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ABSTRACT

Over the past few decades global simulations have emerged as a valuable new tool to study the magnetosphere—
ionosphere—thermosphere system, to the point where some of them are considered community models available
for runs on demand by the community at the Community Coordinated Modeling Center (CCMC). Most leading
global models are still based on the conventional and well-established MHD approximation; they are remarkably
successful reproducing the major features and processes in geospace. Here, we briefly review the purpose and
utility of such models, their history, their basic structure, the need for submodels of the ionosphere—thermosphere
system and the inner magnetosphere, as well as inherent model limitations. The major computational and
numerical constraints are discussed and recent simulations addressing plasma injections and sawtooth

oscillations are presented.

37.1. PURPOSE AND UTILITY

The magnetosphere is a complex physical system, com-
parable in complexity to the atmosphere or the oceans.
While the latter allow for comprehensive measurements,
both with in situ and remote sensing approaches, mea-
surements in the magnetosphere are difficult to obtain,
because satellites are expensive and cannot be placed arbi-
trarily. There are only few possibilities for remote sensing
known, such as Energetic Neutral Atom (ENA) imaging
(Gruntman, 1997) and the so far unproven soft X-ray ima-
ging (Sibeck et al., 2018). Also, the ionosphere can act to
some extent as a projection screen for magnetospheric
processes (Mende, 2016a, 2016b); however, such projec-
tions may be difficult to interpret and may be misleading.

Because of the magnetosphere’s complexity, analytical
solutions are virtually impossible to come by and numer-
ical approaches are required. The analogy to the
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atmosphere and the oceans holds here too, as the study
of these natural systems also heavily relies on numerical
modeling.

Such global models of the magnetosphere or the entire
geospace, that is, including the ionosphere and the ther-
mosphere as well, serve a number of purposes:

* The models encode our basic understanding of the phys-
ical processes that govern the magnetosphere. Besides
numerical limitations, the models solve the physical pro-
cesses as we understand them. Any discrepancies between
the model results and observations may then point to a
particular lack of our understanding, apart from the pos-
sibility that the model input is wrong. As an example, very
early in the global modeling efforts it became clear that
the coupling with the ionosphere—thermosphere system
is essential to understand magnetospheric dynamics.

* The models allow us to conduct numerical experiments.
Because of the vastness of the magnetosphere, laboratory
experiments are not possible, with few exceptions, such as
“terella” experiments (Rypdal and Brundtland, 1997) and
plasma chamber experiments of localized phenomena
such as Alfvén waves and magnetic reconnection
(Gekelman et al., 2011; Olson et al., 2016). With models,
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it is possible to vary parameters or switch off certain feed-
backs to investigate the effects. That allows, even in a
complex system, a more reductionist approach to be
applied to study the phenomena.

* Although there are now dozens of spacecraft probing the
magnetosphere, it is still vastly undersampled. Together
with the dynamic nature of the magnetosphere, it is often
difficult to interpret the observations and to put them into
context. For example, an early use of a global model
helped interpret observations from the distant magneto-
tail that were at the time controversial (Frank et al.,
1995). Likewise, simulations addressing the very first
GEM (NSF’s Geospace Environment Program) chal-
lenge (Lyons, 1998) helped clarify open questions about
the open—closed boundary for a specific event.

* Global simulations can help with the planning of mis-
sions. Because of orbital constraints it is impossible to
place satellites at ideal sampling locations. Instead, one
must strive to find orbits that maximize the dwell time
in the places that one wishes to sample most densely. Such
planning was done, for example, for a magnetosphere
constellation mission, which still has to materialize
(Raeder and Angelopoulos, 1998).

* Finally, global models can serve as the starting point for
operational geospace forecast models. It may seem that a
geospace model may be used as a forecast model per se.
However, forecasts impose additional requirements, such
as robustness and the ability to tolerate erroneous inputs.
Also, “science grade” models are often not well documen-
ted (because grants generally do not support that) and can
often only be effectively used by their creators and their
collaborators. By contrast, an operational model must
be independent from their developers and not require
any more continuous developer support.

Historically, the first models in the United States were
developed at NRL (Brecht, 1985; Brecht et al., 1981,
1982; Fedder and Lyon, 1987) and at UCLA (Leboeuf
et al., 1978; Ogino, 1986). In the early 1990s the National
Science Foundation (NSF) Geospace Environment Mod-
eling (GEM) program commenced, with the stated goal
to develop one or more community models of the geo-
space system. It was originally envisioned that such mod-
els would comprise a collection of coupled models for
various regions, such as bow shock, magnetosheath,
lobes, etc. However, it was quickly realized that such
an approach would not be practical. At the same time,
better computer resources and better algorithms made
the existing MHD-based models more and more realistic,
and doubts about the limitations of MHD faded. The
early GEM challenges (Lyons, 1998; Raeder and May-
nard, 2001) were essentially a turning point that estab-
lished the MHD models as “spines” that were
subsequently complemented by coupling them to iono-
sphere—thermosphere models and models of the inner

magnetosphere. The UCLA model eventually developed
into the OpenGGCM (Raeder, 2003; Raeder et al., 2008),
while the NRL model became the LFM (Lyon et al.,
2004). In the early 2000s the BATS-R-US model became
another major global model of the magnetosphere
(Powell et al., 1999), which developed into the Space
Weather Modeling Framework (Toth et al., 2005). Dur-
ing the same time frame the GUMICS model (Janhunen
et al., 2012) was developed in Europe. Many more global
models were developed over the years; however, these
four models stand out because they are available as com-
munity models at the Community Coordinate Modeling
Center (ccmc.gsfc.nasa.gov). At the CCMC any user can
request model runs on demand for these models, and the
CCMC also provides a number of analysis and visualiza-
tion tools.

37.2. GOVERNING EQUATIONS, INITIAL AND
BOUNDARY CONDITIONS

Ideally, the magnetosphere is described by Maxwell’s
equations for the fields and Boltzmann equations for
the various plasma species. Since the magnetosphere
plasma can be assumed collisionless, the Boltzmann equa-
tions can be replaced by Vlasov equations. However, this
set of equations cannot be easily solved numerically,
because the fastest timescale, given by the plasma fre-
quency, is too fast, and the smallest spatial scale that
needs to be numerically resolved, the Debye length, is
too small to be properly resolved numerically. Thus, most
contemporary global magnetosphere models are based on
the ideal magnetohydrodynamic (MHD) equations,
which have no intrinsic spatial scale, and the timescales
are given by the system size and wave speeds. Here,
“ideal” means that there are no explicit dissipation terms
in the equations. As we shall see, however, the numerical
solutions always contain dissipation. The MHD equa-
tions are discussed in more detail in Chapter 3 of this vol-
ume; however, for the purpose of global modeling some
specific issues must be addressed.

The MHD equations can be written in various forms,
which are all mathematically equivalent. However, when
it comes to solving them numerically, their form matters.
For reasons outlined below, the fully conservative form is
preferable, but sometimes not practical. One therefore
often uses a semiconservative form that solves for the
plasma energy density U = pv*/2 + p/(y — 1) instead of
the total energy density e = pv*/2 + pl(y — 1) + B*2u.
The latter can be problematic where the plasma
B (=2uop/B%) is low, and therefore the pressure p becomes
the difference of two large numbers, which leads to large
errors. Here, y is the adiabatic constant, p is the pressure,
p the plasma density, and B the magnetic field.



For a mathematically well posed problem, proper ini-
tial and boundary values must also be specified. There
is no good analytic equilibrium solution of the magneto-
sphere suitable as an initial condition. One therefore starts
with a dipole embedded in more or less uniform plasma
representing the solar wind. That may seem trivial but
is not. First, the velocity field must be tapered to zero near
the Earth, because otherwise the dipole would just get
blown away. Also, the near Earth region within 2-4 Rg
(the MI coupling region) is usually treated differently,
and the MHD equations are not solved there. Further-
more, since the dipole field is cut off at the boundaries
of the simulation box, Maxwell’s law V - B = 0 would
be violated at the boundaries. That is not much of a prob-
lem at the outflow boundaries, because erroneous fields
would be convected away, but is problematic at the inflow
boundary. A proper initial condition can be obtained by
using a mirror dipole, as explained in detail in Rae-
der (2003).

The simulation domains generally have three different
types of boundaries. On the sunward side all characteris-
tics point inward, and thus Dirichlet conditions are
required. These can be artificial values for the IMF and
the solar wind, but often these boundary conditions are
taken from SW/IMF measurements upstream of the
Earth. Here, a difficulty arises because one usually only
has a point measurement, which also may be far upstream
of the Earth. However, one needs to specify boundary
values on the entire inflow boundary. A simple solution
involves ballistic propagation of the measured values with
the ambient solar wind speed to the boundary, and some
sort of extrapolation of that point value across the entire
boundary.

An additional difficulty arises at the inflow boundary
due to the V - B = 0 constraint, which implies that across
discontinuities n - (Bypsiream — Bdownstream) = 0. Thus, if
one simply extrapolates the point measurement, one
implicitly assumes that the normal n points sunward,
implying that B, can never change. A possible solution
is to find the predominant normal vector n in the sense
that all solar wind discontinuities during some time period
are only a function of n. This is difficult with a single solar
wind monitor; however, boundary normal methods (for
example, the minimum variance method (Sonnerup and
Cahill, 1967, 1968)) can be applied. After n is found,
one transforms the IMF time series into the minimum var-
iance coordinates, sets B, to either zero or an appropriate
average value, and transforms back (Raeder et al., 1998).
The values on the inflow face must then be set accordingly
to the assumed sheet structure of the solar wind, i.e., con-
stant on the planes perpendicular to n. Using this proce-
dure, the steadiness of B, provides a quality indicator.
If B, varies much, this is simply an indicator that the solar
wind structure is not sheath like but more convoluted. In
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that case, one can often not do much except for setting the
IMF B, to zero with the assumption the B, has the least
influence on magnetosphere dynamics.

The lateral and the back boundary are easier to treat.
Here, one usually assumes a “free flow” boundary, that
is, all variable normal derivatives are set to zero. Because
of V - B = 0 this should only be applied to the transverse
field components, and the normal component derivative is
then given by the divergence constraint. Strictly speaking,
such a boundary condition does not guarantee free out-
flow, because it can still reflect waves. However, it works
satisfactorily as long as the back boundary is within super-
magnetosonic flow. In practice this means that the back
boundary must be several hundred Rg behind Earth.
Likewise, the lateral boundaries are placed far enough
away so as to not perturb the simulation near the Earth.
In practice, that distance is some 20-50 Rg on either side
of the Earth.

A boundary also exists at the earthward side of the sim-
ulation. There, the MHD solution connects with iono-
sphere dynamics, as discussed further below in
section 37.4.

37.3. NUMERICAL APPROACHES AND THEIR
LIMITATIONS

Constructing a numerical model of the magnetosphere
that solves the MHD equations, or a similar set of fluid
and field equations, starts with a discretization algorithm
and an associated numerical grid. Some possible choices
for grids are depicted in Figure 37.1. The simplest choice
would be a uniform Cartesian grid (Figure 37.1a). How-
ever, it is easy to see that if such a grid were to cover the
entire magnetosphere, while providing good resolution in
critical regions, such as at the magnetopause, one would
need of the order of 10 grid cells. Such a grid would
not be computationally efficient. With a stretched Carte-
sian grid (Figure 37.1b) the efficiency improves by about
two orders of magnitude, while an adapted spherical or
cylindrical grid (Figure 37.1c), an Adaptive Mesh Refine-
ment (AMR) grid (Figure 37.1d), or a tetrahedral grid
(Figure 37.1e) can be even more efficient. However, the
more complex grids incur other computational costs as
well as more complex algorithms that require more man-
power to develop. Simulations with poor resolution (of
the order of 0.3-0.5 Rg) are possible and potentially use-
ful, for example, for very long time periods where higher
resolution would incur prohibitive computational costs.
At such resolution, the bow shock, magnetopause, tail
plasma sheet, and boundary layers are just barely
resolved. Currently, models are run with typical resolu-
tion of 0.1-0.3 Rg near the Earth, which is sufficient for
many studies. However, simulations with very good
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Figure 37.1 Several common choices for numerical grids:
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(@) a uniform Cartesian grid, (b) a stretched Cartesian grid,

(c) a non-Cartesian grid with Cartesian topology, (d) a structured adaptive grid, (e) an unstructured grid.

resolution (of the order of the ion skin depth, ~100 km)
have also been performed (Dorelli et al., 2007; Wiltberger
et al., 2015). Although the MHD approximation is no
longer valid at or below the ion skin depth scale, such
extremely high resolution simulations may still make
sense, because the high resolution also reduces numerical
diffusion.

All of the grid types shown in Figure 37.1 have been
used for global magnetosphere models, for example by
Ogino (1986) (Cartesian), Raeder (1995) and Raeder
et al. (1995) (stretched Cartesian), Lyon et al. (2004)
(adapted spherical or cylindrical grid), Janhunen et al.
(2012) and Powell et al. (1999) (AMR), and Tanaka
(1995) (tetrahedral).

With the grid comes a numerical discretization of the
equations, i.e., the continuous functions are represented
by a finite number of values located on the spatial grid
and in time. For the spatial discretization, most models
use Finite Difference (FD) or Finite Volume (FV) meth-
ods (see Hirsch (1990) and Laney (1998), for example).
The derivatives are replaced by discrete equations that
link neighboring grid points or grid cells, both in space
and time.

The time derivative is usually discretized with a scheme
that is at least second order accurate, i.e., the associated
errors are of the order of Ar%, where A¢ is the time step.
That ensures that the solution converges as At — 0. Typ-
ical choices are a predictor-corrector type scheme, or a
second order Runge-Kutta scheme (Hirsch, 1990).
A simpler first order algorithm would not be sufficient,
because the global solution to a given time 7 requires
N = TJ/At steps, so that the accumulated error would
not decrease. A tradeoff exists between explicit and
implicit time stepping schemes. The former are easy to
implement and require much less computation. However,
they are only conditionally stable, that is, the solution
becomes unstable if the time step is too large. Specifically,
the stability criterion is given by At < ah/vy,,,, where & is
the size of the grid cells, v, the largest speed in the system,
1.e., magnetosonic speed plus flow speed, and « is a constant
of the order of one, which depends on the specific algorithm.

This criterion is known as the Courant-Fridrichs-Levy
(CFL) criterion and can be very restrictive for magneto-
sphere simulations, because the Alfvén speeds are large
close to Earth. A remedy, employed by most global models
is the so-called Boris correction (Boris, 1970), by keeping
the displacement current part of the MHD equations. That
re-introduces electromagnetic waves and the light speed ¢
into the equations. One can then set ¢ to an artificially
low value and thereby limit all wave speeds without signif-
icantly affecting the solutions (Brecht, 1985).

The CFL criterion gives rise to the first law of global
MHD simulations:

The computational cost of a simulation rises as h™“*V,

where h is the smallest grid spacing and d is the number
of spatial dimensions, i.e., it rises as h™* for three-
dimensional simulations.

Thus, there is a severe penalty to double the resolution,
because a finer grid also requires a smaller time step. On
the flip side, increasing /, even by a rather small amount,
can make simulation runs significantly faster. At the time
of writing, all major codes can be run with modest com-
putational resources and reasonable grids (2~ 0.2 Rg)
faster than real time, i.e., the wall clock time is smaller
than the simulated time period. This is a prerequisite
for using the models in an operational setting for space
weather forecasting. It is also encouraging to compare
the above law with Moore’s law, which says that the tran-
sistor count on semiconductor circuits, and thus the com-
puting power, roughly doubles every 18 months (Schaller,
1997). Fortunately, that exponential growth outpaces the
power law of simulation cost, that is, the feasible 4 should
be decreasing faster and faster in time as long as Moore’s
law holds.

The spatial derivatives are usually also discretized by
finite differences, if the grid is sufficiently regular, or with
a finite volume method if the grid has more complicated
cells, such as the grids (c) and (e) shown in Figure 37.1. FV
methods are a generalization of FD methods, and most
FV methods reduce to a known FD method if the grid
is Cartesian. Replacing the differentials with discrete



FD equations, such as dU(x)/dx|; =~ (U; + 1 — U; = )/2h,
appears to be simple but leads to disastrous results. Here,
U is a variable, i a grid index, and /4 the grid spacing. In
reality, the Taylor series that lead to the difference equa-
tions are truncated, and therefore the FD equations incur
error terms that are proportional to the higher derivatives
of the solution U. The error terms that are proportional to
the odd derivatives introduce artificial dispersion, and the
terms associated with even derivatives create artificial dif-
fusion. If the solutions are sufficiently smooth, the error
terms may be of minor importance, because smooth solu-
tions have limited higher derivatives (see, for example,
Sod (1985), Hirsch (1990), Laney (1998) or other numer-
ical analysis texts for a discussion of FD error terms).
However, the magnetosphere is characterized by the pres-
ence of shocks and discontinuities. At discontinuities, the
higher order derivatives have no bounds and the error
terms dominate. With symmetric FD such as the one
shown before, the dispersive errors dominate and create
growing oscillations at discontinuities, which lead to
instability. Smooth solutions can be obtained by using
FD equations where the even error term dominates, such
as one-sided FD equations (a.k.a. “upwind schemes”), the
Lax scheme, or the Rusanov scheme (Laney, 1998). While
these schemes can provide smooth solutions, they are
unacceptably diffusive, i.e., discontinuities smear out
excessively and the diffuse terms in Faraday’s law repre-
sent finite resistivity.

The quest for numerical schemes that properly resolve
discontinuities has been central to the applied mathemat-
ics and engineering disciplines for decades, because the
same problems arise, for example, in supersonic gas flow,
transport equations, and traffic flow equations. Such
schemes are called “shock capturing schemes,” and they
are discussed in many textbooks, for example Hirsch
(1990) or Laney (1998). Such schemes are known as “Flux
Corrected Transport” (FCT), “Total Variance Diminish-
ing” (TVD), or “Weighted Essentially Nonoscillatory”
(WENO) schemes, for example. They all have in common
that they use more accurate high order schemes in regions
where there are no discontinuities, but introduce diffusion
at discontinuities to counteract the dispersive errors that
would destroy the solution near discontinuities. Local
numerical diffusion at discontinuities is virtually impossi-
ble to avoid. However, on a global scale diffusion typi-
cally decreases as a function of grid spacing like 4",
where n is typically larger than two. This gives rise to
the second law of global MHD simulations:

There exists no numerical scheme that truly solves the ideal
MHD, or similar nondiffusive equations. All stable schemes
are dominated by diffusion at discontinuities, but overall
diffusion depends on the grid and decreases as h™",
with n> 2.
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The consequences for global magnetosphere simula-
tions are:
* It is impossible to suppress magnetic reconnection (see
Gonzalez and Parker (2016) for a discussion of the topic).
The magnetosphere, like almost all systems in space plas-
mas (solar corona, heliosphere), tends to produce current
sheets, which are numerically discontinuities. These may
have a tendency to become tearing unstable, even if they
would be stable in reality. The good news is that the recon-
nection rates, in nature, as in the simulations, tend to be
around the canonical value of 1/10 (Cassak et al., 2017).
* Discontinuities tend to smear out. This is less so for
shocks, because the shock physics (which is correctly cap-
tured by the models) keeps a shock steepening until other
processes limit the gradients within a shock. However,
other discontinuities, in particular tangential and rota-
tional discontinuities, tend to broaden with time. There-
fore, boundary layers are difficult to resolve properly.
* Simulations are always a compromise between the first
and the second law, both in the design of the algorithms
and in the choice of grids for individual simulations.
* For a long time to come, global simulations will require
the most computational power available, just as, for
example, weather or climate forecasts.

37.4. COUPLING WITH THE IONOSPHERE-
THERMOSPHERE SYSTEM

Very early MHD models of the magnetosphere had
essentially no coupling with an ionosphere. The iono-
sphere was simply mimicked by a highly diffusive region
within a few Rg of Earth (Ogino and Walker, 1984; Win-
glee, 1994). It was soon realized, however, that the inclu-
sion of at least an electrodynamical model of the
ionosphere was critical (Fedder and Lyon, 1987) to
account for magnetosphere—ionosphere (MI) coupling.
The theory of the electrodynamical magnetosphere—
ionosphere coupling had been laid out earlier
(Vasyliunas, 1970; Wolf, 1975, 1983). The coupling arises
from the fact that the magnetosphere generates field-
aligned currents, which flow into the ionosphere and need
to close there. The closure occurs through horizontal ion-
ospheric (Pedersen) currents that are controlled by the
finite conductance of the ionosphere plasma due to colli-
sions with the neutral thermosphere (Kelly, 2009). The
current closure creates an electric potential, which can
be obtained with the solution of a potential equation:

VEVD = —jsinl.

Here, @ is the ionosphere potential, X the conductance
tensor, jj is the field-aligned current (FAC) entering the
ionosphere, and [ is the field line inclination. In this
context, the ionosphere is generally assumed to be a
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two-dimensional entity, because the conductance along
field lines is very high even in the collisional ionosphere,
and thus field lines can be considered equipotentials. This
is no longer true in mid and low latitudes where the field
lines are more inclined. However, at these latitudes, the
field lines are closed and map close to the earth. This
region is not directly driven by the solar wind interaction,
but rather from the dynamics within the ionosphere, such
as the equatorial electrojet.

Since the field lines are to a good approximation equi-
potentials, the ionosphere controls the magnetosphere
convection. Two extreme cases are possible. If the iono-
sphere conductance is zero, no currents can flow into
the ionosphere. Therefore, the currents must close some-
where above the ionosphere, and the ionosphere cannot
affect convection. Since the ionosphere is always a sink
of electrodynamic energy coming from the magneto-
sphere (Strangeway and Raeder, 2001), magnetosphere
convection is then inhibited as little as possible by the ion-
osphere. In the other extreme, ionosphere conductance is
infinite, i.e., the ionosphere is a superconductor. Then, ®
and the convection electric field are zero, and magneto-
sphere convection is eventually shut down. This was
demonstrated by Raeder et al. (1996) with global simula-
tions. In reality, the situation lies somewhere in between
these two extremes. As a consequence there is significant
Poynting flux from the magnetosphere into the iono-
sphere (Knipp et al., 2011; Li et al., 2011).

A key element of the the ionosphere potential equation
above is the conductance tensor X, which is made up of
the Hall and Pedersen conductances (Kelly, 2009). Early
models used either a constant conductance or a simple
analytical model for the conductance. However, this gen-
erally leads to unsatisfactory results (Raeder et al., 2001a,
2001Db), since conductance gradients can skew the convec-
tion patters (Atkinson and Hutchison, 1978) and because
the pattern of empirical conductance models does not
match the patterns of the currents. The dayside conduct-
ance is dominated by solar EUV radiation, while the
nightside conductance is dominated by precipitating elec-
trons (Hardy et al., 1987). The dayside conductance there-
fore has mostly solar cycle, seasonal, and diurnal
variations, while the nightside conductance is highly var-
iable. The variation of conductance can substantially
influence magnetosphere dynamics (Jensen et al., 2017).

Most global models are therefore coupled with an ion-
osphere-thermosphere model, which provides more real-
istic conductances. With such coupling, the MHD
equations are not solved within about 2-3 Rg of earth.
Instead, the field-aligned currents are mapped from that
inner boundary into the ionosphere. In addition, electron
precipitation is calculated using empirical formulas
(Raeder, 2003). These parameters are then fed into a fully
dynamic ionosphere—thermosphere model. In the case of

the OpenGGCM, this is the NOAA CTIM model (Fuller-
Rowell et al., 1996), and the LFM is coupled with a ver-
sion of the TIE-GCM ionosphere code (Wang
et al., 2004).

Another form of MI coupling occurs through the out-
flow of ionospheric plasma into the magnetosphere. This
plasma consists of protons and heavy ions such as O" and
molecular ions (Poppe et al., 2016; Strangeway, 2005) and
can affect magnetosphere dynamics, for example, by
changing the mass density and rates of magnetic recon-
nection. Such outflow has been incorporated into some
global models, along with a multifluid extension to
MHD (Brambles et al., 2011; Glocer et al., 2009).

37.5. COUPLING WITH INNER
MAGNETOSPHERE MODELS

MHD is not a good approximation for the behavior of
plasma in the inner magnetosphere, that is, the ring cur-
rent and the radiation belts. Here, the plasma f is low,
and the plasma dynamics is dominated by gradient and
curvature drift, as opposed to plasma pressure and mag-
netic forces (Wolf, 1983). In parallel to the MHD models,
models for the inner magnetosphere have been developed
(Chapter 20, this volume). These inner magnetosphere
(IM) models are based on a quasi-static approximation,
i.e., they include no inertial terms, but they resolve particle
energy and possibly also pitch angle (Fok and Moore,
1997; Kozyra et al., 1998; Toffoletto et al., 2004). They
only solve the equations in a subset of the closed field line
domain with simplified magnetic and electric fields. How-
ever, their plasma solutions (density and pressure) are
considered to be more realistic than MHD, giving reason
to combine MHD and IM models. On the one hand, IM
models require the magnetic and electric fields, as well as
boundary conditions that can be supplied by the MHD
models. In reverse, the IM models can provide more real-
istic plasma pressure and density distribution for the inner
magnetosphere compared to the MHD model. In prac-
tice, the simulation volumes of the IM and MHD model
overlap in the regions of closed field lines where the IM
models are valid. The models run in parallel, where the
MHD model supplies the electric and magnetic fields,
or related values, such as the flux tube volume. The
MHD model also provides plasma parameters on the
boundaries of the IM model. In return, the plasma pres-
sure and density from the IM model is used by the
MHD model to correct the MHD values in the region
of overlap. In practice, this leads to the development of
a ring current with realistic pressure and density, and a
more realistic plasma drift. In addition, the IM model
can also contain an electron fluid, which also calculates
the proper drift physics, and can be used to calculate more



realistic electron precipitation in the region of closed
field lines.

37.6. RECENT SIGNIFICANT RESULTS

Although contemporary global models are based on the
rather simple MHD formalism, they have been remarka-
bly successful in reproducing the basic morphology of the
magnetosphere and many of the basic physical processes,
for example, magnetopause reconnection (Berchem et al.,
1995a, 1995b; Dorelli et al., 2004), Flux Transfer events
(Raeder, 2006), the plasma depletion layer (Wang et al.,
2003), plasma entry due to double lobe reconnection (Li
et al., 2005, 2008, 2009), interplanetary shock impacts
(Oliveira and Raeder, 2014), or magnetopause Kelvin—
Helmholtz waves (Claudepierre et al., 2016).

Here, we present results from two contemporary mod-
els, the LFM and the OpenGGCM. The examples were
chosen in the first case to demonstrate the realism of
the simulations with respect to recent observations of
plasma entry into the inner magnetosphere, and in the sec-
ond case to demonstrate how the models can be exploited
as a numerical laboratory to investigate fundamental
physical processes.
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37.6.1. Plasma Injection

It has been known for some time that plasma does not
convect continuously from the tail into the inner magne-
tosphere, but rather in so-called Bursty Bulk Flows
(BBFs) or bubbles with depleted entropy (Chapter 17, this
volume). It has been an open question as to how BBFs are
related to bubbles, how much they contribute to the
plasma injected into the IM, and how deep these injections
can penetrate.

In recent work (Cramer et al., 2017) we used the
OpenGGCM coupled with the RCM to investigate these
questions. Figure 37.2 shows the result from a geomag-
netic storm simulation. The figure traces out the minima
in flux tube entropy, i.e., bubbles, and maxima in flow
velocity, i.e., BBFs. There is nearly a one-to-one correla-
tion, around 70-80%, between these two quantities, tail-
ward of 8 Rg. This correlation persists further inward
towards the earth, but falls off to about 20% at 4 Rg.
Comparing the plasma transport due to bubbles com-
pared to steady convection shows that transport due to
bubbles dominates all the way to about 4 Rg during
storms. Comparison with a quiet time simulation shows
that transport is very similarly dominated by bubbles tail-
ward of 8 Rg but somewhat less closer to earth.
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Figure 37.2 Time series of velocity maxima and flux tube entropy minima in the current sheet at 10 Rg during the
main phase of a geomagnetic storm (I1). The panels show, from top to bottom: the Dst index (red for the simulation),
the solar wind dynamic pressure, the IMF B,, and a time-MLT diagram of bubbles (local entropy minima, +
symbols), and BBFs (colored symbols, where the color represents the speed.)
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Figure 37.3 LFM simulation of sawtooth event and control simulations. The figure shows magnetic inclination
angle as a function of simulation time near local midnight at geosynchronous altitude. The colors of the time
traces correspond to the simulation parameters at the top of the figure. The blue line, representing a run with
large negative IMF B, and large solar wind speed, exhibits oscillations resembling sawtooth events, whereas the
control runs do not. The figure is from Brambles et al. (2011).

37.6.2. Sawtooth Oscillations

Global sawtooth oscillations in the magnetosphere
(Henderson et al., 2006) have been identified as large-scale
plasma injections associated with dipolarizations of the
inner magnetosphere magnetic field and auroral brighten-
ings. They have a typical repetition period of 2-3 hours
and have some characteristics of large substorms. They
are typically associated with high-speed solar wind and
extended periods of southward IMF.

Brambles et al. (2011) used multifluid LFM simulations
with an empirical polar outflow model to study the mag-
netosphere response during solar wind conditions typical
for sawtooth events and compared that run with simula-
tions that had more benign solar wind conditions.

Figure 37.3 shows that the sawtooth run indeed pro-
duced sawtooth like oscillation in the near Earth plasma
sheet, whereas the control runs did not produce such oscil-
lations. Analysis of the simulation led the authors to con-
clude that ionosphere outflow of O* enhanced the plasma
pressure in the tail and led to the periodic shedding of plas-
moids with the characteristic sawtooth frequency.
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