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New constraints are found that must necessarily hold for Israel-Stewart-like theories of fluid dynamics to
be causal far away from equilibrium. Conditions that are sufficient to ensure causality, local existence, and
uniqueness of solutions in these theories are also presented. Our results hold in the full nonlinear regime,
taking into account bulk and shear viscosities (at zero chemical potential), without any simplifying
symmetry or near-equilibrium assumptions. Our findings provide fundamental constraints on the
magnitude of viscous corrections in fluid dynamics far from equilibrium.
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Introduction.—Relativistic fluid dynamics is essential to
the state-of-the-art modeling of the quark-gluon plasma
(QGP) formed in ultrarelativistic heavy-ion collisions (see
[1-3]). However, despite its wide use and significant success,
it remains unclear why such a fluid dynamical description is
applicable given that local deviations from equilibrium
in nucleus-nucleus collisions can be very large, especially
at early times [4-6]. In fact, typical fluidlike signatures
involving anisotropic flow [7] persist even in small systems
formed in proton-nucleus and proton-proton collisions at
sufficiently high multiplicity [8-14]. Such findings have
motivated a series of new investigations on the foundations
of relativistic viscous fluid dynamics [15-18] and their
subsequent extension toward the far-from-equilibrium
regime relevant for heavy-ion collisions [19-45].

The viscous fluid description of the QGP is currently based
on ideas from Israel and Stewart (IS) [46,47] (see, also,
Mueller [48]), who proposed a way to fix the long-standing
acausality [49] and instability [50] problems of the relativistic
generalization of Navier-Stokes (NS) equations derived by
Eckart [51] and Landau and Lifshitz [52]. The general
mechanism introduced by IS to try to avoid such issues
assumes that dissipative currents such as the shear stress
tensor, 7, and the bulk scalar, IT, are new degrees of freedom
[53,54] which obey nonlinear relaxation equations describing
how such quantities relax to their relativistic NS limits within
relaxation time scales 7, and zy;. The same principle is also at
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play in modern formulations of fluid dynamics put forward by
Ref. [55] and Ref. [56], which are currently employed in
numerical simulations (see, for instance, [57]).

It is well known that the IS-like theories are linearly
stable around equilibrium [58-61]. But physically sensible
relativistic theories of fluid dynamics must also be causal,
i.e., the equations of motion must be hyperbolic, and the
propagation of information must be, at most, the speed of
light [62]. Also, the Cauchy problem must be locally well
posed [63], i.e., given initial conditions, one must show
that the equations admit a unique solution. A common
misconception in the field is that IS-like theories have
already been proven to be causal a long time ago in
Refs. [46,58,59,64—66]. This is not the case. Those early
works only considered linearized disturbances around
equilibrium, where the background fields z,, and II vanish
and the corresponding linear disturbances are small. Such a
linearized analysis says nothing about the nonlinear regime,
even for small 7, and I1. The far-from-equilibrium regime,
in particular, is necessarily nonlinear as 7, and IT can be as
large as the local equilibrium pressure P.

Hence, it is not known if IS theories are, indeed, sensible
in the regime probed by high energy hadronic collisions.
Understanding the far-from-equilibrium properties of such
theories is also crucial to reliably assess the role of viscous
effects in early universe cosmology [67]. Here, we make
essential steps toward solving this critical problem by
finding conditions (in the form of simple algebraic inequal-
ities that can be checked at every step of the evolution) that
must necessarily hold for IS-like theories to be causal in the
nonlinear regime. We also present conditions that are
sufficient to ensure causality, local existence, and unique-
ness of solutions of IS-like theories. Our results are the first
in the literature that hold in the full nonlinear regime, with
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bulk and shear viscosities (at zero chemical potential), in
three spatial dimensions, without recurring to any sym-
metry or near-equilibrium assumptions.

The equations of motion.—Using the Landau frame
definition of the hydrodynamic variables [52], the
energy-momentum tensor of the fluid can be written as
[We use units ¢ = h = kz = 1. The spacetime metric
signature is (— + ++). Greek indices run from O to 3,
Latin indices from 1 to 3.] T" = eutu’+
(P +1II)A* + 7+, where w” is the fluid’s four-velocity
(with wu,u" = —1), e is the energy density, P = P(¢)
is the equilibrium pressure defined by an equation of state,
A, = g + u,u, is the projector orthogonal to the flow,
9w 1s the spacetime metric, 7z, = r,,, #*u, =0, and
A, 7" = 0. We focus on high energy collisions, and thus,
we only investigate, here, the case of zero chemical
potentials. Conservation of energy and momentum implies
that V, T# = 0, which can be written as (¢} = dP/de is the
equilibrium speed of sound squared)

u'Voe+ (e + P+ Vu® + 725V, u* =0,

(e + P +T0)u!Vyu, + DGV ye + AV + MOV, 2 = 0.
(1)

Here, we consider the case where the dissipative currents
{7 11} satisfy the following equations (Note that our
metric signature is different than in [56].), derived using the
Denicol-Niemi-Molnar-Rischke formalism [56], and com-
monly used in heavy-ion collision applications

ut'V, 1+ 11 = =V, ¥ = opnIV  u# = A, w0,

(2a)
T”AZ;MAV JY
= 2ot — 5, "'V u* — ’rmﬂ,g”a”m — Amlle*,
(2b)
J
u“ poy+mp Oy
CCAMY putSl) — mlut AFT
041 E7 U
e T
04><l Cll/&l 04><l
O4><l CLZ/&Z 04><l
L O4><1 C?/&x O4><1

Al =

(A’;AZ + AZAZ,) /2 — % AR A 4, Af{‘ B = A’;;A“iBf , and
n, ¢ are the shear and bulk viscosities, respectively. All the
transport coefficients, {1, {, 711, T, Sy Atrs Onxs Trrs Anll }>
can depend on the ten dynamical variables {e, Uys Ty I}
(so, in principle, they may even depend on the dissipative
tensors) but not on their derivatives. Explicit expressions
for transport coefficients in models can be found, for
instance, in [56,68,69].

We note that {n,{,z,, 7} are the only coefficients
that remain after linearization around equilibrium where
7" = 0 and IT = 0. This shows why linearized analyses
[58,59] necessarily miss the effects from the other
coefficients, {Smm, Arizs Opp> Taps Az11}» Which contribute
to the nonlinear evolution. However, other nonlinear

where o* = A’;;V“uﬁ is the shear tensor,

terms such as 7, 7", 2, 711, n'é” 7Y% which appear
in [56], could have been trivially added to the equations
as they do not contribute to a causality analysis since they
do not involve derivatives of the fields. Nevertheless,
there are still some other nonlinear terms that can

be considered such as 70'QY®, where Q,, = (A2V,u, —

AfV,u,)/2 is the vorticity and, also, QY Qi [3]. The
former will be investigated in a separate publication.
The latter contributes with derivatives of the fields to
the principal part of the system of equations and, thus,
a different analysis than presented here would be
required.

Causality.—Causality is the concept in relativity theory
asserting that no information propagates faster than the
speed of light and no closed timelike curves exist (so the
future cannot influence the past). See Refs. [70-74] for a
mathematically precise definition of causality. Causality
can be investigated by determining the characteristic
manifolds associated with a system of partial differential
equations [75,76]. Let us write equations (1)—(2) as
A°V, ¥ = F(¥), where we defined the vector
¥ = (e,u’, 1, 7%, ", 7%, 7%), the 22 x 22 matrix

O1x4 O1x4 O1x4 O1x4
ogl4 ofly 0514 051,
(! 044 044 044
T,u%ly Ogpa 044 Ogses | (3)
0454 T uly 044 0454
O4x4 Ogxa Touly Oy
044 044 Opxa 77Uy
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and F () is a vector that does not contain derivatives of the
variables. Above, we also defined p=¢+ P +1I,
E¢ = (¢ + o) + e, BU =1 (aves) + A3,
—2AM5%), and

Co = | (20 + A T)85] + 22 2765, + = nhoy | B

T
- % Ar® + 5, 7% — 1, (x5u’ + mdu’)u®.

The characteristic surfaces {®(x) = 0} are determined by
the principal part of the equations by solving the character-
istic equation det(A%¢,) =0, with &, = V,® [77]. The
system is causal if, for any &, it holds that (C1) the roots
& = &o(&;) of the characteristic equation are real and (C2)
&, = (&, &) is spacelike or lightlike. Condition (C2) implies
that  the  characteristic ~ surfaces  {®(x) =0}
are timelike or lightlike, indicating that no information
is superluminal. For instance, for an ideal fluid (where
[I=0 and =z, =0), the characteristic velocities are
determined by the speed of sound and causality implies
that ¢2 < 1 [63].

From (3), it is clear that the characteristics associated
with the evolution depend on the dissipative tensors
{#*" 11}. Therefore, the true causal behavior of IS theories
is necessarily a far-from-equilibrium property of the fluid,
and linear analyses around equilibrium cannot be used to
establish causality and well posedness in IS theories. The
computation of the characteristics defined by (3), which is
needed for a causality analysis, is extremely involved and is
presented in the Supplemental Material [78]. Below, we
present the main consequences of such calculations.

Let A,, @ =0, 1, 2, 3, be the eigenvalues of the z;. The
eigenvalues are such that Ay = 0, since u,, is in the kernel
of z (u,zy =0), and A; + Ay +A; =0, so that the
trace is kept zero. Without loss of generality, let us take
Ay <Ay < A3 with A; <0< A;. Now, we state our
assumptions, which are the following: (A1) for the trans-
port coefficients and relaxation times, suppose that 7y, 7, >
0 and 1, ¢, 7., Onm, Aties Onrs Antls c% > 0; (A2) for the fluid
variables, suppose that ¢ > 0, P >0, and ¢ + P + 11 > 0;
finally, we also assume that (A3) e+ P +11+ A, > 0,
a =1, 2, 3. Then, the following conditions are necessary
for causality, i.e., if any of the inequalities below is not
satisfied, then the system is not causal:

1
(277 + j'JZITI—[) - 5 lm|Al | >0, (4&)

1
s+P+H—2—(2n+lﬂnH)—jﬂA3 >0, (4b)
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1 nn
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T, 47,

a#d, (4c)

1
€+P+H+Aa—?(2n+ﬂﬂnﬂ)

_Tﬂ(Ad+Aa) >0,

o a+d, (4d)

Y
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21(’14- ATl )+21 d

ya s

1
—2n 4+ A;nll + (66, —
+6T”[’7+ Il +( nn

+ Ol T + A A
+C 111 Mrd |

mn

Tﬂﬂ')Ad]

(e+P+I1+Ay)c: >0,

(4e)

1

b

Ton 1
— —Ad - [277 + /1”]'[1—1 + (65,”1.
27, 67,

O oundl + AnAg

mn

- T;m)Ad]

(e4+P+T1+Ay)c2 >0,
(4f)

where (4c)—(4f) must hold for a, d = 1, 2, 3. The proof that
(4) are necessary conditions for causality under assump-
tions (A1)—(A3) is given in the Supplemental Material [78].
Here, we discuss the significance of this result.

We stress that assumptions (A1) and (A2) are standard in
heavy-ion collision applications [57], and (A3) is a very
natural assumption since P + I+ A, for a = 1, 2, 3 may
be interpreted as the pressure in each spatial axis in the local
rest frame. Thus, if (A3) is violated, the theory would
have a pathology in the sense that fluid elements would
have negative inertia, i.e., the acceleration is opposite to the
force given by the negative of the gradient of pressure.
Furthermore, it is natural to make assumptions that hold
close to equilibrium, and since (A2) guarantees
e+ P+11>0, for small deviations from equilibrium,
A, will be small, giving € + P +11+ A, > 0. That said,
we stress that, although (A3) is expected to hold near
equilibrium, it is, itself, not a near-equilibrium assumption.

Conditions (4) could never have been found using a
linearized analysis, as they depend on IT and A,, both of
which vanish in equilibrium. Consequently, if, in any fluid
dynamic simulation in heavy-ion collisions that employs
(1)—(2), the necessary conditions above are not fulfilled,
causality is necessarily violated. It is important to point out
that this causality violation has nothing to do with the
ability of numerical schemes to produce a solution, a point
we shall return to at the end of the Letter.

While the above conditions must hold for the system to
be causal, they are not sufficient conditions, i.e., by
themselves, conditions (A1)-(A3) and (4) do not assure
the system to be causal (see the Supplemental Material
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[78]). Therefore, it is important to have conditions that are
sufficient for causality. In this regard, assume, again, that
(A1)—(A3) hold. Then, the following conditions are suffi-
cient to ensure that causality holds, i.e., if they are satisfied,
then the system is causal:

1 T
(e+P+II—|A,|) (2n+z,mn)—;7/\3zo, (5a)

Tx

(27] + /1771'[1_[> - Trm|A1| >0, (Sb)
Trr < 6571'7:’ (SC)
A
ﬂ+c%_hzo’ (5d)
T 127,
1
5o 41+ 2001+ (36 + 7o) A
+ ST + A A
et ot Aneds oy A2
n
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<(e+P+I)(1-c3), e

1
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e+ P+11—|A]

where condition (5h) can be dropped if 6,, = 7,, = 0. The
detailed proof can be found in the Supplemental Material
[78]. Since (4) must hold for causality, they must be
satisfied for any set of conditions that imply causality,
and it is possible to verify that (5) imply (4) under
assumptions (A1)-(A3). When shear viscous effects are
neglected, (5) reduces to the conditions for the bulk
viscosity case found in [79].

[4’7 + 2/1HHH - (3571'71 =+ Tﬂ'ﬂ)lAl ”

(e+P+T1—|A|)c?

(5h)

Conditions (A1)-(A3) and (5) also ensure the unique
local solvability of the initial-value problem in the class of
quasianalytic functions: given initial data of sufficient
regularity satisfying (5), there exists a unique solution to
the nonlinear equations taking the given initial data, defined
for a certain time interval. Thus, if (A1)—(A3) and (5) hold,
the evolution of the viscous fluid is guaranteed to be well
defined and causal even far from equilibrium where the
gradients (and, hence, ##* and II) are large. This is relevant
for determining the properties of hydrodynamic attractors
[20] under general flow conditions [27,80] and, also, for an
overall validation of fluid dynamics descriptions of extreme
systems, such as proton-proton collisions. Moreover, while,
here, we focus on applications to heavy-ion collisions, so
9wy 1s the Minkowski metric, the methods of [79] can be
adapted to show that our conclusions hold when (1)—(2) are
coupled to Einstein’s equations. Hence, our results are also
crucial for determining the far-from-equilibrium behavior
of viscous fluids in general relativity, which may be
relevant to neutron star mergers [81]. The technical details
of these statements are provided in the Supplemental
Material [78].

When we linearize the equations around the equilibrium,
terms involving 7., Snm, Ariz» Ozzs Azn1 drop out and, thus,
(A1) can be replaced by 7., 7y > 0, 1, ¢, c% >0, and (A2)
and (A3) can be replaced by e + P > 0 and P > 0. Then,
conditions (5) become necessary and reduce to € + P > 0,
e+P—(n/t) 20, and 1/(e+ P)(4n/3c, +/mn) <
1 — c2. These conditions coincide with the corresponding
well-known results previously found in [58,59] that ensure
causality and stability in the linearized regime around
equilibrium.

It is instructive to compare the causal propagation modes
of the full nonlinear theory determined here with that of
the dynamics linearized about equilibrium. Linearizing
Egs. (1)—-(2) around equilibrium, we find four distinct
modes of propagation which correspond to the flow lines,
the sound waves, and shear waves at two distinct speeds.
These are the same ones found in the previous works
[46,58,59,64-66], where, there, the authors find, in addi-
tion, a second longitudinal mode (second sound) due to the
fact that their equations also include a conserved current. In
the nonlinear case, we found six distinct propagation modes
corresponding to the flow lines, the sound waves, and shear
waves at four distinct speeds. This, again, highlights how
one misses an important part of the dynamics by looking
only at linearizations around equilibrium: there are two
additional speeds allowed for the shear waves that collapse
onto the remaining two upon linearization, so that these
additional velocities are not visible in the linearized
analysis.

We presented two sets of conditions for causality,
namely, conditions that are necessary and conditions that
are sufficient. Further studies must be done to discover
conditions that are necessary and sufficient, i.e., conditions
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that ensure the system to be causal if and only if they hold.
This is an extremely challenging task given the complexity
of the characteristic equation in the nonlinear problem.

Conformal limit.—To obtain some physical understand-
ing about our nonlinear constraints, consider a conformal
fluid [55],i.e., 11 =0, P = ¢/3, 6,, = 41,/3, with /s and
7,T being constants (here, T ~ £!/4 is the temperature and
s ~T? is the equilibrium entropy density). Assume, for
simplicity, that all the other transport coefficients vanish (as
in [82]). The necessary conditions in (4) then impose that
A,/(e+P)> -1+ (n/s)(1/7,T), so none of the eigen-
values of 7, can be too negative. Also, when
A,/(e+P)>—=14(n/s)(1/z,T), the eigenvalues are
also  limited from above since (4e)  gives
A,/(e+P)<1-(2/7,T)(n/s). Using typical values
motivated by heavy-ion collision applications, #/s =
1/(4z) [83] and 7,7 =5n/s [84], one then finds
—4/5 < A,/(e + P) <3/5. This implies that the relative
T,/ (e + P)?,
cannot be arbitrarily large. Using a NS initial condition
where 7, ~ =210, at the initial time 7, the corresponding
normalized eigenvalues would be parametrically given by
A,/ (e + P) ~(n/s)/[zoT (9. X)] (assuming o,, ~ 1/7, in
the initial state). Given that our conditions imply that,
roughly, |A,/(e+P)| <1, for 77=0.6fm and
n/s = 1/(4x), causality issues will be found where
T(79,X) <30 MeV, which is below the typical values
for the freeze-out temperature. However, in initial state
models where the initialized 7,,/(e+ P) is large and
strongly deviates from NS, the estimate above does not
apply, and causality violations may appear in hot regions of
the plasma as well. A detailed numerical study is needed to
assess the importance of our results to current simulations
of heavy-ion collisions.

Conclusions.—In this Letter, we established, for the first
time, that causality, in fact, holds for the full set of
nonlinear equations in IS-like theories without the need
for symmetry assumptions and in the presence of both shear
and bulk viscosity. All our conditions are simple algebraic
inequalities among the dynamical variables that can be
easily checked in a given system or simulation. Previous
attempts to go beyond the linear regime were restricted to
1 4+ 1 dimensions [60] or assumed strong symmetry con-
ditions [61,85], which, in practice, also corresponds to
partial differential equations with only one spatial variable.
Without such restrictions, the only other work where
nonlinear causality has been shown for IS-like systems
is [79], which only included bulk viscous effects. We have
also studied the Cauchy problem for (1)—(2), establishing
that it is well defined, so that it is meaningful to talk about
solutions.

Prior to our work, unless a numerical code was specifi-
cally tailored to detect causality violations of the under-
lying equations, which typically is not a feature present in

magnitude of the shear stress tensor,

standard codes, one could only identify whether a numeri-
cal simulation of (1)-(2) violated causality if this caused
(a) a breakdown of the simulation, (b) a manifestly spurious
solution, or (c) clear nonphysical behavior. These
constraints are all too weak, as we now explain. For
illustration, consider —9?y + (1 4+ w)Ay = 0, where A
is the Laplacian. This is a nonlinear wave equation with
(nonlinear) speed given by /1 4+ y for (For y < —1, the
equation is no longer a wave equation, becoming elliptic,
and it is a degenerate wave equation when yw = —1.)
w > —1. Indeed, the characteristics are given by

£y = +/ T+ w|&|. Therefore, the solutions are not causal
when y > 0, but are causal for —1 < y < 0. Nevertheless,
the equation remains hyperbolic as long as w > —1.
Standard hyperbolic theory (see, e.g., [86]) ensures that,
given smooth initial data y|,_, and 0,y|,_, there exists a
unique smooth solution defined for some time. So any
numerical scheme that is able to track the unique solution
will produce results in both the acausal and causal cases
w >0 and -1 <y <0, respectively. This makes it
extremely difficult to infer violations of causality using
(a) or (b) as criteria. Exactly the same situation can happen
in simulations of (1)—(2). We also note that linearizing
the equation about the “equilibrium” w =0 gives
=0y, + Ady = 0, which is always causal, reinforcing,
again, the idea that causality cannot always be obtained
from linearizations.

Criteria (c) has also limited applicability. First, there are
different mechanisms that can produce nonphysical sol-
utions. Thus, it is still important to understand whether
unphysical behavior is being caused by causality violation
or some other mechanism, such as running beyond the limit
where the effective description is valid. Second, relativistic
fluids in the far-from-equilibrium regime, such as the QGP,
may exhibit unexpected behavior, so one needs to be
careful to differentiate genuine exotic features from those
that are consequences of running a simulation in a super-
luminal regime. This may be particularly relevant to heavy-
ion simulations where the values of the fields drop
extremely rapidly at the edges of the QGP at early times
and in the cold or dilute regions of plasma where a rescaling
of dissipative tensors has been employed [87-90]. Third,
numerical simulations of relativistic fluids must be based
on equations of motion that respect causality, a fundamen-
tal physical principle in relativity.

The results we presented here are an important step
in addressing all these difficulties, as one can check if
(A1)—(A3), (4), or (5) hold at any moment in numerical
simulations [Comparing with the example of the equation
for y above, this would be similar to monitoring the value
of /1 + y:ify > 1, then the system is not causal, which is
the analog of (5), whereas causality is guaranteed if
—1 <y <0, which is the analog of (5).] since all the
quantities involved in our inequalities can be readily
extracted in numerical simulations [3]. We also note that
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our results apply, in particular, to the initial conditions, so
(4) and (5) can be used to rule out initial conditions that
violate causality or to select initial conditions for which
causality holds. This can be particularly relevant to further
constrain the physical assumptions behind the modeling of
initial conditions in QGP simulations. There are many
subtleties involved in numerically solving the IS equations,
including possible violations of causality caused entirely as
an artifact of the numerical simulation. Thus, it is important
to distinguish between such numerically caused unphysical
phenomena from true violation of causality of the under-
lying equations. Our new causality criteria can be instru-
mental in such analyses.

In sum, in this Letter, we established, for the first time in
the literature, conditions to settle the longstanding ques-
tions concerning causality in Israel-Stewart theories in the
nonlinear, far-from-equilibrium regime. As such, our gen-
eral results provide the most stringent tests to date for
determining the validity of relativistic fluid dynamic
approaches in heavy-ion collisions, astrophysics, and
cosmology.
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In this Supplemental Material, in Section II we provide the proof that conditions (4) are necessary for
causality, in Section III we provide the proof that conditions (5) are sufficient for causality, and in Section IV
we establish local existence and uniqueness of solutions to the initial-value problem for equations (1)-(2). All
these results depend on a careful analysis of the roots of the characteristic equation det(A%*¢,) = 0. Thus,
we first present in Section I a suitable factorization of det(A*,). In Section V we show that conditions
(4), albeit necessary, are not sufficient for causality. In Section VI we provide the formal definition of
causality and comment on why, in our case, it can be reduced to conditions (C1) and (C2). Since causality
is intrinsically tied to concepts of relativity theory, we refer to the standard literature (e.g., [1]) for further
background. Throughout this Supplemental Material, we continue to use the notation and definitions of the
paper.

I. THE CHARACTERISTIC EQUATION

Letting b = u®&,, v* = A*YE,, and w* = M€, the characteristic determinant can be written as

b P&y + wy
det(A?Ea) = b70rm det [b 25t — buut — L E] = bmder (M), (S1)
s v v T ™

where M = [M#]4x4 with M¥ = pb?§# — bw, ut — % — ”“—E — 2ok (p&, +w,), E, = E%, = (C+ émmID) &, +
Arw,,, and

_ 1 Trm 2
C) = Co¢a&, = [(277 + AendD)E, 08 + 28 w8, + %} (v“ﬁﬁ + oMol — 3A“A§u)

f%véwy + 5mw5§y - bTﬁ(wyu‘; + bwg). (S2)

nz

Since 7" is symmetric and traceless, it can be diagonalized, so the eigenvalue problem whe = Aaely,
with A =0,1,2,3, defines an orthonormal set of eigenvectors e’y _, = u#, ey _ = e¥ with real eigenvalues A,
for a = 1,2, 3 in the sense that g, e'ye% = nap where nap = diag(—1,1,1,1). The eigenvalues are such that
Ag =0 and Ay + Ay + A3 = 0. Without any loss of generality, let us take A1 < Ay < Az with A; <0 < A3 so
that the trace is kept zero (note that if 7# £ 0, this allows degeneracies to occur with multiplicity up to two).
Since {€/4} is a complete set in R*, we may define a tetrad of dual vectors {e/'} by setting e = n48(ep), so
that! 6§ = e4eD. Also, the following completeness relation holds: 6% = Y , efiet = —utu, + 3, el (eq)w-
Therefore, the components of any four-vector z* relative to the tetrad {e/}} are defined by 24 = 2ve. We
can then use this to define vq4 = efjv, and &4 = €}¢,. Given that &* = —but + Y v%e# (a = 1,2,3) one
finds that £4—9 = —¢47° = b while &, = v,. Furthermore, wy = efw, = /7, = Axés = Agva, where

1 From now on, repeated Latin indexes are not summed unless explicitly stated.



we used that Ag = 0 and again £, = v, (note also that v® = v, since 14, = d4p). Using these observations,
we can show that the determinant det(M) needed for the characteristics in (S1) is given by

det(M) = det(E"'ME) = momymayms
2 + Aenll + (60rn — Trn)Ag] + SHOMIIERAzte 4 () 4 Aa)cg} 02

X [1—2{6;[ -

a

1257”‘— — Trx )\Hvr 2 Trr (Aa - Ab)Zf)?l’LA)g
e ( - +c 127}) ZW ) (S3)
a<b
where E = [e4]axa, E7' = [eDlixs, and ET'ME = [eﬁMl‘}e%hM. Also, we defined above mg =
p (0 = 30, 0av2), g = 2E0RAIETmxlte (5 £ )2 — 2 (204 AT (00) — 325 (Agv - 0+ 30, Ac?),
Dq = Vq/+/v - v (assuming v # 0), and mg = mo/(v-v), Me = Mma/(v-v). Note that >, 92 = > v2/(v-v) =1

since v-v = vkv, = > v2. Assuming v # 0 is allowed because v = 0 does not lead to nontrivial roots b # 0
of the characteristic equation if assumptions (A1)—(A3) hold.

The roots £ of det(A%*¢,) = 0 in Eq. (S1) are the 14 roots from b = u*{, = 0 and the 8 roots from
det(M) = 0 in Eq. (S3) which consist of the 2 roots from mg = 0 and the 6 roots coming from the zeros of

f(k) = mymymzG(k), (S4)

where we defined k = b?/v - v and

2+ ATl 4 (60 — 7o) A ] + SETIEEba ()4 7 )2 52

Glh)=1-)_ {%[

a M,
1257”7 — Trn )\H7r 2 Trm (Aa - Ab)2'f}2f]§
_ i — a’b S5
127, ( ™ *e 127,r> Z MMy (85)

a,b

a<b
In this notation det(M) = mo(v - v)f(k) because we used the definition m, = m, /v -v. Note that although
G(k) has m, appearing in denominators, these are canceled by the multiplication of G(k) by mimams in
the definition of f(k). Thus, f(k) is a polynomial of degree 3 in k (of degree 6 in b) and is defined for all
values of k € R. Then, it is possible to factorize f(k) as

3
fk) = lH(€+P+H+Aa) (k = k1)(k — ko) (k — ks), (S6)

a=1

where ky, ko, ks as the three roots of f(k). Note that for the sake of brevity, we have suppressed the depen-
dence on ¢ in writing G(k) and f(k) (to be more precise, these should have been written as G(k, v), f(k,v)).

Conditions (C1) and (C2) for causality demand that all the 22 roots {y = £ (&;) of det(A*E,) = 0 are real
and satisfy £, = —b?>+v-v >0, ie.,, 0 < k < 1. The 14 roots b = 0 are causal. Thus, the rest the analysis
of necessary conditions in Section II will focus on the remaining roots defined by f(k) = 0. We summarize
this in the following important statement:

The system is causal if and only if for all for all ¥ on the unit sphere, the roots

of mo(k,v) =0 and f(k,0) =0 are real and 0 < k < 1. (C3)

II. DERIVATION OF NECESSARY CONDITIONS FOR CAUSALITY

Here we establish that conditions (4) are necessary (but not sufficient, see Section V) for causality. More
precisely, we establish the following Theorem.
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Theorem 1. Let ¥ = (g,u”,IL, 7%, 71, 72 73¥),_o 3 be a smooth solution to equations (1)-(2) in
Minkowski space, with u,u* = —1 and 7, satisfying 7 = 0 and w"m,, = 0. Suppose that (A1)-(A3)
hold. If any of conditions (4) is not satisfied, then U is not causal in the sense of Definition 4 (see Section
VI).

Proof of Theorem 1: Our derivation of necessary conditions for causality is via the following reasoning.
Causality requires that conditions (C1) and (C2) hold for all &;. Thus, in order to violate causality, it suffices
to show that for some &;, (C1) or (C2) fails. Suppose now that we find a condition, say Z, for which we
can exhibit one ¢; such that (C1) or (C2) fail, i.e., we obtain the statement “Z implies non-causality.” This
statement is logically equivalent to “Causality implies non-Z.” This means that non-Z is a necessary condition
for causality: if it is violated, the system is not causal. In our case, conditions like Z will be inequalities
among the scalars of the problem (e.g., the relaxation times, eigenvalues A,, etc.) of the form A > B, whose
negation is then A < B. The latter is then the necessary condition we are looking for: if A < B does not
hold, the system is not causal.

Recall that (C1) and (C2) is equivalent to (C3), so in view of the foregoing discussion, we aim to violate
(C3). With the choice 0, = 44, one can write mg = p(v - v)(k — g4) = 0. Under our assumptions, the only
root is k = gq. Since we need 0 < k < 1, as discussed, and since g; < go < g3, causality if violated if g; < 0,
leading to condition (4a), or if g3 > 1, leading to condition (4b).

As for the roots of f(k), we may note that now in f(k) = m;mamsG(k) we have

1 s
o = (& + P+ 11+ Ak = 5—(20+ AerlD) = 75 (Aq + Ag) (S7)

Tr Tr

and

{6120+ AentTT+ (6077 — 7o) Ag] + SEEIMIEA=RS 4 (4 7 )2 )

mq

Gk)=1—

(S8)

because we have set 0, = d,q. We may therefore rewrite

¢+ Snnll + A Ag n
T1I1

1
f(k) = MgMp |:md - {67_[277 + Al + (6671'71' - TTFﬂ')Ad] +

o+ a2} 0

where a # b and a,b # d. Setting each of the factors m,, m; equal to zero, we obtain the roots

52 (20 + AenIl) + Z2= (A, + A
= 2= AnlD) + 557 ( d,a#d. (S10)
e+ P+1I1+A,

Causality is violated if k < 0, leading to condition (4¢), of if k > 1, leading to condition (4d). The remaining
root in (S9) is obtained when the term in brackets vanishes, giving

3= (20 4+ AenTD) + Z2= Ay

|
{2 Al (6500 — 7] + St (1 )2
+ e+ P+I1+ Ay (S11)
Causality is violated if k& < 0, leading to (4e), or if k& > 1, leading to (4f). This finishes the proof. O

III. DERIVATION OF SUFFICIENT CONDITIONS FOR CAUSALITY

Here we establish that conditions (5) are sufficient for causality. More precisely, we have:
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Theorem 2. Let ¥ = (g,u”,IL, 7%, 71V, 72 73),_o 3 be a smooth solution to equations (1)-(2) in
Minkowski space, with u,u* = —1 and 7, satisfying 7 = 0 and w"m,, = 0. Suppose that (A1)-(A3)
and (5) hold. Then U is causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 2: As discussed in Section I, the 14 roots b = 0 are causal and do not need any further
treatment. The remaining 8 roots that come from det(M) = 0 are, again, the two roots of mg and the six
roots of f(k) defined in (S4). We begin by analyzing the two roots of mg. Recalling that v = 0 does not
lead a nontrivial root of det(A*¢,) = 0, we see that the roots of mg are given by b2 = k = > g,02. For
these roots we need to check (according to (C3)) that

0<> gab) <1. (S12)

(A3) together with conditions (5a) and (5b) give 0 < g1 < go < g3 < 1. From g1 < Y, 9,02 < g3, we see
that (S12) is satisfied.

Now we analyze the remaining 6 roots of det(M) = 0 coming from f(k) defined in Eq. (S4) and written
explicitly as a polynomial in (S6). We will show further below that the three roots k; in (S6) are real. But
let us first show that any real root of f must lie within [0,1]. Since f is a cubic polynomial, it either has
only one real root, say sj, or three real roots, in which case we can order them as k1 < ko < k3 in (S6).
Invoking (5a), we see that in the first case f is negative to the left of s; and positive to its right, and in
the second case that f is a growing cubic polynomial except in the interval between the roots k; and k3. In
either situation, any real root will be between 0 and 1 if

f(k<0)<o, (S13)
and
flk>1)>0. (S14)

Let us first verify the inequality (S14). For k& > 1

1 T
Mk > 1) > k(e + P+ 1= |Ar]) = 5—(20+ AerlD) — 2774, (S15)

Tr Tr

where we have used —2|A;| < A, + > A2 < 2A3. Now, observe that

1 v 1 nn
k(e + P+ T = [A]) = 5—(20+ AenlD) = Z5Ag > (4 P+ I = [A4]) = 5—(20+ AentlD) = 25 A

27, Tr 27y Tr
for k > 1, hence the condition (5a) lead us to mg,(k > 1) > 0. This guarantees that
mi(k > 1)me(k > L)mg(k > 1) > 0.
To obtain f(k > 1) > 0 in (S14), we therefore need G(k > 1) > 0. By means of (5¢) and (5d),
{%[zn + AertTL 4 (6657 — T ) Ag] + SHonITEARZRS ()5 4 Aa)cg} 02
a Z (k> 1)

o 20+ AertTT + (60,5 — T ) Ag] 4 SEMIIEA=RS 4 (0 4 P4 TT 4 Ag)c2 (S16)
o
e+ P+T1—|Ar] — (20 + AenD) — 322 A5

as well as

12571'# — Tnrw )\Hﬂ' 2
Tin ( e

Ton (Mg — Ap)20207
M 127, t

v me(k > 1)my(k > 1)



127, 127,

1207 n —Trn <)\H1r +c _ Tam ) (A3 _ A1)2

> — 5 (S17)
|:€+P+H— |A1| — ﬁ(?ﬂ-l—)\ﬂ—nﬂ) T’”’Ag:|
and thus,
k> 1) > 1 (20 + AenIL+ (6657 — Trp)Ag] + SEomEADAS 4 (o Py TT 4 Ag)c?
€+P+H-|A1|—i(27]+)\ﬂ—nﬂ) T’”'Ag

12057 —T Allr Trm 2

% + C _ o (AS + |A1|)
127, ( 12 ) (818)

[5+P+H— [Ar| = 22 (20 + AerlD) — T““Ag}

Note that we have used maxg, y(Aq — Ap)? = (Az — A1)? = (A3 + |A1])2, which follows from the ordering of
the eigenvalues A,. Hence (5e) implies G(k) > 0 for k > 1.
It now remains to verify the inequality (S13). In this case, when k < 0

1 T
a(k < 0) = =|k|(e + P+ T+ Aq) = 5 (2n+/\7rHH)—T<A +ZA )

1 iy
< =520+ AenlD) + oIl (S19)

From condition (5b), one has that m,(k < 0) < 0. Then,
fk<0)=mi(k <0)ma(k < 0)ms(k <0)G(k<0)<0

if, and only if, G(k < 0) > 0. Due to mq(k < 0) < 0 together with (5¢) and (5d), we obtain that

T [20 + Arnt T+ (607 — Ton ) Ay + SFMITEAI= e () 4 Aa)cg} 02

; —mq(k < 0)
520 + ATl = (6057 — Trr) | Ay [ + SEEE=A= ] (0 4 Py TT— [A])e2 20,
~ “ina(k < 0)
Condition (5f) guarantees that >~ ... > 0 in the above inequality. Moreover,
_ 12(571—7‘— — Tr )\Hﬂ— +c Trn (A - Ab) U vb
127, I G 127, = me(k < 0)my(k < 0)
H2hns (/\mr +cl - BE ) (As +[Aq])?
> — . (S21)
[ﬁ(% + Aendl) — 525 |Ay \]
where we used (S19) and (As + |A1])? = max, (A, — Ap)? again. Now, since
Piggres (e 42— =) (A 4 [A])?
Glh<0)>1— — 2~ \m ° 137, : (S22)

[ @+ Aen) — 22|

we have G(k < 0) > 0 from condition (5g), finally implying f(k < 0) < 0.
It remains to establish the reality of the roots k; in (S6). To do that, let us write G(k) as

R, 02 Sap207
Gk) =1-) =23 abab (S23)

memp

a a,b
a<b



and
Mg = pak — Tq, (S24)
where
Ro = G4 danll o (s — )] + ST 2 ()
Pa = p+A,=e+P+I1+A,, (S27)

ra = 3 (217+)\7THH)+<A +ZA ) (S28)

T7r7rA1 3

Note, in particular, that 71 < r, < 73, where 71 3 = %(277 + Armll) +

> 0 from (5b). By applying
conditions (5) one has that Ry, Sap, pa, e > 0. Then, f(k) can be written as

== = P ~2 = = ~2 — = ~2 = 242 — 242
f(k‘) = Mmi1moMms — m1m2R3v3 — m2m3R1U1 — m3m1R2U2 — m15'23112v3 — m2513v1v3

—mgslgﬁ%f}g
= ask® + ask® + a1k + ao, (S29)
where
ag = —(7“17“27“3 + 7‘1T2R3’IA)32, + 7"27“3R1’IAJ% + T17‘3R21A}§ — r1523ﬁ§ﬁ§ — 7“2513?7%’1332)
—r35120703), (S30)
a1 = pirars + parirs + parire + (p1r2 + par1) Rs03 + (pars + psro) Ri07
+(p3’1"1 + p1T3)R2@2 p1523’l)21)3 p2513’l]1’()3 p3512’l}1’l)§, (831)
ag = —(p1pars + p1p3ra + papsri + /71sz3113 + pngRl’Ul + P1P3R2@§), (S32)
as = p1p2ps. (S33)

In view of (5), we have ag > 0 and ay < 0. Since all coefficients of f(k) are real, then at least one of the roots
must be real, say k = s; € R is the real root. Then, we know that the other two roots sy and sz are real or
complex conjugate, i.e., s3 = s2. Let us assume that 52 and s3 can be imaginary and set sp 3 = kp £ ikj,

kr # 0. By using Vieta’s formula s; + s3 + 83 = =22 = ‘az‘ > 0 we obtain that

3

laz| laz| s < laz|

—1<2kr = < (S34)
as as as
Thus, the following condition holds,
3p1(F1 + R 3p3(F3 + R
St By gy o B0slls £ By) (S35)
P2p3 P1pP2

because the real root s; € [0,1] when (5a)—(5g) apply, as we have already showed. Since we are assuming
s2.3 = kg £ iky, where k; # 0, we have that mq(s2,3) = pokr — 7o £ ik; cannot be zero (unless k; = 0
and the roots are real). Consequently, from (S23) we obtain that f(s23) = 0 lead us to G(s23) = 0, where
52,3 must obey the above conditions implied by f being a cubic polynomial, in particular the condition on
kr in (S35). Thus, let us split G(s2,3) in (S19) into Gr(s23) + iGr(s2,3), where Gr(s2.3) = R[G(s2,3)] and
G[(Sg’g) = %[0(8273)} In particular,

02 [pa(pokr — ) + po(pakr — Ta)]Sap 02
Gr(s2,3) = Thr Z W palle + Z ENE vl (S36)
@ b>a



To show that the roots are real, if suffices to have Gy(s23) # 0. We distinguish two cases. If S, = 0 then
G1(s2,3) # 0 because we assumed k; # 0. This means that in this case the roots must all be real. On the
other hand, if Sy, # 0 and p1 R — 73 > 0, then Eq. (S36) also gives G(s2,3) # 0, because then the sum over
b in (S36) is > 0. To check that p; Ry — 73 > 0, note first that (5a) guarantees that p, > r,. Then, by means
of (S35), we obtain that

3p1(R " 2r
pr1kr — 73 > /)1(/)1( 1+ ") _1_r3> >0 (S37)
2 P203 P1

because of condition (5h), and this implies p1kr — 75 > 0. Since we have already showed that any real root
of f(k) must lie within [0, 1], this finishes our proof. O

IV. LOCAL EXISTENCE AND UNIQUENESS

In this Section, we establish the local existence and uniqueness of solutions to the Cauchy problem. Below,
G is the space of Gevrey functions or quasi-analytic functions.

Theorem 3. Consider the Cauchy problem for equations (1)-(2) in Minkowski space, with initial data
U= (&av, 1L 7%, 71V, 72 #3), 0. 3 given on {t = 0}. Assume that the data satisfies the constraints®
¥, = —1, u” is future-pointing, w1, = 0, and 74" = 0. Suppose that (A1)-(A3) and (5) hold for W
in a strict form (i.e. < instead of <, > instead of >). Finally, assume that ¥ € GO({t = 0}), where
1 <4 < 20/19. Then, there exist a T > 0 and a unique ¥ = (e,u”, I, 7% 7' 72V 73),_o 3 defined on
[0,T) x R3 such that U is a solution to (1)-(2) in [0,T) x R® and ¥ = ¥ on {t = 0}. Moreover, the solution
U s causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 3: The calculations provided in Section I and in the proof of Theorem 2 imply that, under
the assumptions, the characteristic polynomial of the system evaluated at the initial data is a product of
strictly hyperbolic polynomials. One also sees that intersection of the interior of the characteristic cones
defined by these strictly hyperbolic polynomials has non-empty interior and lies outside the light-cone defined
by the metric. Under these circumstances we can apply theorems A.18, A.19, and A.23 of [2] to conclude
the result (the remaining assumptions of these theorems are easily verified in our case). O

For the sake of brevity, we refer readers to [3] for a definition of G°, making only the following remarks.
The case of § = 1 corresponds to the space of analytic functions, of which G with § > 1 is a generalization.
This is why G is sometimes referred to as the space of quasi-analytic functions. The usefulness of Gevrey
functions to the study of hyperbolic problems is at least two-fold. On the one hand, one can prove very
general existence and uniqueness theorems for Gevrey data given on a non-characteristic surface that are
akin to the Cauchy-Kovalewskaya theorem for analytic data. On the other hand, an advantage of Gevrey
maps over analytic ones is that one can construct Gevrey functions that are compactly supported; hence
one can appeal to the type of localization arguments that are so useful in the study of hyperbolic equations.
This is particularly important when one is considering coupling to Einstein’s equations.

While typical evolution problems consider solutions in more general function spaces than G°, we stress
that ours is the very first existence and uniqueness result for equations (1)-(2). In other words, while it is
desirable to extend our result to more general function spaces, Theorem 3 is important because it shows,
for the very first time in the literature, that the initial value problem for equation (1)-(2) is well-defined, so
that it is meaningful to talk about solutions.

We remark that the diagonalization of 7, was carried out in terms of orthonormal frames which can be
defined for any Lorentzian metric. Also, our computations are manifestly covariant. Thus, the results of

2 Alternatively, we could have only unconstrained data be prescribed and obtain the full set of data from the stated constraints.
For example, we could have 4! prescribed and define u® so that @¥ is unit time-like and future pointing.



Theorems 1, 2, and 3, remain true in a general globally hyperbolic space-time, as mentioned in the main
text. Moreover, as also mentioned in the main text, the result extends to the case when (1)-(2) are coupled
to Einstein’s equations. This follows by computing the characteristic determinant of the coupled system and
observing that it factors into the product of the characteristic determinant of (1)-(2), which we analyzed
here, and the characteristic determinant of Einstein’s equations. The argument is the same as given in [4].

V. INSUFFICIENCY OF CONDITIONS FOR CAUSALITY

In this Section, we show that conditions (4), albeit necessary, are not sufficient for causality. We do this
by showing that causality can be violated if we only assume (A1)-(A3) and (4).

Thus, suppose that (Al) (A3) and (4) hold Consider the case where (Insl) Orr = Tyr/4, (5Hn =0,
¢+ AmaAg >0, A“" +c? 172’”’ >0, and 1 — 2 3 == ATI;” < 0. Also, the parameters as well as ¢ obey the
necessary conditions (4 ) Assume also that (Ins2) K3 = Ay >0, ie., As is a degenerated elgenvalue Then,

we may write

R,? Sap 0202
Gk)=1— Za%a Zab%a"b S38
=13 et 5 S (539
o
where
]. T )\ 7TAa
R, = 2n+/\7THH+T—A ] C+7H+(5+P+H+Aa)c§ (S39)
67'77 M
and
Sup= T (Ammn |2 Tam ) g 2 (S40)
ab = 67 \ T S 127, “ o)

From (4a) together with the above choices we have that R,, Su, > 0. Now, let us define

]. T
g =+ P+ T+ Ay — 5 (204 Aanll) - ; Aq. (S41)

Then, (4f) can be written as
mg — Raq > 0, (542)

culminating into mg > 0. Note that this must hold for any d = 1,2,3. Let us consider the case where a; is
such that m,, — R,, = ming(mq — Rq). Thus, if (S42) is verified for d = aq, it is automatically true for for
all d = 1,2,3. Now, we may choose the constraint in the parameters such that (Ins3) Mg, — Rq, = 0, what
is in accord with (S42). The remainder of this proof relies on the choice 04, = V1 — €2, 95, = €, and 9y, =0
for e € (0,1). Moreover, we make the assumption (Ins4) that if a; = 3,2, then ay = 2,3 while if a; = 1, then
ag can be either 2 or 3. Thus, one can clearly see that

f(k) = May (MayMay — May Ray€ — May Ray (1 — €7) = Saya,€7(1 — €7)) (S43)
1 T
Ma = (e+ P+ I+ Ak — (20 + Aanll) = 5 [+ Aoy (1 =€) + A, €]
— Tﬂ'ﬂ'
= mg - H(Aaz - Aa1)627 (844)

where we defined

1 iy
ml = (5+P+H+Ad)k—2—(217+/\7THH)—Z—(Ad+Aa1).

Tr Tr



From (4d) one may easily verify that m3(k > 1) > 0. In particular,
my (k=1) =1hg, >0 (S45)

from (S42), while my, ,.(k = 1) > 1Mqy.4, > 0. (Ins2) enables us to write (note that ap # 1 according to
(Insd))

Aal(l _ 62) + Aa2€2 3 - 2, 1L ay , a2 3 or ai 37 a2 ) , (846)
<Az, ifa;=1Vee (0,1)
which results into
1 iwis
g > (e + P+ I+ M)k — o—(20+ AenlD) — 7 (A + Aa), (547)

and gives mq(k > 1) > 0 due to (4d) and Mg 3(k > 1) > 0 because mq > 0 from (S42).
The roots of f are the roots of m,, and the roots in the term in brackets in (S43). Let us define it as

f(k) = Mq, Ma, — Ma, Ray€? — Mgy Ra, (1 — €2) — Sqa,€2(1 — €2)

= Ma,Ma, G(K), (S48)

where

R, Ra (1 —¢€%)  Sua,e2(1—¢€?)
ma2 mal mal mag ’

G(k)=1 (549)
Note that since € € (0, 1), the terms M, 4, (k) cannot be zero if k is a root of f due to the term Sg,q4,. Also,
because f(k) = (p+ Aq,)(p + Nay)k* + O(k) is a positive function to the right of the larger real root due
to (Ins3), then f(k > 1) > 0, or equivalently G(k > 1) > 0, guarantees that there is no real root for k > 1.
Because (Insl) leads to Rg, Sep > 0, and since mq(k > 1) > mq(k = 1), then condition G(k > 1) > 0 is
equivalent to G(k = 1) > 0. In other words we must have that

R, € R,, (1 —¢€%) Sayar€2(1 — €?)

L =1 (b= 1) e (= D (h=1) = (S50)
(

Since € < 1 we can expand (S45) in powers of it and, after using (S45) and (Ins3), obtain the causality
condition

T, R S,
1 _ T Aa _ Aa _ a _ ajaz
{ AT Mg, (Aaz ) md (k=1) e ml, (k=1)

} e+ O(e*) > 0. (S51)
Now, by writing
mgz(k = 1) = mth + (Aaz - Aal) (1 - Tﬂﬂ)

and

T7T7T A vy
Ray = Ray + (Aay — Ady) <c§ + 2T O ) :
and by means of (Ins3) we may rewrite

Rag Aag - Aa1 2 Trm )\H7r
— = l—c¢ct—————)<0. S52
mO (k=1)  ml,(k=1) I — (852)

Note that (S52) is negative or zero because of (Ins2), (Ins3), and (Ins4). From (Ins2) and (Ins4), if a3 = 2,3,
then as = 3,2 and A,, —A,, = 0 while if a1 = 1, then ay = 2,3 and A,, —A; > 0, resulting in A,, — Ay, >0,
while (Ins1) makes (S52) negative or zero. As a consequence of (S52), the term proportional to € in the
LHS of (S51) is negative and, for some small value of € € (0,1) it must become the leading term, turning
the LHS of (S51) strictly negative. Then, one concludes that the system is not causal and the necessary
conditions (4) are not sufficient.
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VI. FORMAL DEFINITION OF CAUSALITY AND CONDITIONS (C1) AND (C2)

Here we present the precise mathematical definition of causality and how it relates to conditions (C1) and
(C2). Causality can be defined as follows (see [5, page 620] or [6, Theorem 10.1.3] for more details).

Definition 4. Let (M, g) be the Minkowski space. Consider in M a system of partial differential equations
for an unknown 1, which we write as Py = 0, where P is a differential operator (which is allowed to depend
on 1)3. Let ¢ be a solution to the system. We say that ¢ is causal if the following holds true: given a
Cauchy surface ¥ C M, for any point z in the future of ¥, ¢(z) depends only on | where J—(z)

J (z)nxz»
is the causal past of .

The case of most interest is when the Cauchy surface is the hypersurface {¢ = 0} where initial data is
prescribed. We also note that since we are working in Minkowski space, J () is simply the past light-cone
with vertex at x. The situation in Definition 4 is illustrated in Fig. 1. In particular, causality implies that
¢(z) remains unchanged if the the values of ¢ along ¥. are altered only outside J~(z) N Y. Observe that this
definition says that () can only be influenced by points in the past of z that are causally connected to z,
so no information is allowed to propagate faster than the speed of light.

t

.

/

// / ”f/ Z_Z//

~J(z)NE 7

FIG. 1: (color online) Mlustration of causality. J~ (z) is the past light-cone with vertex at z. Points inside J™ (z) can
be joined to a point z in space-time by a causal past directed curve (e.g. the red line). The value of ¢(z) depends
only on ¢|,; (@)nz-

The connection between Definition 4 and conditions (C1) and (C2) is via the characteristics of the system
P = 0. It is beyond the scope of this Supplemental Material to provide a detailed description of the
connections between Definition 4 and the system’s characteristics. We refer readers to Appendix A of [2], [7,
Chapter VI], and [8]. Here, we restrict ourselves to the following comments. Finite speed of propagation is a
property of hyperbolic equations. For such equations, there exist domains of dependence that show precisely
how the value of a solution at a point z is determined solely by values within a domain of dependence in the
past with “vertex” at z (this is exactly the generalization of the past light-cone). The domain of dependence,
in turn, is determined by the system’s characteristics. While it is mathematically possible for hyperbolic
equations to exhibit domains of dependence where information propagates faster than the speed of light (see,
again, our discussion in the Conclusion), for solutions to be causal (i.e., to not have faster-than-light signals),
the domains of dependence must always lie inside the light-cones. This is equivalent to the statement (C1)
and (C2) that we have used. Definition 4 can be generalized to arbitrary globally hyperbolic spaces, which is
needed for the aforementioned generalization of our Theorems to this setting. Again, we refer to Appendix

A of [2], [7, Chapter VI|, and [8].

3 In coordinates, this system of PDEs would be represented by PII{TL'K =0, I,K =1,...,N, where {‘J,bK }§=1 are local
representations of 1, and PII{ are differential operators (possibly depending on K ).
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