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Person fit statistics are frequently used to detect aberrant behavior when assuming an item response
model generated the data. A common statistic, /;, has been shown in previous studies to perform well under
a myriad of conditions. However, it is well-known that /; does not follow a standard normal distribution
when using an estimated latent trait. As a result, corrections of /;, called l;‘, have been proposed in the
literature for specific item response models. We propose a more general correction that is applicable to
many types of data, namely survey or tests with multiple item types and underlying latent constructs, which
subsumes previous work done by others. In addition, we provide corrections for multiple estimators of 6, the
latent trait, including MLE, MAP and WLE. We provide analytical derivations that justifies our proposed
correction, as well as simulation studies to examine the performance of the proposed correction with finite
test lengths. An applied example is also provided to demonstrate proof of concept. We conclude with
recommendations for practitioners when the asymptotic correction works well under different conditions
and also future directions.

Key words: person fit, item response theory, /;, Asymptotics, outlier detection, multidimensional, mixed
item type.

1. Introduction

Person fit is an important topic within the item response theory (IRT) literature (Meijer,
1996; Meijer & Sijtsma, 2001. Person fit aims to classify individual response patterns as typical
or atypical given an assumed measurement model (Meijer & Sijtsma, 2001). There has been much
development in defining person fit statistics in the literature. For a recent review of applications
and theoretical development of person fit statistics, see Rupp (2013). Person fit statistics have been
utilized on both educational and psychological assessment data. For instance, person fit statistics
have been used to identify aberrant (e.g. careless) responses on an survey or test (Conijn, Emons,
& Sijtsma, 2014). Person fit has also been used to screen subtypes of suicide for clinicians by
identifying individuals who do not demonstrate typical response patterns (Conrad et al., 2010).
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TABLE 1.
Summary of research on asymptotics of /;.

Dichotomous Polytomous
Unidimensional Bedrick (1997); Molenaar Sinharay (2016a);
and Hoijtink (1990); Tendeiro (2017); von
Snijders (2001) Davier and Molenaar
(2003)
Multidimensional Albers et al. (2016) None

We will focus on person fit statistics based on the [, statistic (Drasgow, Levine, & Williams,
1985). There have been many studies on the [, statistic and its applications. For instance, it has
been shown that /, is very powerful in detecting aberrant individuals when compared to other
person fit statistics (Karabatsos, 2003). I, has also been shown to preform well when used to
identify multiple types of aberrant responses (Hong, Steedle, & Cheng, 2019; Niessen, Meijer, &
Tendeiro, 2016). Moreover, I, is a widely used statistic as it is offered in several software packages
such as mirt (Chalmers, 2012), Itm (Rizopoulos, 2006) and Perfit (Tendeiro, Meijer, & Niessen,
2016).

There have been several studies examining statistical properties of the [, statistic, with a
focus on /;’s asymptotic properties (Albers, Meijer, & Tendeiro, 2016; Sinharay, 2016a; Snijders,
2001; Tendeiro, 2017). Through simulation studies, researchers found that /, did not follow the
theoretical properties outlined by Drasgow et al. (1985) in practice due to estimation of a latent
trait. The consequences of this discrepancy is over classifying individuals as following the assumed
measurement model and reduced power when detecting aberrant individuals (Reise, 1990). Several
corrections have been proposed in the literature. For instance, Molenaar and Hoijtink (1990)
proposed a Chi-squared approximation for the Rasch model. Subsequent extensions were proposed
using alternative approximations, such as Edgeworth approximations, and for polytomous Rasch
models and latent class models (Bedrick, 1997; von Davier & Molenaar, 2003). In the following,
we will focus on the latent trait model framework and the correction proposed by Snijders (2001).
Snijders (2001) rigorously investigated the asymptotic properties of the [, statistic and proposed
a corrected statistic known as [ for dichotomous items. [} was shown to perform better when
classifying individuals by maintaining better nominal type I error rates under the two parameter
logistic item response model. Several other researchers have built on Snijders (2001) original
work by considering scales beyond dichotomous items (Sinharay, 2016a), various types of item
response models (Tendeiro, 2017), and measuring multiple traits (Albers, Meijer, & Tendeiro,
2016). Table 1 summarizes previous studies that investigated the asymptotic properties of /, and
I7 under unidimensional and multidimensional models.

Table 1 shows an obvious gap in the development of the [} statistic for applied research.
Many researchers collect data with items of varying response categories and contains multiple
subscales, measuring closely related, yet distinct, constructs. This is very common in psycho-
logical research. For instance, the Big Five inventory measures five latent constructs and can
potentially have varying item types depending on which version is used (Goldberg & Kilkowski,
1985). In Albers et al. (2016), the authors develop an l;" statistic for scales with dichotomous
items and multiple subscales. Their simulations provide evidence that [} for multiple subscales
may not asymptotically follow a standard normal distribution. More analytical work can be done
to further investigate the properties of /' when measuring multiple constructs. The properties of [}
have not been studied in some situations such as for a varying number of latent traits and number
of categories within each item.
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This paper aims to fill these gaps with theoretical work and simulation studies. The rest of
the paper is organized as follows. First, we will review [/, for mixed-format scales and for multiple
constructs. Next, we will review asymptotic corrections for both cases. We will then propose
a more general framework for [} that encompasses both a mixture of item types and multiple
constructs. We will provide rigorous proofs for the newly proposed framework drawing from
earlier work of Snijders (2001) and Sinharay (2016a). We will also provide a comprehensive
simulation study. We will then provide an applied analysis to demonstrate the utility of the new
I7 statistic and end with discussions and potential future directions.

2. Methods

2.1. Review of I, for Mixed Item Types

The original /, for mixed-format scales was proposed by Sinharay (2016a). Consider a respon-
dent with a true ability, 6, that answers to p items that can be dichotomous or polytomous. Let

1 ifX =
Ij(Xi) = {O otherwise, @)
where X; isanitemresponse,and j = 0, ..., m; withm; 41 representing the number of categories
for item i. The log-likelihood of the examinee’s scores can be defined as follows:
pomi
[=Y"Y"T;(X;)log P;j(0), )
i=1j=0

where P;;(0) is the probability that the respondent with ability 6 endorsed category j of item i.
For the graded response model (GRM; (Samejima, 1969)) the probability of endorsing category
J or above can be characterized by a 2-parameter logistic model (2-PL; (Birnbaum, 1968)):

. 1
Pij(0)" = 1 +exp(—a; (0 — b;j)) , v

where b;; is the location parameter representing the boundary that separates the (j — 1 and
j'" response category of item i; a; is the discrimination parameter for item i for all boundary

functions of item i. The probability of endorsing response option j can be expressed by:
Pij(0) = Pij(0)" — Pi(j+1)(0)". 4)

The probability of responding below the first option and above the highest option is set to 0. Note
if item i is dichotomous, then m; = 1 and the GRM reduces to the 2-PL model. Equation (2) does
not place any restrictions on the number of item response categories. The number of response
categories can be different from one item to another. Equation (2) implies the following:

P mi
E0) =YY" P;j(®)log P;j(0) (5)

i=1 j=0
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and
p
Var(110) = Zuf (@)D; (9)u; (9), (6)
i=1
where
u(9) = (log Pig(6),log P;1(0), ..., log Pim, (9)), @)
and
Pio(@)(1 — Pio(0)) —Pio@)Pi1(0) ... —Pio(0)Pim, )
D;(6) = —Pi1(0)Pio(0)  Pi(0)(1 — Pi1(0)) ... —Pi1(0)Pim, () @)

—Pim; @) Pio(0)  —Pim; (O)Pi1(0) ... Pip; (0)(1 — Py (0))

The [, statistic for a mixed-format test is then defined as follows:

- E(9) ©
© Va0’

which follows a standard normal distribution.

2.2. Review of I, for Multidimensional Constructs

Drasgow, Levine, and McLaughlin (1991) developed a statistic for multiple subtests with
dichotomous items. The proposed statistic is general enough to encompass both dichotomous
and polytomous items on a scale. For each subtest s, where s = 1, ..., S, Drasgow et al. (1991)
defined /, with multiple subscales, /_,,. Note that a scale with multiple subscales where each item
measures a single latent trait is a scale that has simple structure (Zhang & Stout, 1999). Let [,
E(ly) and Var(ly) be the log-likelihood function and its first two moments for a specific subtest.
Then,

Lo Yo (ls> - (E(ls))
T (o)

(10)

For notational purposes, we can rewrite the model as a multidimensional item response
model for mixed-format scales with simple structure (Reckase, 2009; Zhang & Stout, 1999). The
log-likelihood of a participant’s scores can be defined as follows:

pom

1= "T;(X;)log P;j(®). (11)

i=1 j=0

where X;, the response on item #, is an integer between 0 and m;. P;;(#) is the probability that an
examinee with ability @ endorsed category j on item i where @ = (01, 65, ..., 0s)’ denotes a set
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of latent traits. The probability of endorsing category j or above can be characterized by a 2-PL
multidimensional item response model:

1
1+ exp(—(agﬂ —bij)) ’

P(®) = (12)

where a; = (aj1, ai2, ..., a;s) is a vector of S discrimination parameters reflecting the rela-
tive importance of each dimension when answering an item correctly. Here, b;; is the location
parameter for the boundary that separates the (j — 1)’ and j” response category of item i. The
probability of endorsing response option j can be expressed by:

P;j(0) = P;j(0)* — P;(j+1)(0). (13)

Equation (11) implies the following:

pom
E16) =YY P;j®)log P;;(6) (14)
i=1 j=0
and
P
Var(l|0) = Z“E(G)Di(o)lli(a), (15)
i=1
where
u; (0) = (log P;n(0), log Pi1(8), ..., log Py, (0)) (16)
and
Pio(0)(1 — Pio(0)) —Pio(0)P;1(0) ... —Pio(0) Py, (0)
—P;i1(0)Pio(0) Pi1(0)(1 — Pi1(0) ... —P;i1(0)Piy,(0)

D;(0) = (17)

—Pimi () Pio(0)  —Pim;(0)Fi1(0) ... Pip; (0)(1 — Py, (9))

Similar to the unidimensional case, one can rewrite a multidimensional /, for multidimen-
sional test, [, as

_1—E(l8)

—_—. 18
o Var(l]9) (%)

It is important to note that the variance term in Equation (18) assumes local independence,
cov(X;, X;/|0) = 0 for all i # i’, which is a typical assumption for item response models. The
latent traits do not have to be orthogonal. In the following sections, we review the asymptotic
corrections for [, and [,,.
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2.3. Review of I} for Mixed Item Types

Sinharay (2016a) proposed that /, can be expressed as a case of broader person fit statistics
of the following form:

W (0)
— (19)
Var(W (0))
where,
P mj
WO) = [1;(X;) — Pij(0)]w;; (0), (20)

i=1j=0

an appropriate weight function is w;; (9). A suitable weight function means a weight function that
corresponds to an identified person fit statistic (Magis, Raiche, & Béland, 2012). For a scale with
mixed item types, the weight function is

w,~j(9) =10g P,'j(@). (21)
Equation (21) implies the following:
E(W(®)) = 0and Var(W(®)) = po(0) (22)
where,
1 p
o2(0) = = Y w(O)Di(O)ui(0). (23)
p

i=1

A suitable estimator for 6 such as the maximum likelihood estimate (MLE; 0M L) maximum a
posteriori (MAP; O a p), or Warm (1989)’s weighted likelihood estimator (WLE; Owi E) can be
plugged into the following equation:
. W)
[(0) = ———. (24)
JPo (6)

Sinharay (2016a) used a first-order Taylor series approximation to express [, )

P om;
LWy~ ——we) + vpe - 9){l > (D = Py©@)w);©)

ﬁ ﬁ p i=1 j=0
| L m
= X (X rewie)) 25)
i=1  j=0
Note that P./ .= % and wfj = %. Sinharay (2016a) posited that the term
% le (Zm’ (Q)w, j (9)) will not tend toward zero as the number of items increases. There-

fore, one can replace wjj () with w;; (6) which satisfies the condition, Zi:l S im0 Pi; [ (0)w;j(0) =
0. Sinharay (2016a) chose 0 that satisfies the condition,
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P m;
@ +> 3 [Hj(xl-) oy (é)]r,-,- (@) = 0 for some ro(@) and r;; (9) (26)
i=1 j=0

~ A ~ P!.(0
If one uses Oy, then ro(0) = 0 and r;; (0) = ﬁ (see Sinharay (2016a) for other estimators).

K N R K P;j(0)
Let U~J,'j 0) = wij 0) —cp (9)7’,’] (0) where

Y YTy P @)wii 6)

@ = Y X PL @) 0) @D
Then,
@) = W () + cn (?)I’o(é) 28)
' N1
where 72(9) = % S V(@)D (0)vi(0). D;(0) is defined in Equation (17) and
vl’- (0) = (logw;o(0), logw;1(0), ..., log Wiy, (0)) (29)

Equation (28) is derived by adding ¢, (é)ro (é) in the numerator and replacing az(é) with tz(é) in
Equation (24). Sinharay (2016a) demonstrated that [} with mixed item types is justified to follow
a standard normal distribution with the correction through a series of derivations and simulations.

2.4. Proposed I}, for Multidimensional Constructs and Mixed Item Types

Albers et al. (2016) proposed a correction for person fit statistics when the scales measure
multiple constructs with dichotomous items, l;‘m. The authors used heuristics based on Snijders
(2001) to justify why /%, should follow a standard normal distribution. However, Albers et al.
(2016) found in their simulation study that [}, does not achieve a 0.05 type I error as expected
across all of their simulation conditions. The researchers justified a discrepancy between their
analytical work and simulations with the following arguments. First, they were limited by the
number of simulation replications and conditions. Second, the approximation is only asymptotic
and the sample size is finite. It is important to note that there are problems with those justifications.
The asymptotic properties of I and [7,, are asymptotic with respect to the number of items, not
the number of persons, as implied by Albers et al. (2016).

There are also limitations to the simulations in Albers et al. (2016) beyond the number of
simulation and replication conditions. First, the performance of [}, should differ as a function o
levels such as 0.01 or 0.1. Albers et al. (2016) used only a cut-off with a corresponding « level of
0.05. Snijders (2001) and Sinharay (2016a) found that depending on the critical value, sometimes
the asymptotic correction over or under correct the null distribution. Second, the number of
dimensions may impact [},,. Albers et al. (2016) only focused on scales with four latent traits.
Varying the number of latent traits may also impact the performance of [}, . Finally, Albers et al.
(2016) was restricted only to the dichotomous case. Oftentimes, scales contain a mixture of item
types.

To address these limitations from previous works, we provide more general proofs in order
to investigate the asymptotic properties of /7, for multidimensional constructs and mixed format.
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Our study builds upon Albers et al. (2016) by providing rigorous proofs, extensions to mixed item
types, and extensive simulation study.
The general form of the /., statistic can be written in the following form:

/ _Lﬁ) (30)
w S Nar(M(8))
where
pom
M@©) =) > (I1;(X;) — Pij(0))wi; (6). 31)
i=1 j=0
Similar to the unidimensional case, one can define w;; () as:
w;j () = log P;;(0). (32)
Equation (31) implies the following:
E(M(0)) = 0 and Var(M (0)) = y>(9), (33)
where
JJ
y?(6) =) uj(6)D;u; (6). (34)
i=1
Therefore, I, (0) is:
p "X — P (0)w;; (0
lzm(a): M) _ i=1 Z/:()( j( ) ]( ))w]( ) (35)
V/Var(M ) V0w @)D;u; (6)

Following notation by Magnus and Neudecker (1988), we can approximate \/LFM (é) with a
first-order Taylor series approximation:

1 A 1 A 1
—M@O) ~ —M(@)+ 6—0)(—-VM@)), 36
MO~ MO+ 56 - 0) (VM®) (36)

where VM (0) is a S x 1 gradient vector of M (0):
P

vmMe) =] S - PO (V@) = 3D (VR®)uws@]. 37

i=1j=0 i=1  j=0

m;

The term %ﬁM (@) has an asymptotically normal distribution. Note that ,/p (9 — 0) in the second
term is bounded around a neighborhood of the true latent trait, #. Among the two averages in



472 PSYCHOMETRIKA

Equation (37), the first is a vector of bounded random variables with an expectation of 0 as
the number of items increases. However, the second term is a vector that will not tend toward
0 with an increasing number of items. Thus, the asymptotic null distribution will not follow a
standard normal distribution. In the following section, we demonstrate how one can correct the
null distribution. Suppose 0 is estimated by 0A, where @ satisfies the following condition:

LS (L) = Py@®)un® |

t01(0) p /2
w® | | 2L T (H,@) - Pi®)iz® | |0 a5
tos (0 ; ' 0
s DD (Hj(Xi) - Pij(0))tijs(0)
which can be rewritten as:
pom
0® + Y3 (LX) = Py(®))1;6) = 0 (39)
i=1 j=0
for some functions 70(0) = (f1, f02, .. ., tos) and #;;(8) = (t;j1, tij2, ..., t;js)". For instance,
0111 is the value of @ for which:
p o m
vixie) =3 (I/(Xi) —p, (0)) P 0)VP;(6) = 0. (40)
i=1 j=0
The equality in Equation (39) holds where 70(#) and #;; () satisfy:
fo(0) =0and #;(9) = Pi]_-l(O)VPU ). 41

Expressions for other estimators are provided in Appendix A. We propose to replace w;; () with
w;; (@) where each second term in Equation (37) follows Zle Z’j"’zl VP;(0)w;;(@) = 0. The
new weights can be defined as:

W;;(0) = w;;(0) — ' (0)1;;(6) (42)

where #;;(#) is a S x 1 row vector for each item 7 and category j as defined in Equation (39). Let
c(#) be an S x 1 vector where:

p o mi _ P mi
c® = (DY (VP 0)'1;0)) 1(ZZw,',-(om%,-w)). (43)
i=1 j=0 i=1 j=0

Then,

M) + ' (0)t0(0)
Jpy @) '

L (@) = (44)
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where

)4
y2(0) = > v/(0)Divi(6). (45)

i=1
D; is defined in Equation (17), #(@) is defined in Equation (39), and

vi(0) = (Wio(0), Wi1(0), ..., Wim; (6)). (46)

If there is only one latent trait, S = 1, then l;‘m defined in Equation (44) reduces to l;‘
defined by Sinharay (2016a) in Equation (28). Similarly, if there are only dichotomous items,
mj=1Vj=1,...,p,then l;‘m defined in Equation (44) reduces to l;‘ defined by Albers et al.
(2016). Recall that Albers et al. (2016) found that the dichotomous version of [}, did not follow
its asymptotic null distribution in practice for dichotomous items. In the following section, we
provide a set of proofs of the properties of /7, using similar arguments made by Sinharay (2016a)
and Snijders (2001) to further investigate this phenomenon.

Consider a sequence of item responses X1, ..., X, from a mixed format test givenin Equations
(12) and (13). Denote @ as the true parameter value for the clarity of notation.

Theorem 1. Under the following assumptions:

1. @ is a consistent estimator of 0y, and ﬁ(é — 0¢) has an asymptotic nondegenerate
distribution.

2. P;j(0) and w;;(0) are twice differentiable and uniformly bounded over a small neigh-
borhood of 0. Their first- and second-order derivatives are also uniformly bounded in a
neighborhood of 6.

One has:

(M(é) _ 1\71(00)) — 0 in probability. (47)

Sl-

Proof. Note that

poom
PR ®) — M80) =p~2 Y3 (LX) — Py (60)) () — 1, 60) )
i=1 j=1
P mi
=YY (P~ Py0) )i ).

i=1 j=1

(48)
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We will show that each of the above two terms converges to zero in probability as p — oo. The
first term on the right-hand side can be rewritten as:

D3] (1,0 = Py (60)) (8 — 01 00))
i=1 j=1

m;

>3 (100 - Py60)) (10 — <0o>)> (49)

-

I;(X;) — P,-j(oo>)>(é —00) (Vi ®)ly- ),

where Vi;;(0)|g+ is a S x 1 gradient vector of w;;(#) evaluated at 6* which lies in the line
segment between @ and 6. The above equation can be rewritten as:

= Vp® -0 (

S| =

>y (X0 = Py 00 ) (Vi @)l ). (50)
i=1 j=1

By law of large numbers (see section 6.2 in Bhattacharya, Lin, and Victor (2016)), one has

pm
% Z Z (Hj (Xi) — Pij (90)) (Vlz}ij (0)|9*> — 0 in probability. 51

i=1 j=I

By assumption 1, ,/p (9 — 6p) converges in distribution to some random vector with a nondegen-
erate distribution. Then by Slutsky’s lemma (see section 5.5 in Casella and Berger (2001)).

p o mi

P - 00)’(% Y (L) = Py60)) (Vi (0)|,,*)) — 0in probability.  (52)

i=1 j=1

Now we proceed to show that the second term in Equation (48) also converges to zero in proba-
bility.

p  mj
P2 (P B) — Pij(60))ii; ()
i=1 j=I
p om
— \/ﬁ(% DY 6~ 60YV PO + (116 — 6ol )iy B) (53)
i=1 j=1
. 1 K& . .
= /P - 00)'(; SN (VPi®)l +0011f — 8oll )i B) ).

i=1 j=1



MAXWELL HONG ET AL. 475

Note that % le Z;"’:] VP;j(0)lg,wij (é) = 0. Since 0 is a consistent estimator of 6, and

V P;;(0) and w;; (@) are all continuous and bounded functions in a neighborhood of 8. Then,

1 P m . .
— Z Z VP;j(6)];1;;(8) — 0 in probability. (54)
i=1 j=1

Again, using the fact that ,/p (9 — 6) converges to some random vector in distribution and
by Slutsky’s theorem,

~ Il S~ s R R
VPO =60( 33 VA @)+ 0018 ~ 0ol )i; @) — 0. (55)

i=1 j=1

Note that the remaining term ﬁ(@ - 00)(% ;7:1 Z'/"’:l 0|10 — 00||)1I)ij(@)) — 0is

negligible, due to the fact that the remainder term vanishes as ||9 —0o|| > 0as p — oo and
w;j (@) are uniformly bounded. O

Theorem 2. Assume the second assumption in Theorem 1 holds and y*(0y) < 00 as p — oo.
Then one has

1 . 1 P m
— M0y = —— I;(x;) — P;i(8p))w;; (0 N(,1). 56
NI ﬁywm;;(’(“ j(00))1;;(80) — N(0,1) (56)
Proof. Let zi = Y7, (L) — Py(80))idij®0). One has Ez) = 0, Var(z) =
v{(00)Di(00)vi(00) and Var(}""_, z;) = py?(8o). Note that:
i < Var(z;) ): i < v;(00)D;(00)vi(0o) )_) 0 57)
t=isn \Var(XF_ zi) ) 1si=n \ Y0 vi(00)Di(80)vi(80)

since v{ (69)D;(00)vi(Bp) are uniformly bound Vi = 1, ..., p. Then by the Linderberg Central
Limit Theorem (see appendix D in n Bhattacharya et al. (2016)),

S iz—0 M@

= N(, 1). 58
Vo PO ©.D (58)

m}

Theorem 3. Assume assumption 2 holds, y*(0o) < oo as p — 00, and 8 is a consistent estimator
of 0¢. Then, one has:

! —M(@®) — N, 1) (59)
J/py (@)
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Proof. Given that M(@) = M (@) — c(8)1;;(9), it implies,

! _ M® | MO -ME) @)
JPy @) Jov@®  py®) JPy®)

(60)

Note that the second term on the right-hand side goes to zero since 0 is a consistent estimator of
00, which implies M (9) - M (0p) since M (+) is continuous. The third term on the right-hand side
also converges to zero, due to the uniform boundedness of c(@) and to(é) over a neighborhood
of 0y (9 is in a small neighborhood of 6(). Note that 0 — 0, which implies M(é) — M(0)

and y(é) — y(09), and ﬁ (0(%) — %}E"(‘;)()) and the later converges in law to a standard normal
(24

distribution, by Slutsky’s lemma

M)
L N@O, D, 61)
JVpy @)

Since the last two terms of Equation (60) converge to zero in probability. Therefore, /7, can be
written in the following form

M)
V208

*
zm

(62)

m}

The above theorems have implications based on past research. First, the current proofs demon-
strate that /%, should asymptotically converge to a standard normal distribution with enough items,
even with multiple traits, which supports the preliminary work done by Albers et al. (2016). Sim-
ilarly, 7, extends the derivations done by Sinharay (2016a) to encompass multiple latent traits.
1%, is able to accommodate mixed (dichotomous and polytomous) item types.

However, there remains several open questions. Albers et al. (2016) found empirical evidence
with simulation studies that when there are multiple traits, /%, does not achieve adequate type I
error rates with dichotomous items. Furthermore, Sinharay (2016a) did not consider the impact of
varying the number of item categories within each polytomous item. Tendeiro (2017) found that
the number of item categories impact [} for unidimensional cases. Moreover, there is no research
on the impact of both the number of categories and latent traits and their impact on [}, . The
following simulation aims to fill in these gaps.

3. Simulation

A comprehensive simulation study was performed to examine the type I error rate and the
power of [}, . Two simulations were conducted in order to address both questions.

3.1. Simulation: Type I Error

Type L error is defined as the proportion of participants who conform to the assumed measure-
ment model that are identified as aberrant responses. In the current simulation, the true model is
a multidimensional graded response model. Previous work found little differences between using
different estimators (Sinharay, 2016a). For latent trait estimation, we used maximum likelihood
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estimation with bounds between -3 to 3. Item parameters are assumed to be known, which is a
typical assumption in the person fit literature. Responses were simulated from a multidimensional
graded response model with 2 to 5 response categories that have simple structure. Item parameters
were generated similar to Hong et al. (2019) where the discrimination parameter was sampled
from a uniform distribution with a lower bound of .5 and upper bound of 2. The location param-
eters were sampled with equal distances from a range with lower bound of -1.5 and upper bound
of 1.5 and perturbed by a random variable drawn from a uniform distribution ranging from -0.3
to 0.3. When there were two categories, we randomly sampled the location parameters from -1.8
to 1.8. We also varied the number of latent traits ranging from 1 to 5. For each dimension, we
generated latent traits drawn from -2, -1, 0, 1, and 2. It is important to note that the sample size
is not relevant because item parameters are assumed to be known. However, the number of items
can influence the performance of l;‘m. We varied the number of items per trait to be 16, 32, or 64.

In sum, we had a total of 300 simulation conditions for data generation with 100,000 repli-
cations for each condition, with four factors fully crossed (three scale lengths per latent trait, five
number of latent traits, four number of categories, and five values of 0;).

In each simulation condition, we evaluated the type I error rates with varying « levels: .01,
.05, and .10 using either [, or [},

3.2. Results: Type I Error

Tables 2, 3, and 4 present the results type I error rates when there are 16, 32, or 64 items per
latent trait, respectively. Due to the large number of simulation results, we present results when
6 = 0 due to negligible impact of different latent trait levels on type I error rates. Results of
other 6 values are available upon request. In general, /,,, consistently achieved too conservative
type I error rates across simulation conditions. Using an « level of 0.01 lead to liberal estimates
using [%,,. On the other hand, using an « level of 0.1 lead to conservative estimates using /%, , in
general. Oftentimes researchers use « levels of 0.05. Therefore, we focus our discussion on these
conditions.

There are a few takeaways from the tables. When an item has more categories, the type I
error rate becomes more conservative. For instance, when there are two categories for a single
trait with 16 items, the type I error rate is 0.058. When the number of categories increases to five,
the type I error rate decreases to 0.043.

When the scale measures more than one latent traits (or consists of multiple subscales), the
type I error rate becomes more conservative. For instance, when there is a single latent trait for
dichotomous items, the type I error rate is 0.058. When the number of latent traits increases to
five where each scale is measured by 16 items, the type I error rate decreases to 0.033.

If we fix the number of items on a test and increase the number of latent traits the type I error
suffers. For instance, when there are 64 items in total that measure a single latent trait with two
categories, the type I error rate is 0.052. If the same 64 items are split between two latent traits
(32 items per trait), the type I error is 0.046.

With shorter scales, the impact of number of categories and latent traits becomes more evident.
However, as the number of items increase per latent trait, the impact reduces. When there are three
latent traits each measured by 16 items with three categories, the type I error rate is 0.030. When
the number of items increase to 64 per latent trait, the type I error rate is 0.036. Even with the
current simulations with 64 items it was not enough items to achieve perfect type I error rates.
However, it would be unrealistic to assume more than 64 items in one subscale.

In order to further understand the impact of the number of categories and latent traits on the
null distribution of [, and I.,,. We plot the empirical distributions from the simulation of I},
and /;;, when there are 64 items in a scale with varying number of dimensions and categories in
Fig. 1.
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TABLE 2.
Type I error rates for I; and I} under various conditions when the number of items is 16 per latent trait.

Categories S I;: 1% I¥: 1% I; 5% I¥:5% I; : 10% ¥ : 10%
2 1 0.001 0.011 0.009 0.058 0.023 0.110
2 2 0.000 0.013 0.001 0.057 0.003 0.106
2 3 0.000 0.009 0.000 0.041 0.000 0.080
2 4 0.000 0.009 0.000 0.037 0.000 0.074
2 5 0.000 0.007 0.000 0.033 0.000 0.064
3 1 0.011 0.012 0.039 0.040 0.069 0.071
3 2 0.009 0.010 0.034 0.036 0.061 0.064
3 3 0.004 0.007 0.021 0.030 0.044 0.056
3 4 0.005 0.009 0.024 0.033 0.049 0.062
3 5 0.004 0.008 0.019 0.031 0.042 0.060
4 1 0.008 0.011 0.037 0.043 0.073 0.081
4 2 0.002 0.010 0.014 0.042 0.036 0.078
4 3 0.002 0.008 0.012 0.034 0.031 0.067
4 4 0.000 0.008 0.007 0.035 0.021 0.070
4 5 0.002 0.006 0.012 0.027 0.033 0.056
5 1 0.008 0.010 0.039 0.043 0.077 0.083
5 2 0.003 0.008 0.020 0.037 0.048 0.073
5 3 0.002 0.008 0.017 0.035 0.041 0.071
5 4 0.000 0.008 0.003 0.038 0.013 0.075
5 5 0.000 0.007 0.005 0.032 0.017 0.066

Note: Categories = number of categories per item, S = number of latent traits.

TABLE 3.
Type I error rates for /; and /' under various conditions when the number of items is 32 per latent trait.

Categories S I; 1% I¥: 1% l;:5% I¥:5% l; :10% ¥ 10%
2 1 0.003 0.012 0.019 0.054 0.044 0.104
2 2 0.000 0.010 0.000 0.046 0.000 0.089
2 3 0.000 0.010 0.000 0.045 0.000 0.088
2 4 0.000 0.010 0.000 0.049 0.000 0.096
2 5 0.000 0.011 0.000 0.052 0.000 0.100
3 1 0.011 0.011 0.041 0.042 0.075 0.077
3 2 0.010 0.011 0.038 0.039 0.074 0.075
3 3 0.007 0.008 0.032 0.033 0.061 0.063
3 4 0.004 0.010 0.022 0.039 0.048 0.075
3 5 0.005 0.007 0.025 0.030 0.054 0.062
4 1 0.012 0.013 0.046 0.048 0.085 0.087
4 2 0.007 0.010 0.032 0.041 0.066 0.078
4 3 0.000 0.010 0.005 0.044 0.018 0.086
4 4 0.002 0.008 0.017 0.037 0.043 0.072
4 5 0.001 0.008 0.012 0.036 0.033 0.074
5 1 0.009 0.010 0.042 0.045 0.084 0.088
5 2 0.008 0.009 0.038 0.040 0.075 0.078
5 3 0.001 0.009 0.013 0.041 0.036 0.081
5 4 0.001 0.007 0.010 0.037 0.031 0.075
5 5 0.000 0.008 0.005 0.038 0.019 0.076

Note: Categories = number of categories per item, S = number of latent traits.
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TABLE 4.
Type I error rates for I; and I under various conditions when the number of items is 64 per latent trait.

Categories S I;: 1% I¥: 1% I; 5% I¥:5% I; : 10% ¥ : 10%
2 1 0.004 0.011 0.024 0.052 0.056 0.102
2 2 0.000 0.010 0.000 0.048 0.000 0.094
2 3 0.000 0.010 0.000 0.049 0.000 0.097
2 4 0.000 0.010 0.000 0.047 0.000 0.093
2 5 0.000 0.009 0.000 0.047 0.000 0.094
3 1 0.011 0.011 0.043 0.043 0.081 0.082
3 2 0.010 0.010 0.040 0.042 0.079 0.081
3 3 0.008 0.008 0.035 0.036 0.070 0.071
3 4 0.006 0.007 0.032 0.033 0.065 0.066
3 5 0.003 0.009 0.021 0.042 0.050 0.080
4 1 0.012 0.012 0.047 0.048 0.089 0.090
4 2 0.010 0.010 0.044 0.045 0.084 0.085
4 3 0.001 0.009 0.014 0.043 0.039 0.084
4 4 0.001 0.010 0.009 0.043 0.028 0.085
4 5 0.002 0.008 0.019 0.039 0.048 0.076
5 1 0.010 0.010 0.045 0.046 0.088 0.088
5 2 0.005 0.010 0.030 0.044 0.065 0.086
5 3 0.003 0.009 0.024 0.042 0.056 0.084
5 4 0.000 0.009 0.004 0.043 0.016 0.087
5 5 0.000 0.009 0.005 0.042 0.019 0.085

Note: Categories = number of categories per item, S = number of latent traits.

In general, I, shows a slight left skew when there were three response categories and a
more peaked distribution with increasing number of response categories. For [}, , the empirical
distribution in general overlaps with the standard normal distribution compared to /_,,.

Our simulations demonstrate how increasing the number of items per scale improves the
nominal type I error rate. However, increasing the number of latent traits, in general, reduces the
type I error below nominal level with fixed or non-fixed total scale length. Moreover, increasing
the number of categories within items also reduces the type I error. There is also an interaction
between the manipulated factors, the scale length, the number of latent traits, and the number of
item categories.

3.3. Simulation: Power

Power is defined as the proportion of flagged participants over the total number of participants
affected by aberrant behavior. We follow the same data generation process as Hong et al. (2019) for
aberrant responses. We generated both random and midpoint carelessness. Random carelessness
was simulated where each response option has equal chance of endorsement. Midpoint careless-
ness was simulated where participants are more likely to select the middle categories. This was
done by drawing from a Binomial distribution where the number of categories is equal to the
number of item response options and the probability of success is fixed to .5. It is also important
to consider the severity of careless responses when evaluating carelessness. Severity is the number
of items in a response vector that does not conform to the item response model. In past research,
others found that participants carelessly respond up to 50% of items on long surveys that involve
multiple latent traits (Baer, Ballenger, Berru, & Wetter, 1997; Berry et al., 1992). We simulated
the severity rate to be either 1/2 or 1/4 of the entire response vector.
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FIGURE 1.
Distributions of /; and [} with varying number of categories and dimensions for 64 items. Note: Red lines = N(0,1), Blue
lines = [;, and Green lines = /. (Color figure online)

In sum, we had a total of 1200 simulation conditions for data generation with 100,000
replications for each condition, with six factors fully crossed (three scale lengths per latent trait,
five number of latent traits, four number of categories, five values of 65, two levels of severity,
and two types of aberrant responses).

3.4. Results: Power

Tables 5, 6, and 7 present the power to detect careless responses when there are 16, 32, or
64 items per latent trait, respectively. Due to the large number of simulation results, we focus our
discussion when 6 = 0, severity is 1/2, and random responses. All other simulation conditions
are available upon request. The power to detect individuals increased with increasing « levels
and severity. For random and middle type responses, it was easier to detect the aberrance at more
extreme latent traits (e.g., -2 or 2) compared to latent traits closer to the center of the distribution
(e.g., 0). It is easier to detect random responses compared to middle type responses. In general,
I;m consistently achieved smaller power across simulation conditions when compared to [}, . We
focus our discussion when a = 0.05.
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TABLE 5.
Power for [; and [ under various conditions when the number of items is 16 per latent trait.

Categories S I;: 1% I¥: 1% I; 5% I¥:5% I; : 10% ¥ : 10%
2 1 0.096 0.113 0.233 0.254 0.343 0.363
2 2 0.248 0.326 0.465 0.530 0.592 0.640
2 3 0.680 0.726 0.845 0.869 0.907 0.921
2 4 0.745 0.786 0.893 0.911 0.940 0.950
2 5 0.966 0.980 0.991 0.994 0.996 0.997
3 1 0.375 0.389 0.576 0.586 0.681 0.689
3 2 0.408 0.417 0.619 0.626 0.725 0.729
3 3 0.743 0.772 0.878 0.891 0.924 0.932
3 4 0.965 0.975 0.988 0.991 0.994 0.995
3 5 0.958 0.964 0.988 0.989 0.994 0.995
4 1 0.120 0.138 0.280 0.302 0.398 0.417
4 2 0.284 0.375 0.521 0.597 0.658 0.712
4 3 0.770 0.833 0.897 0.926 0.940 0.956
4 4 0.409 0.441 0.631 0.653 0.740 0.754
4 5 0.704 0.776 0.877 0.907 0.934 0.949
5 1 0.126 0.147 0.292 0.316 0.410 0.432
5 2 0.211 0.342 0.437 0.555 0.577 0.667
5 3 0.354 0.462 0.608 0.685 0.736 0.788
5 4 0.629 0.722 0.828 0.876 0.901 0.927
5 5 0.586 0.775 0.822 0.908 0.906 0.950

Note: Categories = number of categories per item, S = number of latent traits.

TABLE 6.
Power for [; and /3 under various conditions when the number of items is 32 per latent trait.

Categories S I; 1% I¥: 1% l;:5% I¥:5% l; :10% ¥ 10%
2 1 0.244 0.260 0.447 0.461 0.568 0.579
2 2 0.664 0.711 0.851 0.875 0.916 0.928
2 3 0.990 0.993 0.997 0.998 0.999 0.999
2 4 0.961 0.966 0.990 0.991 0.995 0.996
2 5 0.974 0.981 0.994 0.996 0.997 0.998
3 1 0.747 0.752 0.883 0.886 0.930 0.932
3 2 0.986 0.988 0.995 0.996 0.997 0.998
3 3 0.985 0.986 0.996 0.997 0.998 0.998
3 4 1.000 1.000 1.000 1.000 1.000 1.000
3 5 1.000 1.000 1.000 1.000 1.000 1.000
4 1 0.328 0.337 0.553 0.561 0.672 0.678
4 2 0.648 0.669 0.824 0.835 0.891 0.898
4 3 0.909 0.929 0.970 0.976 0.985 0.988
4 4 0.955 0.957 0.989 0.989 0.995 0.995
4 5 0.896 0.904 0.967 0.969 0.985 0.986
5 1 0.194 0.201 0.407 0.414 0.543 0.549
5 2 0.412 0.450 0.640 0.666 0.751 0.769
5 3 0.740 0.851 0.911 0.950 0.958 0.974
5 4 0.740 0.804 0.902 0.927 0.950 0.962
5 5 0.909 0.965 0.980 0.992 0.993 0.997

Note: Categories = number of categories per item, S = number of latent traits.
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TABLE 7.
Power for [; and [ under various conditions when the number of items is 64 per latent trait.

Categories S I;: 1% I¥: 1% I; 5% I¥:5% I; : 10% ¥ : 10%
2 1 0.723 0.727 0.876 0.878 0.928 0.929
2 2 0.976 0.983 0.995 0.997 0.998 0.999
2 3 0.999 0.999 1.000 1.000 1.000 1.000
2 4 1.000 1.000 1.000 1.000 1.000 1.000
2 5 1.000 1.000 1.000 1.000 1.000 1.000
3 1 0.970 0.972 0.993 0.993 0.997 0.997
3 2 0.998 0.999 1.000 1.000 1.000 1.000
3 3 1.000 1.000 1.000 1.000 1.000 1.000
3 4 1.000 1.000 1.000 1.000 1.000 1.000
3 5 1.000 1.000 1.000 1.000 1.000 1.000
4 1 0.642 0.651 0.827 0.831 0.896 0.898
4 2 0.958 0.962 0.989 0.991 0.996 0.996
4 3 0.998 0.999 1.000 1.000 1.000 1.000
4 4 0.999 1.000 1.000 1.000 1.000 1.000
4 5 1.000 1.000 1.000 1.000 1.000 1.000
5 1 0.434 0.441 0.678 0.682 0.788 0.791
5 2 0.904 0.946 0.974 0.985 0.989 0.993
5 3 0.949 0.958 0.989 0.991 0.996 0.997
5 4 1.000 1.000 1.000 1.000 1.000 1.000
5 5 0.999 1.000 1.000 1.000 1.000 1.000

Note: Categories = number of categories per item, S = number of latent traits.

There are a few takeaways from the tables. When an item has more categories, the power to
detect aberrant individuals decreased. For instance, when there are three categories for a single
trait with 16 items per trait, the power is 0.586. When the number of categories increases to five,
power decreased to 0.316. This pattern in general holds, except for when there are two categories.
When we compare two categories to three categories for a single trait with 16 items, the power
to detect aberrant individuals is 0.254 and 0.586, respectively. Moreover, there may be an within
person effect size difference when we vary the number of categories within an item. For instance,
an aberrant response when there are two categories (e.g., 0 changed to 1) has a larger standardized
difference compared to five categories with the same change (e.g., O changed to 1 vs. 0 changed
to 4). Further work should focus on developing a within person effect size measure.

The impact on the number of latent traits can be viewed in two ways. First, if a researcher is
able to include more scales without having a finite test length, then the power to detect aberrant
individuals increases. For instance, a scale with two categories measuring two latent traits with
16 items per latent trait (32 items total) has a power of 0.530. When a researcher includes another
latent trait measured with 16 items (48 items total) the power increases to 0.869.

However, if a researcher has a finite test length, measuring more latent traits can increase,
decrease, or not change the power to detect aberrant individuals. Consider a scale with four
categories measuring two latent traits with 16 items per latent trait (32 items total) with a power
of 0.597. If we measured only one latent trait, but keep the total number of items fixed at 32, then
the power decreases to 0.561. On the other hand, a scale measuring two latent traits with 16 items
with three categories per latent trait (32 items total) results in a power of 0.626. If we measured
only one latent trait, but keep the total number of items fixed at 32, then the power increases to
0.866. Again, this finding is probably due to differences in within person effect sizes.
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TABLE 8.
Detection Rates using the Big Five data set.

Statistic Extraversion Neuroticism Agreeableness Consciousness Openness Total
Lom 0.073 0.075 0.077 0.076 0.096 0.125
I, 0.113 0.104 0.106 0.117 0.132 0.165

In general, when one increases the number of items on the scale, the power to detect aberrant
individuals increase. These findings replicate previous research. Moreover, increasing the number
of categories decreases the power to detect aberrant behavior. The impact of number of dimensions
on power depends if the total scale length is fixed or not. If the total scale length is not fixed, then
power increases with more latent traits (where the scale length increases with more items). With
a finite scale length, power can increase, decrease, or not change depending on the number of
item categories per latent trait. Our simulations have its limitations. The interpretation of aberrant
behavior is confounded with varying item categories. The development of a within person effect
size is necessary in order to compare our results, which is a potential area for further research.

4. Real Data Example
In order to illustrate the utility of /3, , we apply it to data collected about the Big Five
personality traits (Goldberg, 1992). Item response data were obtained from the Open Source
Psychometrics Project (https://openpsychometrics.org). The respondents were from an online
sample who consented to having their data stored and publicly available. The Big Five personality
assessment consists five sub-scales, each with ten items, which measure five personality traits:
extraversion, neuroticism, agreeableness, consciousness, and openness to experience. Developers
of the platform found that the data collected on the website tend to be of good quality, at least
relative to other platforms such as Amazon Mechanical Turk (https://openpsychometrics.org/
rawdata/validity/). For instance, only 0.2% of respondents were flagged for content implausibility
(such as reporting heights smaller than 4 feet). Other researchers have analyzed the Big 5 data,
and found evidence supporting a five factor model (Jeon & De Boeck, 2019). However, Jeon and
De Boeck (2019) suspected that subscales presented at the end of the assessment may contain
fatigue effects, which interferes with content validity for the entire survey. Person fit analysis may
help identify suspect individuals with fatigue effect or other aberrant responses.

In the current sample, 19,717 individuals responded to the survey with complete item
responses. We split the data into two parts. The rationale for data splitting is to remove the
confound of using the data twice for both item calibration and latent trait estimation. We ran-
domly selected 15,000 individuals as a calibration sample to estimate item parameters for a five
factor graded response model. Each item had five item response categories (where 1=Disagree,
3=Neutral, 5=Agree). We used the remainder to apply person fit analysis to detect individuals
with potential aberrant behavior. Example code can be found in the supplementary material.

Table 8 presents the proportion of individuals identified as aberrant individuals across each
subscale using /; or I} and the entire scale using [, or [}, . Clearly, using only a subscale
resulted in fewer individuals identified as having aberrant behavior where the average proportion
of participants identified was 0.079 and 0.114 using [, and [} compared to 0.125 and 0.165 using
l.m and [}, . Moreover, applying any asymptotic correction resulted in more individuals flagged.

m:
Both of these findings align with the simulation study.


https://openpsychometrics.org
https://openpsychometrics.org/rawdata/validity/
https://openpsychometrics.org/rawdata/validity/
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TABLE 9.
Correlation between detected individuals using the Big Five data set.

Openness  Consciousness  Extraversion = Agreeableness  Neuroticism  Total

Consciousness  1.000 0.266 0.228 0.224 0.215 0.472
Consciousness  0.266 1.000 0.302 0.282 0.277 0.506
Extraversion 0.228 0.302 1.000 0.259 0.276 0.481
Agreeableness  0.224 0.282 0.259 1.000 0.256 0.473
Neuroticism 0.215 0.277 0.276 0.256 1.000 0.518
Total 0.472 0.506 0.481 0.473 0.518 1.000

Table 9 presents the correlation between identified individuals for each subscale and the total
scale using [ for each subscale or [%, . The average correlation between individual subscales
was 0.258, which suggests that there are different sets of individuals being identified by each
subscale using /}. However, the correlations between each subscale using /¥ and the total scale
using /%, were larger, where the average was 0.490. This suggests that there is more overlap
between individuals identified by l;‘m and l;‘ for each subscale. However, there remains certain
individuals identified by [7,, which were not flagged by analyzing only the subscales. This could
be because l;“m is able to flag more aberrant individuals, as demonstrated with the simulations.

Figure 2 shows an example of four individuals who were flagged by [7,,. Participant 1 was
identified by /%, and some of the subscale-level /. Participant 1 appears to have aberrant responses
after the 20'" item. Prior to the 207 item, the responses appear to be consistent in certain item
categories. However, the item responses fluctuate more after the 20" item. This provides corrob-
orating evidence that there may be a fatigue effect after the 20’ h jtem (Jeon & De Boeck, (2019)).
Participant 2 was identified by all subscale-level /7 and [7,,, where a middle heaping pattern may
be occuring. Participant 3 and 4 were identified only by /%, , where they exhibited random behavior
and extreme response styles across the entire survey.

The applied analysis corroborates with the findings based on the simulation results, where
1%, appears to be more powerful than /¥ when detecting aberrant individuals, as evidenced by 7,
identifying more suspect individuals. Our applied analysis also demonstrates how [}, can detect
a wide variety of aberrant behavior, such as different response styles, fatigue effects, or random

responses.

5. Conclusion and Discussion

The current paper proposes an extension of person fit statistics to accommodate multidi-
mensional scales with mixed item types, I, . Given the increasing attention on data quality, the
extension helps applied researchers identify individuals with suspect response behaviors. Sni-
jders (2001) proposed the original correction for dichotomous and unidimensional tests. Sinharay
(2016a) proposed a correction for polytomous and unidimensional scales. Albers et al. (2016)
proposed corrections for dichotomous items and scales measuring multiple latent traits. The cur-
rent paper fills the gap for corrections of the more general case, multidimensional scales with
mixed item types.

The current study also builds on the recommendations made from previous studies. Albers
et al. (2016) did not consider the impact of multiple latent traits on dichotomous items, they
fixed the number of latent dimensions to be four in their simulation studies. Our simulations
suggest that measuring more constructs poses challenges for the detection of aberrant responses.
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FIGURE 2.

Item response patterns for four aberrant individuals identified by 7, . Note: Black lines delineate between subtests.

Moreover, there is a difference when analyzing aberrant responses for individual subscales or
an entire survey. When we analyze individual subscales in a survey, we can only detect aberrant
behavior inflecting those items. However, aberrant behavior most likely happens at the survey
level, such as the fatigue effect. When we analyze aberrant behavior at the survey level, we obtain
a more complete picture of each participant. Sinharay (2016a) also did not consider the impact of
categories. Tendeiro (2017) found that increased number of categories leads to more conservative
type I errors. For example, he found an average type I error rate of 0.03 for I} with polytomous
unidimensional scales. Our simulation studies support this finding.

Our applied analysis highlights the utility of analyzing person fit at the survey level in order
to detect aberrant individuals. For instance, one type of aberrant behavior that is notorious to
detect is when there is a large amount of random responses within a single response vector (Hong
et al., 2019). Because we have more information from multiple latent traits, it appears that we
can detect these individuals better rather than analyzing subscales individually. Moreover, there
appears to be a better ability in detecting nuanced types of aberrant behavior, where analyzing
the subtests one at a time misses the complete picture. For instance, the fatigue effect would have
not been detected examining the subtests individually.

It is important to note that [}, only tests if an individual’s response pattern conforms to the
assumed measurement model. Individuals need to exhibit aberrant behavior on multiple items for
the misfit to be pronounced enough to be caught. If an individual responds carelessly to a handful
of items, it is very difficult to detect such a case with person fit. Other statistics may be more
appropriate in that case. For instance, change point analysis has become a popular approach to
detective changes in response behavior (Shao, Li, & Cheng, 2016; Sinharay, 2016b; Yu & Cheng,
2019). However, these types of statistics, among others (Meijer & Sijtsma, 2001), also require
an estimate of a latent trait, which means these alternative approaches would also suffer from the
same problems without some correction due to uncertainty introduced by estimated latent trait(s).
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There are several limitations to the current paper. For instance, item parameters were assumed
to be known in this study. Even if one has good item parameter estimates, uncertainty of the item
parameters carries over to the estimation of latent traits, which eventually affects the distribu-
tion of the person fit statistics (Cheng & Yuan, 2010). The current derivations can be extended
when fallible item parameters are considered. Moreover, the current simulations only considered
when the latent trait is estimated with ML. Previous work has found that different estimators did
not change the results that much (Sinharay, 2016a); however, more work needs to be done in
light of multidimensional constructs. Corrections for two other popular estimators are provided
in “Appendix A,” and their performances should be evaluated in simulation studies. Furthermore,
interpreting the impact of aberrant behavior could be confounded when we consider varying cate-
gories. The development of a within person effect size measure for aberrant behavior is a possible
future direction. Finally, the current derivations only consider when there is simple structure in
the scale configuration. Person fit statistics can be extended to multidimensional constructs with
complex structure. Complex structure means there may be more than one underlying latent trait
per item. An interesting future direction would be to generalize the current corrections to more
general scenarios such as complex structure.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

6. Appendix A

6.1. Formulas for Different Estimators of 0: @ yyap and Ow g

The following section is based on work done by Sinharay (2016a) and Wang (2015). Suppose 6
is estimated by @, where 6 satisfies the following condition:

101(0) Yini Xl (H./ (Xi) — Pij (0))fi,/1(0) 0

t02(0) DY (LX) — Pij(0) )1i2(0) 0
Vl(X|0)|g= . + i=1 Z}—O(] .t i )t] =1 1. (63)
tos (0 ; ' O
s 1 2t (H/’(Xi) - Pz‘j(o))lijs(f))
which can be rewritten as:
P mj
VI(X10)]p = t0(0) + Z Z (I[j(Xi) - Pij(o))tij(o) =0 (64)
i=1 j=0
for some functions 79(0) = (to1, to2, . . ., fos)" and #;;(0) = (fij1. tij2. ..., tijs)". For instance,
éML is the value of @ for which:
P m
VIXIO)le =YY (LX) — Py @) P @)V P O)s = 0. (65)
i=1 j=0

The equality in Equation (64) holds where y(#) and #;; () satisfy:

10(8) = 0 and 1;;(8) = P (0)V P;;(6)p. (66)
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Similarly, ] mAp satisfies the following:
VI(X10)|g + Viogm(0)|g =0, (67)
where 77 (0) is a prior distribution for . Equation (64) holds for 0 MAP Where:
10(0) = Vlogm(#)|g and #;;(0) = Pi;I(G)VPij(0)|0. (68)

Note that if the prior is a standard multivariate normal distribution, then Vlogm(0)|g = —6.
0w 1 E satisfies Equation (64) where:

VI(X10)lp + VI, (6)B(0)]g = 0, (69)

where I p» be the average information about € in the sample where I p = Zle L@#)/p. B#) =
[B(61), B(0»), ..., B(0s)] is a S-dimensional vector where the s element in B(0) is:

: Xp: e ( il ) (70)
2 96,06,96,

tu,v=1
Therefore this satisfies Equation (64) where
10(8) = VI, (0)B(8)p and 7;;(6) = Pifl(f’)VPij(O)Io. (71)
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