬁ, ey i} ,such that Var(u) = 0). This implies that

e11 Neuron 109, 1-15.e1-e12, September 1, 2021



Please cite this article in press as: Umakantha et al., Bridging neuronal correlations and dimensionality reduction, Neuron (2021), https://doi.org/
10.1016/j.neuron.2021.06.028

Neuron ¢ CellPress

F) Maximum variance of a unit vector

We defined loading similarity for a co-fluctuation pattern u (hormalized to have norm 1) of n neuronstobe 1 — %(n“), where the variance
is computed along the elements of u. This value lies between 0 and 1 because the maximum variance across the elements ofuis 1/ n.
We now show this mathematically.

Let ue R" be a unit vector. Because u is a unit vector, Y°7_,u? = 1. Using these facts:

Var(u) = E[u?] — E[u]?

:EZU,Z —E[u]
i=1

:%—Emf

1
<—
n

This holds with equality when E[u] =0 (i.e., when the mean across the elements in a co-fluctuation pattern is 0). This implies that the
smallest loading similarity is 0 (when Var(u) = 1/n), and the largest loading similarity is 1 (when Var(u) = 0).
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