
Article

Bridging neuronal correlations and dimensionality
reduction

Graphical abstract

Highlights

d Pairwise correlation and dimensionality reduction

characterize how neurons covary

d Pairwise and population metrics are closely related

mathematically and empirically

d Decrease in V4 pairwise correlation corresponds to multiple

population-level changes

d Multiple activity statistics should be used when describing

population covariability

Authors

Akash Umakantha, Rudina Morina,

Benjamin R. Cowley, Adam C. Snyder,

Matthew A. Smith, Byron M. Yu

Correspondence

mattsmith@cmu.edu (M.A.S.),

byronyu@cmu.edu (B.M.Y.)

In brief

Pairwise correlations and dimensionality

reduction are widely used approaches for

measuring how neurons covary.

Umakantha, Morina, Cowley, et al.

establish concrete mathematical

relationships between the two

approaches and empirically investigate

these relationships for visual cortical

neurons. The findings provide a

cautionary tale for summarizing

population-wide covariability using any

single activity statistic.

Umakantha et al., 2021, Neuron 109, 1–15

September 1, 2021 ª 2021 Elsevier Inc.

https://doi.org/10.1016/j.neuron.2021.06.028 ll



Article

Bridging neuronal correlations
and dimensionality reduction

Akash Umakantha,1,2,9 Rudina Morina,3,9 Benjamin R. Cowley,2,4,9 Adam C. Snyder,3,5,6,7 Matthew A. Smith,1,8,10,*
and Byron M. Yu1,3,8,10,11,*
1Carnegie Mellon Neuroscience Institute, Pittsburgh, PA 15213, USA
2Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
4Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
5Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14642, USA
6Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
7Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
8Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
9These authors contributed equally
10These authors contributed equally
11Lead contact

*Correspondence: mattsmith@cmu.edu (M.A.S.), byronyu@cmu.edu (B.M.Y.)

https://doi.org/10.1016/j.neuron.2021.06.028

SUMMARY

Two commonly used approaches to study interactions among neurons are spike count correlation, which de-

scribes pairs of neurons, and dimensionality reduction, applied to a population of neurons. Although both ap-

proaches have been used to study trial-to-trial neuronal variability correlated among neurons, they are often

used in isolation and have not been directly related.We first established concretemathematical and empirical

relationships between pairwise correlation andmetrics of population-wide covariability based on dimension-

ality reduction. Applying these insights to macaque V4 population recordings, we found that the previously

reported decrease in mean pairwise correlation associated with attention stemmed from three distinct

changes in population-wide covariability. Overall, our work builds the intuition and formalism to bridge be-

tween pairwise correlation and population-wide covariability and presents a cautionary tale about the infer-

ences one can make about population activity by using a single statistic, whether it be mean pairwise corre-

lation or dimensionality.

INTRODUCTION

A neuron can respond differently to repeated presentations of the

same stimulus. These variable responses are often correlated

across pairs of neurons from trial to trial, measured using spike

count correlations (rsc, also referred to as noise correlation; Cohen

and Kohn, 2011). Studies have reported changes in spike count

correlation across various experimental manipulations and cogni-

tive phenomena, including attention (Cohen and Maunsell, 2009;

Mitchell et al., 2009; Herrero et al., 2013; Gregoriou et al., 2014;

Ruff and Cohen, 2014a; Snyder et al., 2018), learning (Gu et al.,

2011; Jeanne et al., 2013; Ni et al., 2018), task difficulty (Ruff

and Cohen, 2014b), locomotion (Erisken et al., 2014), stimulus

drive (Maynard et al., 1999; Kohn and Smith, 2005; Smith and

Kohn, 2008; Miura et al., 2012; Ponce-Alvarez et al., 2013; Ruff

and Cohen, 2016b), decision making (Nienborg et al., 2012),

task context (Bondy et al., 2018), anesthesia (Ecker et al., 2010),

adaptation (Adibi et al., 2013), and more (Figure 1A). Spike count

correlation also depends on timescales of activity (Bair et al.,

2001; Kohn and Smith, 2005; Smith and Kohn, 2008; Mitchell

et al., 2009; Runyan et al., 2017), neuromodulation (Herrero

et al., 2013; Minces et al., 2017), and properties of the neurons

themselves, including their physical distance from one another

(Lee et al., 1998; Smith and Kohn, 2008; Smith and Sommer,

2013; Ecker et al., 2014; Solomon et al., 2015; Rosenbaum

et al., 2017), tuning preferences (Lee et al., 1998; Romo et al.,

2003; Kohn and Smith, 2005; Huang and Lisberger, 2009), and

neuron type (Qi and Constantinidis, 2012; Snyder et al., 2016).

Theoretical work has posited that changes in correlations affect

neuronal computations and sensory information coding (Zohary

et al., 1994; Shadlen and Newsome, 1998; Abbott and Dayan,

1999; Averbeck et al., 2006; Moreno-Bote et al., 2014; Sharpee

and Berkowitz, 2019; Rumyantsev et al., 2020; Bartolo et al.,

2020). Given such widespread empirical observations and theo-

retical insight, spike count correlation has been and remains

instrumental in our current understanding of how neurons interact.

Most studies compute the average spike count correlation

over pairs of recorded neurons for different experimental
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conditions, periods of time, neuron types, etc. A decrease in this

mean correlation is commonly attributed to a reduction in the

size (or gain) of shared co-fluctuations (Shadlen and Newsome,

1998; Rabinowitz et al., 2015; Lin et al., 2015; Ecker et al., 2016;

Huang et al., 2019; Ruff et al., 2020), e.g., a decrease in the

strength of ‘‘common shared input’’ that drives each neuron in

the population. However, other distinct changes at the level of

the entire neuronal population can manifest as the same

decrease in mean pairwise correlation (Figure 1B). For example,

a common input that drives the activity of all neurons up and

down together could be altered to drive some neurons up and

other neurons down. Alternatively, that first common input signal

might remain the same, but a second input signal could be intro-

duced that drives some neurons up and others down. It is difficult

to differentiate these distinct possibilities using a single summary

statistic, such as mean spike count correlation.

Distinguishing among these changes to the population-wide

covariability might be possible by considering additional statis-

tics that measure how the entire population of neurons co-fluc-

tuates together. In particular, one may use dimensionality reduc-

tion to compute statistics that characterize multiple distinct

features of population-wide covariability (Cunningham and Yu,

2014). Dimensionality reduction has been used to investigate de-

cision making (Harvey et al., 2012; Mante et al., 2013; Kiani et al.,

2014; Kaufman et al., 2015), motor control (Churchland et al.,

2012; Gallego et al., 2017), learning (Sadtler et al., 2014; Ni

et al., 2018; Vyas et al., 2018), sensory coding (Mazor and Lau-

rent, 2005; Pang et al., 2016), spatial attention (Cohen andMaun-

sell, 2010; Rabinowitz et al., 2015; Snyder et al., 2018; Huang

et al., 2019), interactions between brain areas (Perich et al.,

2018; Ruff and Cohen, 2019a; Ames and Churchland, 2019; Se-

medo et al., 2019; Veuthey et al., 2020), and network models

(Williamson et al., 2016; Mazzucato et al., 2016; Recanatesi

et al., 2019), among others. As with mean spike count correla-

tion, the statistics computed from dimensionality reduction can

also change with attention (Rabinowitz et al., 2015; Huang

et al., 2019), stimulus drive (Churchland et al., 2010; Cowley

et al., 2016; Snyder et al., 2018), motor output (Gallego et al.,

2018), learning (Athalye et al., 2017), and anesthesia (Ecker

et al., 2014). However, unlike mean spike count correlation

(henceforth referred to as a ‘‘pairwise metric’’), which averages

across pairs of neurons, the statistics computed from dimen-

sionality reduction (henceforth referred to as ‘‘population met-

rics’’) consider the structure of population-wide covariability

(Figure 1C). Although dimensionality reduction is often applied

to trial-averaged activity (removing trial-to-trial variability), here,

we focus on using dimensionality reduction to study trial-to-trial

variability (around the trial-averaged mean). An example of a

commonly reported population metric is dimensionality (Yu

et al., 2009; Rabinowitz et al., 2015; Cowley et al., 2016; William-

son et al., 2016; Mazzucato et al., 2016; Gao and Ganguli, 2015;

Gallego et al., 2017; Stringer et al., 2019a; Recanatesi et al.,

2019). Dimensionality is used to assess whether the number of

population co-fluctuation patterns (possibly reflecting the num-

ber of common inputs) changes across experimental conditions

(Figure 1B, condition 1 versus condition 2, right panel). Thus,

population metrics could help to distinguish among the distinct

ways in which population-wide covariability can change, espe-

cially those that lead to the same change in mean spike count

correlation (Figure 1B).

Both pairwise and population metrics aim to characterize how

neurons covary, and both can be computed from the same spike

count covariance matrix (Figure 1C). Still, studies rarely report

both, and the relationship between the two is not known. In

this study, we establish the relationship between pairwise met-

rics and population metrics both analytically and empirically us-

ing simulations. We find that changes in mean spike count corre-

lation could correspond to several distinct changes in population

metrics, including (1) the strength of shared variability (e.g., the

strength of a common input), (2) whether neurons co-fluctuate

together or in opposition (e.g., how similarly a common input

drives each neuron in the population), or (3) the dimensionality

(e.g., the number of common inputs). Furthermore, we show

that a rarely reported statistic—the standard deviation of spike

count correlation—provides complementary information to the

mean spike count correlation about how a population of neurons

co-fluctuates. Applying this understanding to recordings in area

V4 of macaque visual cortex, we found that the previously re-

ported decrease in mean spike count correlation with attention

stems from multiple distinct changes in population-wide covari-

ability. Overall, our results demonstrate that common ground ex-

ists between the literatures of spike count correlation and dimen-

sionality reduction and provides a cautionary tale for attempting

to draw conclusions about how a population of neurons covaries

using one, or a small number of, statistics. Our framework builds

the intuition and formalism to navigate between the two ap-

proaches, allowing for a more interpretable and richer descrip-

tion of the interactions among neurons.

RESULTS

Defining pairwise and population metrics

We first define the metrics that we will use to summarize (1) the

distribution of spike count correlations (i.e., pairwise metrics)

and (2) dimensionality reduction of a population covariance ma-

trix (i.e., population metrics). For pairwise metrics, we consider

the mean and standard deviation (SD) of rsc across all pairs of

neurons, which summarize the rsc distribution (Figure 1C, bottom

left panel). For population metrics, which are derived from factor

analysis (FA), we consider loading similarity, percent shared vari-

ance (abbreviated to %sv), and dimensionality (described below

and in more detail in STAR Methods). These metrics each

describe some aspect of population-wide covariability and

thus represent natural, multivariate extensions of rsc.

To illustrate these three populationmetrics, consider the activity

of a population of neurons over time (Figure 2A, spike rasters). If

the activity of all neurons goes up and down together, we would

find the pairwise spike count correlations between all pairs of neu-

rons to be positive. A more succinct way to characterize this pop-

ulation activity is to identify a single time-varying latent co-fluctu-

ation that is shared by all neurons (Figure 2A, blue line). The way in

which neurons are coupled to this latent co-fluctuation is indicated

by a loading for each neuron. In this example, because the latent

co-fluctuation describes each neuron’s activity going up and

down together, the loadings have the same sign (Figure 2A, green

rectangles). We refer to the latent co-fluctuation’s corresponding
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set of loadings as a co-fluctuation pattern. A co-fluctuation

pattern can be represented as a direction in the population activity

space, where each coordinate axis corresponds to the activity of

one neuron (Figure 2A, right panel).

The first population metric is loading similarity, a value be-

tween 0 and 1 that describes to what extent the loadings

differ across neurons within a co-fluctuation pattern. A

loading similarity close to 1 indicates that the loadings

A

B

C

Figure 1. How do spike count correlations

between pairs of neurons (i.e., pairwise met-

rics) relate to how the entire population co-

fluctuates (i.e., population metrics)?

(A) Four example experiments in which mean spike

count correlation (rsc mean) has been observed to

change between experimental conditions. These

include spatial attention (macaque visual area V4;

Cohen and Maunsell, 2009; Mitchell et al., 2009;

Gregoriou et al., 2014; Luo and Maunsell, 2015;

Snyder et al., 2018), perceptual learning (macaque

dorsal medial superior temporal area; Gu et al.,

2011), locomotion (mouse visual area V1; Erisken

et al., 2014), and stimulus drive (rat anterior piriform

cortex; Miura et al., 2012).

(B) The same change in rsc mean (from 0.2 to 0.1

between conditions 1 and 2) could correspond to

multiple distinct changes in the activity of the

population of neurons. Condition 2, left: a decrease

in rsc mean could correspond to some neurons

becoming anti-correlated with others in the popu-

lation; in this case, some neurons that were previ-

ously positively correlated are now anti-correlated

with the rest of the population (bottom rows of

raster plot). Condition 2, middle: a decrease in rsc

mean could correspond to a decrease in how

strongly neurons co-fluctuate together; in this case,

neurons covary as in condition 1, but each neuron

does not co-fluctuate with other neurons as

strongly. Condition 2, right: a decrease in rsc mean

could correspond to the introduction of another

‘‘mode’’ of covariation (i.e., an increase in the

dimensionality of population activity); in this case,

neurons in the top half of the raster covary as in

condition 1, but neurons in the bottom half of the

raster covary in a manner independent from those

in the top half.

(C) Pairwise ðrscÞ and population (dimensionality

reduction) metrics both arise from the same spike

count covariance matrix, but the precise relation-

ship between these two sets of metrics remains

unknown. Top row: each element of the spike count

covariance matrix corresponds to the covariance

across responses to repeated presentations of the

same stimulus for two simultaneously recorded

neurons (e.g., neurons i and j, left inset). Bottom

row: pairwise metrics (left) typically summarize the

distribution of spike count correlation with the

mean (rsc mean); in this work, we propose addi-

tionally reporting the standard deviation (rsc SD).

Population metrics (right) of the spike count

covariance matrix are identified by applying

dimensionality reduction to the population activity

(e.g., gray plane depicts a low-dimensional space

describing how neurons covary; see also Fig-

ure S5). By understanding the relationship between

pairwise and population metrics, we can better

interpret how changes in pairwise statistics (e.g.,

experiments in A) correspond to changes in pop-

ulation metrics and vice versa.
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have the same sign and are of similar magnitude (Figure 2A,

green rectangles). A loading similarity close to 0 indicates

that many of the loadings differ, either in magnitude, sign,

or both (Figure 2B, green and pink squares). In this case,

some neurons may have positive loadings and co-fluctuate

in the same direction as the latent co-fluctuation (Figure 2B,

top rows of neurons show high firing rates when blue line is

high and low firing rates when blue line is low), whereas

other neurons may have negative loadings and co-fluctuate

in the opposite direction as the latent co-fluctuation (Fig-

ure 2B, bottom rows of neurons show low firing rates

when blue line is high and high firing rates when blue line

is low). One can view changing the loading similarity as

rotating the direction of a co-fluctuation pattern in popula-

tion activity space (Figure 2B, bottom plot).

The second population metric is percent shared variance or

%sv, which measures the percentage of spike count variance

explained by the latent co-fluctuation. This percentage is

computed per neuron and then averaged across all neurons in

the population (Williamson et al., 2016). A%sv close to 100% in-

dicates that the activity of each neuron is tightly coupled to the

latent co-fluctuation, with a small portion of variance that is inde-

pendent to each neuron (Figure 2A). A%sv close to 0% indicates

that neurons fluctuate almost independently of each other and

their activity weakly adheres to the time course of the latent

co-fluctuation (Figure 2C). By changing %sv, one does not

change the co-fluctuation pattern in population activity space

(Figure 2, blue lines are the same in panels A and C) but rather

the strength of the latent co-fluctuation (Figure 2C, blue line

has smaller amplitude than in panel A).

neuron 1

neuron 2

time

latent 1

latent 2

decrease loading similarity increase dimensionality

0

-1

1

loading
value

1 2

latent

pattern

high-d population
activity space

pattern

rotate
axis

loadings
changed
from
panel a

added
new
pattern

new
dimension

decrease percent
shared variance

smaller amplitude than in panel a

dimension
from panel a

loading

A

B C D

Figure 2. Intuition about population metrics: loading similarity, percent shared variance (%sv), and dimensionality

(A) Population activity (where each row is the spike train for one neuron over time; simulated data) is characterized by a latent co-fluctuation (blue) and a co-

fluctuation patternmade up of loadings (green rectangles). Each neuron’s time-varying firing rate is a product of the latent co-fluctuation and that neuron’s loading

(which may either be positive or negative). One may also view population activity through the lens of the population activity space (right plot), where each axis

represents the activity of one neuron (n1; n2; n3 represent neuron 1, neuron 2, and neuron 3). In this space, a co-fluctuation pattern corresponds to an axis whose

orientation depends on the pattern’s loadings (right plot, blue line).

(B) Population activity with a lower loading similarity than in (A). The loadings have both positive and negative values (i.e., dissimilar loadings), leading to neurons

that are anti-correlated (compare top rows with bottom rows of population activity). Changing the loading similarity will rotate a pattern’s axis in the population

activity space (bottom plot, ‘‘rotate axis’’).

(C) Population activity with a lower %sv than in (A). The latent co-fluctuation shows smaller amplitude changes over time than in (A), which leads to a lower %sv.

Changing %sv leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in A).

(D) Population activity with a dimensionality of 2, compared to a dimensionality of 1 in (A). Adding a new dimension leads to a new latent co-fluctuation (orange

line) and a new co-fluctuation pattern (‘‘added new pattern’’). Each neuron’s time-varying firing rate is expressed as a weighted combination of the latent co-

fluctuations, where the weights correspond to the neuron’s loadings in each co-fluctuation pattern. Here, each dimension corresponds to a distinct subset of

neurons (top rows versus bottom rows); in general, this need not be the case, as each neuron typically has non-zero weights for both dimensions. In the population

activity space (bottom plot), the activity varies along the two axes (i.e., a 2D plane) defined by the two co-fluctuation patterns. See also Figure S5. The spike trains

shown in this figure were created for the sole purpose of illustrating the population metrics in this figure and were not used in subsequent analyses. The spike

trains were generated by first creating latent co-fluctuations using Gaussian processes. These latent co-fluctuations were then linearly combined using loading

weights (drawn from a standard normal distribution), yielding a time-varying firing rate for each neuron. Spike trains were generated according to an inhomo-

geneous Bernoulli process based on the time-varying firing rates. The intended duration of each spike train plotted is around 10 s.
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The third population metric is dimensionality. We define

dimensionality as the number of co-fluctuation patterns (or di-

mensions) needed to explain the shared variability among neu-

rons (see STAR Methods). The variable activity of neurons may

depend on multiple common inputs, e.g., top-down signals like

attention and arousal (Rabinowitz et al., 2015; Cowley et al.,

2020) or spontaneous and uninstructed behaviors (Stringer

et al., 2019b;Musall et al., 2019). Furthermore, these common in-

puts may differ in how they modulate neurons. This may result in

two or more dimensions of the population activity (Figure 2D,

blue and orange latent co-fluctuations). For illustrative purposes,

each dimension might correspond to a single group of tightly

coupled neurons (Figure 2D, neurons in top rows have non-

zero loadings for pattern 1, whereas neurons in bottom rows

have non-zero loadings for pattern 2). However, in general,

each neuron can have non-zero loadings for multiple patterns.

In population activity space, adding a new dimension adds a

new axis along which neurons covary (Figure 2D, orange line).

We use the term ‘‘dimension’’ to refer either to a latent co-fluctu-

ation or its corresponding co-fluctuation pattern, depending on

context.

Varying population metrics to assess changes in

pairwise metrics

Given that both pairwise and population metrics are computed

from the same spike count covariance matrix (Figure 1C), a

connection should exist between the two. We establish this

connection by deriving mathematical relationships and carrying

out simulations. In simulations, we assessed how systematically

changing one of the population metrics (e.g., increasing loading

similarity; Figure 3A) changes the spike count covariance matrix

(Figure 3B) and the corresponding rsc distribution (Figure 3C),

which we summarized using itsmean and standard deviation (Fig-

ure 3D). The covariancematrixwas parameterized in away that al-

lowed us to create covariance matrices with specified population

metrics (see STAR Methods). Thus, our simulation procedure

does not simulate neuronal activity but rather creates covariance

matrices that are consistent with the specified populationmetrics.

Loading similarity has opposing effects on rsc mean

and SD

We first asked how the loading similarity of a single co-fluctuation

pattern (i.e., onedimension) affected rsc meanandSD. Intuitively, a

high loading similarity indicates that the activity of all neurons
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Figure 3. Relationship between population metrics and pairwise metrics

(A–D) The simulation procedure to assess how systematic changes in population metrics lead to changes in pairwise metrics.

(A)We first systematically varied one of the population metrics while keeping the others fixed. For example, we can increase the loading similarity from a low value

(left, blue) to a high value (right, green), while keeping %sv and dimensionality fixed.

(B) Then, we constructed covariancematrices corresponding to each value of the populationmetric in (A) (see STARMethods), without generating synthetic data.

(C) For each covariance matrix from (B), we directly computed the correlations (i.e., the rsc distributions).

(D) We computed rsc mean and rsc SD from the rsc distributions in (C) and then assessed how the change in a given population metric from (A) changed pairwise

metrics. In this case, the increase in loading similarity increased rsc mean and decreased rsc SD (blue dot to green dot).

(E) Varying loading similarity with a fixed%sv of 50%and dimensionality of 1. Each dot corresponds to the rsc mean and rsc SDof one simulated covariancematrix

with specified populationmetrics (dots are close together and appear to form a continuum). The color of each dot corresponds to the loading similarity (see STAR

Methods), where a value of 1 indicates that all loading weights have the same value.

(F) Varying %sv. The same setting as in (E), except we consider two different values of percent shared variance (50% and 30%).

(G) Varying dimensionality (i.e., number of co-fluctuation patterns) while sweeping loading similarity between 0 and 1 and keeping %sv fixed at 50%. In this

simulation, the relative strengths of each dimension uniform across dimensions (i.e., flat eigenspectra; see STAR Methods).

See also Figure S7.
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increasesanddecreases together (Figure2A), resulting invaluesof

rsc that are all positive and similar in value. Indeed, in simulations,

we found that high loading similarity corresponded to large rsc
mean and rsc SD close to 0 (Figure 3E, green dots near horizontal

axis). On the other hand, a low loading similarity indicates that,

when some neurons increase their activity, others decrease their

activity (Figure 2B), resulting in some positive rsc values (for pairs

that change their activity in the samedirection) and some negative

rsc values (for pairs that change their activity in opposition). In sim-

ulations, a low loading similarity indeed corresponded to an rsc
mean close to 0 and a large rsc SD (Figure 3E, blue dots near ver-

tical axis). By varying the loading similarity, we surprisingly

observed an arc-like trend in the rsc mean versus rsc SD plot (Fig-

ure 3E). In Math Note A, we derive the analytical relationship be-

tween loading similarity and rsc. In Math Note B, we show mathe-

matically why the rsc mean versus rsc SD relationship follows a

circular arc.

Decreasing %sv reduces rsc mean and SD

Wenext asked how%sv, whichmeasures the percentage of each

neuron’s variance that is shared with other neurons in the popula-

tion, is related to rsc mean and SD. Intuitively, onemight expect%

sv and rsc mean to be closely related because rsc measures the

degree to which the activity of two neurons is shared (Cohen

and Kohn, 2011). We investigated this in simulations and found

that how closely %sv and rsc mean were related depended on

the loading similarity. When loading similarity was high (Figure 3F,

green dots), there was a direct relationship between %sv and rsc
mean (specifically, %sv equals rsc mean). However, when loading

similarity was low (Figure 3F, blue dots), the relationship between

%sv and rsc mean was less direct. Namely, rsc mean remained

close to zero, regardless of %sv. This illustrates that rsc mean

and %sv are not the same. It is possible for a population of neu-

rons with high %sv (e.g., Figure 3F, blue dots in outer arc) to

have smaller rsc mean than a population with lower%sv (e.g., Fig-

ure 3F, green dots in inner arc).

These relationships that we have shown through simulation

can be captured mathematically. First, if we have knowledge

of the loading weights in the co-fluctuation pattern, the rsc be-

tween a pair of neurons can be expressed in terms of the %sv

and loading values of the two neurons (Math Note A),

rij =
ffiffiffiffiffiffiffiffi

fifj

p

signðwiwjÞ; (Equation 1)

where rij is the rsc between neurons i and j, fi and fj are the%sv

of each neuron (expressed as a proportion per neuron, in

contrast to %sv in Figure 3F, which shows the average %sv

across all neurons), andwi andwj are the loadings of the neurons

in the co-fluctuation pattern. The rsc mean is the average of rij
values across all neuron pairs. From Equation 1, we observe

that, when loading similarity is high (i.e., most loading weights

have the same sign), %sv and rsc mean are directly related

(i.e., rij =
ffiffiffiffiffiffiffiffi

fifj

p

). However, when loading similarity is low (i.e.,

some loading weights are positive and others are negative), rsc
mean is small, regardless of %sv, because some pairs have

signðwiwjÞ= + 1 and others have signðwiwjÞ = � 1.

Second, if we have information about the rsc SD (instead of

loading weights), we can establish the following relationship be-

tween %sv, rsc mean, and rsc SD (Math Note B):

%svz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrsc meanÞ2 + ðrsc s:d:Þ2
q

:

In other words, in the rsc mean versus rsc SD plot, %sv is re-

flected in the distance of a point from the origin (Figure 3F).

This relationship holds, regardless of the loading similarity. The

intuition is that the %sv corresponds to the magnitude of rsc
values (i.e., the

�

�rij
�

� from Equation 1).

These findings highlight the pitfalls of considering a single sta-

tistic (e.g., rsc mean) on its own and the benefits of considering

multiple statistics (e.g., both rsc mean and SD) when trying to

draw conclusions about how neurons covary. By considering

rsc mean and SD together, one can gain insight into the loading

similarity (Figure 3E) and the %sv (Figure 3F) of a neuronal pop-

ulation. Thus far, we have only considered the specific case

where activity co-fluctuates along a single dimension in the firing

rate space. We next considered how pairwise metrics change in

the more general case where neuronal activity co-fluctuates

along multiple dimensions.

Adding more dimensions tends to reduce rsc mean

and SD

We sought to assess how dimensionality (i.e., the number of co-

fluctuation patterns) is related to pairwisemetrics. In simulations,

we increased the number of co-fluctuation patterns (compare

Figure 2A to 2D; see STAR Methods), while sweeping loading

similarity and fixing the total %sv. We found that increasing

dimensionality tended to reduce rsc mean and SD (Figure 3G,

dots for larger dimensionalities lay closer to the origin than

dots for smaller dimensionalities).

It seems counterintuitive that adding a new way in which neu-

rons covary reduces the magnitude of rsc. The intuition is that, if

multiple distinct (i.e., orthogonal) dimensions exist, then a neuron

pair interacts in opposing ways along different dimensions. For

example, consider two neurons with loadings of the same sign

in one co-fluctuation pattern and opposite sign in the second

pattern. If only the first dimension exists, the two neurons would

go up and down together and be positively correlated. If only the

second dimension exists, the two neurons would co-fluctuate in

opposition and be negatively correlated. When both dimensions

exist, the positive correlation from the first dimension and the

negative correlation from the second dimension offset, and the

resulting correlation between the neurons would be smaller

than if only the first dimension were present. We formalize the

above intuition in Math Note C. We also show analytically that

increasing dimensionality tends to move points closer to the

origin in the rsc mean versus rsc SD plot (i.e., decrease rsc
mean and SD; Math Note D).

An increase in dimensionality does not imply that both rsc mean

and rsc SD necessarily decrease. For example, in the case where

the first dimension has high loading similarity, addingmoredimen-

sions means it is less likely for rsc SD to be 0 (Figure 3G, compare

dot closest to horizontal axis for ‘‘1 dim.’’ to that for ‘‘2 dims.’’). The

intuition is that, if the first dimension has a loading similarity of 1,

the loading weights for all neurons are the same and thus rsc
values between all pairs are the same, resulting in rsc SDof 0. Add-

ing an orthogonal dimension to this pattern necessarily means

adding a pattern with low loading similarity (Math Note E), making
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it less likely for rsc across all pairs to be the same. Therefore, rsc SD

is unlikely to be 0 for two dimensions (Figure 3G; the smallest rsc
SD for 2 dims. is around 0.2). Still, in Figure 3G, the dots for 2

dims. are closer to the origin than the dots for 1 dim., implying

that, even if rsc SD increases with an increase in dimensionality,

the rsc mean must decrease to a larger extent (Math Note D). As

another example, in the case where the first dimension has low

loading similarity, adding a second dimension with high loading

similarity would increase rsc mean. The rsc SD would decrease

to a larger extent than the increase in rsc mean such that the dot

for two dimensions is closer to the origin than that for one dimen-

sion (Math Note D).

The relative strength of each dimension impacts

pairwise metrics

In the previous simulation (Figure 3G), we assumed that each

dimension explained an equal proportion of the overall shared

variance (e.g., for two dimensions, each dimension explained

half of the shared variance; see STAR Methods). However, it is

typically the case for recorded neuronal activity that some di-

mensions explain more shared variance than others; in other

words, neuronal activity co-fluctuates more strongly along

some patterns than others (Sadtler et al., 2014; Williamson

et al., 2016; Mazzucato et al., 2016; Gallego et al., 2018; Huang

et al., 2019; Stringer et al., 2019a; Ruff et al., 2020). We sought to

assess the influence of the relative strength of each dimension

on pairwise metrics.

We reasoned that stronger dimensions would play a larger role

than weaker dimensions in determining the rsc distribution and

pairwise metrics. Extending Equation 1 to multiple dimensions,

we show that the rsc between a pair of neurons can be expressed

as the sum of a contribution from each constituent dimension

(Math Note C). The stronger a dimension, the larger the magni-

tude of its contribution to rsc and thus the larger its impact on

rsc mean and SD.

To test this empirically, we performed a simulation with two di-

mensions while systematically varying the relative strength of

each dimension. We considered two scenarios: (1) one dimen-

sion has a pattern with high loading similarity and one dimension

has a pattern with low loading similarity (Figure 4A) and (2) both

dimensions have patterns with low loading similarity (Figure 4B).

Note that both dimensions cannot have patterns with high

loading similarity because they would not be orthogonal (Math

Note E).

In scenario (1), where one dimension’s pattern has high

loading similarity and the other has low loading similarity, rsc
mean and rsc SD reflect the loading similarity of the dominant

dimension (Figure 4A). When the dimension with a high loading

similarity pattern dominated, rsc mean was large and rsc SD

was small (Figure 4A, red dots are close to horizontal axis).

When the dimension with a low loading similarity pattern domi-

nated, rsc mean was small and rsc SDwas large (Figure 4A, black

dots are close to vertical axis). When the two dimensions were of

equal strength (i.e., neither dimension dominated), rsc mean and

rsc SD were both intermediate values (Figure 4A, light gray dots

are between red and black dots). Thus, the dimensions along

which neuronal activity co-fluctuates more strongly have a

greater influence on pairwise metrics (Figure S1).

In scenario (2), where both dimensions have patterns of low

loading similarity, rsc mean was low and rsc SD was high (Fig-

ure 4B), similar to when there is one dimension with low loading

similarity (Figure 3E, blue dots). When we made one dimension

stronger than the other, rsc mean remained low and rsc SD re-

mained high (Figure 4B, light gray dots and black dots are

both close to vertical axis) because both patterns had low

loading similarity. However, the radius of the arc increased (Fig-

ure 4B, black dots farther from the origin than light gray dots)

and was close to the arc that would have been produced with

a single dimension (Figure 3G, 1 dim.). Thus, whereas changing

the number of dimensions causes discrete jumps in the arc

radius (Figure 3G), changing the relative strength of each

dimension allows for rsc mean and rsc SD to vary continuously

between the arcs for different dimensionalities. Put another

way, changing the relative strength of each dimension varies

the ‘‘effective dimensionality’’ of population activity in a contin-

uous manner. Neuronal activity for which one dimension dom-

inates another (Figure 4B, black dots) has a lower effective

dimensionality than when both dimensions have equal strength

(Figure 4B, light gray dots).

A B Figure 4. Relative strengths of dimensions

affect rsc distributions

With dimensionality of 2, we systematically varied

the relative strengths of the two dimensions with a

fixed total %sv of 50%. We considered two sce-

narios: (1) one dimension has high loading similarity

and the other dimension has low loading similarity

(A) and (2) both dimensions have low loading sim-

ilarity (B). Each dot represents one simulated

covariancematrix and rsc distribution. The colors of

the dots indicate different relative strengths be-

tween the two dimensions, and numbers next to

each cloud of dots indicate the ratio between the

relative strength associated with each dimension.

For example, in (A), red dots correspond to the high

loading similarity dimension being 19 times stron-

ger (95:5) than the low loading similarity dimension.

Black dots correspond to the low loading similarity

dimension being 19 times stronger (5:95) than the high loading similarity dimension. In (B), because both patterns have low loading similarity, clouds for 80:20

and 95:5 are very similar to clouds for 20:80 and 5:95, respectively, and are thus omitted for clarity. See also Figure S1.
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Reporting only a single statistic provides an incomplete

description of population covariability

Figure 5 summarizes the relationships that we have established

between pairwisemetrics and population metrics. Rotating a co-

fluctuation pattern from a low loading similarity to a high loading

similarity increases rsc mean and decreases rsc SD along an arc

(Figure 5, arrow outside pink arc). Decreasing %sv decreases

both rsc mean and SD (Figure 5, arrow pointing toward origin),

and increasing dimensionality also tends to decrease rsc mean

and SD (Figure 5, pink to yellow shaded regions).

These results provide a cautionary tale that using a single sta-

tistic on its own provides an opaque description of population-

wide covariability. For example, a change in rsc mean could

correspond to changes in loading similarity, %sv, dimension-

ality, or a combination of the three. Likewise, reporting dimen-

sionality on its own would be incomplete because the role of a

dimension in explaining population-wide covariability depends

how much shared variance it explains and the loading similarity

of its co-fluctuation pattern. For example, consider a decrease in

dimensionality by 1. This would have little impact on population-

wide covariability if the removed dimension explains only a small

amount of shared variance, whereas it could have a large impact

if the removed dimension explains a large amount of shared

variance.

Considering multiple statistics together provides a richer

description of population-wide covariability. For example, in

the case where population activity co-fluctuates along a single

dimension, rsc mean and rsc SD can be used together to approx-

imate %sv (using distance from the origin) and deduce whether

loading similarity is low (rsc SD > rsc mean) or high (rsc mean > rsc
SD), whereas rsc mean alone would not provide much informa-

tion about%sv or loading similarity (cf. Figure 5). In the next sec-

tion, we further demonstrate using neuronal recordings how

relating pairwise and population metrics using the framework

we have developed (Figure 5) provides a richer description of

how neurons covary than using a single statistic (e.g., rsc
mean) alone.

Case study: V4 neuronal recordings during spatial

attention

When spatial attention is directed to the receptive fields of neu-

rons in area V4 of macaque visual cortex, rsc mean among those

neurons decreases (Cohen and Maunsell, 2009; Mitchell et al.,

2009; Gregoriou et al., 2014; Snyder et al., 2016, 2018). This

decrease has often been attributed to a reduction in sharedmod-

ulations among the neurons. However, we have shown both

mathematically and in simulations that several distinct changes

in population metrics (e.g., decrease in loading similarity,

decrease in%sv, or an increase in dimensionality) could underlie

this decrease in rsc mean (Figure 5). Here, we sought to assess

which aspects of population-wide covariability underlie, and

how each of them contribute to, the overall decrease in rsc mean.

We analyzed activity recorded simultaneously from tens of

neurons in macaque V4 while the animal performed an orienta-

tion-change detection task (Figure 6A; previously reported in

Snyder et al., 2018). To probe spatial attention, we cued the an-

imal to the location of the stimulus that wasmore likely to change

in orientation. As expected, perceptual sensitivity increased for

orientation changes in the cued stimulus location (Figure 6A,

inset, red dot above black dot). ‘‘Attend-in’’ trials were those in

which the cued stimulus location was inside the aggregate

receptive fields (RFs) of the recorded V4 neurons, whereas

‘‘attend-out’’ trials were those in which the cued stimulus loca-

tion was in the opposite visual hemifield.

For pairwise metrics, rsc mean decreased when attention was

directed into the RFs of the V4 neurons (Figure 6B, left panel),

consistent with previous studies (Cohen and Maunsell, 2009;

Mitchell et al., 2009; Gregoriou et al., 2014; Snyder et al., 2016,

2018). We further found that rsc SD was lower for attend-in trials

than for attend-out trials, an effect not reported previously (Fig-

ure 6B, right panel).

The decrease in both rsc mean and rsc SD could arise from

several different types of distinct changes in population-wide co-

variability (Figure 5). To compute the population metrics, we

applied FA separately to attend-out and attend-in trials (see

STAR Methods). FA is the most basic dimensionality reduction

method that characterizes shared variance among neurons

Figure 5. Summary of relationship between pairwise and population

metrics

A change in rsc mean and rsc SD may correspond to changes in loading sim-

ilarity, %sv, dimensionality, or a combination of the three. Shaded regions

indicate the possible rsc mean and rsc SD values for different dimensionalities;

increasing dimensionality tends to decrease rsc mean and rsc SD (shaded re-

gions for larger dimensionalities become smaller). Within each shaded region,

decreasing %sv decreases both rsc mean and SD radially toward the origin.

Finally, rotating co-fluctuation patterns such that the loadings are more similar

(going from low to high loading similarity) results in moving clockwise along an

arc such that rsc mean increases and rsc SD decreases. We also note two

subtle trends. First, there are more possibilities for loading similarity to be low

than high (Math Note E), suggesting that rsc SD will generally tend to be larger

than rsc mean if neuronal activity varied along a randomly chosen co-fluctu-

ation pattern (shading within each region is darker near the vertical axis than

the horizontal axis). Second, this effect becomes exaggerated for higher

dimensional neuronal activity, as many dimensions can have low loading

similarity but only one dimension can have high loading similarity (Math Note

E). Thus, it becomes progressively unlikely for rsc SD to be 0 as dimensionality

increases (shaded regions for larger dimensionalities lifted off the horizon-

tal axis).
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(Cunningham and Yu, 2014) and is consistent with how we

created covariance matrices in Figures 3 and 4. We found three

distinct changes in population metrics. First, neuronal activity

during attend-in trials had lower %sv than during attend-out tri-

als (Figure 6C, left), consistent with previous interpretations that

attention reduces the strength of shared modulations (Rabino-

witz et al., 2015; Ecker et al., 2016; Huang et al., 2019; Ruff

et al., 2020). Second, we also found lower loading similarity for

attend-in trials than attend-out trials for the dominant dimension

(i.e., the dimension that explains the largest proportion of the

A

B

C

D

Figure 6. An observed decrease in rsc mean

of macaque V4 neurons during a spatial

attention task corresponds to changes in

multiple population metrics

(A) Experimental task design. On each trial, mon-

keys maintained fixation while Gabor stimuli were

presented for 400ms (with 300–500ms in between

presentations). When one of the stimuli changed

orientation, animals were required to saccade to

the changed stimulus to obtain a reward. At the

beginning of a block of trials, we performed an

attentional manipulation by cuing animals to the

location of the stimulus that was more likely to

change for that block (dashed circle denotes the

cued stimulus and was not presented on the

screen). The cued location alternated between

blocks. Animals were more likely to detect a

change in stimulus at cued rather than uncued

locations (inset in bottom right, p < 0.002 for both

animals; data for monkey 1 are shown). During this

task, we recorded activity from V4 neurons whose

receptive fields (RFs) overlapped with one of the

stimulus locations.

(B) rsc mean (left panel) and rsc SD (right panel)

across recording sessions for two animals. Black

denotes ‘‘attend-out’’ trials (i.e., the cued location

was outside the recorded V4 neurons’ RFs), and

red denotes ‘‘attend-in’’ trials (i.e., the cued loca-

tion was inside the RFs). Data were pooled across

both animals to compute p values reported in titles

for comparison of attend-out (black) and attend-in

(red). For individual animals, rsc mean was lower

for attend-in than attend-out (p < 0.001 for each

animal). rsc SD was also lower for attend-in than

attend-out (p < 0.05 for monkey 1 and p = 0.148 for

monkey 2).

(C) Population metrics identified across recording

sessions for two animals (same data as in B). Black

denotes attend-in trials; red denotes attend-out

trials. Data were again pooled across animals to

compute p values reported in titles for comparing

attend-out and attend-in. %sv was lower for

attend-in than attend-out (p < 0.001 for monkey 1

and p < 0.02 for monkey 2). Loading similarity was

lower for attend-in than attend-out (p < 0.001 for

monkey 1 and p = 0.162 for monkey 2). Dimen-

sionality was lower for attend-in than attend-out

(p = 0.113 for monkey 1 and p = 0.174 for monkey

2). In (A)–(C), dots indicate means and error bars

indicate 1 SEM, both computed across recording

sessions. See also Figure S2.

(D) Summary of the real data results. Attention

decreases both rsc mean and rsc SD (black dot to

red dot). These decreases in pairwise metrics

correspond to a combination of decreases in %sv,

loading similarity, and dimensionality (dashed ar-

rows).

See also Figures S3, S4, and S6.
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shared variance; Figure 6C, middle; see also Figure S2B). This

implies that, with attention, neurons in the population co-fluc-

tuate in a more heterogeneous manner (i.e., more pairs of neu-

rons co-fluctuate in opposition and fewer pairs co-fluctuate

together). Third, we found that dimensionality was slightly lower

for attend-in than attend-out trials (Figure 6C, right). Thus, on

average, a smaller number of distinct shared signals were pre-

sent when attention was directed into the neurons’ RFs. The

small change in dimensionality is consistent with the relative

strength of each dimension (i.e., eigenspectrum shape) being

similar for attend-in and attend-out (Figure S2A). Taken together,

this collection of observations of both pairwise and population

metrics leads to a more refined view of how attention affects

population-wide covariability.

The pairwise (Figure 6B) and population (Figure 6C) metrics

are computed based on the same recorded activity, and each

represents a different view of population activity. The central

contribution of our work is to provide a framework by which to

understand these two perspectives and five different metrics in

a coherent manner. Using the relationships between pairwise

and population metrics we have established in the rsc mean

versus rsc SD space (Figure 5), we can decompose the decrease

in rsc mean and SD into (1) a small decrease in dimensionality

(Figure 6D, small dashed arrow), (2) a decrease in loading similar-

ity (Figure 6D, medium dashed arrow), and (3) a substantial

decrease in %sv (Figure 6D, large dashed arrow). We quantify

these contributions in Figure S3. The rsc mean and SDdecreased

despite the decrease in dimensionality (which alone would have

tended to increase rsc mean and SD) because of the larger con-

tributions of loading similarity and %sv to pairwise metrics in

these V4 recordings. We have also applied the same analysis

to population recordings in visual area V1 (Zandvakili and

Kohn, 2015; available on http://crcns.org) and found that,

although rsc mean and SD both decreased (like in the V4 record-

ings), the population metrics changed in a different way

compared to the V4 recordings (Figure S4). Together, these an-

alyses demonstrate the need for considering both pairwise and

population metrics together when studying correlated variability,

with a bridge that allows one to navigate between the two.

DISCUSSION

Coordinated variability in the brain has long been linked to the

neural computations underlying a diverse range of functions,

including sensory encoding, decision making, attention,

learning, and more. In this study, we sought to relate two major

bodies of work investigating the coordinated activity among neu-

rons: studies that measure spike count correlation between pairs

of neurons ðrscÞ and studies that use dimensionality reduction to

measure population-wide covariability. We considered three

population metrics and established analytically and empirically

that (1) increasing loading similarity corresponds to increasing

rsc mean and decreasing rsc SD, (2) decreasing %sv corre-

sponds to decreasing both rsc mean and SD, and (3) increasing

dimensionality tends to decrease rsc mean and SD. Applying this

understanding to recordings in macaque V4, we found that the

previously reported decrease in mean spike count correlation

associated with attention stemmed from a decrease in %sv, a

decrease in loading similarity, and decrease in dimensionality.

This analysis revealed that attention involves multiple changes

A

B C D

Figure 7. Population metrics and informa-

tion coding

For illustrative purposes, we consider the re-

sponses of two neurons to two different stimuli.

(A) In ‘‘condition 1’’ (e.g., attend-out in our V4 an-

alyses), the two neurons have positively correlated

trial-to-trial variability (blue and orange clouds

each have positive correlation) and a stimulus en-

coding space (black arrow) defined by the span of

the trial-averaged responses (blue and orange

dots). Then, we consider how changes in trial-to-

trial neuronal variability (i.e., shapes of the clouds)

from one experimental condition to another (e.g.,

spatial attention) can influence decoding of the two

stimuli. For simplicity, we construct examples in

which the stimulus encoding space remains con-

stant between the two conditions. We illustrate

here the changes in population metrics that we

observed in our V4 data (Figure 6D).

(B) First, a decrease in percent shared variance

(both clouds are smaller in size) results in more

accurate decoding of the population responses to

the two stimuli (the blue and orange ellipses are

less overlapping here than in A).

(C) Second, a decrease in the loading similarity of the strongest dimension (both clouds have been rotated to have negative correlation) also leads to an

improvement in decoding performance. In this case, the improvement stems from the fact the stimulus encoding space (black arrow) and the strongest

dimension of trial-to-trial variability (negative correlation) are misaligned (Averbeck et al., 2006; Moreno-Bote et al., 2014; Ruff and Cohen, 2019a).

(D) Third, a decrease in dimensionality (the less dominant dimension has been squashed for both clouds) could either improve or have no impact on decoding

performance. Here, the dimension that was squashed (negative correlation direction) was orthogonal to the stimulus encoding dimension (black arrow), leading to

no impact on decoding performance. In general, all else being equal, higher dimensional trial-to-trial variability (distinct from high-d signal; Rigotti et al., 2013) is

more likely to overlap with stimulus encoding dimensions and thus limit the amount of information encoded.
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in how neurons interact that are not well captured by a single sta-

tistic alone. Overall, our work demonstrates that common

ground exists between the literatures of spike count correlation

and dimensionality reduction approaches and builds the intuition

and formalism to navigate between them.

Our work also provides a cautionary tale for attempting to

summarize population-wide covariability using one, or a small

number of, statistics. For example, reporting only rsc mean is

incomplete because several distinct changes in population-

wide covariability can correspond to the same change in rsc
mean. In a similar vein, reporting only dimensionality is incom-

plete because it does not indicate how strongly the neurons co-

vary or their co-fluctuation patterns. For this reason, we recom-

mend reporting several different pairwise and population metrics

(e.g., the five used in this study along with the eigenspectrum of

the shared covariance matrix), as long as they can be reliably

measured from the data available. This not only allows for a

deeper and more complete understanding of how neurons co-

vary, but also it allows one to make tighter connections to previ-

ous literature that uses the same metrics. Future work may seek

to revisit previous results of correlated neuronal variability that

are based on a single statistic (e.g., rsc mean) and reinterpret

them within a framework that considers multiple perspectives

and statistics of population-wide covariability, such as that pre-

sented here.

There are some situations where it is not feasible to reliably

measure population statistics, such as recording from a small

number of neurons in deep brain structures (Nevet et al., 2007;

Liu et al., 2013) or when the number of trials is small relative to

the number of neurons recorded (Wainwright, 2019). In such sit-

uations, the rsc can be measured between pairs of neurons re-

corded in each session and then averaged across sessions to

obtain the rsc mean. Based on our findings, we recommend

that studies that report rsc mean also report rsc SD because

the latter provides additional information about population-

wide covariability. For example, in the special case of one latent

dimension (typically not known in advance for real data),

measuring rsc mean and rsc SD allows one to estimate the

loading similarity and %sv (cf. Figures 3E and 3F). In general,

even when there is more than one latent dimension in the popu-

lation, rsc SD provides value in situating the data in the rsc mean

versus rsc SD plot (Figure 5). Changes in rsc mean and SD can

then inform changes in population metrics based on the relation-

ships established in this work (cf. Figure 6D).

The reason that our work, and many previous studies, have

focused on trial-to-trial variability is that it has important implica-

tions for information coding. Early work on information-limiting

correlations typically focused on rsc mean (e.g., Zohary et al.,

1994; Shadlen and Newsome, 1998; Cohen and Maunsell,

2009; Cohen and Kohn, 2011), which reflects the strength of

shared variability among neurons. Recent theoretical work (Aver-

beck et al., 2006; Moreno-Bote et al., 2014; Kohn et al., 2016)

and experimental evidence (Ni et al., 2018; Ruff and Cohen,

2019a; Cowley et al., 2020; Rumyantsev et al., 2020; Bartolo

et al., 2020) have shown that it is not only the strength of shared

trial-to-trial variability but also the directions of shared variability

relative to stimulus tuning (Figure 7A) that need to be considered

for information coding. These properties of shared trial-to-trial

variability are precisely what are measured by the population

metrics used here. In particular, the%sv measures how strongly

trial-to-trial variability is shared among neurons (Figure 7B),

loading similarity measures the direction(s) of variability (Fig-

ure 7C), and dimensionality measures how many different direc-

tions of variability exist in the data (Figure 7D). By considering

these three population metrics together, along with the way in

which mean population responses vary across conditions (i.e.,

the stimulus-encoding directions), we can more incisively char-

acterize how trial-to-trial variability impacts information coding

than by using rsc mean alone. Understanding how patterns of

shared variability are related to (e.g., align with or are orthogonal

to) patterns of stimulus encoding and downstream readouts will

be likely critical for understanding information coding in

the brain.

We considered three population metrics—dimensionality, %

sv, and loading similarity—that summarize the structure of pop-

ulation-wide covariability and are rooted in well-established

concepts in existing literature. First, dimensionality has been

used to describe how neurons covary across conditions (i.e.,

an analysis of trial-averaged firing rates; Churchland et al.,

2012; Rigotti et al., 2013; Mante et al., 2013; Cowley et al.,

2016; Kobak et al., 2016; Sohn et al., 2019), as well as how neu-

rons covary from trial to trial (Yu et al., 2009; Santhanam et al.,

2009; Sadtler et al., 2014; Rabinowitz et al., 2015; Mazzucato

et al., 2016; Williamson et al., 2016; Bittner et al., 2017; Athalye

et al., 2017; Williams et al., 2018; Stringer et al., 2019a; Recana-

tesi et al., 2019). We focused on the latter in our study to con-

nect with the rsc literature, which also seeks to understand the

shared trial-to-trial variability between neurons. To focus on

the shared variability among neurons, we used FA to measure

dimensionality. Another commonly used dimensionality reduc-

tion method, principal-component analysis (PCA), although

appropriate for studying trial-averaged activity, does not distin-

guish between variability that is shared among neurons and

variability that is independent to each neuron. Second, investi-

gating the loading similarity has provided insight about whether

shared variability among neurons arises from a shared global

factor that drives neurons to increase and decrease their activity

together (Ecker et al., 2014; Okun et al., 2015; Lin et al., 2015;

Rabinowitz et al., 2015; Williamson et al., 2016; Huang et al.,

2019) or whether the co-fluctuations involve a more intricate

pattern across the neuronal population (Snyder et al., 2018; In-

sanally et al., 2019; Cowley et al., 2020). Third, we have previ-

ously reported %sv for area V1 (Williamson et al., 2016), area

M1 (Hennig et al., 2018), and network models (Williamson

et al., 2016; Bittner et al., 2017). Conceptually, %sv and rsc
mean are both designed to capture the strength of shared vari-

ability in a population of neurons. Thus, we might initially think

that there should be a one-to-one correspondence between

the two quantities. Indeed, if the population activity is described

by one co-fluctuation pattern with a high loading similarity, there

is a direct relationship between %sv and rsc mean (Figure 3F).

However, in general, %sv and rsc mean do not have a one-to-

one correspondence between them (Figure 3F, moderate or

low loading similarity).

We focus here on studying trial-to-trial activity fluctuations that

are shared between neurons. Many studies have considered the
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source of these shared fluctuations in the context of pairwise

correlations (Cohen and Kohn, 2011). Most commonly, pairwise

correlations have been suggested to originate through common

input (Zohary et al., 1994; Shadlen andNewsome, 1998). Howev-

er, there are, in fact, numerous mechanisms that can shape the

trial-by-trial shared variability of neuronal populations, including

neuromodulation (Harris and Thiele, 2011; Herrero et al., 2013;

Minces et al., 2017), coupled inhibition (Haider et al., 2006), or

distinct patterns of neuronal connectivity (Mazzucato et al.,

2016; Williamson et al., 2016; Huang et al., 2019; Recanatesi

et al., 2019). These mechanisms likely produce distinct signa-

tures in population metrics, such as %sv, loading similarity,

and dimensionality. The framework that we have developed

here can be applied to spiking network models with different un-

derlying mechanisms of shared cortical variability to identify sig-

natures in populationmetrics (Mazzucato et al., 2016;Williamson

et al., 2016; Huang et al., 2019; Recanatesi et al., 2019). We can

then assess whether any of those signatures are present in

neuronal recordings to gain insight into the underlying mecha-

nisms of shared variability in the brain.

Although pairwise correlation and dimensionality reduction

have most commonly been computed based on spike counts,

several studies have also computed these metrics on neuronal

activity recorded using other modalities, such as calcium imag-

ing (Harvey et al., 2012; Ahrens et al., 2012; Dechery and Ma-

cLean, 2018; Stringer et al., 2019a; Rumyantsev et al., 2020).

The relationships that we established here between pairwise

and population metrics are properties of covariance matrices

in general and do not rely on or assume recordings of neuronal

spikes. Thus, the intuition built here can be applied to other

recording modalities.

Our work here focused on studying interactions within a

single population of neurons. Technological advances are

enabling recordings from multiple distinct populations simulta-

neously, including neurons in different brain areas, neurons in

different cortical layers, or different neuron types (e.g., Ahrens

et al., 2013; Jiang et al., 2015; Jun et al., 2017). Studies are dis-

secting the interactions between these distinct populations us-

ing pairwise correlation (Smith et al., 2013; Pooresmaeili et al.,

2014; Oemisch et al., 2015; Zandvakili and Kohn, 2015; Ruff

and Cohen, 2016a; Snyder et al., 2016) and dimensionality

reduction (Semedo et al., 2014; Buesing et al., 2014; Bittner

et al., 2017; Perich et al., 2018; Semedo et al., 2019; Ames

and Churchland, 2019; Ruff and Cohen, 2019a; Veuthey

et al., 2020; Cowley et al., 2020). As we have shown here for

a single population of neurons, considering a range of metrics

from both the pairwise correlation and dimensionality reduction

perspectives and understanding how they relate to one another

will provide rich descriptions of how different neuronal popula-

tions interact.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, ByronM. Yu (byronyu@

cmu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources

table. Additional information or data are available upon request from the lead contact (byronyu@cmu.edu).

METHOD DETAILS

Spike count covariance matrix

Both pairwise metrics and population metrics are computed directly from the spike count covariance matrix S of size n3 n for a pop-

ulation of n neurons. Each entry in S is the covariance between the activity of neuron i and neuron j:

Sij = covðxi; xjÞ=E
�

ðxi �miÞ
�

xj �mj

��

(Equation 2)

where xi and xj represent the activity of neurons i and j, respectively, and mi and mj represent the mean activity of neurons i and j,

respectively. The variance of the ith neuron is equal to Sii.

Pairwise metrics

We computed the spike count correlation ðrscÞ between neurons i and j directly from the spike count covariance matrix:

rij =
Sij
ffiffiffiffiffiffiffiffiffiffi

SiiSjj

p (Equation 3)

We then summarized the distribution of rsc values across all pairs of neurons in the population with two pairwise metrics: the rsc mean

and rsc standard deviation (SD).

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: organisms/strains

Rhesus macaque (Macaca mulatta) 1 animal from Covance, 1 from Tulane

National Primate Research Center

N/A

Software and algorithms

MATLAB MathWorks RRID: SCR_001622; https://www.mathworks.com/

products/matlab.html

Custom spike-sorting software Kelly et al., 2007 https://github.com/smithlabvision/spikesort

Code to reproduce simulations Original code https://zenodo.org/record/5028023

Code to compute activity statistics Original code https://zenodo.org/record/5028018

Other

96-electrode array Blackrock Microsystems http://www.blackrockmicro.com/neuroscience-

research-products/neural-data-acquisition-systems/

Eyelink 1000 eye tracker SR research RRID: SCR_009602; https://www.sr-research.com/
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Population metrics

Themetricswe use for characterizing population-wide covariability are based on factor analysis (FA; Santhanamet al., 2009; Yu et al.,

2009; Churchland et al., 2010; Harvey et al., 2012; Williamson et al., 2016; Bittner et al., 2017; Athalye et al., 2017; Huang et al., 2019),

a dimensionality reduction method. We chose FA because it is the most basic dimensionality reduction method that explicitly sep-

arates variance that is shared among neurons from variance that is independent to each neuron. This allows us to relate the popu-

lation metrics provided by FA to spike count correlation, which is designed to measure shared variability between pairs of neurons.

One might consider using principal component analysis (PCA), but it does not distinguish shared variance from independent vari-

ance. Thus, FA is more appropriate than PCA for studying the shared variability among a population of neurons.

Decomposing the spike count covariance matrix

FA decomposes the spike count covariance matrix S into a low-rank shared covariance matrix, which captures the variability shared

among neurons in the population, and an independent variance matrix, which captures the portion of variance of each neuron un-

explained by the other neurons (Figure S5A):

S = Sshared +J (Equation 4)

where Sshared˛R
n3n is the shared covariance matrix for n neurons, andJ˛R

n3n is a diagonal matrix containing the independent vari-

ance of each neuron. The low-rank shared covariance matrix can be expressed using the eigendecomposition as (Figure S5A):

Sshared = ULUT (Equation 5)

where U˛Rn3d and L˛R
d3d, with d <n. The rank (i.e., dimensionality) of the shared covariance matrix, d, indicates the number of

latent variables. Each column of U is an eigenvector and represents a co-fluctuation pattern containing the loading weights of

each neuron (i.e., how much each neuron contributes to that dimension). The matrix L is a diagonal matrix where each diagonal

element is an eigenvalue and represents the amount of variance along the corresponding co-fluctuation pattern (e.g., in Figure 2A

has larger eigenvalue than 2C).

Based on this matrix decomposition, we defined the three metrics that describe the population-wide covariability:

d Loading similarity: the similarity of loading weights across neurons for a given co-fluctuation pattern. Scalar value between

0 (the weights are maximally dissimilar, defined precisely below) and 1 (all weights are the same).

d Percent shared variance (%sv): the percentage of each neuron’s variance that is explained by other neurons in the popula-

tion. Percentage between 0% and 100%.

d Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer value.

We give the precise definitions of these population metrics below and in Figure S5B.

Loading similarity

We sought to define loading similarity such that, for a given co-fluctuation pattern, if the weights for all neurons are the same, we

would measure a loading similarity of 1. When the weights are as different as possible, we would measure a loading similarity of

0.We define the loading similarity based on the variance across the nweights (for n neurons) in a co-fluctuation pattern uk. The small-

est possible variance is 0; the largest possible variance, for a unit vector uk, is 1=n (Math Note F). Thus, we define loading similarity for

a co-fluctuation pattern uk˛R
n as:

loading similarity ukð Þ= 1� var ukð Þ
maxvkvar vkð Þ= 1� var ukð Þ

1=n
(Equation 6)

where the loading similarity is computed on unit vectors (i.e., uk has a norm of 1). The notation varðukÞ denotes that the variance is

being taken across the n elements of the vector uk. The denominator of Equation 6 acts as a normalizing factor, bounding the loading

similarity value between 0 and 1.

The loading similarity distinguishes between a co-fluctuation pattern along which all neurons in the population have the same

weight in which case they change their activity up and down together (Figure 2A; loading similarity of 1), from one in which weights

are different and some neurons increase their activity when others decrease their activity (Figure 2B; loading similarity of 0). The

loading weights we use here are closely related to ‘population coupling’ (Okun et al., 2015) and ‘modulator weights’ (Rabinowitz

et al., 2015). For some types of shared fluctuations, these weights are similar across neurons in a population (i.e., high loading sim-

ilarity; Okun et al., 2015; Rabinowitz et al., 2015; Huang et al., 2019). For other types of shared fluctuations, the weights vary sub-

stantially across neurons in the population (i.e., low loading similarity; Snyder et al., 2018; Cowley et al., 2020).

We show in Math Note E why, if one dimension has high loading similarity, the other dimensions must have low loading similarity.

The reason is that co-fluctuation patterns are defined to be mutually orthogonal. If one co-fluctuation pattern has all weights close to

the same value (i.e., high loading similarity), then all other co-fluctuation patterns must have substantial diversity in their weights (i.e.,

low loading similarity) to satisfy orthogonality.
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Percent shared variance

The percent shared variance (%sv) measures the percentage of each neuron’s spike count variance that is explained by other neu-

rons in the population (Williamson et al., 2016; Bittner et al., 2017; Hennig et al., 2018). Equivalently, we can think of %sv in terms of

latent co-fluctuations. Because latent co-fluctuations capture the shared variability among neurons, the%svmeasures howmuch of

each neuron’s variance is explained by the latent co-fluctuations. The activity of neurons may be tightly linked to the latent co-fluc-

tuation (e.g., Figure 2A), in which case a large percentage of each neuron’s variance is shared with other neurons, or may only be

loosely linked to the latent co-fluctuation (e.g., Figure 2C), in which case a small percentage of each neuron’s variance is shared

with other neurons. Mathematically, we define the %sv for a neuron i:

%sv for neuron i =
Sshared;ii

Sii

$100%=
si

si +ji

$100% (Equation 7)

where si is the ith entry along the diagonal of the shared covariance matrix (Figure S5A, Sshared), and ji is the ith entry along the di-

agonal of the independent covariance matrix (Figure S5A, J). A %sv of 0% indicates that the neuron does not covary with (i.e., is

independent of) other neurons in the population, whereas a %sv of 100% indicates that the neuron’s activity can be entirely ac-

counted for by the activity of other neurons in the population. To compute %sv for an entire population of neurons, we averaged

the %sv of the individual neurons. All %sv values reported in this study are the %sv for the neuronal population.

Dimensionality

Dimensionality refers to the number of latent co-fluctuations needed to describe population-wide covariability. For example, the pop-

ulation-wide covariability can be described by one latent co-fluctuation (Figure 2A) or by several latent co-fluctuations (Figure 2D). In

the population activity space, dimensionality corresponds to the number of axes along which the population activity varies (see Fig-

ure 2D, bottom inset). Mathematically, the dimensionality is the rank of the shared covariancematrix (i.e., the number of columns inU,

Figure S5A).

Creating the spike count covariance matrices with specified population metrics

To relate pairwise and population metrics, we created spike count covariance matrices of the form in Equation 4 with specified pop-

ulation metrics. Importantly, we did not simulate spike counts, nor fit a factor analysis model to simulated data. Rather, we created

covariance matrices using (4) and computed pairwise correlations directly from the entries of the covariance matrix, as shown in (3).

Across simulations (Figures 3 and 4), we simulated with n= 30 neurons and set independent variances (i.e., diagonal elements ofJ in

Equation 4) to 1.

Specifying co-fluctuation patterns to obtain different loading similarities

Each co-fluctuation pattern uk is a vector with n= 30 entries (one entry per neuron). We generated a single co-fluctuation pattern

by randomly drawing 30 independent samples from a Gaussian distribution with a mean of 2.5. We choose a nonzero mean so

that we could obtain co-fluctuation patterns with loading similarities close to 1 when drawing from the Gaussian distribution

(i.e., a mean of 0 would have resulted in almost all co-fluctuation patterns having a loading similarity close to 0). To get a range

of loading similarities between 0 and 1, we used different standard deviations for the Gaussian. For a small standard deviation

value, all entries in the co-fluctuation pattern are close to 2.5, resulting in a high loading similarity. For larger standard devia-

tions, some loading weights are positive and some negative, with large variability in their values, resulting in co-fluctuation pat-

terns with low loading similarity. We increased the Gaussian standard deviation from 0.1 to 5.5 with increments of size 0.1. For

each increment, we generated 50 patterns and normalized them to have unit norm. In total, we created a set of 2,750 random

patterns.

The following procedure describes the construction of shared covariance matrices with one co-fluctuation pattern. We chose a

single pattern u1˛R
3031 (i.e.,U has only 1 column) from the set of 2,750. We constructed the shared covariance matrix by computing

ULUT , where L was chosen to achieve a desired percent shared variance (see below). The covariance matrix was then computed

according to Equation 4. We created a covariance matrix, yielding a spread of loading similarities between 0 and 1 (Figures 3E and

3F). In the next section, we describe the procedure for creating a covariance matrix with more dimensions.

Specifying the percent shared variance

To achieve a given %sv, either the independent variance or the amount of shared variability (i.e., the eigenvalues) of each

dimension can be adjusted. In the main text, we set the independent variance of each neuron to Ji = 1, and changed the total

amount of shared variability by multiplying each eigenvalue (each diagonal element in L from Equation 5) by the same constant

value, a. To obtain a specified %sv, we identified a by searching through a large set of possible values (from 10�4 to 103 with

step size 10�3). We allowed for a tolerance of ε= 10�3 between the desired %sv and the %sv that was achieved after scaling the

eigenvalues by a. In other analyses (not shown), we allowed the independent variances to be different across neurons (e.g.,

drawn from an exponential distribution), and the relationships between pairwise and population metrics were qualitatively

similar to those in the main text.
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Increasing dimensionality

To assess how changing dimensionality affects pairwise metrics, we created covariance matrices whose shared covariance matrix

comprised more than 1 dimension. To create a shared covariance matrix with d dimensions, we randomly chose d patterns from the

set of 2,750we had generated above (see ‘Specifying co-fluctuation patterns to obtain different loading similarities’). We then orthog-

onalized the chosen patterns using the Gram-Schmidt process to obtain d orthonormal (i.e., orthogonal and unit length) co-fluctu-

ation patterns U˛R303d. We formed the shared covariance matrix using ULUT , where L˛R
d3d is a diagonal matrix containing the

eigenvalues (i.e., the strength of each dimension; see ‘Specifying the relative strengths of each dimension’ below). We repeated

this procedure to produce 3,000 sets of d orthonormal patterns (i.e., 3,000 different U matrices), each of which was used to create

a shared covariance matrix. The spike count covariance was computed according to Equation 4.

Specifying the relative strengths of each dimension

In simulating shared covariance matrices with more than one dimension, we chose the relative strength of each dimension by spec-

ifying the eigenspectrum (diagonal elements of L in Equation 5). We worked with three sets of eigenspectra. First, a flat eigenspec-

trum had eigenvalues that were all equal (Figure 3G). Second, for two dimensions, we varied the ratio of the two eigenvalues between

95:5, 80:20, 50:50, 20:80, and 5:95 (Figure 4). Third, we considered an eigenspectrum in which each subsequent eigenvalue falls off

according to an exponential function (Figure S1). Only the relative (and not the absolute) eigenvalues (i.e., the shape of the eigens-

pectrum) affect the results, because the eigenspectrum was subsequently scaled to achieve a desired %sv (see ‘Specifying the

values of percent shared variance’).

Analysis of V4 neuronal recordings from a spatial attention task

Electrophysiological recordings

We analyzed data from a visual spatial attention task reported in a previous study (Snyder et al., 2018). Briefly, we implanted a 96-

electrode ‘‘Utah’’ array (Blackrock Microsystems; Salt Lake City, UT) into visual cortical area V4 of an adult male rhesus macaque

monkey (data from two monkeys were analyzed; in our study, monkey 1 corresponds to ‘‘monkey P’’ and monkey 2 corresponds

to ‘‘monkey W’’ from Snyder et al., 2018). After recording electrode voltages (Ripple Neuro.; Salt Lake City, UT), we used custom

software to perform offline spike sorting (Kelly et al., 2007, freely available at https://github.com/smithlabvision/spikesort). This

yielded 93.2 ± 8.9 and 61.9 ± 27.4 candidate units per session for monkey 1 and 2, respectively. Experiments were approved by

the Institutional Animal Care and Use Committee of the University of Pittsburgh and were performed in accordance with the United

States National Research Council’s Guide for the Care and Use of Laboratory Animals.

To further ensure the isolation quality of recorded units, we removed units from our analyses according to the following criteria.

First, we removed units with a signal-to-noise ratio of the spike waveform less than 2.0 (Kelly et al., 2007). Second, we removed units

with overall mean firing rates less than 1 Hz, as estimates of rsc for these units tends to be poor (Cohen and Kohn, 2011). Third, we

removed units that had large and sudden changes in activity due to unstable recording conditions. For this criterion, we divided the

recording session into ten equally-sized blocks and for each unit computed the difference in average firing rate between adjacent

blocks. We excluded units with a change in average firing rate greater than 60% of the maximum firing rate (where the maximum

is taken across the ten equally-sized blocks). Fourth, we removed an electrode from each pair of electrodes that were likely electri-

cally-coupled. We identified the coupled electrodes by computing the fraction of threshold crossings that occurred within 100 ms of

each other for each pair of electrodes.We then removed the fewest number of electrodes to ensure this fractionwas less than 0.2 (i.e.,

pairs with an unusually high number of coincident spikes) for all pairs of electrodes. Fifth, we removed units that did not sufficiently

respond to the visual stimuli used in the experiment. Evoked spike counts (i.e., a neuron’s response after stimulus presentation) were

taken between 50ms to 250ms after stimulus onset, and spontaneous spike counts (i.e., a neuron’s response during a blank screen)

were taken in a 200mswindow that ended 50msbefore stimulus onset. For each unit, we computed a sensitivitymeasure d0 between

evoked and spontaneous activity:

d0 =
mevoked � mspontaneous
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

�

s2
evoked + s2

spontaneous

�

q

for mean spike counts mevoked and mspontaneous and spike count variances s2evoked and s2spontaneous. We removed units with d0 < 0:5 from

analyses, as these units had spontaneous and evoked responses that were difficult to distinguish.

After applying these five criteria, 44.5 ± 11.3 and 18.8 ± 6.7 units per session (mean ± s.d. over sessions) remained for monkeys 1

and 2, respectively. Although these remaining units likely contained both single-unit and multi-unit activity, we refer to each unit as a

neuron for simplicity. In this study, we restricted analyses to sessions with at least 10 neurons remaining after applying the above

criterion (23 sessions for monkey 1, and 14 sessions for monkey 2).

Visual stimulus change-detection task

Animals were trained to perform a change-detection task with a spatial attention cue to the location of the visual stimulus that was

more likely to change (Snyder et al., 2018). In the visual change-detection task (Figure 6A), animals fixated a central dot while Gabor

stimuli were presented in two locations on a computer screen. One location was chosen to be within the aggregate receptive fields

ll
Article

Neuron 109, 1–15.e1–e12, September 1, 2021 e4

Please cite this article in press as: Umakantha et al., Bridging neuronal correlations and dimensionality reduction, Neuron (2021), https://doi.org/

10.1016/j.neuron.2021.06.028



(RFs) of the recorded V4 neurons (mapped prior to running the experiment), and the other location was placed at themirror symmetric

location in the opposite hemifield. Animalsmaintained fixation while a sequence of Gabor stimuli were presented. Each drifting Gabor

stimulus (oriented at either 45� or 135�) was presented for 400 ms, followed by a blank screen presented for a random interval (be-

tween 300 and 500 ms). The sequence continued, with a fixed probability for each presentation, until one of the two stimuli changed

orientation when presented (i.e., the ‘target’). Upon target presentation, animals were required to make a saccade to the target to

earn a juice reward. We manipulated spatial attention in the experiment by cueing the more probable target location in blocks. At

the beginning of each block, the cue was denoted by presenting only one Gabor stimulus at the more probable target location

(90% likely), and requiring animals to detect orientation changes at this location for 5 trials. Consistent with the results of previous

studies, we found that animals had greater perceptual sensitivity for orientation changes at the cued (i.e., attended) location than

the uncued location (Figure 6A, inset in the bottom right) and shorter reaction times (Snyder et al., 2018).

Data processing and computing spike counts

We first separated the trials into two groups: (1) ‘‘attend in’’ trials, for which the cued stimulus was inside the recorded neurons’ RFs

and (2) ‘‘attend out’’ trials, for which the cued stimulus was outside the RFs. Since the initial orientation of the stimulus at the cued

location could be one of two values (i.e., 45� or 135�), we further divided trials, resulting in a total of 4 groups of trials per session

(attend in & 45�, attend out & 45�, attend in & 135�, attend out & 135�). Each combination of cued location and stimulus orientation

was treated as an independent sample. The same neurons were used for each of the 4 groups within each session, ensuring a fair

comparison between the attend-in and attend-out conditions.

We analyzed all stimulus presentations for which the target stimulus did not change. For each stimulus presentation, we took spike

counts in a 200 ms window starting 150 ms after stimulus onset. For each of the 4 groups, we formed a spike count matrix X˛ Rn3t,

containing the spike counts of the n recorded neurons for the t trials belonging to that group. These spike count matrices were then

used to compute both the pairwise and population metrics (described below). For all analyses (Figure 6), we excluded recording ses-

sions with fewer than 10 neurons. Additionally, because population metrics depend on the number of trials (Williamson et al., 2016),

for each session we equalized the number of trials across the 4 groups by randomly subsampling from groups with larger numbers of

trials.

Computing pairwise metrics for V4 spike counts

We computed pairwise metrics on each combination of attention state (‘attend in’ and ‘attend out’) and stimulus orientation. We

computed the correlation as described above in ‘Pairwise metrics’ and then computed rsc mean and rsc SD For each attention state,

we averaged the rsc mean and rsc SD over sessions and different stimulus orientations.

Computing population metrics for V4 spike counts

We fit the parameters of a factor analysis model (see Figure S5A) to each spike count matrix X (as described above) using the expec-

tation-maximization (EM) algorithm (Dempster et al., 1977). For each session, this was performed separately for each attention state

and stimulus orientation. Using the FA parameters, we then computed the three population metrics (Figure S5B). For dimensionality,

we first found the number of dimensions d that maximized the cross-validated data likelihood. We fit an FAmodel with d dimensions,

and then found the number of dimensions required to explain 95%of the shared variance, termed dshared (Williamson et al., 2016). We

report dshared because it tends to be a more reliable estimate of dimensionality than the number of dimensions that maximizes the

cross-validated data likelihood. We computed %sv as described by Equation 7. We report the loading similarity as defined in Equa-

tion 6 for the co-fluctuation pattern that explained the most shared variability (i.e., the eigenvector with the largest eigenvalue; see

Figure S1 for why the loading similarity of this dimension is most informative), since it contributes most to describing the popula-

tion-wide covariability. For ‘attend in’ and ‘attend out’ conditions, we averaged the population metrics across sessions and stimulus

orientations.

Much of our work focuses on systematically changing a single population metric and assessing changes in pairwise metrics (Fig-

ures 3A–3D). When analyzing neuronal recordings, one needs to fit factor analysis to the recordings in order to estimate the popu-

lation metrics. When estimating the population metrics together, it could be the case that changes in one population metric impacts

or biases the estimation of another population metric. We characterized these estimation errors in Figure S6. Moreover, in Figure S7,

we show that our main findings (Figure 5) are the same when estimating population metrics from Poisson simulated data, which

resembled realistic neuronal activity.

Statistics

Weemployed paired permutations tests for all statistical comparisons of pairwisemetrics and populationmetrics between ‘attend-in’

and ‘attend-out’ conditions (Figures 6B and 6C). First, for a givenmetric, we computed its value separately for each stimulus type (i.e.,

45� or 135�), condition (i.e., attend-in or attend-out), and session. We then averaged the difference between attend-in and attend-out

across stimulus types and sessions. To compute a null distribution, we randomly permuted the pair of attend-in and attend-out labels

for each stimulus type and condition combination and recomputed the average difference. We ran 10;000 permutations to obtain a
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null distribution of 10;000 samples. We computed p-values as the proportion of samples in the null distribution that were more

extreme than the average difference in the data, corresponding to p< 0:0001 as the highest attainable level of significance in our sta-

tistical analyses.

Math Notes

A) Relationship between correlation, loading similarity, and %sv (one latent dimension)

We establish here the mathematical relationship between rsc, loading similarity, and %sv. This will provide the formalism for under-

standing why decreasing %sv decreases both rsc mean and SD (Figure 3F), that a high loading similarity corresponds to large rsc
mean and low rsc SD (Figure 3E), and that a low loading similarity corresponds to small rsc mean and large rsc SD (Figure 3E).

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector ½w1;w2;.;wn�T˛Rn31Þ, l˛ R+ be the

strength of the co-fluctuation pattern (i.e., eigenvalue of the shared covariance matrix), andJ˛R
n3n be a diagonal matrix specifying

the independent variance of each neuron ðj1;j2;.;jnÞ. Then the covariance matrix of the population activity is (see STAR Methods

and Figure S5):

S = Sshared +J=wlwT +J

From this, we observe that Sij =Sshared;ij = lwiwj for the off-diagonal entries (i.e., if isj). Along the diagonal, Sshared;ii = lw2
i and Sii =

lw2
i +ji. The correlation (i.e., rsc if S is a spike count covariance matrix) between neurons i and j can be written as:

rij =
Sij
ffiffiffiffiffiffiffiffiffiffi

SiiSjj

p =
lwiwj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlw2
i +jiÞ

�

lw2
j +jj

	

r

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lw2
i

lw2
i +ji

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lw2
j

lw2
j +jj

s

signðwiwjÞ

=
ffiffiffiffiffiffiffiffi

fifj

p

signðwiwjÞ (Equation 8)

where fi and fj represent the %sv (as proportions) for neurons i and j, respectively, and signðwiwjÞ= + 1 ifwiwj > 0 or� 1 if wiwj < 0.

The last line follows from the fact that %sv for neuron i is defined in Equation 7 as:

fi =
Sshared;ii

Sii

=
lw2

i

lw2
i +ji

(Equation 9)

Equations 8 and 9 provide a basis for understanding the relationships between rsc, %sv, and loading similarity. The rsc mean and SD

are computed across all pairs of neurons rij, for i < j.

For establishing a relationship between pairwise metrics and %sv, consider decreasing the overall %sv of the population while

keeping the loadings wi fixed. This corresponds to decreasing l in Equation 9, which implies fi for each neuron decreases, and

thus the product
ffiffiffiffiffiffiffiffi

fifj

p

decreases for all pairs. The magnitude of each rij decreases (i.e., each rij moves closer to 0). As such,

decreasing %sv of the population decreases the distance of a point from the origin in the rsc mean versus rsc SD plot, all else being

equal (Figure 3F).

For establishing a relationship between pairwise metrics and loading similarity, consider two extreme cases: 1) when loading sim-

ilarity is 1 (as high as possible) 2) when it is 0 (as low as possible). We first assume that each neuron has the same independent vari-

ance ji for simplicity, as we did in Figure 3. A loading similarity of 1 corresponds to each wi = + 1
ffiffi

n
p or each wi = � 1

ffiffi

n
p . In either case,

signðwiwjÞ is always + 1. Furthermore, fi is the same for every neuron and
ffiffiffiffiffiffiffiffi

fifj

p

=%sv (i.e., the%sv of the population, expressed as

a proportion) for every pair of neurons. Thus, all rij =%sv for all pairs of neurons i and j. In this case, rsc mean =%sv and rsc SD = 0. If

the independent variances ji are different across neurons, we can still get each signðwiwjÞ= + 1 and each fi to be the same by setting

eachwi = +
ffiffiffiffiffi

ji

p
or eachwi = � ffiffiffiffiffi

ji

p
. This would also result in rij =%sv for all pairs of neurons i and j, and thus rsc mean =%sv and rsc

SD = 0. In this case, the loading similarity is still high (all wi are the same sign; we can show that load. sim.>0:5), but not equal to 1.

Now, consider a scenario in which half the loadings are + 1
ffiffi

n
p and the other half are � 1

ffiffi

n
p (and assume again that ji are the same for

every neuron). This is one way to obtain a loading similarity of 0. In this case, fi are still the same for every neuron, so
ffiffiffiffiffiffiffiffi

fifj

p

= %sv for

all pairs. However, signðwiwjÞ= � 1 for n
2

4
pairs, and signðwiwjÞ= + 1 for n

2

4
� n

2
pairs. We can show that rsc mean =�%sv

n�1
and, by using

Equation 10 fromMath Note B below, rsc SD =%sv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

ðn�1Þ2
q

. Thus, for a large number of neurons n, this case (where loading sim-

ilarity = 0) corresponds to small negative rsc mean (close to 0), and large rsc SD (close to the%sv). As an example, for 30 neurons and

%sv = 50%, this corresponds to rsc mean = �0.0172 and rsc SD = 0.4997.

With this analysis, we have established that for one latent dimension:
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d Decreasing %sv decreases the magnitudes of correlations (i.e., each rij closer to 0). rsc mean and SD both decrease (as seen

empirically in Figure 3F).

d Starting from a loading similarity near 1, a decrease in loading similarity involves flips in the signs of some correlations (i.e.,

some rij become � rij). rsc mean decreases but rsc SD increases (as seen empirically in Figure 3F).

d Both rsc mean and%svmeasure shared variance among neurons, but they are not always equal. Equation 8 shows that the two

quantities are equal if all signðwiwjÞ are the same (i.e., when loading similarity is high). However, in general rsc mean and shared

variance (%sv) are not the same—e.g., when loading similarity is low, or when there are multiple dimensions (Math Note C).

In this section, we consider the extremes of loading similarity. In the next section, we analyze how gradual changes in loading sim-

ilarity affect rsc mean and SD for a fixed %sv.

B) Circular arc in rsc mean versus rsc SD plot for one latent dimension and fixed %sv

Weestablish heremathematically that gradually varying the loading similarity for one latent dimension and fixed%sv results in an arc-

like relationship between rsc mean and rsc SD, and that the radius of the arc is approximately equal to the %sv (Figures 3E and 3F).

We use the same notation as in Math Note A. Let E½:� and Varð:Þ denote the mean and variance across all neurons or all pairs of neu-

rons, depending on context. In particular, we are interested in E½r�= rsc mean,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðrÞ
p

= rsc SD, where the expectation and variance

are computed across rij for all pairs of neurons in a given population (i.e., the upper triangle of the correlation matrix, rij for i > j).

Let c be the distance of a point (corresponding to one instance of the population activity covariancematrix) from the origin in the rsc

mean versus rsc SD plot (i.e., c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsc meanð Þ2 + rsc s:d:ð Þ2:
q

We want to know whether c is the same for all population activity covari-

ancematriceswith one latent dimension and fixed%sv. This would correspond to a point being equidistant from the origin, and thus a

circular arc. We can write c as:

c2 = ðrsc meanÞ2 + ðrsc s:d:Þ2

=E½r�2 + VarðrÞ

=E½r�2 + E
�

r2
�

�E½r�2

=E
�

r2
�

Thus, the squared distance (i.e., squared radius) is equal to E½r2�, the mean of r2ij across all pairs in the population. Letm be the num-

ber of pairs (i.e., m =
n n�1ð Þ

2
). Now, using Equations 8 and 9 derived in Math Note A:

E
�

r2
�

=
1

m

X

n�1

i = 1

X

n

j = i + 1

r2ij

=
1

m

X

n�1

i = 1

X

n

j = i + 1

�

lw2
i

�

�

lw2
j

	

ðlw2
i +jiÞ

�

lw2
j +jj

	

=
1

m

X

n�1

i =1

X

n

j = i + 1

fifj

where fi and fj are the %sv of neurons i and j (expressed as proportions), as defined in Math Note A. We can show that

2
Pn�1

i = 1

Pn
j = i + 1fifj =

Pn
i = 1

Pn
j = 1fifj �

Pn
i = 1f

2
i . Intuitively, if we have a symmetric matrix F with entries Fði; jÞ = fifj, and we want

to find the sum of the off-diagonal elements ð2Pn�1
i = 1

Pn
j = i + 1fifjÞ, then we can take the sum of all elements and subtract the diagonal

elements ðPn
i = 1

Pn
j =1fifj �

Pn
i = 1f

2
i Þ. Using this equivalence, it follows:

E
�

r2
�

=
1

m

X

n�1

i = 1

X

n

j = i + 1

fifj

=
1

2m

 

X

n

i =1

X

n

j = 1

fifj �
X

n

i = 1

f2
i

!

=
1

2m

 

X

n

i =1

fi

X

n

j = 1

fj �
X

n

i = 1

f2
i

!
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=
1

2m

 

n2E½f�2 �
X

n

i =1

f2
i

!

=
1

n� 1

�

nE½f�2 �E
�

f2
��

=
1

n� 1

�

nE½f�2 �VarðfÞ�E½f�2
�

=
1

n� 1

�

ðn� 1ÞE½f�2 �VarðfÞ
�

=E½f�2 � 1

n� 1
VarðfÞ

= ð%svÞ2 � 1

n� 1
VarðfÞ (Equation 10)

This provides an equation for the squared radius (i.e., squared distance from the origin) of a point in the rsc mean versus rsc SD plot. In

the above derivation, E½f� and VarðfÞ are taken across the percent shared variance of each neuron in the population fi. Thus, E½f� is
equal to our population metric%sv. Now, we will bound VarðfÞ, which by definition is greater than or equal to 0. Since 0% fi% 1, one

instance where the maximum variance occurs is when there are an equal number of fi = 0 and fi = 1 (and E½f� = 0:5). Then,

VarðfÞ = 1

n

X

n

i = 1

ðfi � 0:5Þ2

=
1

n

�n

2
ð1� 0:5Þ2 +

n

2
ð0� 0:5Þ2

	

=
1

n
ð0:25nÞ

= 0:25

So 0%VarðfÞ%0:25. For a small number of neurons n, the second term in Equation 10 is non-negligible. For example, for amodel with

6 neurons and%sv = 50%, the radius of the data points may vary between 0.4472 and 0.5. As the number of neurons increases, the

second terms becomes negligible, and data points lie approximately along an arc with radius equal to %sv. For example, for 30 neu-

rons as in our simulations and a %sv of 50%, the radius only varies between 0.4913 and 0.5.

To summarize, Equation 10 computes the distance from the origin of a point for a given population of neurons. For a fixed %sv,

VarðfÞ can be the same or differ across many simulation runs. If VarðfÞ= 0 or is the same across runs, then the points will lie perfectly

along an arc, with radius specified by Equation 10. However, if VarðfÞ is different across runs, the distances of each point from the

origin will differ slightly, so they will lie close to, but not exactly along, an arc.

With this analysis, we have shown that in the case of one latent dimensions:

d A point (i.e., corresponding to a given population of neurons, simulated or real) on the rsc mean versus rsc SD plot has distance

from the origin (i.e., radius) less than or equal to %sv.

d If the %sv for individual neurons ðfiÞ are all the same (see Math Note A), then the radius equals %sv.

d As the number of neurons increases, the radius becomes asymptotically closer to %sv.

C) Relationship between correlation, loading similarity, and %sv (multiple latent dimensions)

In Math Note A, we established a mathematical relationship between rsc, loading similarity, and%sv in the case of one latent dimen-

sion. Here, we generalize Equation 8 to include multiple dimensions in order to better understand the relationship between rsc and

dimensionality. We demonstrate here that the general relationships between rsc, %sv, and loading similarity for one latent dimension

also hold true for multiple latent dimensions. For multiple latent dimensions, the relative strengths of each dimension is an important

consideration—a stronger dimension plays a bigger role in determining the rsc distribution. Finally, we consider the relationship be-

tween dimensionality itself and rsc. We will discover below that increasing dimensionality tends to decrease the magnitude of rsc
values.

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let w be the co-fluctuation pattern (i.e.,

loading vector ½w1;w2;.;wn�T˛Rn31Þwith eigenvalue lw, let v be another pattern orthogonal tow ð½v1; v2;.; vn�T ˛Rn31; vtwÞ, with
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eigenvalue lv, and let J˛R
n3n be a diagonal matrix specifying the independent variance of each neuron ðj1;j2;.;jnÞ. Then the

covariance is S = Sshared +J = Sw +Sv +J = wlww
T + vlvv

T +J. On the off-diagonals entries (i.e., if isj), Sij = lwwiwj + lvvivj.

Along the diagonal, Sshared;ii =Sw;ii +Sv;ii = lww
2
i + lvv

2
i and Sii = lww

2
i + lvv

2
i +ji.

Because the shared covariance matrix Sshared can be expressed as a sum of two component matrices Sw +Sv, we can express the

%sv of neuron i ðfiÞ as

fi =
Sshared;ii

Sii

=
Sw;ii

Sii

+
Sv;ii

Sii

=
lww

2
i

lww
2
i + lvv

2
i +ji

+
lvv

2
i

lww
2
i + lvv

2
i +ji

=f
ðwÞ
i + f

ðvÞ
i

where f
ðwÞ
i is the %sv variance of neuron i explained by dimension w and f

vð Þ
i is the %sv variance of neuron i explained by dimen-

sion v.

With this decomposition of fi, and following similar steps as in Equation 8:

rij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f
ðwÞ
i f

ðwÞ
j

q

signðwiwjÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f
ðvÞ
i f

ðvÞ
j

q

signðvivjÞ (Equation 11)

where %sv values (f) are represented as proportions. Equation 11 relates rsc, %sv, and loading similarity for the case of two latent

dimensions. Next, we compare these relationships for one versus two latent dimensions.

We will show that, for two latent dimensions, the relative strength of each dimension (i.e., the ratio lw : lvÞ is an important consid-

eration. For two latent dimensions, decreasing the overall %sv by decreasing both fðwÞ and fðvÞ equally (e.g., lw = lv and both

decrease equally) pushes each rij closer to 0; rsc mean and SD will decrease. This is similar to what happens for one latent dimension

when %sv is decreased. On the other hand, even if the overall %sv is held constant, but fðwÞ increases relative to fðvÞ (i.e., increase
the strength ofw relative to v), pairwise correlations could change. Each rij will largely be determined by fðwÞ andw; rsc mean and SD

will be more similar to what they would be if onlyw existed (Figure 4A). In other words, each rij for two latent dimensions is the sum of

the rij that would have been produced by each of the two constituent dimensions on their own. The dimension with larger relative

strength l will have larger f; the stronger dimension will play a larger role in determining each value of rij and thus the resulting

rsc distribution.

Using this logic, we can deduce that increasing the loading similarity of one of the dimensions would increase rsc mean and

decrease rsc SD for the same reasons as for one latent dimension (Math Note A). Doing so for a relatively stronger dimension would

result in larger changes in rsc than doing so for a relatively weaker dimension.

We have shown how having multiple latent dimensions can affect the relationship between rsc, %sv, and loading similarity. Now,

we show that dimensionality itself and rsc are related—a larger dimensionality tends to decrease rsc mean and SD. To see this, we can

generalize Equation 11 for d <n orthogonal latent dimensions u1;.;ud˛R
n.

rij =
X

d

k = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f
ðuk Þ
i f

ðuk Þ
j

q

sign
�

ukiukj

�

Considering the sign of one term, rij could have the same sign for signðukiukjÞ across all dimensions u1;.;ud; in this case, a larger

dimensionality acts to increase the correlation between neurons i and j ðrijÞ above the level corresponding to a single dimension.

However, because the loading vectors u1;.;ud are orthogonal, a pair of neurons i and j is likely to have many signðukiukjÞ of opposite
sign across dimensions; in this case, a larger dimensionality pushes the correlation between neurons i and j ðrijÞ closer to 0. Thus, we

would expect the magnitude of correlations to decrease as more dimensions are added (i.e., a tendency for rsc mean and SD to

decrease; Figure 3G). In the next section, we show this relationship mathematically.

D) Increasing dimensionality decreases arc radius

We establish here that increasing dimensionality results in a decrease in the radius of the arc in the rsc mean versus rsc SD plot (Fig-

ure 3G). We extend the math for an arc for one latent dimension (Math Note B) to multiple latent dimensions. We will refer to the one

latent dimension as the ‘1-d case’ and multiple (k) latent dimensions as the ‘k-d case’.

We use the same notation as in Math Note C. Consider the distance c of a point (corresponding to one instance of the population

activity covariance matrix) from the origin in the rsc mean versus rsc SD plot. From Math Note B, c2 = E½r2�. For this 2-d case, the

correlation between neurons i and j is rij =
Sij
ffiffiffiffiffiffiffiffi

SiiSjj

p =
lwwiwj + lvvivj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlww2
i
+ lvv

2
i
+jiÞðlww2

j
+ lvv

2
j
+jjÞ

p . Thus we can write r2ij as:
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r2ij =
ðlwwiwj + lvvivjÞ2

ðlww2
i + lvv

2
i +jiÞ

�

lww
2
j + lvv

2
j +jj

	

=
l2ww

2
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2
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2
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=fifj �
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2
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2
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where the % shared variance of neuron i in this 2-d case is fi =
Sshared;ii

Sii
=

lww
2
i
+ lvv

2
i

lww
2
i
+ lvv

2
i
+ji

.

Then letting m be the number of pairs in the population, and following similar steps to Equation 10 in Math Note B, we arrive at:

E
�

r2
�

=
1

m

X

n�1

i = 1

X

n

j = i + 1

r2ij

= ð%svÞ2 � 1

n� 1
VarðfÞ� 1

m

X

n�1

i = 1

X

n

j = i + 1

lwlvðwivj �wjviÞ2

ðlww2
i + lvv

2
i +jiÞ

�

lww
2
j + lvv

2
j +jj

	

(Equation 12)

Not including the negative sign in front, note that this final term is non-negative (given that lw and lv are non-negative, as for any

covariance matrix). Thus, comparing the final line in Equation 12 to the final line from Equation 10, we observe that the distance

of the point for the 2-d case in the rsc mean versus rsc SDplot is necessarily smaller than or equal to the distance for the corresponding

1-d case.

More generally, for a k-dimensional case we can show that:

E
�

r2
�

= ð%svÞ2 � 1

n� 1
VarðfÞ � 1

m

X

w;v

"

X

n�1

i =1

X

n

j = i + 1

lwlvðwivj �wjviÞ2

ðlww2
i + lvv

2
i +jiÞ

�

lww
2
j + lvv

2
j +jj

	

#

(Equation 13)

where the sum
P

w;v
is taken over all unique pairs of loading vectors ðw;vÞ. Indeed, as more latent dimensions are subsequently added,

the radius of the rsc mean versus rsc SD plot decreases (Figure 3G). Intuitively, this final term accounts for how population activity

covaries along many different dimensions in the high-d firing rate space. As more orthogonal dimensions are added, population ac-

tivity is further pulled in different directions in the high-d space, more interaction terms come into play, and the magnitude of corre-

lations is further decreased. This tends to decrease both rsc mean and rsc SD, explaining why the radius of the arc in the rsc mean

versus rsc SD plot tends to decrease as dimensionality increases.

We note that rsc mean and rsc SD do not necessarily both need to decrease. For example, consider a pattern with a loading sim-

ilarity of 1; loading weights for all neurons would have the same value, rsc across all pairs would be the same value, and thus rsc SD

would be 0 (see Math Note A). When a second pattern of necessarily low loading similarity (see Math Note E) is added, rsc values

across pairs of neurons would differ, and rsc s.d. would be larger than 0. Therefore, rsc SD can increase when going from the 1-d

case to the 2-d case. However, the corresponding decrease in rsc mean would be larger in magnitude than the increase in rsc SD,

resulting in an overall decrease in arc radius (Figure 3G, 1 to 2 dimensions, data points closest to the horizontal axis).

The third term in Equation 13 can also help explain variability of the radius ðE½r2�Þ across different random instantiations with the

same population metrics (Figures 3G and 4). Consider a fixed%sv. For the 1-d case, the radius is determined by the first two terms of

the above equation, and any variability in radius will be caused by different values of VarðfÞ across different instantiations. For the 2-d
case, the third term also plays a factor in determining the radius, and this term varies across different random instantiations, typically

to a larger degree than the second term for large numbers of neurons n (see Math Note B). Thus, the 2-d and k-d cases have greater

variability in E½r2� than 1-d cases (Figures 3G and 4). Other subtle factors can affect the variability of E½r2�. For example, variability in

E½r2� can increase or decrease depending on the relative strengths of each dimension and their corresponding loading similarities

(Figures 4 and S1). This can be explained by the third component of Equation 13, in particular by the terms involving lw and lv.

E) Properties of loading similarities across different co-fluctuation patterns

We asked whether there was a relationship between the loading similarities of different co-fluctuation patterns in the same model. In

our simulations and V4 data analysis, we ensured that we obtain unique co-fluctuation patterns by constraining dimensions to be

orthogonal. Thus, we might conjecture that if one pattern has high loading similarity (e.g., ½1;.; 1�), then another pattern in the

same model necessarily has low loading similarity (e.g., ½1;�1; 1;�1;.;�1;1�). Indeed, this is true because the sum across the

loading similarities of each pattern in a model is at most 1. We show this property of loading similarity here.

Letw and v be vectors representing two co-fluctuation patterns in the samemodel.We use the notationw$v to refer to the element-

wise product betweenw and v, resulting in a vector that is the same size asw and v. Furthermore, we use E½w�, VarðwÞ, and CovðwÞ
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as shorthand to refer to computations across the elements of a vector (and not as operations on a random variable): e.g., E½w� =
1
n

Pn
i =1wi, and Cov½w;v� = E½w $v� � E½w�E½v� = 1

n

Pn
i =1wivi �

�

1
n

Pn
i = 1wi

	�

1
n

Pn
i = 1vi

	

. Also, in this section we refer to the loading sim-

ilarity of vector w as lsðwÞ for shorthand.
We first show a constraint on loading similarities for a model with two co-fluctuation patterns (i.e., loading vectors for each dimen-

sion). Let n be the number of neurons and letw; v˛Rn be two loading vectors. As in our simulations and data analysis (see Methods),

w and v are orthogonal unit vectors:
Pn

i =1w
2
i = 1,

Pn
i = 1v

2
i = 1, and

Pn
i = 1wivi = 0. Then, using these constraints,

Covðw; vÞ=E½w $ v� �E½w�E½v�

=
1

n

X

n

i = 1

wivi �E½w�E½v�

= �E½w�E½v�
VarðwÞ=E½w $w� �E½w�2

=
1

n

X

n

i = 1

w2
i �E½w�2

=
1

n
�E½w�2

(Equation 14)

Because correlation is bounded between �1 and 1, we know that jCovðw;vÞj%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðwÞVarðvÞ
p

. It follows that:

Cov2ðw; vÞ %VarðwÞVarðvÞ

E½w�2E½v�2 %




1

n
� E½w�2

�


1

n
� E½v�2

�

0 %
1

n2
� 1

n

�

E½w�2 +E½v�2
�

nE½w�2 + nE½v�2 %1

lsðwÞ+ lsðvÞ %1

(Equation 15)

The last step follows from the definition of loading similarity:

lsðwÞh1� VarðwÞ
1=n

= 1�
1
n
� E½w�2

1=n
= nE½w�2

The final inequality in Equation 15 proves the intuition provided at the beginning of this section–if lsðwÞ is large, then lsðvÞ must be

small (at most 1� lsðwÞ). More strongly, if lsðwÞ = 1, then lsðvÞ = 0.

Generally, for amodel with d dimensions and patterns u1;.;ud˛R
n, we can show that

Pd
i = 1lsðuiÞ%1. To see this, we can construct

a matrixCwith entries cij =Covðui;ujÞ= � E½ui�E½uj� for isj, and cii =VarðuiÞ= 1
n
� E½ui�2 (derived from the constraints in Equation 14).

Note thatC˛Rd3d, with variances on the diagonal and covariances on off-diagonals, is a covariancematrix, which implies detðCÞR 0.

For a 3-d model,

detðCÞ = 1

n2

�

1� nE½u1�2 � nE½u2�2 � nE½u3�2
�

R0

which implies lsðu1Þ+ lsðu2Þ+ lsðu3Þ%1. In general, for a d-dimensional model (with d%n):

det Cð Þ= 1

nd�1
1�

X

d

i = 1

nE ui½ �2
 ! !

R0

X

d

i = 1

ls uið Þ%1

(Equation 16)

Equation 16 has several implications:

d If one knows the loading similarities of all dimensions u1;.;ud in a model, then the maximum possible loading similarity of any

new dimension is 1�Pd
i =1lsðuiÞ. It follows that two dimensions with high loading similarity cannot co-exist in the same model.

d If one dimension has ls = 1, then all other dimensions in the model (or that would be added to the model) necessarily have ls =

0. Note that there is only one possibility for a pattern to have ls= 1 (i.e., u =

�

1
ffiffi

n
p ;.; 1

ffiffi

n
p

T

, such that VarðuÞ = 0Þ. This implies that

there are many possibilities for a pattern to have lsðuÞ = 0. More loosely, there are relatively few ways for a pattern to have high

loading similarity, but many more ways for a pattern to have low loading similarity.
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F) Maximum variance of a unit vector

Wedefined loading similarity for a co-fluctuation pattern u (normalized to have norm 1) of n neurons to be 1� varðuÞ
1=n , where the variance

is computed along the elements of u. This value lies between 0 and 1 because themaximum variance across the elements of u is 1= n.

We now show this mathematically.

Let u˛Rn be a unit vector. Because u is a unit vector,
Pn

i = 1u
2
i = 1. Using these facts:

VarðuÞ = E
�

u2
�

�E½u�2

=
1

n

X

n

i = 1

u2
i �E½u�2

=
1

n
�E½u�2

%
1

n

This holds with equality when E½u�= 0 (i.e., when the mean across the elements in a co-fluctuation pattern is 0). This implies that the

smallest loading similarity is 0 (when VarðuÞ = 1=n), and the largest loading similarity is 1 (when VarðuÞ = 0).
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