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In 1992, the Union of Concerned Scientists shared their ‘World Scientists’ Warning to Humanity’ with governmental leaders
worldwide, calling for immediate action to halt the environmental degradation that threatens the systems that support life
on Earth. A follow-up ‘Second Warning’ was released in 2017, with over 15 000 scientists as signatories, describing the lack
of progress in adopting the sustainable practices necessary to safeguard the biosphere. In their ‘Second Warning;, Ripple and
colleagues provided 13 ‘diverse and effective steps humanity can take to transition to sustainability.’ Here, we discuss how
the field of conservation physiology can contribute to six of these goals: (i) prioritizing connected, well-managed reserves; (ii)
halting the conversion of native habitats to maintain ecosystem services; (iii) restoring native plant communities; (iv) rewilding
regions with native species; (v) developing policy instruments; and (vi) increasing outdoor education, societal engagement
and reverence for nature. Throughout, we focus our recommendations on specific aspects of physiological function while
acknowledging that the exact traits that will be useful in each context are often still being determined and refined. However, for
each goal, we include a short case study to illustrate a specific physiological trait or group of traits that is already being utilized
in that context. We conclude with suggestions for how conservation physiologists can broaden the impact of their science
aimed at accomplishing the goals of the ‘Second Warning' Overall, we provide an overview of how conservation physiology
can contribute to addressing the grand socio-environmental challenges of our time.
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Perspective

The scientists’ warning movement

In 2017, a group of international scientists published a ‘Sec-
ond Warning to Humanity’, which called for a transition
to more environmentally sustainable practices or humanity
would risk widespread suffering and irreversible damage to
the biosphere (Ripple ez al., 2017). The article considered
the progress that had been made since the Union of Con-
cerned Scientists, along with over 1700 independent scientists,
released “World Scientists’ Warning to Humanity’ 25 years
prior (Union of Concerned Scientists, 1992). Over this period
of time, stabilizing the ozone layer has been a considerable
accomplishment through ratification and implementation of
the Montreal Protocol. However, little progress has been
made in meeting other environmental challenges such as cli-
mate change, deforestation and agricultural expansion, which
are becoming far more pressing and contributing to the
ongoing sixth mass extinction of life on Earth (Ceballos et al.,
2015; Ceballos et al., 2017; Ripple et al., 2017). Ripple et al.
(2017) cited the rapid action on limiting ozone-depleting
substances as an example of humanity’s capacity for positive
change through decisive action, and the paper outlined 13
steps that could lead to a transition to sustainability across
the globe. Here, we highlight how conservation physiology
can contribute in meaningful and measurable ways to six of
those goals. We viewed the other steps outlined in Ripple er al.
(2017) (e.g. reducing food waste through education, further
reducing fertility rates, revising our economy to reduce wealth
inequality) as better addressed by other arms of conservation
science (i.e. we did not see a direct avenue for conservation
physiology to assist).

We represent a group of conservation physiologists from
around the world working across wide geographic regions
and international jurisdictions on diverse taxa, systems and
physiological traits. Some of our experiences span decades,
while some of us are in the early stages of establishing
careers. Although our expertise includes ecological, evolu-
tionary and environmental physiology, we share common
goals. We aim to determine how an understanding of phys-
iological function and variation can be harnessed to better
document, predict and ameliorate environmental damage to
plants and animals in the Anthropocene. We also attempt to
establish cause-and-effect relationships by elucidating mech-
anisms through the measurement of functional/physiological
traits. This perspective aims to align the strengths of con-
servation physiology with the steps outlined in the ‘Second
Warning to Humanity’ by providing an overview of poten-
tial undertakings and proven examples. We conclude with
broad-scale advice, drawing on our own personal experiences
and research goals, that we envision as a road map for
fellow conservation physiologists to follow at any stage of
their career. In doing so, we broadly aim to contribute to
solving some of the grand socio-environmental challenges
of the Anthropocene as part of a larger multi-disciplinary
toolbox.
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Avenues for leadership by conserva-
tion physiology

Since the discipline of conservation physiology was formally
described in 2006 (Wikelski and Cooke, 2006), there have
been many published perspectives on the potential value
of physiological approaches to conservation science and
its successes (e.g. Cooke and O’Connor, 20105 Ellis ez al.,
2012; Cooke et al., 2013; Madliger et al., 2016; Madliger
et al.,2021a). As part of a diverse multi-disciplinary toolbox,
conservation physiology emphasizes that an understanding
of the mechanisms that govern how organisms respond to
their environments is valuable for determining the nature,
timing and severity of threats. Proponents of conservation
physiology often emphasize that potential solutions can be
targeted and assessed experimentally, providing evidence to
support conservation spending and implementation schemes
(Cooke et al., 2017). Identifying and utilizing sensitive
physiological metrics can also be essential for predicting
responses of organisms to anthropogenic pressures, thereby
providing a window into population distributions and
dynamics that are otherwise difficult to model (Ames et al.,
2020; Bergman et al., 2019; Evans et al., 2015). Physiological
perturbations (e.g. stress) can precede fitness consequences
(e.g. reduced fecundity) and therefore allow prediction of
population change. Physiological responses of individuals can
therefore be scaled up using current models to provide
population- and community-level predictions (Bergman et al.,
2019). Indeed, creating robust, physiologically based models
is likely the best approach to predicting the responses of
plants and animals to no-analog future conditions caused by
climate change. Beyond these applications, physiology has
well-defined potential and realized roles in improving the
success and welfare of individuals in translocation (Tarszisz
et al.,2014), captive breeding and reintroduction (Kersey and
Dehnhard, 2014) and restoration programmes (Cooke and
Suski, 2008). As a whole, the discipline is increasingly poised
to offer targeted, solution-oriented conservation responses
and there is growing evidence of the ways that physiological
approaches can be translated into action-based strategies (e.g.
see Madliger et al., 2021a).

We focus here on 6 of the 13 steps, as presented by Ripple
et al. (2017) in their ‘Second Warning’, that we envision
conservation physiology can help achieve (Fig.1). In each
case, we provide an overview of the potential roles of con-
servation physiology followed by a case study illustrating a
physiological approach that is already helping to reach the
goal (Fig. 2).

While there has been considerable debate throughout the his-
tory of conservation science about optimal reserve design, it
is clear that terrestrial, marine, freshwater and aerial habitats
can be protected through the establishment of well-managed
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Figure 1: Overview of the ways that conservation physiology can contribute to six of the steps outlined in ‘The Second Warning to Humanity’

(Ripple etal., 2017)

reserves that are inter-connected to the highest degree possible
(Williams ez al., 2005). Physiology partly underlies dispersal
capability/decisions (Zera and Brisson, 2012), migration tim-
ing and pace (Lennox et al., 2016) and habitat requirements
(e.g. Miller and Eadie, 2006). Therefore, physiological data
could help guide some of the largest decisions associated with
reserve design, such as the placement and necessary extent
of reserves, as well as identifying reserves where organisms
may suffer most from isolation. Under the ever-pressing influ-
ence of climate change, models that incorporate physiological
information can predict range (Buckley, 2008) and niche shifts
(Kearney and Porter, 2004; Helaouét and Beaugrand, 2009)
as well as changes in primary productivity (Zhou et al., 2017)
within reserves that are necessary for future planning.

By helping to elucidate which populations, species and
locations may have adaptive capacity (Somero, 2011), phys-
iology can also assist in safeguarding resilient populations
while identifying vulnerable populations that may need fur-
ther conservation intervention. For example, due to differ-
ences in thermal sensitivity, it is predicted in marine ecosys-
tems that benthic primary producers will be more vulnerable
to climate change than higher trophic groups (Bennett et al.,
2019). In a more basic way, physiology can help reveal the
critical habitat needs of organisms of interest (Miller and
Eadie, 2006; Teal et al., 2018), thus allowing the necessary
components and extent of reserves to be better identified
and integrated. Finally, monitoring physiology can determine
whether additional interventions may be needed in reserves

at certain times of year when species may be more vulnerable
(e.g. to disease, weather, human presence, food availability)
(Bouyoucos and Rummer, 2021).

Case study: managing marine protected areas using
physiological data

Protected areas are increasingly being used to ensure that
marine life is safeguarded from human activities and exploita-
tion. Yet, identifying where to locate protected areas remains
a major challenge. It is now recognized that protected areas
need to focus not only on structural aspects but also on
ecosystem functioning (Parrish ez al., 2003). Physiology can
provide insight into the functional aspects of ecosystems and
thus can be used to help identify priority sites that will be
resilient to stressors (McLeod et al., 2009). Following the
establishment of protected areas, physiological monitoring
has been used to assess the environmental quality of the site,
which is important in identifying the types of activities or
restrictions that are consistent with their optimal function
(i.e. by prohibiting activities that induce physiological stress;
Smith et al., 2008; Wright et al., 2011). For example, using a
panel of physiological traits (e.g. antioxidant responses, DNA
damage, lipid peroxidation, metal burdens, total polycyclic
aromatic hydrocarbons) from liver, kidney, gill and muscle
samples of madamango sea catfish (Cathorops spixii) in the
Environmental Protection Area of Cananéia-Iguape-Peruibe,
Brazil, Gusso-Choueri ef al. (2015) identified spatial and
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A) De5|gn|ng well- managed reserves B) Halting conversion of native habitats

Figure 2: Case studies serving as examples of how conservation physiology is contributing to six of the steps outlined in ‘The Second Warning
to Humanity”: (A) Physiological monitoring can identify spatial and temporal sources of pollution in MPAs, allowing for improved management
(photo: J. Rummer); (B) Research on swimming performance can inform infrastructure design associated with highways, minimizing impacts of
conversion on species and habitats (photo: hpgruesen, Pixabay License); (C) Cottonwood genotypes that are best suited to cope with future
climate conditions, such as the heat and drought that killed the Fremont cottonwood trees pictured here in AZ, USA, are being identified for
restoration of riparian ecosystems (photo: H. Cooper); (D) Physiological monitoring is leading to improved outcomes for translocated wildlife
such as rhinoceros (photo: A. Fuller); (E) Physiological research is being incorporated into assessments, such as those by the multi-national
Committee for Environmental Protection of the Antarctic Treaty, of the current and likely future impacts of invasive alien species (photo: S.L.
Chown); and (F) Informed partly by research on the physiological consequences of air exposure, the ‘Keep Fish Wet’ movement encourages
anglers to take part in better fish handling practices (photo: S. Cooke).
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seasonal variation in pollution sources. This work provides
evidence that a physiological biomarker approach can aid
in identifying how, when and where stressors are acting on
organisms within marine protected areas (MPAs), in turn
allowing for decision-making targeted at minimizing or elim-
inating their effects.

Forests, grasslands, wetlands and marine and freshwater habi-
tats provide essential ecosystem services for human well-
being. Physiology can offer evidence for how conversion
or degradation of these natural systems affects individuals,
populations, species and communities, and therefore how
it impacts overall ecosystem function and biodiversity. For
example, relying on oxidative status markers, Messina et al.
(2020) showed that some understorey birds are resilient to
forest logging, strengthening the message that regenerating
logged forests are of great conservation value. Moreover,
physiological measurements of plants can identify the sen-
sitivity of given species to stress associated with climate
and land use changes, thus enabling prediction of vegetation
responses to drought, fire or other disturbances (Scott et al.,
1999; Haber et al., 2020). This type of assessment is critical
for identifying potential loss of ecosystem services provided
by intact vegetation, particularly under the effects of climate
change (Wang and Polglase, 1995; Campbell et al., 2009;
Anderson-Teixeira et al., 2013; McGregor et al., 2020). Fur-
thermore, and of relevance given the global COVID-19 pan-
demic, stress and immune physiology can provide evidence of
the importance of healthy ecosystems in preventing land use-
induced spill-over of zoonotic diseases (Plowright et al., 2020;
Cooke et al., 2021c).

Physiological measurements can also represent robust indi-
cators of population resilience, providing the evidence nec-
essary to take conservation action (Bergman et al., 2019).
For example, by estimating optimal temperature of cardiac
function in Baltic herring (Clupea harengus) larvae, Moyano
et al. (2020) showed that the decline in annual productivity of
this species, which provides a link between zooplankton and
piscivorous fish and supports many fisheries, is connected to
warming. Such physiological biomarkers therefore have great
potential as assessment tools at timescales that are relevant to
the fisheries industry (Moyano et al., 2020).

In addition, physiological growth measurement of marine
phytoplankton and plants can yield carbon sequestration
rates that are important for mitigating the effects of climate
change and nutrient uptake/incorporation required for con-
trolling eutrophication (Beardall et al., 1998; Beardall et al.,
2009; Basu and Mackey, 2018). Such projections can then be
considered in spatial planning and management actions (e.g.
MPAs) or habitat restoration projects aimed at maintaining
or recreating these key ecosystem services using nature-based
solutions. In other instances, physiological information can

Perspective

help design human-made structures that will have less detri-
mental impacts on ecological function and better maintain
ecosystem services in changed landscapes (e.g. design of cul-
verts: Goodrich et al., 2018; Watson et al.,2018; Cramp et al.,
2021; or water diversion pipes: Mussen et al., 2014; Poletto
et al., 2014a, Poletto et al., 2014b).

Case study: physiological information improves
infrastructure design to allow passage for native
fishes

While there are examples of conservation physiology ap-
proaches helping to halt the conversion of natural habitats
altogether [e.g. cessation of dam construction following
physiological and behavioural monitoring of the endangered
Mary River Turtle (Elusor macrurus); Clark et al., 2009;
see Madliger er al., 2016 for a summary], more often,
considering physiology has led to decision-making that
lessens the impacts of environmental alterations that are
deemed necessary. For example, to better inform upgrades
for the Pacific Highway in Australia, researchers measured
the swimming performance (critical swimming speeds— Ui,
burst swimming ability — Usprine, endurance and traversability/
passage success against water flow) of multiple native fish
species in impacted rivers (Cramp et al., 2021). These data
provided the evidence necessary to allow the fisheries division
of the New South Wales Government to insist that culverts
would not be appropriate in areas where passage of certain
species was necessary (Cramp et al., 2021). Instead, bridge
crossings were suggested as a better option, and researchers
could recommend the aperture dimensions that were large
enough to ensure the water velocity would allow transit by a
key endangered species, Oxleyan pygmy perch (Nannoperca
oxleyana) and other species of interest (Cramp ez al., 2021).
This example illustrates that physiological data can assist
in making management decisions that maximize ecological
benefits and function in altered landscapes, in turn ensuring
that essential ecosystem services can be maintained as much
as possible.

Physiology can aid in nearly all aspects of the restoration
process for plant communities (Cooke and Suski, 2008).
At the site selection phase, characterizing the physiology of
native plant species can determine the physical habitat and cli-
mate variables that must be present for successful restoration
from seed or transplantation and subsequent growth (Kimball
et al., 2016). Furthermore, by evaluating the phenotypic
expression of a variety of physiological traits related to phe-
nology, carbon allocation, tolerance, etc., plant genotypes
that are best suited to thrive under projected environmental
changes can also be selected (Ehleringer and Sandquist, 2006;
Kimball et al., 2016). When invasive alien species must be
combatted to allow for successful restoration, physiology can
be useful in determining vulnerabilities that can help with con-
trol and/or eradication (Sheley and Krueger-Mangold, 2003;
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James et al., 2010; Lennox et al., 2015). Further, trait-based
approaches can allow managers to design restoration com-
munities that are resistant to invasion from the start (Funk
et al., 2008). For example, by assessing photosynthetic rate,
growth and survival, Funk and McDaniel (2010) determined
that establishing canopy species could limit growth of inva-
sive grass species without adversely affecting native species
that are ideal for restoration projects in Hawaii Volcanoes
National Park.

Post-restoration, physiological monitoring can also quan-
tify how plants are acclimatizing to a new environment (i.e. by
providing health and function indices) to allow for adaptive
management or intervention (e.g. fire and mowing) where
necessary while also building an evidence base for future
restoration initiatives (Funk et al., 2008). For example, phys-
iological measurements related to water balance, photosyn-
thetic rate and annual aboveground productivity illustrated
that the success of willow (Salix sp.) restoration efforts in
areas with low water table may require simultaneously re-
establishing beaver populations and limiting elk browsing
(Johnston et al., 2007). Physiological monitoring can fur-
ther allow managers to choose between contrasting manage-
ment treatments to enhance restoration success. For example,
measuring leaf physiology allowed researchers to compare
traditional and intensive silvicultural treatments following
restoration with native tree species in Brazil, identifying the
intensive silviculture practices as more beneficial for early
establishment of natives (Campoe et al., 2014).

Case study: informing restoration of the foundation
tree species Populus fremontii with physiology

Populus fremontii, S. Wats. (Fremont cottonwood) is a domi-
nant riparian tree that occupies a broad climatic range across
the southwestern USA. It is also a critically important foun-
dation species in the arid southwestern USA and northern
Mexico because of its ability to structure communities across
multiple trophic levels (Whitham ez al., 2008). Yet, altered
stream flow regimes combined with changes in climate have
resulted in a dramatic decline of pre-20th century habitat
(Hultine et al., 2020a). Restoring P. fremontii gallery forests
that can thrive under current and future environmental con-
ditions requires knowledge of physiological traits that could
buffer individual genotypes against the forces of droughts
and heatwaves. A recent common garden experiment revealed
that chronic exposure to intense heatwaves could impose
strong selection pressures on P. fremontii to maximize canopy
thermal regulation via a suite of hydraulic strategies (Hultine
et al., 2020b; Blasini et al. 2021). Warm-adapted genotypes
achieve greater evaporative canopy cooling during the sum-
mer, preventing potential thermal damage to leaves. However,
an inevitable tradeoff is higher water use that could induce
hydraulic failure during drought. Common garden studies
are being used to identify P. fremontii genotypes that best
optimize physiological traits to balance canopy thermal reg-
ulation with plant hydraulic limits. In turn, these studies are

Conservation Physiology - Volume 92021

identifying genotypes that can best thrive under future climate
conditions that are predicted to bring more intense heatwaves
and droughts to the arid regions of North America.

Ripple e al. (2017) emphasized that apex predators will
be especially important for restoring ecological processes
and community dynamics. As a result, here we specifically
include some examples related to the reintroduction of key
predators; however, regardless of trophic level, physiology
has avenues for integration at nearly all stages of the rewil-
ding process (Tarszisz et al., 2014), and the applications
we discuss also include non-apex predator reintroduction
scenarios.

For reintroduction programmes dependent on captive
breeding, physiological monitoring can assess fertility, opti-
mal reproductive windows and monitor pregnancy/gravidity
to enhance the probability that offspring will be produced
successfully. For example, monitoring urinary luteinizing
hormone in combination with oestrogen or progestagen in
giant pandas (Ailuropda melanoleuca) can better pinpoint
the narrow window for successful mating and discriminate
between pregnancies and miscarriages, respectively (Cai et al.,
2017). In female Asian elephants (Elephas maximus),
manipulation of gonadotropin-releasing hormone (GnRH)
can be used to induce ovulation at key timepoints of the
reproductive cycle (Thitaram et al., 2009) and monitoring
serum progesterone can predict timing of oestrus to allow
better coordination of breeding efforts (Carden et al., 1998).
Even in a much smaller species, the critically endangered
Booroolong frog (Litoria booroolongensis), administration of
GnRH can increase spermiation and the potential for captive
breeding success (Silla ez al., 2020).

In cases where managers are creating new habitat in which
animals will be translocated or reintroduced, physiology can
help determine the abiotic and/or biotic features that may
be necessary for persistence. Klop-Toker et al. (2016), with a
knowledge of frog immune and nutritional physiology, were
able to interpret that reduced breeding in male endangered
green and golden bell frogs (Litoria aurea) was likely due to
food limitation and exposure to chytrid fungus. They were
therefore able to suggest diverse plantings to encourage inver-
tebrate food sources, creation of ponds and recommendations
to prevent disease prevalence for future projects (Klop-Toker
et al.,2016).

Physiological studies, often through measuring hormonal
responses, can also be used to determine methods of capture,
transport and release that are least likely to cause stress and/or
post-release mortality (Teixeira et al., 2007; Dickens et al.,
2010). Santos et al. (2017) paired a panel of physiological
traits (haematocrit, leukocyte count, cardiac rate, body tem-
perature, etc.) with telemetry data in wolves (Canis lupus)
to determine the effects of trapping duration on stress and
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post-capture movement. They concluded that adding tech-
nological solutions that decrease trapping duration, such as
remote trap activation alarms, can lessen the physiologi-
cal stress response and associated alterations to movement
behaviour (Santos et al., 2017). More broadly, measuring
parameters related to stress physiology can allow managers
to understand the consequences of different release methods
(e.g. soft versus hard release), with soft release methods gen-
erally looking to be less detrimental to physiological function,
behaviour and cognition (Teixeira et al., 2007).

Physiology can also be helpful to identify other risks asso-
ciated with reintroduction or translocation, such as alteration
of host-pathogen interactions and disease. For individuals
born and raised in captivity, physiological applications could
include pre-release health monitoring, vaccinations or even
‘training’ the immune system via challenges (Tarszisz et al.,
2014). It has also been suggested that selection for host tol-
erance prior to release could be the best means of enhancing
translocation or reintroduction success in the face of disease
risk (Venesky et al., 2012). Following release, health mon-
itoring is also recommended (Sainsbury and Vaughan-Hig-
gins 2012) and measuring thyroid status may be particularly
useful for identifying sub-clinical diseases and evaluating
overall health status (Tarszisz et al., 2014). Indeed, moni-
toring a variety of physiological traits related to health, per-
formance, tolerance and stress (e.g. glucocorticoids, thyroid
hormones, nutritional physiology, health indices, body con-
dition) can be used post-release to evaluate success and help
determine other management actions that may be necessary
(Tarszisz et al., 2014). For example, reintroduction of tigers
(Panthera tigris) to Sariska Tiger Reserve in India resulted
in inadequate breeding success (Bhattacharjee et al., 2015).
To determine potential underlying causes, Bhattacharjee et
al. (2015) measured faecal glucocorticoid levels and deter-
mined that encounters with humans, livestock and roads
were likely causing disturbance for female tigers; this led to
recommendations to relocate villages found in the core of
the reserve and to restrict human activity throughout the
reserve.

Finally, genetic techniques, such as transcriptional profiling
of potential source populations, can provide information
on physiological processes and responses to environmental
stressors. Therefore, such techniques can represent a means to
predict responses to reintroduction so that better candidates
for release can ultimately be selected (He et al., 2015). Physi-
ology on its own (e.g. stress responsiveness, immune function)
also has the potential to assist in determining reintroduction
candidates. For example, Fanson (2009) found evidence that
the magnitude of the stress response in Canada lynx (Lynx
canadensis) was a predictor of post-release survival, with
larger stress responses corresponding to shorter survival fol-
lowing reintroduction. The application of physiological tools
for identifying ideal candidates for release is likely the area of
reintroduction/translocation physiology that is currently least
explored.

Perspective

Case study: successfully rewilding megafauna
through understanding their physiology

Careful rewilding or reintroduction of megafauna is crucial
for restoring ecosystem function (Cromsigt et al., 2018;
Enquist ef al., 2020) and conserving species, sometimes
in the face of heavy poaching (Ripple et al., 2015).
Successful translocation of large mammals requires their safe
capture, holding, transport and release. Unfortunately, these
interventions are associated with high levels of morbidity
and mortality, as documented for rhinoceros (Miller et al.,
2016; Breed ez al., 2019). Etorphine, the standard drug
used for capturing rhinoceros and many other herbivores,
severely impairs cardiorespiratory function. However, recent
trials using tools to study the physiological responses of
immobilized rhinoceros have led to new protocols for
chemical immobilization, resulting in improved physiological
welfare (for example, Buss er al., 2018; Haw ef al.,
2014). During long-duration transport, measuring physi-
ological variables has revealed that rhinoceros experience
haemoconcentration, oxidative stress and stress-induced
immunomodulation (Pohlin ef al., 2020). Anxiolytics that
are used during transport to reduce stress responses may
impair the immunological responses of rhinoceros, potentially
leading to post-transport disease (Pohlin ef al., 2020). While
improved chemical capture methods have been developed,
the continued application of tools to understand physiological
responses during and after translocation (Tarszisz et al.,2014)
is essential for successful rewilding programmes, not only for
rhinoceros but also for other megafauna.

Physiology can improve the evidentiary weight of conserva-
tion research and therefore provide the rationale for new pol-
icy decisions and bolster existing policies designed to remedy
defaunation, the poaching crisis, pollution and the exploita-
tion of threatened species (Cooke and O’Connor, 2010; Coris-
tine et al., 2014). By providing mechanistic insights into the
causes of population decline and other conservation issues,
physiology can confer the levels of reliability often considered
necessary for policy development (Coristine ef al., 2014).

The most likely avenues for conservation physiology
to intersect policy will grow from existing connections
between scientists and practitioners. For example, while
many researchers focusing on fish physiology do not have
a direct line of contact with policymakers, collaboration with
fisheries biologists can provide such a link (McKenzie et al.,
2016). Indeed, one of the earliest documented examples
of conservation physiology influencing on-the-ground
management is for Pacific salmon. Research on energetic and
metabolic physiology, health monitoring and biotelemetry
have led to better methods for recovering fish exhausted
by fisheries interactions, increased the success of passage
at fishways, helped managers make pre-season decisions
on harvest rates, led to the installation of fish screens,
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altered relocation efforts and reinforced the limitations on
fishing effort when river temperatures exceed certain values
(Cooke et al., 2012; Cooke et al., 2021a). There are also
many examples in the realm of fisheries where considering
physiology has improved bycatch avoidance or survival of
marine mammals (e.g. Barlow and Cameron, 2003; Carretta
et al., 2008; Palka et al., 2008) and non-target fishes (e.g.
Young et al., 2006; Jordan et al., 2013; Lomeli et al., 2021).
Given that the channels for research co-production and
influence of policy already exist in a fisheries context, there is
great potential for conservation physiology to limit mortality
from discards in many other fisheries, influence the design of
MPAs (see above), predict potential invasions and spread by
non-native species and understand how management actions
should adapt under climate change (McKenzie et al., 2016).

There is also great potential for conservation physiology
research to inform policy related to pollutants, as it is well
documented that physiology can be altered by chemical,
physical (e.g. electromagnetic fields), particulate, thermal,
light and noise pollution. Monitoring how physiology
changes in the presence of different concentrations or types of
pollutants can, therefore, provide the evidence necessary for
restrictions based on specific threshold values to safeguard
organismal health. For example, McKenzie et al. (2007)
estimated metabolism of chub (Leuciscus cephalus) using
portable swimming respirometers to determine the sub-lethal
effects of heavy metals and organics in rivers. Swimming
performance (the ability to raise metabolic rate and allocate
oxygen towards exercise) was a reliable biomarker of the sub-
lethal toxic effects of pollutant exposure (McKenzie et al.,
2007). Moreover, physiological responses to pollutants
are often more sensitive indicators of adverse effects than
some organism- or population-level responses. For example,
Natural Resource Damage Assessments following oil spills
often rely on point counts of heavily oiled birds showing
visual symptoms of morbidity. However, Fallon ez al. (2017,
2020) demonstrated that multiple species of birds with trace
amounts of visible oiling exhibited a suite of symptoms related
to haemolytic anaemia following the Deepwater Horizon
spill. Such findings fundamentally change calculations of
ecological damage from oil spills and, thus, influence the
dialogue regarding environmentally protective policies.

Plant physiology also offers opportunities for understand-
ing susceptibility to pollutants, and measures of growth and
physiology have been used to identify concentration thresh-
olds of effects for decades (McLaughlin, 1985). For example,
alterations to stomatal behaviour, changes to carbon and
nitrogen assimilation and interference with winter harden-
ing processes can reflect tolerance and susceptibility to air
pollution (Wolfenden and Mansfield, 1990). As a result of
clear mechanistic connections between pollution and adverse
physiological responses of plants and animals, some large
regulatory bodies use physiological evidence to inform their
policies (Rhind, 2009). For example, the European Commis-
sion enacted REACH legislation (EC 2006) that registers,
evaluates, authorizes and restricts chemicals, and risks are
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partially determined by drawing on physiological evidence
in wildlife and humans, particularly for endocrine disruptors
(European Commission, 2021).

Finally, we also see opportunities for physiological
approaches to inform policies for species at risk. Incorpo-
rating physiology into species at risk plans has generally
been limited and often is only present in the background
information of recovery plans (e.g. US endangered species
act recovery plans; Mahoney er al., 2018). However, with
the continued growth of the conservation physiology toolbox
(Madliger ef al., 2018), there are greater opportunities in
threatened and endangered populations to mechanistically
link threats to physiological effects, formulate action
plans and monitor conservation interventions (Mahoney
et al., 2018). Birnie-Gauvin et al. (2017) outline that a
variety of physiological tools (sensory, cardiorespiratory,
immunological, bioenergetics, reproductive, stress, etc.) can
be useful in determining threat level under International
Union for Conservation of Nature (IUCN) criteria by
assisting with determining stressors, understanding species-
habitat interactions and inferring or projecting population
decline and its underlying cause(s). Overall, physiological
information can improve the scientific basis behind threat
status assignment using most criteria and, in turn, increase
the likelihood that the formulated recovery plans will be
successful (Birnie-Gauvin et al., 2017). Indeed, knowledge of
reproductive physiology in kiwi (Apteryx spp.) paired with
genetic and behavioural techniques led to a successful translo-
cation protocol and reclassification for three kiwi species in
New Zealand (Birnie-Gauvin et al., 2017). Measures of faecal
glucocorticoids and reproductive hormones are also helping
to refine management policies for the endangered white
rhinoceros (Ceratotherium simum), indicating that dehorning
procedures as an anti-poaching tactic can be used without
long-term consequences for stress and reproductive function
(Penny et al., 2020). As new techniques for measuring
physiological state in non-invasive ways are validated (e.g.
glucocorticoids, reproductive hormones, thyroid hormones,
stable isotopes for diet analysis), more capacity will be
created for working in at risk populations where capture and
handling currently pose a hindrance to use of more invasive
physiological tools (Kersey and Dehnhard, 2014).

For this goal, we present three case studies below. The
discipline of conservation physiology, being relatively new in
formulation compared to many arms of conservation science,
has been criticized for contributing more to threat assessment
than enacting policy-based change and therefore is sometimes
underappreciated by managers and policymakers. As a result,
we use this opportunity to showcase how conservation phys-
iology research can translate into policy decisions.

Case study: research on climate change impacts from
heat and thermal extremes inform the
Intergovernmental Panel on Climate Change

Large-scale, macrophysiological assessments of physiological
tolerances have revealed that upper thermal tolerances—both
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temperatures at which organisms can survive and those which
limit activity—are remarkably similar across latitude in many
terrestrial taxa. Early work demonstrating such constrained
tolerances in insects (Addo-Bediako et al.,2000) was followed
by broader demonstrations of limited spatial variation in
tolerances across multiple terrestrial groups (e.g. Hoffmann
et al., 2013; Aratjo et al., 2013; Lancaster and Humphreys,
2020). More critically, several analyses showed that owing
to the spatial variation of environmental maximum tempera-
tures, tropical organisms have a limited thermal safety margin
(and/or a limited tolerance to warming) (Deutsch et al., 2008;
Huey et al., 2009; Diamond ef al., 2012), despite warming
associated with climate change not proceeding as rapidly
in the tropics as elsewhere. Population-level work suggested
that the impacts of limited warming tolerance and changing
global temperatures were already discernible in some groups
(Sinervo et al., 2010). These critical analyses were incorpo-
rated into the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change, through Working Group 1I
on Impacts, Adaptation and Vulnerability (IPCC, 2014). The
argument of tropical terrestrial organismal vulnerability to
warming was clearly made on this basis. Subsequent research
has started to explore the way in which terrestrial and marine
species differ in their vulnerability to warming, the impacts
of thermoregulation, the significance of heat extremes in the
mid-latitudes and how tolerance differences among groups
are likely to affect both population decline and range changes
(Sunday et al., 2012; Duffy et al., 2015; Kingsolver and
Buckley, 2017; Pinsky et al., 2019), at least in part prompted
by the need to better understand impacts and mitigate them
through the policy process.

Case study: greater physiological tolerances in
invasive alien than indigenous species lead to
improved biosecurity policies

An early comparison of marine invasive and indigenous
ascidians revealed that warming temperatures associated
with climate change may give invasive species a significant
advantage over indigenous species (Stachowicz et al., 2002).
This work was essentially reprising, in the context of global
climate change expectations, two major hypotheses developed
decades previously in plant invasion biology: the ideal weed
hypothesis and the phenotypic plasticity hypothesis (Enders
et al., 2020). The first proposes that invasive alien species
have some trait values that enable them to outcompete
indigenous species (e.g. faster growth rates). The second
proposes that phenotypic plasticity is most pronounced in
invasive species. Although some complexity exists to these
ideas (van Kleunen ez al., 2010; Hulme, 2017), support
for such consistent differences, especially in basal trait
values, is growing (Allen et al., 2017; Capellini ez al.,
2015; Van Kleunen et al., 2018; Diaz de Ledn Guerrero
et al., 2020). Among terrestrial invertebrates, for example,
on average, invasive alien species appear to have greater
thermal tolerances, more pronounced desiccation resistance
and faster growth rates than their native counterparts
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(Janion-Scheepers et al., 2018; Phillips et al., 2020; da Silva
etal.,2021). These research outcomes are being incorporated
into assessments of the current and likely future impacts of
invasive alien species through the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services
Invasive Alien Species Assessment (IPBES, 2021). They have
also been introduced into the work of the Committee on
Environmental Protection (CEP) of the Antarctic Treaty,
responsible for environmental governance of the Antarctic.
Here, non-native species, as they are referred to in the CEP’s
language, are a priority concern.

Case study: embedding physiology into climate
vulnerability and risk assessments

Climate vulnerability/risk assessments (CVAs) are conducted
to help policymakers prioritize climate adaptation actions.
Although the terminology has shifted from vulnerability to
risk, similar components are included: exposure, sensitivity
and adaptive capacity, with physiological traits playing an
important role in the latter two. Several examples of CVAs
have included physiological tolerance to single or multiple
stressors when ranking the sensitivity of species to climate
change. In one example, Hunter et al. (2014) integrated
knowledge on thermal tolerance windows and thermal safety
margins to calculate the sensitivity of commercially important
fish to climate-driven warming in Pacific coastal waters off
Canada. In a second example, Ekstrom et al. (2015) ranked
the vulnerability of shellfish farms in the USA based on
projected climate-driven shifts in the saturation of arago-
nite, a mineral needed for shell growth, of coastal waters
due to ocean acidification as well as physiological impacts
of eutrophication. That physiological knowledge on shell-
fish was combined with socioeconomic factors impacting
dependent human communities. In a final example, Payne
et al. (2020) combined thermal performance curves to demon-
strate how different populations of the same species, such as
Atlantic cod (Gadus morbua) in the North Sea, Irish Sea and
Barents Sea, have markedly different climate risks. When that
physiological knowledge was combined with other species
traits and economic data on local fishing fleets, targeted cli-
mate adaptation advice could be produced for policymakers.
A next critical step forward for CVAs is to increase our
understanding of the physiological adaptive capacity of local
populations as this element is poorly understood in even well-
studied, commercially important fish and shellfish (Cataldn
etal.2019) and is needed to plan climate adaptation strategies
for food security.

The prospects of success can be important for engaging
individuals in any environmental movement (McAfee ez al.,
2019). Conservation physiology offers many success stories
that demonstrate how conservation issues can be tackled
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(Madliger et al., 2016; Madliger et al., 2021b), rather than
just assessed to determine threats or document declines. These
successes provide examples that can motivate further work
and provide researchers, practitioners and even the public
with more confidence that positive changes are occurring.
Further, physiological measurements can provide windows to
observe the resilience of many organisms (Huey et al., 2012;
Gobler and Talmage, 2014; Seebacher et al.,2015), which can
illustrate that we still have time to make positive changes that
will allow some species to recover.

Conservation physiology can also provide great story-
telling tools because many of the adaptations that make
animals or plants fascinating or unique are based in phys-
iological functioning. For example, physiological feats (e.g.
long-distance migration, hibernation and aestivation, growth
and survival in harsh environments, deep diving) can be part
of educational opportunities (e.g. zoo/aquarium or museum
exhibits, curriculums, guided nature experiences) that can
encourage appreciation of the natural world and a desire to
strive for human—-wildlife coexistence (Ernst, 2018; Godinez
and Fernandez, 2019; Collins et al., 2020). Finally, conser-
vation physiology can also present direct opportunities for
members of the public to engage in data collection, which
can generate new connections to local wildlife and ecosys-
tems. For example, participants in the ‘Neighbourhood Bat
Watch’ community science programme in Canada assist in
the identification of habitats important for thermoregulatory
physiology and reproduction of little brown bats (Myotis
lucifigus) (http://www.willisbatlab.org/bat-watch.html).

Case study: physiology informs the ‘Keep Fish Wet’
movement

Recreational anglers interact with the fish that they capture.
To comply with regulations or as a result of conservation
ethic, many fish are released. The Keep Fish Wet” movement
(Danylchuk et al., 2018) is a grass-roots social branding
movement that recognizes that air exposure does not benefit
fish. In fact, there is a wide body of science-based litera-
ture documenting the manifold negative consequences of air
exposure on fish, many of which draw on physiological data
(reviewed in Cook et al., 2015). The #keepfishwet movement
is all about simple messaging that encourages anglers to
embrace better fish handling. This is one example of how
empowering people and elevating important voices in stake-
holder communities can be used to achieve outcomes that
benefit the environment, drawing on physiological evidence.

Advice for initiating and driving
change

We close with some additional advice based on personal
experiences that can broaden the impact of science aimed
at accomplishing the steps of the ‘Second Warning’ (Fig. 3).
The list is by no means exhaustive but, instead, focuses on
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small approaches that can be taken by any conservation
physiologist, regardless of their research topic or career stage.

(1) Publish the best science possible, applied or otherwise,
and consider and discuss in as many publications as possible
the conservation implications of the results: Many conser-
vation physiologists are multi-faceted in their research pro-
grammes, publishing in ecology, physiology, conservation sci-
ence and taxa-specific journals simultaneously. The strongest
conservation physiology work will be grounded in an under-
lying understanding of the physiological systems being mea-
sured, and attention to context-dependency and inter- and
intra-individual variation in physiological metrics will raise
the profile of the field and increase the applicability of the
evidence it provides (Madliger and Love, 2015). For example,
considering covariates that are necessary to understand the
physiological variation measured, such as sex, age, location,
time of year, etc., will improve the conclusions that can be
drawn for whole populations. Likewise, including proper
quality controls and sufficient methodological details will
increase the work’s reproducibility and defensibility, which
is particularly important to make the work useful in policy
and management decisions. When possible, stating the conser-
vation applications of the work clearly, even in those papers
focused mainly on ‘pure science’, and including its potential
use by practitioners or policymakers will have great impacts
in the future (Mahoney et al., 2018).

(ii) Design studies with the use of the data for conservation
and management decisions in mind: Collaborating with scien-
tists and practitioners at the onset of projects (i.e. engaging in
co-production) will improve the likelihood that the collected
physiological data will be useful to those poised to make
on-the-ground decisions (Patterson et al., 2016; Laubenstein
and Rummer, 2021). Local communities can have ecological
knowledge that is essential to interpreting physiological data
and planning monitoring or experimental designs that will be
successful. Similarly, staying up to date with new technology,
particularly minimally invasive or non-invasive options, is
expected to encourage up-take by conservation practitioners,
who are often working with small or sensitive populations
that cannot be manipulated extensively.

(iii) Maintain a holistic view of conservation problems
by removing yourself from your research silo: Conservation
physiology approaches may need to be integrated into solu-
tions that are based not just on scientific evidence, but also
in cultural and political contexts that could involve barriers,
connections to local communities, multiple stakeholders with
opposing views and considerations of economic impacts. By
taking part in research agenda and knowledge co-production,
conservation physiologists can work hand-in-hand with com-
munities and stakeholders to design and collect data that
will have the greatest applicability to all involved (Lauben-
stein and Rummer, 2021). A wide field of view can also be
accomplished by attending diverse meetings and conferences,
reading literature outside of one’s own main research focus,
attending and giving talks to local naturalist and conservation
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Figure 3: Summary of the five approaches that conservation physiologists can undertake to broaden the impact of science aimed at
accomplishing the goals of ‘The Second Warning to Humanity, based on the authors’ personal experiences.

organizations and building new collaborations across disci-
plines within and outside of academia.

(iv) Strive to find solutions, rather than just documenting
problems: Conservation physiology techniques have often
been used to determine whether certain environmental
changes are stressful or otherwise deleterious. This applica-
tion is incredibly useful within the context of monitoring
and managing populations; however, physiology imparts
the added value of identifying why an alteration presents
a challenge to organisms and in what way. Through this
mechanistic insight, physiological information has the
power to inform managers and practitioners about how
to best address the consequences of environmental change
(Cooke and O’Connor, 2010). Considering how different
physiological traits could be measured to help identify cause—
effect relationships and maintaining a solutions-oriented
mindset when designing and disseminating research can
only strengthen the applicability of conservation physiology.
Solution-oriented work that is co-produced is also inherently
more engaging and empowering to stakeholders, practitioners
and policy makers than simply documenting yet another
environmental problem.

5) Make science communication a regular part of
research dissemination: Conducting research comes with an
academic responsibility to disseminate results in the peer-

reviewed literature. Engagement in public discourse about
scientific findings, their contribution to reliable knowledge
and the role of science in society has long also been an
important social responsibility of those conducting research.
In the face of disinformation and pseudoscience, unfounded
conspiracy theories, denialism and the politicization of
scientific evidence, effective scientific communication with the
public has taken on even greater importance. Conservation
physiologists can engage with society by embracing the
power of social media, imagery and film, by registering with
and contributing to mainstream media centres, by drafting
accurate press releases and by taking advantage of carefully
worded institutional promotional resources (Laubenstein
and Rummer, 2021). Public engagement requires less jargon,
an assessment (but not underestimation) of the audience,
and welcoming language that invites individuals into the
science and the science process (Laubenstein and Rummer,
2021). At the undergraduate and graduate student level,
the next generation of scientists can be encouraged and
supported to take advantage of training opportunities in
science communication. Conservation physiologists can also
work directly with their local communities. Interactions with
schools to infuse more science into local classrooms will
inspire passion about the natural world in young learners
who are often disconnected from their environment (Soga
and Gaston, 2016). Local school boards frequently have
opportunities for engagement with teachers, but there are
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also global initiatives that link scientists with classrooms (e.g.
‘Letters to a Pre-Scientist’: https://www.prescientist.org/; ‘Skype
a Scientist’: https://www.skypeascientist.com/). Simply talking
with neighbours and at local community groups is similarly
valuable.

While some conservation physiologists will be comfortable
with and skilled at science communication, others will either
have little time to do so given other demands or may be
reluctant to do so for a variety of reasons. Alternative avenues
are available to share research without having to undertake
all of this work as an individual. Conservation physiologists
can make and maintain connections to science journalists,
and support them, by providing story ideas, by developing
sound working relationships and by emphasizing the value of
having science journalists in news and other media outlets,
as well as within their institutions. Science journalists are
not only adept at the interpretation and presentation of
science for different audiences, but they also already have
established long-standing relationships with those audiences.
Although the productivity of researchers is still largely gauged
by metrics related to academic publishing, assessments of
public engagement are taking on greater significance (Gruzd
et al., 2011). Regardless of how these communication goals
are accomplished, they should be viewed more widely as
a valuable translational outcome of research and should
be supported by institutional policies to promote science
communication and reward individuals who take part in the
process either directly or indirectly (Sugimoto, 2016).

Conclusions

With the goals outlined above, the role of physiology in
addressing conservation issues is best situated as part of a
multi-disciplinary toolbox that spans the natural and phys-
ical sciences, social sciences, humanities and economics. Our
goal here has been to showcase that physiological tools and
techniques have great potential in addressing 6 of the 13 steps
that Ripple ez al. (2017) outlined as important for humanity’s
transition to sustainability (Fig. 1). This complements other
recent efforts, including a horizon scan of how conservation
physiology can help to address grand challenges (Cooke
et al., 2020) and the generation of a list of pressing research
questions for conservation physiology (Cooke et al., 2021b).
Moreover, the ‘Second Warning from Scientists’ emerged
prior to the COVID-19 global pandemic, which has led
to many discussions about the role of science (including
conservation physiology; Cooke ef al., 2021c) in the post-
pandemic transition and recovery in addressing long-standing
environmental problems (Nhamo and Ndlela, 2021; Sand-
brook ez al., 2020). By providing examples here, we hope
that conservation physiologists are inspired to take up or
continue working on these broad goals as diverse teams
across the globe. The final advice we provided was based
on our own experiences, and we hope it is useful to those,
especially early career conservation physiologists, working
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to increase the reach, relevance and applicability of their
research (Fig. 3). There are other steps outlined by Ripple et
al. (2017) where conservation physiology may not directly
contribute (e.g. reducing food waste, revising our economy
to reduce wealth inequality), but this speaks to the multi-
disciplinary nature of environmental problem solving. We
see conservation physiology as just one of many arms of
conservation practice that, when applied collaboratively and
in partnership with other disciplines and stakeholders, will
contribute meaningfully to addressing complex conservation
challenges.
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