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Fig. 1: Illustration of pedestrian trajectory prediction in unseen cameras. We
propose to learn robust representations only from 3D simulation data that could
generalize to real-world videos captured by unseen cameras.

Abstract. This paper studies the problem of predicting future trajec-
tories of people in unseen cameras of novel scenarios and views. We
approach this problem through the real-data-free setting in which the
model is trained only on 3D simulation data and applied out-of-the-box
to a wide variety of real cameras. We propose a novel approach to learn
robust representation through augmenting the simulation training data
such that the representation can better generalize to unseen real-world
test data. The key idea is to mix the feature of the hardest camera view
with the adversarial feature of the original view. We refer to our method
as SimAug. We show that SimAug achieves promising results on three
real-world benchmarks using zero real training data, and state-of-the-
art performance in the Stanford Drone and the VIRAT/ActEV dataset
when using in-domain training data. Code and models are released at
https://next.cs.cmu.edu/simaug.
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1 Introduction

Future trajectory prediction [26,1,19,36,52,30,35] is a fundamental problem in
video analytics, which aims at forecasting a pedestrian’s future path in the
video in the next few seconds. Recent advancements in future trajectory predic-
tion have been successful in a variety of vision applications such as self-driving
vehicles [4,7,8], safety monitoring [36], robotic planning [46,47], among others.

A notable bottleneck for existing works is that the current model is closely
coupled with the video cameras on which it is trained, and generalizes poorly
on new cameras with novel views or scenes. For example, prior works have
proposed various models to forecast a pedestrian’s trajectories in video cam-
eras of different types such as stationary outdoor cameras [44,34,1,19,31,38],
drone cameras [52,13,32], ground-level egocentric cameras [69,46,57], or dash
cameras [43,56,8]. However, existing models are all separately trained and tested
within one or two datasets, and there have been no attempts at successfully
generalizing the model across datasets of novel camera views. This bottleneck
significantly hinders the application whenever there is a new camera because it
requires annotating new data to fine-tune the model, resulting in a procedure
that is not only expensive but also tardy in deploying the model.

An ideal model should be able to disentangle human behavioral dynamics
from specific camera views, positions, and scenes. It should produce robust tra-
jectory prediction despite the variances in these camera settings. Motivated by
this idea, in this work, we learn a robust representation for future trajectory
prediction that can generalize to unseen video cameras. Different from exist-
ing works, we study a real-data-free setting where a model is trained only on
synthetic data but tested, out of the box, on unseen real-world videos, without
further re-training or fine-tuning the model. Following the success of learning
from simulation [51,55,63,75,15,48], our synthetic data is generalized from a 3D
simulator, called CARLA [14], which anchors to the static scene and dynamic
elements in the VIRAT/ActEV videos [44]. By virtue of the 3D simulator, we
can generate multiple views and pixel-precise semantic segmentation labels for
each training trajectory, as illustrated in Figure 1. Meanwhile, following the pre-
vious works [52,35], scene semantic segmentation is used instead of RGB pixels
to alleviate the influence of different lighting conditions, scene textures, subtle
noises produced by camera sensors, etc. At test time, we extract scene features
from real videos using pretrained segmentation models. The use of segmenta-
tion features is helpful but is insufficient for learning robust representation for
real-data-free trajectory prediction.

To tackle this issue, we propose a novel data augmentation method called
SimAug to augment the features of the simulation data with the goal of learning
robust representation to various semantic scenes and camera views in real videos.
To be specific, first, after representing each training trajectory by high-level scene
semantic segmentation features, we defend our model from adversarial examples
generated by white-box attack methods [18]. Second, to overcome the changes in
camera views, we generate multiple views for the same trajectory, and encourage
the model to focus on overcoming the “hardest” view to which the model has
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learned. Following [23,22], the classification loss is adopted and the view with
the highest loss is favored during training. Finally, the augmented trajectory
is computed as a convex combination of the trajectories generated in previous
steps. Our trajectory prediction backbone model is built on a recent work called
Multiverse [35]. The final model is trained to minimize the empirical vicinal
risk over the distribution of augmented trajectories. Our method is partially
inspired by recent robust deep learning methods using adversarial training [28],
Mixup [73], and MentorMix [22].

We empirically validate our model, which is trained only on simulation data,
on three real-world benchmarks for future trajectory prediction: VIRAT/ActEV
[44,2], Stanford Drone [49], and Argoverse [8]. These benchmarks represent three
distinct camera views: 45-degree view, top-down view and dashboard camera
view with ego-motions. The results show our method performs favorably against
baseline methods including standard data augmentation, adversarial learning,
and imitation learning. Notably, our method achieves better results compared
to the state-of-the-art on the VIRAT/ActEV and Stanford Drone benchmark.
Our code and models are released at https://next.cs.cmu.edu/simaug. To
summarize, our contribution is threefold:

– We study a new setting of future trajectory prediction in which the model
is trained only on synthetic data and tested, out of the box, on any unseen
real video with novel views or scenes.

– We propose a novel and effective approach to augment the representation of
trajectory prediction models using multi-view simulation data.

– Ours is the first work on future trajectory prediction to demonstrate the
efficacy of training on 3D simulation data, and establishes new state-of-the-
art results on three public benchmarks.

2 Related Work

Trajectory prediction. Recently there are a large body of work on predicting
person future trajectories in a variety of scenarios. Many works [1,68,74,36,35,52]
focused on modeling person motions in videos recorded with stationary cameras.
Datasets like VIRAT/ActEV [44], ETH/UCY [31,38] and Stanford Drone [49]
have been used for evaluating pedestrian trajectory prediction. For example,
Social-LSTM [1] added social pooling to model nearby pedestrian trajectory
patterns. Social-GAN [19] added adversarial network [17] on Social-LSTM to
generate diverse future trajectories. Several works focused on learning the ef-
fects of the physical scene, e.g., people tend to walk on the sidewalk instead of
grass. Kitani et al. in [26] used Inverse Reinforcement Learning to forecast hu-
man trajectory. SoPhie [52] combined deep neural network features from scene
semantic segmentation model and generative adversarial network (GAN) us-
ing attention to model person trajectory. More recent works [27,69,40,36] have
attempted to predict person paths by utilizing individuals’ visual features in-
stead of considering them as points in the scene. For example, Liang et al. [35]

https://next.cs.cmu.edu/simaug
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proposed to use abstract scene semantic segmentation features for better gen-
eralization. Meanwhile, many works [30,53,4,21,77,42,32,47] have been proposed
for top-down view videos for trajectory prediction. Notably, the Stanford Drone
Dataset (SDD) [49] is used in many works [52,13,32] for trajectory prediction
with drone videos. Other works have also looked into pedestrian prediction in
dashcam videos [43,56,27,30] and first-person videos [69,57]. Many vehicle tra-
jectory datasets [6,8,70] have been proposed as a result of self-driving’s surging
popularity.
Learning from 3D simulation data. As the increasing research focus in 3D
computer vision [76,33,54,14,48,50,20], many research works have used 3D sim-
ulation for training and evaluating real-world tasks [15,55,65,79,58,35,59,3,25,9].
Many works [45,15,55] were proposed to use data generated from 3D simulation
for video object detection, tracking, and action recognition analysis. For exam-
ple, Sun et al. [58] proposed a forecasting model by using a gaming simulator.
AirSim [54] and CARLA [14] were proposed for robotic autonomous controls
for drones and vehicles. Zeng et al. [72] proposed to use 3D simulation for ad-
versarial attacks. RSA [75] used randomized simulation data for human action
recognition. The ForkingPaths dataset [35] was proposed for evaluating multi-
future trajectory prediction. Human annotators were asked to control agents in
a 3D simulator to create a multi-future trajectory dataset.
Robust Deep Learning. Traditional domain adaptation approaches [5,16,61,24]
may not be applicable as our target domain is considered “unseen” during train-
ing. Methods for learning using privileged information [29,62,37,39] is not appli-
cable for a similar reason. Closest to ours is robust deep learning methods. In
particular, our approach is inspired by the following directions: (i) adversarial
training [18,41,66,72] to defend the adversarial attacks generated on-the-fly dur-
ing training using gradient-based methods [41,18,60,11]; (ii) data augmentation
methods to overcome unknown variances between training and test examples
such as Mixup [73], MentorMix [22], AugMix [12], etc; (iii) example re-weighting
to Different from prior work, ours uses 3D simulation data as a new perspective
for data augmentation and is carefully designed for future trajectory prediction.

3 Approach

In this section, we describe our approach to learn robust representation for future
trajectory prediction, which we call SimAug. Our goal is to train a model only
on simulation training data that can effectively predict the future trajectory in
the real-world test videos that are unseen during training.

3.1 Problem Formulation

We focus on predicting the locations of a single agent for multiple steps into
the future. Given a sequence of historic video frames V1:h of the past h steps
and the past agent locations L1:h in training, we learn a probabilistic model on
simulation data to estimate P (Lh+1:T |L1:h, V1:h) for T −h steps into the future.
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Fig. 2: Overview of our method SimAug that is trained on simulation and tested
on real unseen videos. Each training trajectory is represented by multi-view
segmentation features extracted from the simulator. SimAug mixes the feature
of the hardest camera view with the adversarial feature of the original view.

At test time, our model takes as input an agent’s observable past (V1:h, L1:h)
in real videos to predict the agent’s future locations Lh+1:T = {yh+1, . . . , yT },
where yt is the location coordinates. As the test real videos are unseen during
training, the model is supposed to be invariant to the variances in semantic
scenes, camera views, and camera motions.

3.2 Training Data Generation From Simulation

Our model is trained only on simulation data. To ensure high-level realism, the
training trajectories are generated by CARLA [14], an open source 3D simulator
built on top of the state-of-the-art game engine Unreal Engine 4. We use the
trajectories from the Forking Paths dataset [35] that are semi-manually recreated
from the VIRAT/ActEV benchmark that projects real-world annotations to the
3D simulation world. Note that it is not our intention to build an exact replica
of the real-world scene, nor it is necessary to help train a model for real-world
task as suggested in previous works [15,50,35,75].

With CARLA, we record multiple views of the same trajectory of different
camera angles and positions. For a trajectory (V1:T , L1:T ) in original view, let

S = {(V (i)
1:T , L

(i)
1:T )}|S|i=1 denote a set of additional views for the same trajectory. In

our experiments, we use four camera parameters pre-specified in [35], including
three 45-degree views and one top-down view. We use a total of 4 scenes shown
in Fig. 3. The ground-truth location varies under different camera views i.e.

L
(i)
1:T 6= L

(j)
1:T for i 6= j. Note that these camera positions and angles are defined

in [35] specifically for VIRAT/ActEV dataset. The top-down view cameras in
Stanford Drone dataset [49] are still considered unseen to the model since the
scenes and camera positions are quite different.

In simulation, we also collect the ground-truth scene semantic segmentation
for K = 13 classes including sidewalk, road, vehicle, pedestrian, etc. At test
time, we extract the semantic segmentation feature using a pre-trained model
with same number of class labels per pixel. To be specific, we use the Deeplab
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Fig. 3: Visualization of the multi-view 3D simulation data used in SimAug train-
ing. Data generation process is described in Section 3.2. We use 4 camera views
from 4 scenes defined in [35]. “0400” and “0401” scene have overlapping views.
The top-left views are the original views from VIRAT/ActEV dataset.

model [10] trained on the ADE20k [78] dataset and keep its weights frozen.
To bridge the gap between real and simulated video frames, we represent all
trajectory V1:T as a sequence of scene semantic segmentation features, following
previous works [36,35,13,52].

3.3 Multi-view Simulation Augmentation (SimAug)

In this subsection, we first describe SimAug for learning robust mode represen-
tations. Given a trajectory in its original view (V1:T , L1:T ), we generate a set

of additional views in S = {(V (i)
1:T , L

(i)
1:T )}|S|i=1 as described in the previous sec-

tion, where V
(i)
t represents scene semantic features of view i at time t. L

(i)
1:T

is a sequence of ground-truth locations for the i-th view. We build our model
on Multiverse [35], which considers the future location prediction problem as a
sequence classification problem at the coarse-level.

Each time given a camera view we use it as an anchor to search for the “hard-
est” view that is most inconsistent with what the model has learned. Inspired
by [23], we use the classification loss as the criteria and compute:

j∗ = argmax
j∈[1,|S|]

{Lcls(V1:h + δ, L
(j)
h+1:T ; θ)}, (1)

where δ is the `∞-bounded random perturbation applied to the input features.
Lcls is the location classification loss and will be discussed in the next subsection.
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Then for the original view, we generate an adversarial trajectory by the
targeted-FGSM attack [28]:

V adv
1:h = V1:h − ε · sign(∇V1:h

Lcls(V1:h + δ, L
(j∗)
h+1:T ; θ)), (2)

where ε is the hyper-parameter to be chosen. The attack tries to make the model
predict the future locations in the selected “hardest” camera view rather than
the original view. In essence, the resulting adversarial feature is “warped” to
the “hardest” camera view by a small perturbation. By defending against such
adversarial examples, our model learns representations that are robust against
changes in camera views.

Finally, we mix up the trajectory locations of the selected view and the
adversarial trajectory locations by a convex combination function over their
features and one-hot location labels.

V aug
1:h = λ · V adv

1:h + (1− λ) · V (j∗)
1:h

yaugt = λ · one-hot(yt) + (1− λ) · one-hot(y
(j∗)
t ) t ∈ [h+ 1, T ]

Laug
h+1:T = {yaugh+1, . . . , y

aug
T }

(3)

where the one-hot(·) function projects xy coordinates into an one-hot embed-
ding over a predefined grid used in computing the classification loss as in [35].
Following [73], λ is drawn from a Beta distribution Beta(α, α) controlled by the
hyper-parameter α.

The detailed algorithm for training with one training step is listed in Algo-
rithm 1. To train robust models to various camera views and semantic scenes, we
learn representations over augmented training examples to overcome (i) random
feature perturbations (ii) targeted adversarial attack, and (iii) the “hardest”
feature from other views. By the mix-up step in Eq. (3), our model is trained
to minimize the empirical vicinal risk over a new distribution constituted by
the generated augmented trajectories, which is proved to be useful in improving
model robustness in CNN training [73,23].

3.4 Trajectory Prediction Model

We build our backbone on Multiverse [35], a state-of-the-art multi-future trajec-
tory prediction model. We use SimAug to improve the robustness of Multiverse
view-invariant representation, even though SimAug is general to be applied to
other trajectory prediction models.
Input Features. The model is given the past locations, L1:h, and the scene,
V1:h. Each ground-truth location Lt is encoded by an one-hot vector yt ∈ RHW

representing the nearest cell in a 2D grid of size H × W . In our experiment,
we use a grid scale of 36 × 18. Each video frame Vt is encoded as semantic
segmentation feature of size H ×W ×K where K = 13 is the total number of
class labels as in [35,36]. As discussed in previous section, we use SimAug to
generate augmented trajectories (V aug

1:h , Laug
1:h ) as our input during training.



8 Junwei Liang, Lu Jiang, Alexander Hauptmann

Algorithm 1: Multi-view Simulation Adversarial Augmentation (SimAug)

Input : Mini-batch of trajectories; hyper-parameters α and ε
Output: Classification loss Lcls computed over augmented trajectories

1 for each trajectory (V1:T , L1:T ) in the mini-batch do

2 Generate trajectories from additional views S = {(V
(i)
1:T , L

(i)
1:T )};

3 Compute the loss for each camera view using Lcls(V1:h + δ, L
(j)
h+1:T ; θ);

4 Select the view with the largest loss j∗ by Eq. (1) ;

5 Generate an adversarial trajectory V adv
1:h by Eq. (2);

6 Mix up (V adv
1:h , Lh+1:T ) and (V

(j∗)
1:h , L

(j∗)
h+1:T ) by Eq. (3);

7 Compute Lcls over the augmented trajectory (V aug
1:h , Laug

h+1:T ) from Step 6;

8 end
9 return averaged Lcls over the augmented trajectories

History Encoder. A convolutional RNN [67,64] is used to get the final spatial-
temporal feature state Ht ∈ RH×W×denc , where denc is the hidden size. The
context is represented as the last hidden state and the history video frames,
H = [Hh, V1:h].
Location Decoder. After getting the context H, a coarse location decoder is
used to predict locations at the level of grid cells at each time-instant by:

ŷt = softmax(fc(H, Hc
t−1)) ∈ RHW (4)

where fc is the convolutional recurrent neural network (ConvRNN) with graph
attention proposed in [35] and Hc

t is the hidden state of the ConvRNN. Then a
fine location decoder is used to predict a continuous offset in R2, which specifies a
“delta” from the center of each grid cell, to get a fine-grained location prediction
by:

Ôt = MLP(fo(H, Ho
t−1)) ∈ RHW×2, (5)

where fo is a separate ConvRNN and Ho
t is its hidden state. To compute the

final prediction location, we use

L̂t = Qg + Ôtg (6)

where g = argmax ŷt is the index of the selected grid cell, Qg ∈ R2 is the center

of that cell, and Ôtg ∈ R2 is the predicted offset for that cell at time t.
Training. We use SimAug (see Section 3.3) to generate Laug

h+1:T = {yaugh+1, . . . , y
aug
T }

as labels for training. For the coarse decoder, the cross-entropy loss is used:

Lcls = − 1

T

T∑
t=h+1

HW∑
c=1

yaugtc log(ŷtc) (7)

For the fine decoder, we use the original ground truth label Lh+1:T :

Lreg =
1

T

T∑
t=h+1

HW∑
c=1

smoothl1(Otc, Ôtc) (8)
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where Otc = Lt−Qc is the delta between the ground true location and the center
of the cth grid cell. The final loss is then calculated using

L(θ) = Lcls + λ1Lreg + λ2‖θ‖22 (9)

where λ2 controls the `2 regularization (weight decay), and λ1 = 0.5 is used to
balance the regression and classification losses.

4 Experiments

In this section, we evaluate various methods, including our SimAug method,
on three public video benchmarks of real-world videos captured under different
camera views and scenes: the VIRAT/ActEV [2,44] dataset, the Stanford Drone
dataset [49], and the autonomous driving dataset Argoverse [8]. We demonstrate
the efficacy of our method for unseen cameras in Section 4.2 and how our method
can also improve state-of-the-art when fine-tuned on the real training data in
Section 4.3 and Section 4.4.

4.1 Evaluation Metrics

Following prior works [1,19,36,35], we utilize two common metrics for trajectory
prediction evaluation. Let Li = Li

t=(h+1)···T be the true future trajectory for

the ith test sample, and L̂ik be the corresponding kth prediction sample, for
k ∈ [1,K].
i) Minimum Average Displacement Error Given K Predictions (minADEK): for
each true trajectory sample i, we select the closest K predictions, and then
measure its average error:

minADEK =

∑N
i=1 minK

k=1

∑T
t=h+1‖Li

t − L̂ik
t ‖2

N × (T − h)
(10)

ii) Minimum Final Displacement Error Given K Predictions (minFDEK): similar
to minADEK, but we only consider the predicted points and the ground truth
point at the final prediction time instant:

minFDEK =

∑N
i=1 minK

k=1‖Li
T − L̂ik

T ‖2
N

(11)

iii) Grid Prediction Accuracy (Grid Acc): As our base model also predicts coarse
grid locations as described in Section 3.4, we also evaluate the accuracy between
the predicted grid ŷt and the ground truth grid yt.

4.2 Main Results

Dataset & Setups. In the following experiments, we compare SimAug with
classical data augmentation methods as well as recent adversarial learning meth-
ods to train robust representations. All methods are trained using the same
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backbone on the same simulation training data described in Section 3.2, and
tested on three public benchmarks. All real videos are not allowed to be used
during training except in our finetuning experiments. For VIRAT/ActEV, we
use the same test split as [36,35]. For SDD, we utilize the standard test split as
[52,13] and for Argoverse, we use the official validation set from the 3D tracking
task as our test set. The videos from the “ring front center” camera are used.

These datasets have different levels of difficulties. VIRAT/ActEV is the eas-
iest one as we have used its training trajectories projected in our simulation
training data. SDD is more difficult as its camera positions and scenes are differ-
ent from our training. Argoverse is the most challenging one with distinct scenes,
camera views, and ego-motions.

Following the setting in previous works [36,1,19,1,19,52,42,35,13], the models
observe 3.2 seconds (8 frames) of every pedestrian and predict the future 4.8
seconds (12 frames) of person trajectory. We use the pixel values for the trajec-
tory coordinates as it is done in [69,36,30,7,32,42,4,21,13]. We evaluate the top
K = 1 future trajectory prediction of all models.

Baseline methods. We compare SimAug with the following baseline methods
for learning robust representations. All methods are built on the base model
and trained using the same simulation training data. Base Model is the tra-
jectory prediction model proposed in [35]. Standard Aug is the base model
trained with standard data augmentation techniques including horizontal flip-
ping and random input jittering. Fast Gradient Sign Method (FGSM) is
the base model trained with adversarial examples generated by the targeted-
FGSM attack method [18]. We use random labels for the targeted-FGSM attack.
Projected Gradient Descent (PGD) is learned with a recent iterative ad-
versarial learning method [41,66]. The number of iteration is set to 10 and other
hyper-parameters follow [66].

Implementation Details. We follow the implementation in [35] and use it as
our base model. To be more specific, we use α = 0.2 for the Beta distribution
in Eq (3) and we use ε = δ = 0.1 in Eq (2). Since the random perturbation is
small and insignificant compared to the segmentation, we do not normalize the
perturbed features. 1 We use a total of 4 camera views in training, including
three 45-degree views and one top-down view. See Section 3.2. All models are
trained using Adadelta optimizer [71] with an initial learning rate of 0.3 and a
weight decay of 0.001. Other hyper-parameters for the baselines are the same as
the ones in [35].

Quantitative Results. Table 1 shows the evaluation results. As we see, our
method performs favorably against other baseline methods across all three eval-
uation metrics and all three benchmarks. In particular, “Standard Aug” seems
to be not generalizing well to unseen cameras. FGSM improves significantly on
the “Grid Acc” metric but fails to translate the improvement to final location
predictions. SimAug is able to improve the model overall due to the effective use
of multi-view data. All other methods are unable to improve trajectory predic-

1 We have conducted such an experiment with normalized features and got
21.68/42.56, which is similar to Table 3 ”SimAug”.
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tion on Argoverse, whose data characteristics include ego-motions and distinct
dashboard-view cameras. The results substantiate the efficacy of SimAug for
trajectory prediction in unseen cameras.
Qualitative Analysis. We visualize outputs of our base model with and with-
out SimAug in Fig. 4. We show visualizations on all three datasets. In each
image, the yellow trajectories are history trajectories and the green ones are
ground truth future trajectories. Outputs of the base model without SimAug
are colored with blue heatmaps and the yellow-orange heatmaps are from the
same model with SimAug. As we see, the base model with SimAug augmentation
yields more accurate trajectories with turnings (Fig. 4 1a., 3a.) while without it
the model sometimes predicts the wrong turns (Fig. 4 1b., 1c., 2a., 3a., 3b.). In
addition, the length of SimAug model predictions is more accurate (Fig. 4 1d.,
2b., 2c., 2d.).

Table 1: Comparison to standard data augmentation method and
recent adversarial learning methods on three datasets. We report
Grid Acc(↑)/minADE1(↓)/minFDE1(↓) metrics. The units of ADE/FDE
are pixels. All methods are built on the backbone model in [35] and trained
using the same multi-view simulation data described in Section 3.2.

Method VIRAT/ActEV Stanford Drone Argoverse

Base Model [35] 44.2%/26.2/49.7 31.4%/21.9/42.8 26.6%/69.1/183.9
Standard Aug 45.5%/25.8/48.3 21.3%/23.7/47.6 28.9%/70.9/183.4
PGD [41,66] 47.5%/25.1/48.4 28.5%/21.0/42.2 25.9%/72.8/184.0
FGSM [18] 48.6%/25.4/49.3 42.3%/19.3/39.9 29.2%/71.1/185.4
SimAug 51.1%/21.7/42.2 45.4%/15.7/30.2 30.9%/67.9/175.6

4.3 State-of-the-Art Comparison on Stanford Drone Dataset

In this section, we compare our SimAug model with the state-of-the-art gen-
erative models, including Social-LSTM [1], Social-GAN [19], DESIRE [30], and
SoPhie [52]. We also compare with imitation learning model, IDL [32], and in-
verse reinforcement learning model, P2TIRL [13] for trajectory prediction on the
Stanford Drone Dataset. Following previous works, we evaluate our method with
minimal errors over K = 20 predictions.
Results & Analysis. The results are shown in Table 2 a., where SimAug is
built on top of the Multiverse model. As it shows, SimAug model trained only
on out-domain simulation data (second to the last row) achieves comparable
or even better performance than other state-of-the-art models that are trained
on in-domain real videos. By further fine-tuning on the learned representations
of SimAug, we achieve the state-of-the-art performance on the Stanford Drone
Dataset. The promising results demonstrate the efficacy of SimAug for trajectory
prediction in unseen cameras.
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Fig. 4: Qualitative analysis. Trajectory prediction from different models are col-
ored and overlaid in the same image. See text for details.

4.4 State-of-the-Art Comparison on VIRAT/ActEV

In this section, we compare our SimAug model with state-of-the-art models on
VIRAT/ActEV. Following the previous work [35], we evaluate our method with
errors in the top K = 1 prediction. Experimental results are shown in Table 2
b., where all models in the top rows are trained on the real-world training videos
in VIRAT/ActEV. Our model trained on simulation data achieves competitive
performance and outperforms Multiverse [35] model that is trained on the same
data. With fine-tuning, which means using exactly the same training data with-
out any extra annotation of real trajectories compared to [1,19,36,35], we achieve
the best performance on the VIRAT/ActEV benchmark.
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Table 2: State-of-the-art comparison on the Stanford Drone Dataset (SDD) and
on the VIRAT/ActEV dataset. Numbers are minimal errors over 20 predictions
for SDD and minimal errors over 1 predictions for VIRAT/ActEV. Baseline
numbers are taken from [52,13]. “SimAug” is trained without using in-domain
training data and “SimAug*” is further finetuned on the training data. “Multi-
verse*” is trained only with simulation data.

Method minADE20(↓) minFDE20 (↓)

Social-LSTM [1] 31.19 56.97
Social-GAN [19] 27.25 41.44
DESIRE [30] 19.25 34.05
SoPhie [52] 16.27 29.38
Multiverse [35] 14.78 27.09
IDL [32] 13.93 24.40
P2TIRL [13] 12.58 22.07

SimAug 12.03 23.98
SimAug* 10.27 19.71

(a) Stanford Drone Dataset

Method minADE1(↓) minFDE1 (↓)

Social-LSTM [1] 23.10 44.27
Social-GAN [19] 30.42 60.70
Next [36] 19.78 42.43
Multiverse [35] 18.51 35.84

Multiverse* [35] 22.94 43.35
SimAug 21.73 42.22
SimAug* 17.96 34.68

(b) VIRAT/ActEV

4.5 Ablation Experiments

We test various ablations of our approach to validate our design decisions. Re-
sults are shown in Table 3, where the top 1 prediction is used in evaluations. We
verify four key design choices by removing each, at a time, from the full model.
The results show that by introducing viewpoint selection (Eq. 1) and adversarial
perturbation (Eq. 2) that prevent models from memorizing the training data,
our method improves model generalization.

(1) Multi-view data: Our method is trained on multi-view simulation data
and we use 4 camera views in our experiments. We test our method without one
of the camera view (top-down view) that is similar to the ones in SDD dataset
to see the effects. As we see, the performance drops due to fewer number of data
and less diverse views, suggesting that we should use more views in SimAug
(which is effortless to do in 3D simulator).

(2) Random perturbation: We test our model without random perturbation
on the original view trajectory samples by setting δ = 0 (Eq. (1)). As we see,
performance drops on all three datasets and particularly on the more difficult
Argoverse dataset.

(3) Adversarial attack: We test our model without adversarial attack by
replacing Eq. (2) with V adv

1:h = V1:h. This is similar to simple “Mixup” [73]
of two views. The performance drops slightly across all three benchmarks.

(4) View selection: We replace Eq. (1) with random search to see the effect
of view selection. As we see, the significant performance drops on trajectory
prediction verify the effectiveness of our design.
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Table 3: Performance on ablated versions of our method on three benchmarks.
We report minADE1(↓)/minFDE1(↓) metrics.

Method VIRAT/ActEV Stanford Drone Argoverse

SimAug full model 21.7 / 42.2 15.7 / 30.2 67.9 / 175.6

- top-down view data 22.8 / 43.6 18.4 / 35.6 68.4 / 178.3
- random perturbation 23.6 / 43.8 18.7 / 35.6 69.1 / 180.2
- adversarial attack 23.1 / 43.8 17.4 / 32.9 68.0 / 177.5
- view selection 23.0 / 42.9 19.6 / 38.2 68.6 / 177.0

5 Conclusion

In this paper, we have introduced SimAug, which utilizes multi-view 3D sim-
ulation data to learn robust representations for trajectory prediction. We have
shown that our method achieves competitive performance on three public bench-
marks with and without using the real-world training data. We believe our ap-
proach will facilitate future research and applications on robust future prediction
using 3D simulation for unseen camera views. Other directions to deal with cam-
era view dependence include using a homography matrix, which may require an
additional step of manual or automatic calibration of multiple cameras. We leave
them to future work.
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