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INFLATION OF POORLY CONDITIONED ZEROS OF
SYSTEMS OF ANALYTIC FUNCTIONS

MICHAEL BURR AND ANTON LEYKIN

ABSTRACT. Given a system of analytic functions and an approximate
zero, we introduce inflation to transform this system into one with a
regular quadratic zero. This leads to a method for isolating a cluster of
zeros of the given system.

Let g : C* — C" be a square system of analytic functions. There exist
heuristic methods to obtain approximations to some or all of the isolated
zeros of g. In the context of our work, isolation of a zero is the problem
of constructing a neighborhood of the given approximation that contains
exactly one zero. When the approximation is close to a singular zero (with
multiplicity m) of a nearby system, this problem becomes the problem of
isolating a cluster of m zeros.

For regular zeros, methods derived from alpha-theory [4, [9] or interval
arithmetic [I1] provide effective ways to isolate zeros. These methods, how-
ever, do not apply to singular zeros. We introduce an approach, called
inflation, that transforms a system with an approximate zero into a system
with a regular quadratic zero — a new concept which we define. We use this
new system to compute a region containing a cluster of zeros of the original
System.

Most prior approaches for approximating poorly conditioned (i.e., singular
or nearly singular) zeros, such as deflation [10], aim to reduce the multiplicity
of a zero so that the resulting zeros can be found using standard methods.
One new idea of our approach is, instead, to increase the multiplicity of
the zero or cluster of zeros. By increasing the multiplicity of the zero, we
regularize the zero, albeit not in a traditional sense — regular quadratic
zeros are still singular, but better behaved. Our approach combines ideas
from linear and nonlinear algebra, real and complex analysis, as well as
convex optimization.

We refer the reader to [8] and the references therein for a discussion of
other approaches to the zero clustering problem and the related problem of
certifying a singular zero. To the best of our knowledge, prior to this work,
the clustering problem has only been considered in the univariate case and
the multivariate case where the Jacobian has corank one.
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1. EXACT SINGULAR ZEROS

We call z a regular zero of order d of a system g if, first, the degree ¢ part
of the Taylor expansion of g at x is identically zero for ¢ = 0,...,d — 1, and,
second, the degree d part does not vanish on the unit sphere S ¢ C"”. We
call a regular zero of order 2 a regular quadratic zero.

Let y € C" be a zero of g and k = dimker Dg(y). If kK = 0, then the
zero is a regular zero, or, in our new terminology, regular of order one. The
most common case of a multiple (nonregular and singular) zero is called a
simple double zero in [7] and corresponds to a singularity of Type ¥'Y using
the terminology of singularity theory [I]. We consider the more general case
where y is a singularity of Type ¥*. We define the multiplicity of an isolated
zero y to be the number of zeros near y after a generic perturbation of f [IJ.

We introduce inflation as a way to transform a general system with a
singularity of Type X" at y into a system with a regular quadratic zero at y.
Next we apply Rouché’s theorem to the quadratic part of the transformed
system in order to calculate the multiplicity of the zero y of the original
system. Throughout this section, we assume that the singular zero y is ex-
plicitly known, and, hence, the kernel ker Dg(y) can be explicitly computed.
This restriction is lifted in Section 2l

1.1. Inflation. We first simplify the problem by applying an affine change
of coordinates A : C* — C" with A(0) = y so that the origin is a zero of
go A and

ker D(go A)(0) = (e1,...,€x)-
We then obtain the inflated system g o A o S, where

x;, i€ [K];

Swlwi) = { x?, otherwise.
Since g is generic, the quadratic part of g o A o S,; does not vanish on the
unit sphere, so g o A o Si has a regular quadratic zero at the origin. We
remark that for k < n, the resulting zero has higher multiplicity than the
original zero. More precisely, from the point of view of singularity theory,
we pass from Type X% to Type X". This behavior prompted us to name
this method “inflation” in contrast to “deflation”, see, e.g., [10].

1.2. Isolating zeros. Let S. C C™ be the sphere of radius ¢ and B, be the
ball of radius € centered at 0 in the Euclidean norm.

Lemma 1.1. Let f be an arbitrary square system and Q) a square system of
quadratic forms. Suppose there exists ¢ > 0 and ¢ > 0 such that

(1) |I(f —Q)(Se)|| < ce?, and
(2) |Q(S1)|| > ¢,

then f has 2™ zeros in B..

Proof. Condition [2| implies that ) has no zeros on a sphere. Therefore,
by homogeneity, its only zero is the origin, which has multiplicity 2". Since
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If—Q| < ce? < ||Q| on S., the conclusion follows from multivariate version
Rouché’s theorem, see [2, Theorem 2.12]. O

Since g o A o S,; has a regular quadratic zero at the origin, we define
Q = Q(g) to be the quadratic part of go Ao S,. For £ a small positive
number, the conditions of Lemma, hold for the pair (go Ao S, Q).

Since the inflation map is a cover with 2"~* sheets with ramification locus
{z122 ... 2, = 0}, we conclude that y is a zero of multiplicity 2" of g.

We illustrate our technique when the zero of ¢ is explicitly known:

Example 1.2. Let a # 0 and g be the following system with a zero at
(Y1, Y2):

g9(x) = [(z1 — 11)*, (2 — y2) — alzr — 1) ((z1 — y1) + 3y1)] "
We observe that ker Dg(y) = (e1) and k = 1. Applying the affine transfor-
mation A(x) = x +y and inflation, we get

goAoSi(z) = [23,23 — ax?(z1 + 3y1)]".

We observe that the quadratic part of go Ao Sy is
Q(goAoSy) = [21,25 — 3aya),

which does not vanish on the unit sphere S1. Therefore, go AoSy is a regular
quadratic zero of multiplicity four at the origin. Near the origin, Q(goAoSy)
dominates go Ao S — Q(go Ao Sy).

Using Rouché’s theorem [2, Theorem 2.12], we conclude that go Ao Sy has
four zeros (counted with multiplicity) in the ball B for some ¢ > 0. Since
Ao S1 is a double cover, we conclude that g has a zero of multiplicity two
aty.

We hint at how the computation from Example [I.2] can be used to isolate
a cluster of zeros. Let f(z) = [z} — a? 22 — ax3]T, which has zeros at
+(a,a*). Suppose that we approximate this cluster of zeros with y. We
observe that f — f(y) differs from g in Example only in the linear terms
in the Taylor expansion around y. Moreover, the limit of this difference
tends to 0 as @ — 0. This behavior should be contrasted with that of the
remaining terms contributing to (g o A o S1), which tend to a quadratic
form that is nonvanishing on a sphere. Therefore, for y and « sufficiently
small, f — f(y) is dominated by @ on S.. Thus, Rouché’s theorem identifies
a cluster of zeros of f near y.

In the remainder of this paper, we expand upon this approach.

2. POORLY CONDITIONED ZEROS

In typical applications, for system f, we do not expect that a multiple
zero is given or even that f has any singular zeros. Instead, we assume that
we are given an approximation y to a cluster of zeros so that f is nearly
singular at y. In addition, let x be the dimension of the numerical kernel
of Df(y), i.e., the number of small singular values. We construct a nearby
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system ¢ which has a zero at y and whose Jacobian has corank . Then, by
applying the methods from Section [l we isolate a cluster of zeros of f.

2.1. Transformations of the system. Suppose that V' C C" is a linear
subspace with dim V = k. Consider

K

(1) g(x) = f(z) = fy) = > _ Df (y)mv(z —y)

i=1
where 7y is the orthogonal projection onto V. We observe that y is a zero
of g and that ker Dg(y) D V. When Df(y) is nonsingular, this containment
is an equality. In our computations, V plays the role of an approximate
kernel of Df(y). One practical choice for V' is the span of singular vectors
corresponding to the x smallest singular values of Df(y).

2.2. Isolating a cluster of zeros. Suppose that g is constructed from f
as in Section [2.1]and that A is constructed from ¢ as in Section We then
compare the zeros of f o Ao S, to those of Q(go Ao S1) using Lemma

Define IB%QQ) C C™ to be the ball of radius € in the mixed norm, i.e.,

K n
|zl ) = 4| D lwil2+ D ail.
i=1 i=r+1

The inflation map S, restricted to B, is a cover of IB%&H) with 27" sheets
and ramification locus {z1z2...2, = 0}. This construction leads to the
following:

Corollary 2.1. Let f be a square system, y € C", and V C C" be a linear
subspace of dimension k. Suppose that g is constructed as in Section[2.1 Let
A be an affine map such that go A(0) = 0 and ker D(go A(0)) = (e, ..., ex).
Let Q = Q(go Ao Sy) be the quadratic part of go Ao S,. If fo Ao S, and

Q satisfy the assumptions of Lemma then f has 2% zeros in A(Bgﬁ)).
2.3. Example. Let a = 0.01 in the system f(z) = [#? —a?, z1 + 22— axf]T.
Let y := (0.001,—-0.001) be a rough approximation to the center of the
cluster of zeros of f. Our computation allows us to isolate the cluster of two
zeros as depicted in Figure

The singular values at y are 1.414 and 0.001414. Moreover, the singular
vector corresponding to the smaller singular value is v := [~0.707,0.707].
We then construct g as

9(x) = f(z) — f(y) — Df(y)mo(z,y)
~ 22 — 10732 — 107329 + 1075, —-0.0123 + 21 + 29 — 2- 10797,

Using the affine transformation A, whose constant part is y and whose linear
part is both orthogonal and sends v to ej, we have (after suppressing terms
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A

FiGUrE 1.

The zeros of fpo1 = 0
are the red points.
An approximation
y = (0.001,—-0.001) to
the center of the clus-
ter is the blue point.
The shaded region is
A(IB%E)'%), which isolates
the zeros of fy.01.

which are nonzero only due to round-off error),

0.522 + z129 + 0.523 — 0.00141429

90 A~ 1 0.00353623 + 0.01061222 + 0.010612122 + 0.00353623
—1.5-107522 — 3. 10752129 — 1.5- 107523 — 1.414x,

We observe that in this system, there are no constant terms and only xo
appears as a linear term. We apply the inflation map Sy, which replaces x2
by its square, and extract the quadratic part

Q=Q(go Ao Sy)~[0.523 —0.00141423, —1.5 - 10~ %27 — 1.4143]7

Using a sum of squares computation, see Section for details, we find
that a lower bound on ¢ = ||Q||* on the unit sphere is 0.2221. Hence, in
Lemma [T} ¢~ 0.4713.

We now compute ¢ for Condition of Lemma as follows (omitting
terms with coefficients less than 1071°)

0.5z3 + x122 — 0.00141427 — 1074

foAoS1-Q~ | 00353625 + 0.01061z124 + 0.010612222 — 1.5 - 1052
+0.003536x3 — 3 - 10~ %z 23 + 1.414 - 107627 — 1071

Via crude upper bounds, namely, by using the triangle inequality and bound-
ing the magnitude of all variables from above by ¢, we find that Condition
of Lemma holds for £ € [0.017,0.39]. Therefore, by Corollary f has

2 zeros in A(IB%S;U).
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3. LOWER BOUNDS ON QUADRATIC FORMS

A key step in the application of our method is finding a ¢ > 0 so that
Condition 2] of Lemma[I.I holds. Computing c¢ is a polynomial optimization
problem.

Let Q@ = (Q1,...,Qn) be a vector of quadratic forms. Condition [2[ of
Lemma requires a positive lower bound on ||@Q| on the unit sphere.
We use a sum-of-squares certificate of positivity approach to compute this
bound, but also discuss alternatives. A full study of theoretical efficiency as
well as practicality of these approaches is left to future work.

3.1. Sum-of-squares relaxation. We identify C" with the real space R?"
of twice as many dimensions. For each variable x;, we let a; = Re(x;) and
b; = Im(z;). We are interested in a positive lower bound on the following
quartic over the real unit sphere S; C R?":

¢(a,0) = [|Q(a +10)|* = Y Re(Q;(a + i))* + Im(Q;(a +ib))*.
j=1

In addition, we define

s(a,b) = la+ibl]* =D af + ) b7,

where the real zero set of s(a,b)—1 is the unit sphere. Our goal is to compute

¢" = ming = min{g(a,0) | s(a,b) = 1},
1

Let Ys0ogs be the convex cone of polynomials that are sums of squares.
The sums-of-squares moment relaxation of level  computes a lower bound
on ¢*, see, e.g., [3, §3.2.4] and [I3]. In our case, this bound is

¢ =max{c|g—c=0+h, 0 € 505, h € (s—1), max(dego,degh) < 2r}.

Since lim, .~ ¢, = ¢*, for r large enough, ¢, > 0 when ¢* > 0. We remark
that, should a relaxation of level r succeed with ¢, > 0, a rational certificate
of positivity for ¢ can be produced as in [12].

3.2. Alternative approaches. Isolating all critical points of ¢ on the sphere
S1 is one alternate approach. This can be accomplished provided the zeros
of a Lagrange multiplier system are regular and their number matches the
generic number of zeros of this system. In full generality, the zeros may
be singular, “at infinity”, or poorly conditioned, which would hamper the
practicality of this approach.

Interval arithmetic, see [I1], may be used to estimate a lower bound on ¢
over the sphere S1. This method estimates ¢ on each region of a partition
of the sphere. As the partition becomes finer, this estimate converges to
q*. Subdivision-based schemes involving interval arithmetic sometimes have
exponential complexities, see [5], but may be efficient in practice [6].
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4. SUMMARY AND REMARKS

Given a heuristic to determine an approximate rank and an approximate
kernel of linear map, we summarize our approach below.

Input: A polynomial system f : C" — C" and a point y € C™ that approx-
imates a cluster of zeros.
Output: An integer 0 < k < n, a real number € > 0, and the image of a

mixed-norm ball ]B%gﬁ) that contains 2% zeros of f.

(1) Compute &, the dimension of an approximate kernel of Df(y).

(2) Use Equation to construct the system g which has a zero at y of
Type XF.

(3) Construct an affine transformation A so that g o A has a zero at 0
and the kernel of go A at 0 is (e1,...,ex).

(4) Use the inflation operator Sy so that g o A oS, has no constant or
linear terms.

(5) Find a lower bound ¢ > 0 for the norm of the quadratic part @ of
the system g o A o S; on the unit sphere using an approach from
Section [3

(6) Find a small ¢ > 0 so that ||f — Q|| < ce? on the sphere S..

(7) Return x, A, and e.

4.1. Application to systems with exact singular zeros. Suppose f
has an exact zero x of singularity Type ¥* inflatable to a regular quadratic
zero. As long as there is an efficient way to refine the approximation y of x,
our approach is guaranteed to succeed. Indeed, one can use SVD to recover
x and and an approximation of ker Df (z) robustly, since exactly x singular
values approach 0 as y — .

This procedure does not certify the fact that there is a singular zero in
the constructed region, but it isolates and certifies the existence of a cluster
of multiplicity equal to that of x.

4.2. Approximating the cluster. While we consider computing an ap-
proximation y to a cluster as a separate problem, one algorithm we have
in mind is that of deflation, as described in [10]. This approach provides a
way to refine an approximation to an exact singular zero as required in Sec-
tion In the case of a cluster of several distinct zeros, deflation still
delivers an augmented (often overdetermined) system of equations that can
be used for our purpose. The fixed point of the operator in Newton’s method
is a good heuristic approximation of the cluster even if this fixed point is
not an actual zero of the augmented system.

4.3. Geometry of a cluster. Inflation changes the geometry around a
cluster. As a result, the mixed-norm ball of Corollary approximates the
geometry of a cluster better than a Euclidean ball, as in the cluster isolation
statement in [7, Theorem 4]. It may be possible to pursue a strategy similar
to that of [7] in the case of a regular quadratic zero. We remark that even
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if this strategy succeeds, approaches inspired by Smale’s a-theory tend to
provide very conservative bounds.

4.4. Reduction to regular zeros of higher order. Our isolation tech-
nique can be readily adopted to the case of a regular zero of arbitrary order.
In fact, our method has a straightforward application to simple multiple
zeroes of arbitrary multiplicity as studied, for instance, in [8]. In this case,
k = 1 and one may generalize inflation to produce a system with a regular
zero of order  when the multiplicity p is known. This construction would
also result in a mixed norm ball that may give a tighter isolation region than
the Euclidean ball produced by the method of [§].

A system with a singular zero with arbitrary multiplicity structure could
be more complicated, however. We suspect that a more intricate inflation
procedure may be needed in the general case.

4.5. Applications to square polynomial systems. Given a system of n
polynomial equations in n unknowns, it is common to have both a heuristic
method to approximate all zeros and a way to count them with multiplicity.
When, in addition, all zeros are either regular or inflatable to regular qua-
dratic zeros, our approach certifies the completeness of the approximate com-
putation by producing a computer derived, but explicitly checkable proof.
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