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We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence,
based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and
direct contact forces. We observe a transient flocculation phase characterized by a growing
average floc size, followed by a statistically steady equilibrium phase. We analyze the
temporal evolution of floc size and shape due to aggregation, breakage, and deformation.
Larger turbulent shear and weaker cohesive forces yield elongated flocs that are smaller
in size. Flocculation proceeds most rapidly when the fluid and particle time scales are
balanced and a suitably defined Stokes number is O(1). During the transient stage,
cohesive forces of intermediate strength produce flocs of the largest size, as they are strong
enough to cause aggregation, but not so strong as to pull the floc into a compact shape.
Small Stokes numbers and weak turbulence delay the onset of the equilibrium stage.
During equilibrium, stronger cohesive forces yield flocs of larger size. The equilibrium
floc size distribution exhibits a preferred size that depends on the cohesive number. We
observe that flocs are generally elongated by turbulent stresses before breakage. Flocs
of size close to the Kolmogorov length scale preferentially align themselves with the
intermediate strain direction and the vorticity vector. Flocs of smaller size tend to align
themselves with the extensional strain direction. More generally, flocs are aligned with
the strongest Lagrangian stretching direction. The Kolmogorov scale is seen to limit floc
growth. We propose a new flocculation model with a variable fractal dimension that
predicts the temporal evolution of the floc size and shape.

——————————————————————————————————————

1. Introduction

Individual cohesive particles suspended in liquid or gaseous fluid flows tend to form
larger aggregates, due to attractive inter-particle forces that cause the primary particles
to flocculate. This mechanism plays a dominant role in environmental processes such as
sediment erosion and transport in rivers and oceans, or soil erosion by wind (Winterwerp
2002; Guo & He 2011; Wang et al. 2013; Tarpley et al. 2019). In planetary astrophysics,
corresponding processes influence the coagulation of dust during the formation of pro-
toplanetary disks (Ormel et al. 2007; Schäfer et al. 2007; Ormel et al. 2009, 2011). The

† Email address for correspondence: meiburg@engineering.ucsb.edu

ar
X

iv
:2

10
5.

11
73

5v
1 

 [p
hy

si
cs

.fl
u-

dy
n]

  2
5 

M
ay

 2
02

1



2 K. Zhao, F. Pomes, B. Vowinckel, T.-J. Hsu, B. Bai and E. Meiburg

emergence of large aggregates due to the flocculation of cohesive primary particles is
also highly relevant in the context of a wide range of industrial processes, such as the
ingestion of dust in gas turbine engines (Bons et al. 2017; Sacco et al. 2018), or the use
of membrane separation technologies for wastewater treatment and the production of
potable water (Bratskaya et al. 2006; Leiknes 2009; Moghaddam et al. 2010; Kang et al.
2012). Similarly, the operation of certain types of medical equipment, for example dry
powder inhalers (Yang et al. 2013a, 2015; Tong et al. 2013, 2016), involves the formation
of agglomerates or flocs. The flocculation process is strongly affected by the turbulent
nature of the underlying fluid flow. Small-scale eddies modify the collision dynamics of
the primary particles and hence the growth rate of the flocs, while turbulent stresses
can result in the deformation and breakup of larger cohesive flocs. Hence the dynamic
equilibrium between floc growth and breakup is governed by a complex and delicate
balance of hydrodynamic and inter-particle forces.

A host of experimental studies have provided considerable insight into key aspects of
the development of flocs in turbulent shear flows, such as their growth rate (Biggs &
Lant 2000; Yu et al. 2006; Xiao et al. 2010; Kuprenas et al. 2018), the equilibrium size
distribution (Chaignon et al. 2002; Bouyer et al. 2004; Rahmani et al. 2004; Lee et al.
2020), and the transient shape of the flocs (Maggi et al. 2007; He et al. 2012; Guérin et al.
2017). Based on the early pioneering work by Levich (1962), several of these investigations
have employed a population balance approach to formulate models for the temporal floc
evolution (Maggi et al. 2007; Shin et al. 2015; Winterwerp 1998; Son & Hsu 2008, 2009).
Alternative approaches based on the classical work by Smoluchowski (1936) propose
statistical collision equations (Ives & Bhole 1973; Yang et al. 2013b; Klassen 2017).
Most of the above approaches do not incorporate detailed information on the overall floc
strength, which varies with the floc size and shape, and with the strength of the bonds
between the primary cohesive particles (Dizaji et al. 2019). Moreno-Atanasio & Ghadiri
(2006), on the other hand, consider the dependence of the overall floc strength on the
number and strength of the bonds within the floc. Nguyen et al. (2014) and Gunkelmann
et al. (2016) observe that loosely structured agglomerates fragment more easily during
collisions than densely packed ones.

In recent years, highly resolved numerical simulations have begun to provide a promis-
ing new avenue for gaining insight into the interplay of hydrodynamic, inertial and inter-
particle forces during the growth, deformation and breakup of aggregates (Marshall &
Li 2014). The study by Zhao et al. (2020) focuses on a conceptually simple cellular
model flow in order to explore the competition between inertial, drag, and cohesive
forces during the flocculation process. The authors find that floc growth proceeds most
rapidly if the fluid and particle time scales are in equilibrium, so that a suitably defined
Stokes number is of order unity. Based on simulations in a similar model flow, Ruan
et al. (2020) suggest a criterion for the breakup of aggregates. Dizaji et al. (2019)
investigate the dynamics, collision and fragmentation of flocs in shear flows, via two-way
coupled simulations that account for the modification of the flow by the particles. They
demonstrate that the particle-fluid interaction induces vortex rings in the flow. Dizaji &
Marshall (2016) propose a novel stochastic vortex structure method, and proceed to show
that this numerical approach produces realistic collision rates in homogeneous turbulence.
For flocculation in turbulence, Dizaji & Marshall (2017) show that the aggregation
process influences the background turbulence only weakly. Quite recently, Chen et al.
(2019) and Chen & Li (2020) conducted a detailed computational study of cohesive
particle aggregation in homogeneous isotropic turbulence, based on two-way coupled
direct numerical simulations combined with an adhesive discrete element method. The
simulations presented in Chen et al. (2019), which account for Stokes drag, lubrication
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and adhesive contact forces, address the early stages of flocculation before an equilibrium
size distribution is reached. Upon the onset of flocculation, the results demonstrate a
time-dependent, exponential size distribution of the flocs for all values of the cohesive
force strength. Based on this observation, the authors develop an effective agglomeration
kernel for the population balance equation that successfully reproduces the DNS results.
In a follow-up study, Chen & Li (2020) investigate the collision-induced breakup of
agglomerates in homogeneous isotropic turbulence. The authors are able to quantify
the fraction of collisions that result in breakage, which presents useful information for
closing the population balance equation. However, because the simulations focus on the
early stages of flocculation before the emergence of an equilibrium size distribution, and
because they employ particles with diameter approximately equal to the Kolmogrov scale,
they do not allow the authors to assess the role of the Kolmogorov length scale in limiting
the floc size, a widely reported experimental observation (Fettweis et al. 2006; Coufort
et al. 2008; Braithwaite et al. 2012; Kuprenas et al. 2018). Furthermore, the authors
model the cohesive van der Waals force as a “sticky force” that acts only on contact.
Several previous studies, on the other hand, have indicated that this attractive force
extends over a finite range even before the particles come into contact, so that it can
affect the probability that two close-by particles will collide (Visser 1989; Israelachvili
1992; Wu et al. 2017; Vowinckel et al. 2019).

The present investigation aims to explore the interplay between floc aggregation, defor-
mation and breakup from inception all the way to the dynamic equilibrium phase, with
the goal of obtaining scaling laws for both of these qualitatively different stages. Towards
this end, we will employ a simulation approach that tracks dispersed individual spherical
particles of a given diameter in homogeneous isotropic turbulence. The simulations are
one-way coupled in the sense that the particles do not modify the fluid flow, although
particle-particle interactions are fully accounted for, and the grid spacing employed
for calculating the fluid motion is smaller than the particle diameter. Sometimes this
approach is referred to as “three-way coupled”. The simulations account for inter-particle
forces based on recently developed advanced collision models for viscous flows (Biegert
et al. 2017, and references therein), along with the cohesive force model of Vowinckel
et al. (2019). The homogeneous isotropic turbulence is generated and maintained via the
forcing method of Eswaran & Pope (1988). We will employ these simulations in order
to investigate the floc size and shape evolution, the floc size distribution during the
equilibrium stage, the orientation of the flocs with regard to the principal directions of
the Eulerian strain and the Lagrangian stretching, as well as the role of the Kolmogorov
length scale in limiting floc growth. Based on our findings, we then propose a novel
flocculation model that predicts the evolution of the floc size and shape with time. To
assess the performance of this new flocculation model, we will compare its predictions to
those obtained with existing models in the literature.

The paper is structured along the following lines. Section 2 briefly reviews the governing
equations for the fluid flow and the particle motion, and it describes the computational
approach. It identifies the governing dimensionless parameters and quantifies the range
over which they will be varied in the present investigation. The properties of the turbulent
flow fields are described in Section 3, and their statistically stationary and isotropic
nature is discussed. Starting from 10,000 randomly distributed individual particles, we
then analyze the temporal evolution of the floc size and shape as a result of aggregation,
deformation and breakage in Section 4. Here we will distinguish between the transient
flocculation stage and the equilibrium stage, and we will discuss the underlying physical
mechanisms. We will furthermore analyze the alignment of the flocs with regard to the
principal strain directions of the turbulent velocity field, and we will focus on how the
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Kolmogorov scale affects the maximum floc size. Subsequently, we introduce the new
flocculation model in Section 5, and we compare its predictions to those obtained from
existing models. Section 6 summarizes the main findings of the current investigation, and
presents its key conclusions.

2. Governing equations and numerical method

2.1. Particle motion in homogeneous isotropic turbulence

We consider the one-way coupled motion of suspended cohesive particles in three-
dimensional, incompressible homogeneous isotropic turbulence. The motion of the single-
phase fluid with constant density ρf and kinematic viscosity ν is governed by

∇ · uf = 0 , (2.1)

∂uf

∂t
+ (uf · ∇)uf = − 1

ρf
∇p+ ν∇2uf + F tur , (2.2)

where uf = (uf , vf , wf )T denotes the fluid velocity vector and p indicates the hydrody-
namic pressure. We employ the spectral approach of Eswaran & Pope (1988) to obtain
the forcing term F tur, which generates and maintains statistically stationary turbulence,
as implemented in Chouippe & Uhlmann (2015). Here, F tur is non-zero only in the
low-wavenumber band where the wavenumber vector |κ| < κf , with κf = 2.3κ0 and
κ0 = 2π/L0, with L0 denoting the length of the physical domain. The origin κ = 0
is not forced. In addition to the cutoff wavenumber κf , the random forcing process is
governed by the dimensionless parameter Ds = σ2T0L

4
0/ν

3, where σ2 and T0 indicate the
variance and the time scale of the random process, respectively. Regarding the details of
evaluating F tur from κf and Ds, we refer the reader to the original work by Eswaran &
Pope (1988).

We approximate each primary suspended particle i as a sphere moving with trans-
lational velocity up,i = (up,i, vp,i, wp,i)

T and angular velocity ωp,i. These are obtained
from the linear and angular momentum equations

mp
dup,i

dt
= F d,i +

N∑
j=1,j 6=i

(F con,ij + F lub,ij + F coh,ij)︸ ︷︷ ︸
F c,i

, (2.3)

Ip
dωp,i

dt
=

N∑
j=1,j 6=i

(T con,ij + T lub,ij)︸ ︷︷ ︸
T c,i

, (2.4)

where the primary particle i moves in response to the Stokes drag force F d,i =
−3πDpµ(up,i − uf,i), and the particle-particle interaction force F c,i. Buoyancy is not
considered here, so that we can investigate the effects of particle inertia in isolation.
We only consider primary particles that are larger than 2µm (cf. table 1), so that a
suitably defined Peclet number measuring the relative importance of hydrodynamic and
Brownian forces is sufficiently large for their Brownian motion to be negligible (Biegert
et al. 2017; Chen et al. 2019; Vowinckel et al. 2019; Partheniades 2009). up,i indicates

the particle velocity evaluated at the particle center. uf,i =
∑Ni

1 (φi,kuf,k) represents
the fluid velocity averaged over the volume of particle i, where Ni denotes the number
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of Eulerian grid cells covered by particle i, uf,k is the fluid velocity at the center of the
grid cell k, and φi,k is the volume fraction of the particle i in the grid cell k. We remark
that the above implies that the diameter Dp of the primary particle should be larger
than the grid spacing h. This avoids the need for interpolating the fluid velocity within
one grid cell, which would be required if Dp < h (Chen et al. 2019). mp denotes the
particle mass, µ the dynamic viscosity of the fluid, and N the total number of particles
in the flow. We assume all particles to have the same diameter Dp and density ρp. F c,i
accounts for the direct contact force F con,ij in both the normal and tangential direction,
as well as for short-range normal and tangential forces due to lubrication F lub,ij and
cohesion F coh,ij , where the subscript ij indicates the interaction between particles i
and j. Ip = πρpD

5
p/60 denotes the moment of inertia of the particle. T c,i represents the

torque due to particle-particle interactions, where we distinguish between direct contact
torque T con,ij and lubrication torque T lub,ij . Within a large floc, we account for all of
the individual binary particle interactions.

The lubrication force F lub,ij is accounted for based on Cox & Brenner (1967) as
implemented in Zhao et al. (2020). We note that, although the present study is limited
to monodisperse particles, polydisperse particle-particle interactions can be taken into
account by an effective radius Reff = RpRq/(Rp + Rq), where Rp and Rq are the radii
of two interacting spheres. Following Biegert et al. (2017), the collision force F con,ij is
represented by a nonlinear spring–dashpot model in the normal direction, while the
tangential component is modelled by a linear spring–dashpot model capped by the
Coulomb friction law to account for zero-slip rolling or sliding of particles. We note
that the tangential component of the contact force depends on the surface roughness,
a prescribed restitution coefficient edry = 0.97 and a friction coefficient efri = 0.15 are
implemented to yield adaptively calibration for every collision as described by Biegert
et al. (2017). The cohesive force F coh,ij , which reflects the combined influence of the
attractive van der Waals force and the repulsive electrostatic force, is based on the work
of Vowinckel et al. (2019), where additional details and validation results are provided.
The model assumes a parabolic force profile, distributed over a thin shell surrounding
each primary particle. Hence the cohesive force between primary particles extends over
a finite range, so that it is felt by the particles even before they come into direct contact.
We consider two primary particles to be part of the same floc when their surface distance
is smaller than half the range of the cohesive force, as implemented in Zhao et al. (2020).
We remark that, based on equations (2.3) and (2.4), the configuration of the primary
particles within a floc can change with time in response to fluid forces, since the cohesive
bonds are not rigid. Specifically, the contact points on the surface of the primary particles
are not fixed, so that the primary particles can rotate individually within a floc.

2.2. Nondimensionalization

In order to render the above governing equations dimensionless, we consider primary
particles with diameter Dp = 5 µm, which represents a typical value for clay or fine silt.
The cubic computational domain has an edge length L0 = 125Dp = 6.25 × 10−4 m. As
time scale of the random turbulent forcing process we select T0 = 7.81 × 10−5 s. By
choosing L0, T0 and ρf = 1, 000 kg/m3 as the characteristic length, time and density
scales, we obtain the characteristic velocity scale U0 = L0/T0 = 8 m/s, which is similar
to values employed in previous investigations (Chen et al. 2019; Chen & Li 2020). We
employ L0 and U0 to define the turbulence Reynolds number Re = L0U0ρf/µ.

The dimensionless continuity and momentum conservation equations can then be
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expressed as

∇̃ · ũf = 0 , (2.5)

∂ũf

∂t̃
+ (ũf · ∇̃)ũf = −∇̃p̃+

1

Re
∇̃2ũf + F̃ tur , (2.6)

while the dimensionless equations of motion for the primary cohesive particles take the
form

m̃p
dũp,i

dt̃
= −3πD̃p(ũp,i − ũf,i)

Re︸ ︷︷ ︸
F̃ d,i

+
N∑

j=1,j 6=i

(F̃ con,ij + F̃ lub,ij + F̃ coh,ij) , (2.7)

Ĩp
dω̃p,i

dt̃
=

N∑
j=1,j 6=i

(T̃ con,ij + T̃ lub,ij) . (2.8)

Here dimensionless quantities are denoted by a tilde. The dimensionless particle mass is
defined as m̃p = πD̃3

pρ̃s/6, the moment of inertia Ĩp = πρ̃sD̃
5
p/60, and the density ratio

ρ̃s = ρp/ρf . The dimensionless direct contact and lubrication forces, F̃ con,ij and F̃ lub,ij ,
are accounted for based on Zhao et al. (2020), while the dimensionless cohesive force
F̃ coh,ij is defined as

F̃ coh,ij =

{
−4Co

ζ̃2n,ij−h̃coζ̃n,ij

h̃2
co

n, ζ̃min < ζ̃n,ij 6 h̃co ,

0, otherwise .
(2.9)

Here ζ̃min = 0.0015D̃p and h̃co = 0.05D̃p represent the surface roughness of the particles
and the range of the cohesive force, respectively. n represents the outward-pointing
normal on the particle surface, while ζ̃n,ij is the normal surface distance between particles
i and j. The cohesive number Co indicates the ratio of the maximum cohesive force
||F coh,ij || at ζ̃n,ij = h̃co/2 to the characteristic inertial force

Co =
max(||F coh,ij ||)

U2
0L

2
0ρf

=
AHDp

16hcoζ0

1

U2
0L

2
0ρf

, (2.10)

where the Hamaker constant AH is a function of the particle and fluid properties, and
the characteristic distance ζ0 = 0.00025Dp. Vowinckel et al. (2019) provide representative
values of various physicochemical parameters such as AH , salt concentration and grain
size of the primary particles for common natural systems. The present numerical approach
for simulating the dynamics of cohesive sediment has been employed to predict the floc-
culation in simple vortical flow fields, and it was successfully validated with experimental
data in our earlier work (Zhao et al. 2020).

To summarize, the simulations require as direct input parameters the turbulence
Reynolds number Re, the characteristic parameter of the random turbulent forcing
process Ds, the dimensionless particle diameter D̃p, the total number of particles N ,
the density ratio ρ̃s, and the cohesive number Co. As we will discuss below, Re and Ds

can equivalently be expressed by the shear rate G of the turbulence, cf. equation (3.1),
and the Stokes number St defined by equation (4.1). A list of the relevant dimensionless
parameters is provided in table 1. We remark that due to computational limitations the
simulations consider Kolmogorov scales that are somewhat smaller than typical field
values, and turbulent shear rates that are larger than field values. Hence the ratio
of the Kolmogorov length scale to the primary particle size takes values up to 3.3 in
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Physical parameters

Particle diameter Dp 5 µm

Particle density ρp 2.65× 103 − 5.0× 104 kg/m3

Number of particles N 1.0× 104

Volume fraction of particles φp 2.68× 10−3

Hamaker constant AH 1.0× 10−20 − 3.0× 10−18 J

Fluid density ρf 1.0× 103 kg/m3

Dynamic viscosity µ 1.0× 10−3 - 2.5× 10−3 Pa s

Shear rate G 3.7× 103 − 9.5× 104 s−1

Kolmogorov length scale η 3.25− 16.5 µm

Non-dimensional parameters

Particle diameter D̃p 8.0× 10−3

Density ratio ρ̃s 2.65 - 50

Turbulence Reynolds number Re 2.0× 103 − 5.0× 103

Turbulent forcing parameter Ds 1.0× 104 − 1.0× 107

Cohesive number Co 4.0× 10−10 − 1.2× 10−7

Shear rate G̃ 0.29 - 7.4

Stokes number St 0.02 - 1.92

Table 1: Nondimensionalization employed in the present work: the characteristic values for
length, velocity and density are L0 = 125Dp = 6.25×10−4 m, U0 = 8 m/s and ρf = 1, 000 kg/m3,
respectively.

the simulations, as compared to values up to O(10) under typical field conditions. For
convenience, the tilde symbol will be omitted henceforth.

3. Simulation of single-phase turbulence

3.1. Computational set-up

The triply periodic computational domain Ω has a dimensionless size of Lx×Ly×Lz =
1× 1× 1, with the number of grid cells Nx×Ny ×Nz = 128× 128× 128. This relatively
modest number of grid points enables us to conduct the simulations over sufficiently long
times for the flocculation and break-up processes to reach an equilibrium state (Tran
et al. 2018), and it is in line with the earlier study of Chen et al. (2019). As mentioned
above, we set the diameter Dp of the primary particles moderately larger than the grid
size h = Lx/Nx, at a constant value Dp/h = 1.024.
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Case Re Ds Reλ η urms G

Tur1 5.0× 103 1.0× 104 9.72 2.64× 10−2 1.2× 10−2 0.29

Tur2 2.0× 103 5.5× 104 16.05 1.83× 10−2 5.56× 10−2 1.49

Tur3 3.0× 103 5.1× 104 16.97 1.8× 10−2 3.88× 10−2 1.03

Tur4 4.0× 103 5.05× 104 17.25 1.79× 10−2 2.94× 10−2 0.78

Tur5 5.0× 103 5.0× 104 15.21 1.8× 10−2 2.2× 10−2 0.62

Tur6 5.0× 103 1.0× 105 21.83 1.48× 10−2 3.2× 10−2 0.91

Tur7 5.0× 103 1.0× 106 34.65 8.6× 10−3 6.88× 10−2 2.7

Tur8 5.0× 103 1.0× 107 50.34 5.2× 10−3 1.38× 10−1 7.4

Table 2: Physical parameters of the single-phase turbulence simulations. As input parameters we
specify the fluid Reynolds number Re = L0U0/ν and the characteristic parameter of the random
turbulent forcing process Ds = σ2T0L

4
0Re

3. The simulation then yields the Taylor Reynolds
number Reλ = λurmsRe, the Kolmogorov scale η, the average root-mean-square velocity urms,
and the shear rate G = 1/(Reη2). All of these output quantities are obtained by averaging over
space and time, after a statistically stationary state has evolved.

Before introducing the particles into the flow, we simulate the single-phase turbulence
until it reaches a statistically stationary state. Table 2 gives an overview of the physical
parameters for the simulations conducted within the present investigation. Here the Kol-
mogorov length scale and the root-mean-square velocity are defined as η = 1/(Re3ε)1/4

and urms = (2k/3)1/2, respectively, where ε and k denote the domain-averaged dissipation
rate and kinetic energy of the fluctuations. The Taylor Reynolds number Reλ = λurmsRe
of the turbulence is based on the Taylor microscale λ =

√
15urms/(Re ε)

1/2. To provide
a more complete quantitative description of the fluid shear, we define the vorticity
fluctuation amplitude

G =
1

Reη2
, (3.1)

which can also be regarded as the turbulent shear rate. For additional details with regard
to these quantities, we refer the reader to Pope (2001).

3.2. Turbulence properties for different Reλ

One key goal of the present investigation is to study the flocculation of primary particles
whose diameter Dp is smaller than the Kolmogorov length scale η. Since the particle
diameter needs to be larger than the grid spacing, and the number of grid points is
limited, suitable values of η require a relatively low Reλ. On the other hand, it is known
that for Reλ 6 O(50) the turbulence may not be fully developed and isotropic (Mansour
& Wray 1994). Hence this section presents a more detailed discussion of the turbulence
properties for Reλ 6 O(50).

Figure 1 shows the time-dependent evolution of the box-averaged Kolmogorov length
η, the root-mean-square velocity urms, the Taylor Reynolds number Reλ, and the shear
rate G for cases Tur1 and Tur8, which have time-averaged Taylor Reynolds numbers
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Figure 1: Temporal evolution of box-averaged turbulence properties for cases Tur1 and Tur8 in
table 2: (a) Kolmogorov length scale η; (b) Root-mean-square velocity urms; (c) Taylor Reynolds
number Reλ; (d) Shear rate G. A statistically stationary state is seen to evolve for all quantities.

of 9.72 and 50.34, respectively. Both cases are seen to reach statistically stationary
states. We note that while case Tur8 results in η/h = 0.6656, Chouippe & Uhlmann
(2015) demonstrated the validity of the current turbulent forcing approach even when the
Kolmogorov length is smaller than the grid spacing. Snapshots of the vorticity modulus in
a slice of the computational domain are shown in Figure 2. They exhibit the intermittent
multiscale patterns featuring eddies of different size along with thin filaments that are
typical for turbulence.

Figure 3 shows the temporal evolution of the domain-averaged magnitude of the
velocity components 〈|uf |〉Ω , 〈|vf |〉Ω and 〈|wf |〉Ω . During the statistically stationary
state the three components are seen to oscillate around similar average values for both
Tur1 and Tur8, which indicates that the flow is isotropic to a good approximation.

We define the instantaneous kinetic energy components in Fourier space, E11(κ),
E22(κ) and E33(κ), as ∫ ∞

0

E11(κ) dκ = 〈uf ·uf

2 〉Ω , (3.2a)∫ ∞
0

E22(κ) dκ = 〈 vf ·vf2 〉Ω , (3.2b)∫ ∞
0

E33(κ) dκ = 〈wf ·wf

2 〉Ω , (3.2c)
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Figure 2: Representative snapshots of the vorticity modulus normalized by the vorticity
fluctuation amplitude G, shown in the plane z = 0.5. (a) Case Tur1; (b) Case Tur8.
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Figure 3: Temporal evolution of box-averaged magnitude of the fluid velocity components: (a)
Case Tur1; (b) Case Tur8. The flow is seen to be isotropic to a good approximation.

where κ = |κ| denotes the wavenumber. Figure 4 shows the time-averaged one-
dimensional energy spectra. Only the wavenumbers below the cutoff wavenumber (κf ,
shown as vertical dashed lines in Figure 4) are forced. The shapes of the energy spectra
are in qualitative agreement with those obtained by Chouippe & Uhlmann (2015, p.
10) for higher values of Reλ ≈ 60. We conclude that the present forcing scheme yields
statistically steady flow fields that are approximately isotropic for the current range of
Reλ-values.

4. Flocculation of cohesive particles

4.1. One-way coupling

Once the single-phase turbulence reaches the statistically stationary regime, N =
10, 000 identical cohesive particles with diameter Dp = 0.008 are randomly distributed
throughout the domain, resulting in a particle volume fraction φp = 0.268%. Initially
all particles are at rest and separated by a distance larger than the cohesive range hco.
To improve the statistics, we carry out repeated simulations for different random initial
conditions, as the simulation results are statistically independent of the initial particle
placement. The simulations to be discussed in the following are one-way coupled, so
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Figure 4: Time-averaged one-dimensional energy spectra. the vertical dashed lines indicate
the respective cutoff wavenumber of the turbulence forcing scheme, κf η = 2.3(2π/Lx)η. (a)
Case Tur1; (b) Case Tur8. The spectra confirm that the statistically stationary flow fields are
approximately isotropic.

that the particles do not modify the background turbulence. Bosse et al. (2006) find
that particle loading can modify the turbulence statistics even for volume fractions
as low as 10−5, so that we expect two-way coupling effects to have an impact on
the flocculation process even in moderately dilute flows. In addition, even for globally
dilute flows the local volume fraction inside a floc will be O(1), so that the one-way
coupled assumption generally will not hold inside a floc. However, fully two-way coupled
simulations for sufficiently many particles to obtain reliable statistical information, and
for sufficiently long times to explore the balance between aggregation and breakup
during the equilibrium stage, are not feasible on currently available supercomputers. Our
assumption of one-way coupling hence limits the volume and mass fractions that we can
reasonably consider. On the other hand, the current simulations and their comparisons
to experimental observations are useful in that they help address the question as to
which aspects of flocculation are governed by one-way coupled dynamics, and which
other aspects require fully two-way coupled dynamics. As we will see below, for the
range of physical parameters listed in table 1, even one-way coupled simulations are able
to reproduce several experimentally observed statistical features of flocculation dynamics.

We adopt a multiscale time-stepping approach in which the fluid motion is calculated
with a time step ∆t based on the criterion that the Courant-Friedrichs-Lewy number
CFL 6 0.5. The particle motion, on the other hand, is evaluated with a much smaller
time step ∆tp = ∆t/15. Since the computational approach maintains a contact duration
of Tc = 10∆t = 150∆tp (Biegert et al. 2017), each particle collision is effectively resolved
by 150 substeps, at the price of a marginal increase in the computational cost. The
dynamics of the primary particles are characterized by the Kolmogorov-scale Stokes
number

St =
ρs
18

D2
p

η2
Reη , (4.1)

where the Kolmogorov Reynolds number Reη = η urmsRe. Since the particle diameter
Dp is constant throughout the present investigation, St depends on the density ratio ρs
and the fluid properties. A particle with a small Stokes number tends to follow the fluid
motion, while the dynamics of a particle with a large Stokes number is dominated by its
inertia, so that it tends to continue along its initial direction of motion.

Table 3 summarizes the physical parameters of the simulations that we conducted.
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Case Turbulent flow η/Dp ρs St Co G

Flo1 Tur1 3.30 2.65 0.02 4.0 × 10−10 0.29

Flo2 Tur1 3.30 2.65 0.02 6.0 × 10−9 0.29

Flo3 Tur1 3.30 2.65 0.02 3.0 × 10−8 0.29

Flo4 Tur1 3.30 2.65 0.02 6.0 × 10−8 0.29

Flo5 Tur1 3.30 2.65 0.02 1.2 × 10−7 0.29

Flo6 Tur2 2.28 2.65 0.06 1.2× 10−7 1.49

Flo7 Tur3 2.25 2.65 0.06 1.2× 10−7 1.03

Flo8 Tur4 2.24 2.65 0.06 1.2× 10−7 0.78

Flo9 Tur5 2.25 2.65 0.06 1.2× 10−7 0.62

Flo10 Tur6 1.85 2.65 0.10 1.2× 10−7 0.91

Flo11 Tur6 1.85 10 0.38 1.2× 10−7 0.91

Flo12 Tur6 1.85 20 0.77 1.2× 10−7 0.91

Flo13 Tur6 1.85 50 1.92 1.2× 10−7 0.91

Flo14 Tur7 1.08 2.65 0.38 1.2× 10−7 2.7

Flo15 Tur8 0.65 2.65 1.25 1.2× 10−7 7.4

Table 3: Physical parameters of the flocculation simulations. We separately investigate the
influence of the cohesive number Co (based on Flo1-5), the shear rate G (Flo6-9), and the
Stokes number St (Flo10-13). The effects of ρs and η/Dp are implicitly accounted for by St and
G.

Following our analysis from §2.2 and the examples given in Appendix A of Vowinckel
et al. (2019), these values correspond to primary silica particles with a grain size of fine
to medium silt in ocean water. In the following, we will investigate how the flocculation
dynamics are influenced by the cohesive number Co, the Stokes number St and the
shear rate G. We remark that the density ratio ρs and the size ratio η/Dp are implicitly
accounted for by St and G.

4.2. Flocculation and equilibrium stages

When the surface distance between two particles is smaller than half the range of the
cohesive force, hco/2, we consider these particles to be part of the same floc. Hence, in
terms of a physical force balance breakage occurs when the net force pulling the particles
apart is sufficiently strong to overcome the maximum of the cohesive force holding the
particles together. An individual particle is considered to be the smallest possible floc.
Figure 5a shows the evolution of the number of flocs Nf (t) with time for the representative
case Flo9, with Co = 1.2 × 10−7, St = 0.06, G = 0.62, ρs = 2.65 and η/Dp = 2.25.
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(a) (b)

(c)

Figure 5: (a) Temporal evolution of the number of flocs Nf . The vertical dashed line divides
the simulation into the flocculation and equilibrium stages. (b) Number of flocs containing Np
primary particles. The number of flocs with a single particle rapidly decreases from its initial
value of Nf = 10, 000. The numbers of flocs with two or three particles intially grow and
subsequently decay, as increasingly many flocs with three or more particles form. (c) Temporal
evolution of the fraction of flocs that maintain their identity (θid), add primary particles (θad),
or undergo breakage (θbr) over the time interval ∆T = 3. All results are for case Flo9 with
Co = 1.2× 10−7, St = 0.06, G = 0.62, ρs = 2.65, η/Dp = 2.25.

As a result of flocculation, Nf decreases rapidly with time from its initial value of
10,000, before levelling off around a constant value Nf,eq that reflects a stable equilibrium
between aggregation and breakage. This tendency of Nf is consistent with our previous
observation of flocculation in steady cellular flow fields (Zhao et al. 2020). Consequently,
we can identify two pronounced stages of the flow, viz. an initial flocculation stage and a
subsequent equilibrium stage. We define the end of the flocculation stage, i.e., the onset
of the equilibrium stage, as the time teq when Nf first equals Nf,eq. Figure 5b shows
separately the number of flocs with Np = 1, 2, 3 and more than three primary particles.
While the number of flocs with two or three particles initially grows quickly, they soon
reach a peak and subsequently decline, as more flocs of larger sizes form. Toward the
end of the flocculation stage, a stable equilibrium of the different floc sizes begins to
emerge, although the distribution of flocs with different numbers of primary particles is
still changing slowly.

In order to gain insight into the dynamics of floc growth and breakage, we keep track
of the evolution of three different types of flocs over a suitably specified time interval
∆T : a) those flocs that maintain their identity, i.e., they consist of the same primary
particles at the start and the end of the time interval; b) those that add additional
primary particles while keeping all of their original ones; and c) all others, i.e., all those
who have undergone a breakage event during the time interval. We denote the fractions
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of these respective groups as θid = Nf,id/Nf , θad = Nf,ad/Nf , and θbr = Nf,br/Nf . It
follows that

θid + θad + θbr = 1 . (4.2)

We found that a value of ∆T = 3 is suitable for obtaining insight into the dynamics of
the flocculation process, as it allows most of the flocs to maintain their identity during
the time interval, while smaller but still significant numbers undergo primary particle
addition or breakage. Figure 5c shows the evolution of θid, θad and θbr for case Flo9. After
an initial transient stage, all three fractions reach statistically steady states. Interestingly,
even during the equilibrium stage when Nf ≈ const., we observe that θad 6= θbr. This
reflects events such as when one floc breaks into three smaller parts, two of which then
merge with other flocs. Here the total number of flocs remains unchanged at three, in
spite of only one break-up but two particle addition events.

4.3. Evolution of floc size and shape

While the number of primary particles in a floc, Np, provides a rough measure of its
size, flocs with identical values of Np can have very different shapes. In order to capture
this effect, we define the characteristic diameter Df of the floc, also known as the Feret
diameter, as

Df = 2max(‖xp,i − xc‖) +Dp, 1 6 i 6 Np , (4.3)

as well as its gyration diameter Dg (Chen et al. 2019),

Dg =


2
√

1
Np

∑Np

i=1 ‖xp,i − xc‖2, Np > 2 ,

√
1.6Dp, Np = 2 ,

Dp, Np = 1 .

(4.4)

Here xp,i denotes the position of the center of primary particle i, and the floc’s center of

mass is evaluated as xc =
∑Np

i=1 xp,i/Np. While the characteristic diameter Df more
closely represents the true spatial extent of the floc, the gyration diameter Dg also
accounts for the irregularity of the floc shape.

Following Khelifa & Hill (2006a,b), we then calculate the fractal dimension nf of the
floc

nf =
logNp

log
Df

Dp

, (4.5)

as a measure of its compactness. A dense, nearly spherical floc has nf ≈ 3, while for a
linear floc nf ≈ 1. When Np = 1 and Df/Dp = 1, the above definition of the fractal
dimension does not yield a finite value, and we set nf = 1. In this way, the definition of
the fractal dimension is continuous between Np = 1 and Np = 2. It is important to note
that this differs from previous studies, which usually set nf = 3 for this case (Khelifa &
Hill 2006a,b; Maggi et al. 2007; Son & Hsu 2009).

For a typical floc with Np = 7 that maintains its identity, figure 6 shows the evolution
of Df and nf over time. During the time interval 200 6 t 6 210, hydrodynamic forces
deform the floc so that it becomes more compact, which reduces Df and increases nf .
Later on, near t ≈ 240, the floc is being stretched, which modifies Df and nf in the
opposite directions.

Figure 7 shows the evolution with time of the various floc size measures, for cases
Flo6-9 in table 3 with different turbulent shear rates G. The other parameters are kept
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Figure 6: Temporal evolution of the characteristic diameter Df and the fractal dimension nf of
a typical floc that maintains its identity over the time interval considered. Three instants are
marked by vertical dashed lines, and the corresponding floc shapes are shown. In response to
the fluid forces acting on it, the floc first changes from a slightly elongated to a more compact
shape, and subsequently to a more strongly elongated one. The floc with seven primary particles
is taken from case Flo10 with governing parameters Co = 1.2× 10−7, St = 0.1, G = 0.91.

approximately constant at Co = 1.2 × 10−7, St = 0.06, ρs = 2.65, and 2.24 6 η/Dp 6
2.28. As can be seen from figure 7a, a smaller shear rate results in a longer transient
phase before the average number of primary particles per floc Np = N/Nf reaches
an equilibrium. A smaller value of G furthermore gives rise to an equilibrium stage
characterized by fewer flocs with more primary particles, since the weaker hydrodynamic
stresses cannot break up the flocs as easily. Figures 7b and 7c indicate that both the
average characteristic diameter Df and the average gyration diameter Dg increase
for smaller G. This is consistent with previous observations by other authors in both
laboratory experiments (He et al. 2012; Guérin et al. 2017) and river estuaries (Manning
& Dyer 2002; Manning et al. 2010). Both Dg and Df remain smaller than the Kolmogorov
length scale 0.0179 6 η 6 0.0183 for all cases. Since flocs with one or two primary particles
have a constant fractal dimension nf = 1, we evaluate the average fractal dimension nf,lar
from only those flocs with three or more particles. Figure 7d shows that nf,lar increases
for smaller shear rates, which demonstrates that for weaker turbulence the floc shape
tends to be more compact. This finding is consistent with experimental observations
by He et al. (2012), whereas previous numerical work by Chen et al. (2019) reports a
constant value nf,lar = 1.64.

Figure 8 discusses the floc growth during the very early flow stages, as a function of
the turbulent shear rate G. As seen in Figure 8a, the evolution of Df (t) can be closely
approximated by an exponential function of the form

Df = b1(eb2t − 1) +Dp , (4.6)

where b1 and b2 represent fitting coefficients. Based on corresponding fits for different
values of G, Figure 8b displays the time-dependent floc growth rate dDf/dt for different
G. Consistent with the experimental observations by He et al. (2012), we find stronger
shear to cause more rapid flocculation for t < 5. After this early stage the trends
reverse, which reflects the fact that the equilibrium stage is reached faster for stronger
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Figure 7: Temporal evolution of various floc size measures for different turbulent shear rates
G, with Co = 1.2 × 10−7, St = 0.06, ρs = 2.65, and 2.24 6 η/Dp 6 2.28 (cases Flo6-9). (a)

Average number of primary particles per floc Np; (b) Average characteristic floc diameter Df ;

(c) Average floc gyration diameter Dg; (d) Average fractal dimension nf,lar of flocs with three
or more primary particles. Larger turbulent shear results in smaller flocs, with fewer primary
particles and more elongated shapes.

turbulence. This agrees with the experimental findings by Braithwaite et al. (2012), who
also reported the equilibrium stage to emerge more quickly for stronger turbulence, due
to more frequent floc collisions. We remark that the evolution of Np (not shown) exhibits
corresponding trends.

Figure 9 presents corresponding floc size results for different Stokes numbers, obtained
from cases Flo10-13 in table 3. These simulations all employ the same turbulent flow
Tur6, so that they have constant parameter values Co = 1.2 × 10−7, G = 0.91 and
η/Dp = 1.85. St is varied by changing the density ratio ρs. Figures 9a and 9b indicate
that the equilibrium values of both Np and Df increase for smaller St. This reflects the
fact that cohesive forces become more dominant for smaller St, due to the lower drag
force and the shorter particle response time. By again employing exponential fits for the
early stages, we obtain the floc growth rate dDf/dt for different St-values, as shown in
Figure 9c. Initially flocs with intermediate Stokes numbers of O(1) are seen to grow most
rapidly, consistent with our earlier findings for two-dimensional cellular flows (Zhao et al.
2020). This trend changes for t > 20, due to the later onset of the equilibrium stage for
small Stokes numbers. The time evolution of the average fractal dimension nf,lar of flocs
with three or more primary particles is shown in Figure 9d. It demonstrates that smaller
Stokes numbers result in more compact flocs.

Figure 10 analyzes the influence of the cohesive number Co by comparing cases Flo1-5
in table 3. The other parameters are held constant at St = 0.02, G = 0.29 ρs = 2.65
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Figure 8: Early-stage flocculation rate for different turbulent shear rates G, with Co = 1.2×10−7,
St = 0.06, ρs = 2.65, and η/Dp ≈ 2.26 (cases Flo6-9). (a) The early-stage simulation results for

Df (t) can be accurately fitted by an exponential relation, as shown for the representative case

Flo6 with G = 1.49; (b) The flocculation rate d(Df )/dt obtained from the exponential fits of

Df (t). Initially flocs grow fastest in strong turbulence. Subsequently their growth rate decays,
as the equilibrium stage is reached more rapidly for strong turbulence.

(a) (b)

(c) (d)

Figure 9: Temporal evolution of various floc size measures, for different Stokes number values
St, with Co = 1.2 × 10−7, G = 0.91 and η/Dp = 1.85 (cases Flo10-13). (a) Average number

of primary particles per floc Np; (b) Average characteristic floc diameter Df ; (c) Early-stage

flocculation rate d(Df )/dt obtained from exponential fits of Df (t); (d) Average fractal dimension
nf,lar of flocs with three or more primary particles. During the equilibrium stage, the number of
primary particles per floc, the characteristic floc diameter, and the fractal dimension all increase
for smaller Stokes numbers. Initially, flocs with St ≈ O(1) exhibit the fastest growth.
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Figure 10: Temporal evolution of various floc size measures for different values of the cohesive
number Co, with St = 0.02, G = 0.29, ρs = 2.65 and η/Dp = 3.30 (cases Flo1-5). (a) Average

number of primary particles per floc Np; (b) Average characteristic floc diameter Df ; (c) Average

floc gyration diameter Dg; (d) Average fractal dimension of flocs nf . Note that case Flo5 with
Co = 1.2×10−7 has not yet reached the equilibrium stage by the end of the simulation. For higher
Co-values, the equilibrium stage is characterized by larger flocs with more primary particles.
During the transient stages, however, intermediate Co-values can give rise to flocs that are more
elongated and hence larger than those at higher Co-values, in spite of having fewer primary
particles.

and η/Dp = 3.30. We note that due to the small values of St and G, the emergence
of an equilibrium stage takes longer in these simulations. In fact, for case Flo5 with
Co = 1.2× 10−7, an equilibrium had not yet formed by t = 20, 000, when the simulation
terminated. Nevertheless, the simulations demonstrate the tendency of higher Co to
result in larger values of Np during all phases of the flow, cf. Figure 10a. Interestingly,
however, we observe that during the transient flow stages the flocs for Co = 6 × 10−8

have larger average diameters Df and Dg than those for Co = 1.2× 10−7, even though
they contain fewer primary particles, cf. Figures 10b and 10c. The explanation for this
finding is given by Figure 10d, which indicates that for Co = 1.2× 10−7 the flocs have a
higher average fractal dimension nf and are more compact than those for Co = 6×10−8,
which can be deformed more easily by turbulent stresses.

In summary, as a general trend we observe that during the equilibrium stages weaker
turbulence, lower Stokes numbers and higher cohesive numbers result in larger and more
compact flocs.

4.4. Floc size distribution during the equilibrium stage

In order to discuss the floc size distribution during the equilibrium stage, we sort
the flocs into bins of width ∆(Df/Dp) = 0.7. Figure 11a shows that for all values
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Figure 11: Floc size distribution during the equilibrium stage, obtained by sorting all flocs
into bins of constant width ∆(Df/Dp) = 0.7. (a) Results for different shear rates G, with
Co = 1.2 × 10−7 and St = 0.06, during the time interval 1, 000 6 t 6 4, 000 (cases Flo6-9); (b)
Results for different cohesive numbers Co, with St = 0.02 and G = 0.29, for the time interval
15, 000 6 t 6 19, 000 (cases Flo1-4).

of the turbulent shear G the size distribution peaks at the smallest flocs and then
decreases exponentially with the floc size. The decay rate is largest for the strongest
turbulence, confirming our earlier observation that strong turbulence breaks up large
flocs and reduces the average floc size, cf. Figure 7. This finding is consistent with the
experimental observations by Braithwaite et al. (2012) in an energetic tidal channel.
Corresponding results for different St-values display a similar trend (not shown).

Figure 11b shows the size distributions for different values of the cohesive number.
For larger values of Co, we find that the peak of the distribution decreases and shifts to
larger flocs, while the exponential decay rate with increasing floc size is reduced.

4.5. Change in floc microstructure

In the following, we analyze the deformation in time of those flocs that maintain their
identity over the time interval ∆T , by keeping track of their characteristic diameter Df .
Accordingly, we distinguish between those flocs within the fraction θid whose value of
Df increases or stays constant during ∆T , θid,gro, and those whose diameter decreases,
θid,shr

θid = θid,gro + θid,shr . (4.7)

Equations (4.2) and (4.7) thus yield

θbr + θid,gro + θid,shr + θad = 1 . (4.8)

For the choice of ∆T = 3, Figure 12a displays the evolution of these fractions for the
representative case Flo6. Interestingly, we find that θid,gro is consistently much larger
than θid,shr, which indicates that of those flocs who maintain their identity during ∆T ,
many more see their value of Df increase than decrease. Hence, it is much more common
for these flocs to deform from a compact shape to an elongated one than vice versa. This
consistent difference between θid,gro and θid,shr can be maintained only if the elongated
flocs eventually break. As a general trend, turbulent stresses thus stretch cohesive flocs
before eventually breaking them. This confirms earlier numerical results by Nguyen et al.
(2014) and Gunkelmann et al. (2016), who employed conceptually simpler models with
‘sticky’ cohesive particles and observed that compact flocs have greater strength than
elongated ones.
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(c)

Figure 12: Evolution of the floc number fractions displaying different behaviors. (a) Of those flocs
that maintain their identity during ∆T , many more are being stretched than shrink, resulting
in θid,gro � θid,shr (case Flo6 with G = 1.49); (b) The fraction θid,gro that is being stretched
increases for more intense turbulence; (c) The fraction θid,shr that shrinks decreases for stronger
turbulence. For (b) and (c) the color coding of the curves is identical, and the other parameter
values are Co = 1.2× 10−7 and St = 0.06 (cases Flo6-9).

The influence of the shear rate G on the fractions θid,gro and θid,shr during equilibrium
is displayed in Figures 12b and 12c, respectively. For larger values of G, the fraction θid,gro
grows, while θid,shr is reduced, which reflects the fact that more intense turbulence tends
to elongate the cohesive flocs more strongly. Figures 13a and 13b indicate that larger
St-values also promote the stretching of those flocs that maintain their integrity, as they
increase θid,gro and reduce θid,shr. Figures 14a and 14b show that smaller Co-values result
in the elongation of those flocs that maintain their identity, whereas stronger cohesive
forces prompt the flocs to assume a more compact shape.

4.5.1. Orientation of elongated flocs

We now investigate the alignment of the elongated flocs with the principal strain
directions of the turbulent velocity field. Towards this end, we define an Eulerian fluid
velocity difference tensor A for each floc at time t as

A(m,n) =
uf,c(n)− uf,j(n)

xc(m)− xp,j(m)
, (4.9)

where m,n = 1, 2, 3 represent the x-, y- and z-components, respectively, of the tensor
and vectors. xc = (xc, yc, zc)

T denotes the location of the floc’s center of mass, and the

fluid velocity averaged over the volume of the floc is written as uf,c =
∑Np

1 (uf,i)/Np.
The location and fluid velocity at the center of the primary particle j that is located the
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Figure 13: Evolution of floc number fractions for different values of St. (a) Of those flocs that
maintain their identity during ∆T , the fraction θid,gro that is stretched increases with St; (b)
The fraction θid,shr whose diameter Df decreases is reduced for larger St. The other parameter
values are Co = 1.2× 10−7 and G = 0.91 (cases Flo10-13).

(a) (b)

Figure 14: Evolution of floc number fractions for different values of Co. (a) Of those flocs that
maintain their identity during ∆T , the fraction θid,gro that is stretched increases for weaker
cohesive forces; (b) The fraction θid,shr whose diameter Df decreases is reduced for weaker
cohesive forces. The other parameter values are St = 0.02 and G = 0.29 (cases Flo1-5).

farthest away from the floc’s center of mass are denoted as xp,j = (xp,j , yp,j , zp,j)
T and

uf,j = (uf,j , vf,jwf,j)
T. The orientation of the floc is defined as xf = xp,j−xc. Especially

for large flocs, xc and xp,j can be multiple grid spacings apart from each other. We remark
that A is defined by sampling the velocity difference at points separated along a line,
and it thus represents a simplified approach for considering the influence of the fluid
velocity gradients on the whole floc, compared with employing the full coarse-grained
velocity gradient tensor (Pumir et al. 2013). Hence A differs from the standard, locally
evaluated fluid velocity gradient tensor (Ashurst et al. 1987; Pumir & Wilkinson 2011;
Voth & Soldati 2017).

We decompose this Eulerian velocity difference tensor A = S +Q into the symmetric
velocity difference tensor S = ST, which is similar but not identical to the strain rate
tensor, and the anti-symmetric tensor Q = −QT. The three eigenvalues rm of the velocity
difference tensor S are ordered as r1 > r2 > r3. We remark that the intermediate
eigenvalue r2 is automatically zero, by nature of the definition of S. With the three
eigenvalues we associate three corresponding orthonormal eigenvectors em

Sem = rmem . (4.10)
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We define a modified vorticity vector ω = ωeω based on the anti-symmetric tensor Q,
with magnitude ω and unit direction vector eω (Pumir & Wilkinson 2011).

We furthermore define a modified deformation gradient tensor B that characterizes the
Lagrangian deformation experienced by a fluid element extending from the floc’s center
of mass to its primary particle j, over the time interval from t to (t+∆t), as

B(m,n) =
xc(m)− xp,j(m)

[xc(n) +∆tuf,c(n)]− [xp,j(n) +∆tuf,j(n)]
. (4.11)

This modified deformation gradient tensor B provides a Lagrangian description of the
fluid stretching (Parsa et al. 2011; Ni et al. 2014). It differs from the standard locally
evaluated deformation gradient tensor, for the same reasons mentioned earlier for the
Eulerian velocity difference tensor A.

The Lagrangian stretching tensor C = BBT , obtained from the two symmetric inner
products of B with itself, is similar but not identical to the left Cauchy–Green strain
tensor commonly used to define stretching in a Lagrangian basis (Chadwick 2012). The
three eigenvalues of the Lagrangian stretching tensor C are ordered as rL1 > rL2 > rL3,
and the three corresponding orthonormal eigenvectors are eLm

CeLm = rLmeLm . (4.12)

In the following, we investigate the alignment of xf and eω with em and eLm, respectively.

We focus on those elongated flocs with nf 6 1.2 and Np > 2, and firstly analyze their
alignment with the eigendirections em of the Eulerian velocity difference tensor and the
vorticity vector eω in terms of the magnitude of the angle α between them. We divide the
elongated flocs into three different groups, according to the ratio of their characteristic
diameter Df and the Kolmogorov length scale η. The alignment of small flocs with
Df/η < 0.8 and medium-size flocs with 0.8 6 Df/η 6 1.2 is indicated in Figures 15a and
15b, respectively. The alignment of large flocs with Df/η > 1.2 is not shown. The results
indicate that the modified vorticity vector eω is always aligned with the intermediate
eigenvector e2, which is consistent with the previous finding by Ashurst et al. (1987).
We observe that medium-size flocs are strongly aligned with the intermediate eigenvector
e2 and the vorticity vector eω, as shown in Figure 15b. This result is consistent with
previous findings for microscopic axisymmetric rod-like particles in turbulence by Pumir
& Wilkinson (2011), who noticed that the vortex stretching term Aω promotes, and the
viscous term ∇2ω/Re opposes, the alignment of xf with eω. In contrast, Figure 15a
shows that small flocs tend to align themselves with the extensional strain direction e1.
For large flocs, we did not observe preferential alignment of the flocs with any of the
three eigendirections of the Eulerian velocity difference tensor (not shown).

The alignment of the elongated flocs and the modified vorticity vector with the
eigendirections eLm of the Lagrangian stretching tensor is shown in Figures 15c and
15d, respectively. The results indicate that the elongated flocs are perfectly aligned, and
the modified vorticity vector is strongly aligned with the direction corresponding to the
largest eigenvalue eL1 of the Lagrangian stretching tensor C. This alignment is consistent
with, but even more pronounced than the corresponding previous findings by Parsa et al.
(2011) and Ni et al. (2014), due to our definition of the modified deformation gradient
tensor B. The perfect alignment of xf with eL1 suggests that the present Lagrangian
stretching tensor C is well suited for analyzing the instantaneous alignment of flocs in
turbulent flows.
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(a) (b)

(c) (d)

Figure 15: Floc alignment with the principal directions of the symmetric Eulerian velocity
difference tensor for the representative case Flo 9. Results include both the flocculation and
the equilibrium stages, for all elongated flocs with nf 6 1.2 and Np,local > 2. The upper
two frames show the alignment of the floc orientation xf with the eigendirections em of the
symmetric Eulerian velocity difference tensor, and with the vorticity vector eω: (a) Small flocs
with Df/η < 0.8; (b) Medium-size flocs with 0.8 6 Df/η 6 1.2. Small flocs are preferentially
aligned with the extensional strain direction, while medium-size flocs tend to align themselves
with the intermediate strain direction. The lower two frames show the alignment with the
eigendirections eLm of the Lagrangian deformation tensor: (c) The floc orientation xf ; (d) The
vorticity vector eω. Both the flocs and the vorticity vector tend to be aligned with the strongest
Lagrangian stretching direction.

4.6. Floc size vs. Kolmogorov length scale

Several authors have hypothesized that for sufficiently strong turbulence the median
floc size should be of the same order as the smallest turbulent eddies (McCave 1984;
Fettweis et al. 2006; Coufort et al. 2008; Kuprenas et al. 2018). Others have suggested
that even the largest flocs cannot exceed the Kolmogorov length scale (Verney et al.
2011). In the following, we discuss data from the present simulations in order to explore
this issue.

Figure 16 discusses case Flo9, with η/Dp = 2.25, G = 0.62, St = 0.06, and Co =
1.2 × 10−7. Figure 16a compares both the average and the maximum floc size to the
Kolmogorov scale. It demonstrates that for all times the average floc diameter Df is
smaller than the Kolmogorov length scale η. However, at any given time the largest floc
diameter Df,max is several times larger than η. We now define ”big” flocs as those whose
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diameter Df is larger than η, and we indicate their fraction as

θbig =
Nf,big
Nf

, (4.13)

where Nf,big is the number of big flocs at a given moment. Analogous to equation (4.8),
we also define the fractions of big flocs that grow, break or maintain their identity, so
that we have

θbig,br + θbig,id,gro + θbig,id,shr + θbig,ad = θbig . (4.14)

Here the subscripts br, ad, id, gro and shr have the same meanings as in eqn. (4.8).
Figure 16b demonstrates that θbig plateaus around a value of 0.2, so that at any given
time approximately 20% of all flocs are larger than the Kolmogorov scale. θbig,id,shr
levels off around 0.1, which indicates that a substantial fraction of these big flocs deform
towards a more compact shape while maintaining their identity over ∆T = 3. Figure 16c
shows that the ratio θbig,br/θbr is stable around 0.6, so that about 60% of those flocs
that break are larger than the Kolmogorov scale η. The ratio θbig,id,gro/θid,gro levels off
around 0.2, meaning that of those flocs that become elongated while maintaining their
identity, only about 20% are big. Hence we can conclude that most of the big flocs tend
to either become more compact or to break, but that some continue to grow. This finding
is consistent with previous experimental observations by Stricot et al. (2010), who found
that the breakage of big flocs is not instantaneous and depends on the floc strength.

Figure 16d addresses the time scale over which big flocs grow. The duration of the
continuous growth of the big flocs is denoted by ∆tbig,gro. We remark that ∆tbig,gro is
measured for all big flocs until their Df is smaller than η. The results indicate that,
on average, flocs larger than the Kolmogorov scale keep growing only for the relatively
short time period of ∆tbig,gro ≈ 4.8. This is consistent with previous observations for
controls on floc growth in tidal cycle experiments by Braithwaite et al. (2012), who
found that big flocs cannot resist the turbulent stresses for long, and that they are torn
apart quickly. This relatively quick breakage of large flocs in the simulations also agrees
with our findings in Section 4.5, which showed that flocs are being continually stretched
until they break.

To summarize, while the size of an individual floc can be larger than the Kolmogorov
length for a brief period of time, once Df becomes bigger than η, the floc tends to break
relatively soon. Given that the physical parameter ranges listed in table 1 represent
common fluid-particle systems in nature, our simulation data suggest that the average
floc size Df is effectively limited by the Kolmogorov length scale η in such systems.
We remark, however, that for other classes of primary particles with potentially much
stronger bonds it may be possible, in principle, to form flocs that are significantly larger
than the Kolmogorov scale.

For cases Flo14 and Flo15, Figure 17 discusses corresponding results regarding the
time scale over which big flocs grow. Flo14 employs an increased shear rate G = 2.7
along with η/Dp = 1.08, while Flo15 has G = 7.4 and η/Dp = 0.65. We remark that the
ratio η/Dp is widely used to classify the primary particles as either ‘small’ if η/Dp > 1, or
as ‘finite-size’ if η/Dp 6 1 (Fiabane et al. 2012; Costa et al. 2015; Chouippe & Uhlmann
2015). Hence Flo14 addresses the small particle scenario, while Flo15 considers finite-size
particles. Interestingly, Figure 17a shows that the time interval ∆tbig,gro over which big
flocs grow for Flo14 is smaller than the corresponding value for Flo9 in Figure 16d. This
observation indicates that the constraint on floc growth by the turbulent eddies becomes
stronger for increasing shear rate G, which is consistent with experimental findings for
small particles by Braithwaite et al. (2012). Those authors had found that the time lag
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(a) (b)

(c) (d)

Figure 16: Constraint on the floc size by the Kolmogorov length scale, for case Flo9 with η/Dp =
2.25, G = 0.62, St = 0.06, and Co = 1.2 × 10−7. (a) Temporal evolution of the average and

maximum floc diameters, Df and Df,max. The dashed horizontal line indicates the Kolmogorov
length scale η; (b) The fraction θbig of flocs that are larger than η, and the fraction θbig,id,shr
of big flocs maintaining their identity that become more compact; (c) The ratios θbig,br/θbr,
θbig,id,gro/θid,gro and θbig,ad/θad; (d) Average time interval ∆tbig,gro over which big flocs exhibit
continuous growth.

before big flocs break becomes shorter for larger G. However, a further increase of the
shear rate to G = 7.4 in case Flo15, which means that the primary particles now fall
into the finite-size category, yields a longer time lag ∆tbig,gro ≈ 20.5, as shown in Figure
17b. While the detailed reasons for this observation will require further investigation, we
can conclude that the enhanced control on floc growth by the Kolmogorov length scale
for stronger turbulent shear is seen to hold for small primary particles with η/Dp > 1,
although it does not necessarily apply for finite-size primary particles with η/Dp 6 1.

5. A new flocculation model with variable fractal dimension

As indicated by Figures 7 - 10, the average characteristic floc diameter Df and the
average fractal dimension nf both increase during the flocculation stage, and then remain
constant during the equilibrium stage. This indicates that flocs of larger size generally
have a more compact shape, and that it is difficult for elongated flocs to keep growing
in turbulent shear without breaking. Closer inspection indicates that for all of the cases
listed in table 3 the relationship between these two quantities can be approximated well
by a power law of the form

nf = k1

(
Df

Dp

)k2
. (5.1)
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(a) (b)

Figure 17: Average time interval ∆tbig,gro over which big flocs exhibit continuous growth. (a)
η/Dp = 1.08, Co = 1.2 × 10−7, St = 0.38, and G = 2.7 (case Flo14); (b) η/Dp = 0.65,
Co = 1.2× 10−7, St = 1.25, and G = 7.4 (case Flo15).

(a) (b)

Figure 18: (a) The relationship between the average fractal dimension nf and the average value

Df/Dp, during the flocculation and equilibrium stages. Simulation data and power law fits
according to eqn. (5.1) are shown for Flo4 with Co = 6.0 × 10−8, St = 0.02, and G = 0.29;
and for Flo5 with Co = 1.2 × 10−7, St = 0.02, and G = 0.29; (b) Comparisons between the
experimental data of Maggi et al. (2007), predictions by the relation of Khelifa & Hill (2006a ,b),
and the new relation (5.7). The experimental parameters are Dp = 5 µm, ρp = 2, 650 kg m−3,
c = 0.5 g L−1, ρf = 1, 000 kg m−3, µ = 0.001 Pa s and G = 5 ∼ 40 s−1. Khelifa’s relation

(5.1-5.2) has constant coefficient values nf,char = 2, Df,char = 2, 000µm and updated k1 = 1.
The calibration of the empirical coefficient for the new relation (5.7) yields a3 = 4 × 10−6 for
G = 5 s−1, and a3 = 4× 10−5 for G = 40 s−1.

The condition that nf = 1 for an individual primary particle requires that k1 = 1, while
the value of k2 varies as a function of St, Co and G. Typical fitting results are shown
in Figure 18a for cases Flo4 and Flo5. This power law relationship allows us to obtain
the average fractal dimension nf during flocculation as a function of the average floc
diameter Df , rather than assuming a constant fractal dimension, as was done in earlier
investigations (Winterwerp 1998; Kuprenas et al. 2018; Zhao et al. 2020).

The power law (5.1) is closely related to the earlier study by Khelifa & Hill (2006a,b).
However, those authors assumed that an individual primary particle has nf = 3, and
consequently they set k1 = 3. For the exponent k2 they proposed an empirical correlation
of the form

k2 =
log(nf,char/k1)

log(Df,char/Dp)
, (5.2)
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where Df,char denotes the characteristic floc size that exhibits the characteristic fractal
dimension nf,char. As a general rule, Df,char and nf,char should be evaluated from
experiments before one can then determine k2 from (5.2). Should that not be feasible,
Khelifa & Hill (2006a ,b) suggested assuming constant values of nf,char = 2 and Df,char =
2, 000µm, which yields a constant value for k2 that depends only on the primary particle
size Dp. As Figure 18a indicates, however, k2 should be a function of G, St and Co
even for a constant Dp, since nf,char = 2 is associated with different average floc sizes
Df,char/Dp in cases Flo4 and Flo5. Hence, even though equation (5.2) has been widely
used to describe the fractal dimension of flocs (Maggi et al. 2007; Son & Hsu 2009; Klassen
2017), we will now try to refine this scaling law by accounting for the dependence of k2
on St, Co and G.

By fitting the simulation results for all of the cases Flo1 - 15, we obtain a relationship
for k2 of the form

k2 = 0.44St−0.018Co0.096G−1.5 , (5.3)

with an R-squared value of 0.97. We remark that in a laboratory experiment or field
investigation it may be challenging to evaluate the Stokes number St as defined in
equation (4.1), if the rms-velocity urms is unknown. To overcome this difficulty, we
follow the approach taken in our earlier work (Zhao et al. 2020), where we defined
the characteristic Stokes number Stchar and cohesive number Cochar by employing the
characteristic fluid velocity uchar = 0.25(G/Re)0.5 instead of urms, so that

Stchar =
St uchar
urms

=
ρsD

2
p ucharRe

18η
, (5.4)

Cochar =
Co

η2 u2char
. (5.5)

Here Re and Co are of the form defined in (2.6) and (2.10), respectively. Note that uchar
and η in equations (5.4) and (5.5) are dimensionless. Based on Stchar and Cochar, a fit
of the simulation data yields the relationship for k2

k2 =
St−1.9charCo

0.1
char

1.3× 105
, (5.6)

which has an R-squared value of 0.86. Here Stchar captures the strongly inverse influence
of the shear rate G on k2. By substituting (5.6) into (5.1), we obtain a new model for
the average fractal dimension nf of the form

nf =

(
Df

Dp

)a3 St−1.9
charCo

0.1
char/(1.3×10

5)

. (5.7)

For the specific range of physical parameters listed in table 1, a3 = 1 yields optimal
agreement with a maximum deviation of ±30% from the simulation data. As we will see
below, this value of a3 is not universally optimal, so that a3 will have to be recalibrated
for other parameter ranges. In the following, we will compare predictions for the fractal
dimension by the new relation (5.7) with corresponding ones by the earlier relation of
Khelifa & Hill (5.1-5.2).

Employing the approach of Maggi & Winterwerp (2004), Maggi et al. (2007) estimate
the time evolution of the average fractal dimension nf and floc size Df in experiments
with constant turbulent shear rates G = 5, 10, 20 and 40 s−1, respectively. The suspended
cohesive sediment in the experiments has a primary particle diameter Dp = 5 µm,
density ρp = 2, 650 kg m−3, and concentration c = 0.5 g L−1. Since the authors
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assume nf = 3 for flocs with one particle while we set nf = 1 for that situation, we
have to convert their original experimental data before we can compare them with the
present simulation results. The details of the conversion are discussed in appendix A,
and the converted data are presented in Figure 18b. In addition, we set the dimensional
Kolmogorov length η = [µ/(ρfG)]0.5m and the Hamaker constant AH = 1.0 × 10−20 J
to obtain the characteristic values Stchar and Cochar according to (5.4)-(5.5). Since the
experimental shear rates G = 5 ∼ 40 s−1 are much smaller than the simulation values
G = 3.7 × 103 ∼ 9.5 × 104 s−1, we have to recalibrate the constant a3 required for our
model (5.7) from the experimental data. Based on the fact that the exponent k2 should
decrease for increasing G, we obtain a3 = 4× 10−6 for the minimum experimental shear
rate G = 5s−1, and a3 = 4× 10−5 for the maximum experimental shear rate G = 40s−1,
respectively. Figure 18b demonstrates that the present relation successfully reproduces
the range of experimental data for different G-values, whereas Khelifa & Hill’s relation
does not account for variations in G. At the same time, we do need to keep in mind that
the present model does require a recalibration of a3 for different experimental parameter
ranges.

In order to develop a variable fractal dimension model for the transient stages, we build
on the approach taken in our recent investigation (Zhao et al. 2020). There we conducted
cohesive sediment simulations for a steady, two-dimensional cellular flow model. Based
on the simulation data, we proposed an analytical flocculation model of the form

Df = (Np)
1

nf Dp , (5.8a)

Np =
1

(1/Np,in − 1/Np,eq)ebt + 1/Np,eq

, (5.8b)

Np,eq =


N, if Np,eq > N ,

8.5a1St
0.65
charCo

0.58
charD

−2.9
p,charφ

0.39
p ρ−0.49s (W + 1)−0.38 , otherwise ,

(5.8c)

b =


−0.7a2St

0.36
charCo

−0.017
char D−0.36p,charφ

0.75
p ρ−0.11s (W + 1)−1.4, Stchar 6 0.7 ,

−0.3a2St
−0.38
char Co

0.0022
char D−0.61p,charφ

0.67
p ρ0.033s (W + 1)−0.46, Stchar > 0.7 .

(5.8d)

Here Np,in and Np,eq = N/Nf,eq indicate the average number of primary particles per
floc at the initial time and during the equilibrium stage, respectively. |b| denotes the
rate of change in the number of flocs, where a bigger |b| indicates a faster increase of
the mean number of primary particles per floc Np during flocculation. Dp,char = Dp/η
is the characteristic primary particle diameter, and W represents the Stokes settling
velocity. a1 and a2 are empirical coefficients that need to be calibrated via comparison
with experiments or simulations. Under the assumption of a constant average fractal
dimension nf = 2, and for given values of N , Np,in, Stchar, Cochar, Dp,char, φp, ρs and
W , this model predicts the transient floc size Df and the average number of particles
per floc Np as functions of time. Model results were presented in Zhao et al. (2020). As
the present simulations show, however, assuming a constant average fractal dimension
represents a serious limitation, cf. Figures 7d, 9d and 10d, which we aim to overcome in
the following.

Towards this end, we combine equations (5.7) and (5.8) to obtain a new flocculation
model (termed the ‘present model’) that allows for a variable fractal dimension. This
model yields predictions of the floc size Df , the number of particles per floc Np, and
the fractal dimension nf as functions of time. Since equations (5.7) and (5.8a) need to
be solved concurrently, the model cannot be written in closed form. However, due to the
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Terminology Composition of models Predict the evolution of

Khelifa & Hill (2006a,b) relation (5.1) and (5.2) average fractal dimension nf (Df )

New fractal relation (5.7) average fractal dimension nf (Df )

Zhao et al. (2020) model (5.8) average floc size Df (t)

Present model (5.7) and (5.8) both Df (t) and nf (t)

Combined model (5.1), (5.2) and (5.8) both Df (t) and nf (t)

Table 4: Typical models cited, proposed and implemented in the present work.

narrow range of the average fractal dimension 1 6 nf 6 3, an iterative solution can easily
be obtained.

In analogous fashion, we can link the variable fractal dimension relation (5.1) - (5.2) by
Khelifa & Hill (2006a ,b) to our previous flocculation model (5.8), to obtain the ‘combined
model.’ A list of all models discussed here is provided in table 4 for convenience. We now
proceed to assess their performance.

By calibrating with the average floc size data for simulation Flo4, we determine the
empirical coefficients for the ‘present model’ as a1 = 8, a2 = 0.5 and a3 = 1, shown as
solid red line in Figure 19a. We then employ the present model to predict the average
fractal dimension for Flo4 as function of time. Figure 19b indicates good agreement
between the predictions and the simulation data. In complete analogy, we determine the
empirical coefficients for the ‘combined model’ as a1 = 2, a2 = 0.5 and k1 = 1, which
yields the solid blue line in Figure 19a. The average fractal dimension nf predicted by
the combined model is very close to that of the present model and to the simulation data,
which suggests that both models are able to predict the average fractal dimension quite
accurately.

In applications, it may be difficult to obtain precise calibration values for a1, so that it
is important to establish the robustness of the present model with regard to uncertainties
in the value of a1. In order to assess this robustness, we ran the present model for a1 = 2
and a1 = 32, instead of the optimal value a1 = 8 that we had obtained earlier from the
calibration. The results, shown in Figure 19 as dashed and dotted red lines, indicate that
the model predictions are reasonably robust with regard to uncertainties in the value of
a1.

To summarize, our new fractal relation (5.7) no longer has the limitation associated
with assuming a constant value for k2 in equations (5.1) and (5.2) when predicting the
variable fractal dimension nf . In addition, we observe that predictions of the floc size
Df and the fractal dimension nf as functions of time by the present flocculation model
(5.7) and (5.8) are fairly robust with respect to uncertainties that arise when calibrating
the empirical coefficients by means of experimental data.

6. Conclusions

In the present investigation we have employed one-way coupled simulations to explore
the dynamics of cohesive particles in homogeneous isotropic turbulence. The simulations
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(a) (b)

Figure 19: Comparisons between the numerical data and predictions by the present model and
the combined model listed in table 4, simulation data of case Flo4 with Co = 6.0 × 10−8,
St = 0.02 and G = 0.29 is selected. (a) Calibration predictions for the temporal evolution of

the average floc izes Df , the calibrated coefficients in the models are a2 = 0.5 and a3 = 1, the
constant k1 = 1; (b) Comparisons for the temporal evolution of the average fractal dimension
nf .

account for the Stokes drag, as well as lubrication, cohesive and direct contact forces.
They demonstrate the existence of a transient flocculation phase which is characterized
by the growth of the average floc size. This flocculation phase is followed by a statistically
steady equilibrium phase governed by a balance between floc growth and breakup. The
simulations provide information about the temporal evolution of the floc size and shape,
as a result of aggregation, breakage and deformation, and as function of the governing
parameters. In general, we find that larger turbulent shear and weaker cohesive forces
limit the floc size and result in elongated floc shapes. Flocculation proceeds most rapidly
during the transient stage when the Stokes number of the primary particles based on
the Kolmogorov scales is of order unity. During the transient stage cohesive forces of
intermediate strength yield the largest flocs. On one hand, these intermediate cohesive
forces are strong enough to result in the rapid aggregation of primary particles, but on
the other hand they are not so strong as to pull them into a compact shape. During the
equilibrium stage, stronger cohesive forces produce larger flocs. Small Stokes numbers and
weak turbulence typically lead to a later onset of the equilibrium stage. The equilibrium
floc size distribution exhibits a preferred size as function of the cohesive number. This
distribution decays exponentially for larger floc sizes. The simulation results indicate that
flocs are generally elongated by turbulent stress before they eventually break. We observe
that flocs close to the Kolmogorov scale in size preferentially align themselves with the
intermediate strain direction and the vorticity vector. Flocs that are smaller than the
Kolmogorov scale, on the other hand, tend to align themselves with the direction of
extensional strain. The simulation results furthermore demonstrate that flocs generally
align themselves with the strongest Lagrangian stretching direction. The simulations
show that the average floc size is effectively limited by the Kolmogorov scale, and
can at most exceed it marginally. However, individual flocs can grow larger than the
Kolmogorov scale for a limited amount of time. Based on the simulation data we propose
a novel flocculation model that allows for a variable fractal dimension, which enables us
to predict the temporal evolution of the floc size and shape, as a function of the governing
dimensionless parameters, after some limited calibration. Predictions by the new model
are fairly robust and cover a broad range of parameters.
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Appendix A. Conversion of the experimental data

Maggi et al. (2007) measured the floc size and evaluated the fractal dimension nf,ori in
experiments by setting the fractal dimension of an individual primary particle to three.
Taking their experimentally measured floc size as the characteristic floc diameter Df in
(4.3), the original experimental data are shown in Figure 20. For each pair of nf,ori and
Df/Dp, we can obtain the average floc size Df,char as

Df,char = Dp10[log(nf,char/k1,ori)]/k2,ori , (A 1)

where the characteristic fractal dimension nf,char = 2, the diameter of primary particles
Dp = 5 µm, k1,ori = 3, and

k2,ori =
log(nf,ori/k1,ori)

log(Df/Dp)
. (A 2)

The converted fractal dimension nf for the corresponding Df/Dp in the experiments can
then be obtained from

nf = k1(
Df

Dp
)k2 , (A 3)

where k1 = 1 and

k2 =
log(nf,char/k1)

log(Df,char/Dp)
. (A 4)

The converted experimental data are shown in Figure 18b.
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