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Abstract

In this paper, we analyze a social imitation model that incorporates internal energy caches (e.g.,
food/money savings), cost of living, death, and reproduction into the Ultimatum Game. We show that
when imitation (and death) occurs, a natural correlation between selfishness and cost of living emerges.
However, in all societies that do not collapse, non-Nash sharing strategies emerge as the de facto result
of imitation. We explain these results by constructing a mean-field approximation of the internal energy
cache informed by time-varying distributions extracted from experimental data.

1 Introduction

Cooperation is clearly critical for the emergence of societies (e.g., ants, cetaceans, humans, etc.). However
cooperation, and by extension fairness, frequently appears to be an irrational response to an environment
with survival pressures, such as the cost of living. Consequently, modeling mechanisms for the emergence of
cooperation and fairness continues to be active area of research in social and biological theory |[IH12]. The
Ultimatum Game (UG) is an archetypal game illustrating the difficulties in modeling concepts of fairness. In
the game, one player is given a sum of money which she must divide in some proportion between herself and
a second player. The second player may then accept the offer, in which case the pot is divided accordingly,
or reject the offer, in which case each player receives nothing |13|. This is like a continuous variation of the
Stag-Hunt game, in which individual gain competes against mutual benefit. The notional money can act
as a stand-in for a cooperative hunt, business venture etc. Here we introduce an additional UG variable,
individual wealth, which drives the dynamic imitate the successful.

A considerable amount of theoretical and experimental research has been done on the ultimatum game
(see e.g., |14H24]). Classical game theory asserts the most rational, sub-game perfect solution is for the
dividing player to keep as much of the prize as possible, while the deciding player accepts any offer. However,
almost all experiments with humans (but not chimpanzees [19]) show that individuals will offer far more
than the minimum quantity and deciding players will frequently reject offers at the expense of their own
well-being (presumably as an act of punishment for unfair or non-cooperative behavior). In particular,
Oosterbeek et al. conducted a meta-analysis of 37 papers with 75 results from various countries |16], and
concluded that there is not a significant difference in proposers’ behavior, although there is a difference in
responders’ behaviors across (geographic) regions.

Mathematical models by Nowak et al. approach the Ultimatum Game from an evolutionary game theory
perspective, by including the reputation of agents as part of the offer making process [25] and in a one-shot
game context [26]. More recently, Gale et al. construct a discrete strategy evolutionary game representation
[13], and show that evolutionary stable strategies exist in this game. In addition to this, a substantial amount
of work has been done on spatial ultimatum games [27H35], which shows that fairness can arise in various
contexts, driven by spatial population structures. In this paper, we study imitation rather than evolution
to ascertain the effect on Ultimatum Game strategies. Our imitation dynamics are taken from [3637].
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However, unlike [37], which uses a metric to determine imitation, we use success imitation as in [36], with
the net individual winnings (savings) of each player used as a proxy for past success.

2 Model

Our proposed model is an agent-based simulation in the spirit of [2526], and similar to the approach taken
in 38//39]. We introduce a dynamic wealth variable [40] for each player, as an integrated measure of success.
In our model, agents interact randomly and each interaction is an instance of UG with a possible prize
P. Agents are chosen at random to be the offerer or decider. The state of agent 7 is specified by internal
variables (A%, 0, B*) where A € [0, 1] is the demanded offer level of Agent 4, §° € [0,1] is the offer provided
by Agent i, and B’ > 0 is the savings (energy cache) held by each agent, which keeps track of the winnings
from each interaction. Energy loss in the system is set by the cost of living parameter x, which is subtracted
at each time step from the energy cache of each player.

If Agents i and j interact and ¢ is the offerer, then Agent j rejects the offer whenever #° < M. In the
case of acceptance, Agent i keeps (1 — 0°)P and Agent j keeps ?P. When P = 1, then all parameters can
be expressed as ratios of P. Let x;;(t) be an indicator function that is 1 at time ¢ exactly when ¢ and j
interact. The discrete time agent-based model dynamics are given by:
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where

0 otherwise
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is the unit step function, and we take k € [0, 1]. For simulation purposes, we set ¢ = 1. Taking the expected
value of these equations, a mean-field approximation of the agent energy dynamics can be derived:
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The normalizing value ¢ is given by:

_Jn n is odd
1 n—1 otherwise’
which models the random choice of two agents from a completely connected population of n agents. We next
propose dynamics that drive the population towards a statistical equilibrium (6%, A\*) — (\*,6*). However,
independent of any game dynamics for the population, we can already derive certain relations that charac-
terize the dynamics of the energy cache B using Eq. . If A* > 0%, then U(6* — A*) = 0 and AB < 0.
Populations of this type will collapse. On the other hand, if \* < *, then as n — oo:

AB(t) = = (1 —2k), (3)
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which also holds in general for even n. Thus, if k > %, the population will collapse in the mean. For x = 2

2
the population energy caches will stabilize in the mean and for xk < %, the population energy caches will
increase without bound.

In discrete time, the dynamics of (6, A) are given by:
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where p;; are imitation probabilities, to be defined by the model dynamics. Let:
Q' =Y U(B - B, (6)
J

which is the cumulative difference in energy values for all agents j with B/ > B?. For the discrete time

simulation, we set: o o
{ (B’—B*)U(B’—B") if Qz >0
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Egs. and are imitation dynamics in which agents imitate those who outperform them. Thus Agent j
does not rationally choose (M,607), but adjusts these values based on observations weighted towards other,
more successful agents.

For imitation systems like Egs. and 7 Griffin et al. proved that a sufficient condition for convergence
is the emergence of a fixed leader i* imitated (directly or indirectly) by all agents [36], which readily occurs
in this system as a result of the total ordering of B*. As ¢ — 0, Egs. and become the continuous time
consensus equations as surveyed in [37], but with state-varying coefficients. The proof of convergence in [36]
for discrete time updates suggests that exact values of p;; are irrelevant, as long as Agent 4 is imitating those
agents who outperform it.

Whether in continuous or discrete dynamics, these systems have an infinite set of fixed points 6% = 6*,
A= \* for 0%, \* € [0,1] x [0,1]. Tt is clear that not all such fixed points are equally likely or even realistic,
since all systems with A\* > 6* would lead to population collapse for any cost of living x > 0. Therefore, the
distributions of long-run behavior in these systems should provide insights into the emergence of cooperative
or fair behaviors.

We assume agents are initialized with % and A\* uniformly distributed in [0, 1]. Again consider the case
when n — co. From Eq. the expected per-round energy increase near t = 0 for an agent with parameters

(0, ) is:
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Maximizing this expression subject to the constraints 0 < 6, A < 1, suggests the optimal fairness demand is
AT = 0, while the best offer is 7 = % This is consistent with the classical Nash equilibrium (A* = 0) but
also consistent with fairness considerations (67 = %)7 since an agent can never be certain whether she will
interact with an agent with high or low A. If the players were perfectly rational, then a true Nash equilibrium
would be ONF = A\NE — ), since rational players realizing A = ANF = 0 would make 6NF = 0. Our empirical
results show that this equilibrium does not result from imitation.

From Eq. , when x > %, the expected increase for even an optimal player is negative. This will lead
to a mean decrease in energy caches until imitation leads to higher success rates in UG. Let xap (8, \, &)
be an indicator function that is 1 just in case, Eq. is positive. Numerical evaluation shows that when
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For k > k*, the median energy cache value will decrease in early interactions before imitation can contract
the strategy space. Individuals whose energy cache reaches zero are assumed dead and can no longer interact
in the system. Reproduction or replacement of players is used to maintain a constant population, and the
specific rule we use is described in the simulation details below.

3 Simulation Results

We simulate a population with N agents. Agents are initialized with an energy cache value B, and uniformly
randomly assigned values 6° and \*. Agents enter a game loop, where each agent plays UG with another



randomly selected agent. Once all agents have played, energy caches are updated accordingly. In the agent-
based simulation, we introduce a reproductive step into the mimicking process to account for agents with
non-positive energy cache and to identify population collapse prior to convergence. If all agents have B? < 0
after subtracting the cost of living, the simulation ends immediately. Otherwise, all agents with B* > 0,
mimic others using Egs. and in a mimic/reproduce loop. If all agents have survived, agents return to
the game loop. Otherwise, agents are randomly chosen to reproduce with probability proportional to their
energy cache; i.e., the fittest reproduce with higher probability. Reproduction continues until the population
reaches N. If the population never collapses, the process is terminated after T" rounds. The size of T is
chosen to ensure convergence. To ensure numerical validity, the model was implemented both in Python and
Mathematica, and results were compared to ensure statistical consistency. We experimented with varying
numbers of agents ranging from 50 to 300. We restricted the size to this level to ensure simulations could
run on a personal computer within a reasonable amount of time.

Fig. 1] shows simulation results for N = 150 players and running time 7' = 300. All agent energy caches
are initially set to 1. We used 100 realizations (replications). Distribution plots for B, § and A are shown,
with cost of living x ranging from 0.05 to 0.5. Density plots showing the joint converged (6, \) distributions
are shown in Fig. |3l The convergence of 0°(t) and \(¢) is illustrated in Fig. [2| for 300 agents, 7" = 500 and
k = 0.1. To create this figure, 100 replications were constructed and 6*(t) and \‘(t) were sorted at each

round. These sorted lists where then averaged (over replication) to obtain 8" (¢) and A" (¢), where 8" (¢) is

the mean offer value of the agent with the i*" smallest offer value. The quantity A (t) is defined analogously.

The simulation shows downward pressure on the offer value correlated with the energy cost of living s
with consistent values of A* between (approximately) 0.1 and 0.4. As is expected, the value of Bl(t), the
mean energy store value decreases as a function of cost of living. We derive an empirical linear approximation
for the mean, which we discuss in the sequel. Understanding the origin of this relationship is complicated
by the fact that there is no convenience closed form expression for A'(t) or 6°(t). To remedy this, we use
a combination of empirical distribution modeling and closed form analysis of AB' to explain the observed
behavior.

3.1 Mixed Empirical and Closed form System Modeling

At arbitrary time ¢ when the distribution of fairness demands and offers is given by probability density
functions f{(s) and f}(s) respectively, then Eq. can be generalized as:

0 1
AB(t;0,\, k) = % (/0 (1—0)fi(s) ds+/\ sfa(s) ds) —K 9)

This expression cannot be computed without the time-varying distributions in question, which cannot be
computed without an appropriate Fokker-Plank equation, which is difficult to construct. To compensate, we
can fit distributions to the data A (t) and gt (t) to obtain estimators ff\ (s) and }’Z (s), which can be used in
Eq. @[) These empirically estimated distributions stand in for the mean-field distributionﬂ We can then
compute:

B(t:0,\, k) =

By ift=20 (10)
Y ect AB(t0, A K)UB(t — 1;0,\, k)] otherwise '

where the factor U[B(t — 1;0, \, k)| sets B(t; 0,\ k) =0if E(t —1;0, A\, k) = 0. That is, it models the death
of a test agent with parameters (6, ). The imitation dynamics defined by Egs. , and imply that
the larger B(t;0, A, k) the more likely an agent with parameters (6, ) will be imitated. Thus, we can use
B(t;ﬁ, A, k) at an appropriately large time (e.g., t = 100) to estimate which agents are most likely to be
imitated for a given x. We show this estimation for kK = 0.1 and x = 0.4 in Fig. @l To test this model,

LAll distributions were estimated using Mathematica’s FindDistribution function.
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Figure 1: Simulation results using 150 agents, 300 rounds of play, and 100 replications, as a function of cost
of living x: (left) there is a well defined negative correlation between offers made and x; (middle) demand

levels are stable across & values; (right) energy cache values (savings) follow an empirical trend (dashed line)
derivable from the model.
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Figure 2: (top) Convergence of the distribution of #* from a uniform distribution to a delta distribution.
(bottom) Convergence of the distribution of A’ from a uniform distribution to a delta distribution. (both)
k = 0.1, 300 agents are simulated. Times go from ¢t = 0 to ¢ = 500 in increments of At = 250.

we use the top 5% of computed values of B (t,0, )\, k) to compute estimated intervals on the values of §*
and \* for k = 0.1 and k = 0.4. We compare these intervals with the 5% — 95% intervals computed from
the experimental results shown in Fig. [I} This is shown in Table |1} These results are both consistent with
and predictive of the distributions seen in Fig. i.e., they explain both the downward slope of 6 as a
function of k in Fig. |1] (left) and the relatively constant behavior of A as a function of k. We stress that
estimations in Fig. [4{and Table are generated by a model (Eq. (ED and Eq. ) with distribution constants
determined empirically. Thus an area of future work is to replace these empirically determined distributions
with modeled distributions.

3.2 Asymptotic Behavior of B

The dynamics of the energy cache values can be modeled asymptotically. As ¢t — oo, fi(s) ~ d(s — A\*) and
f4(s) = 8(s —6*), where (6*, \*) is the fixed point of the (6(¢), A(¢)). This is illustrated in Fig. |2l Ast — oo,
the energy caches of each agent asymptotically approaches:
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Figure 3: Density plots show the distributions of (6*, A*) over multiple replications with varying costs of
living.
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Figure 4: (left) Estimation of B(co;0, \, k) for k = 0.1. (right) Estimation of B(occ; 8, A, k) for x = 0.4.

K Model Est. Interval | Computed Interval
0.1 0.43,0.64 [0.42,0.54]

0.4 0.25,0.41 [0.280.41]
Offer Estimate

K Model Est. Interval | Computed Interval

0.1 0,0.33 0.15,0.31
0.4 0,0.26 0.13,0.28
Fairness Demand Estimate

Table 1: Comparison of estimated and computed intervals on 8* and A* using information from Eq. 1}



This model is shown in Fig. [1] (right). This over-estimates the long-run energy cache value because of the
initial time taken to converge. We can approximate the trend seen in Fig. [I| (right), by noting that the time
for A%(t) and 6(t) to converge so that most UG interactions are successful in approximately 80 rounds (out
of the 300 rounds simulated). Assuming that prior to convergence, only half of all interactions result in a
successful UG, we obtain a thermodynamic-type relationship between the mean wealth of the population
and the cost of living:

B(k) = 260 (; - n) : (11)

which explains the linear decrease with x shown in Fig. [1| (right), where we show the fit of Eq. .

The global dynamics displayed in Fig.[1]are robust to changes in the speed of the underlying dynamics. In
particular, we tested models in which (i) we replaced the discrete dynamics with continuous time differential
equations (by letting ¢ — 0), (ii) an Euler step approximation of the resulting differential equations and
(iii) a heterogenous starting energy cache value with the previously described dynamics. The ODE variants
model fast imitation (on the time scale of the game play). In all cases except one, we included reproduction
as a hybrid step by solving the ODEs for short time horizons, checking for death and then restarting the
ODEs from the previous condition after removing agents with B* < 0. All models used 100 replications
except when reproduction was eliminated in which case 200 replications were used to ensure statistically
signifiant sample sizes (samples with population collapse were discarded).

Results from robustness experiments are shown in Fig. 5| (top), where we show the mean values 6. The
envelopes are 1o. Similar tests were run for A* — see Fig. [5| (middle). For all cases, 6 is decreasing in .
The mean fit line has negative slope as a function of x (p = 5.1 x 107%) and adjusted r? of 0.95, consistent
with prior results and theoretical analysis. There is a difference in the behavior of \* for the the discrete
time simulations and the continuous time (hybrid) variations. In the case of the hybrid ODE models (with
or without Euler step approximations) A" increases as a function of & (p < 0.002) while for discrete step
simulations A" decreases as a function of & (p < 0.002). When the data are combined, A" increases as a
function of k but with p < 0.004, suggesting this effect may disappear with larger samples. This would be
the expected behavior as indicated by Fig. [

4 Conclusion

Game Theory finds application in biological and social sciences, yet well-known occurrences like cooperation
and altruism remain challenging within its rational self-interest assumptions. Our paper presents a novel
approach to the canonical Ultimatum Game (UG), introducing an individual savings or energy cache variable
for each player, along with a universal cost of living.

While this approach leads to a convergence towards fairness in the population, it is by no means the
only model to do so. In particular, the inclusion of spatial structure in a population, whether on a grid or
network, has been shown to lead to fairness in some models for the Ultimatum game [32-35]. Note that the
inclusion of an empathy assumption alone, which would appear in our model as 8; = )\;, has been shown
to lead to fairness in the game, even without spatial structure [30]. An intriguing area of future work is to
consider this dynamic in a spatial structure (i.e., without complete mixing) to determine what effect space
has on the results presented in this paper.

In our nonlinear agent-based model, this energy cache represents success, and drives the imitation dy-
namic. Agents are observed to evolve toward fair sharing, but are more selfish with higher costs of living,
with consistently lower fairness demands of others. This behavior is explained and predicted using a model
with empirical determined distribution parameters.

Our imitation dynamic is motivated by observations that children will imitate higher status individuals
more selectively than lower status individuals [41]. Additionally, children will infer status based on observing
imitation in adults [42]. More recently, humans in strategic settings have been shown to imitate behavior
based on pay-off inequality [43]. This suggests an innate link between status and imitation, which we have
incorporated here using the relative ordering of B? as a proxy for status.

Future exploration of the dynamics of this model should indicate whether the exact structure of the
distributions of § and A can be determined. This would remove the need to fit the distributions as a part of
the modeling process, and provide a complete mean-field dynamics for this system.
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