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New constraints are found that must necessarily hold for Israel-Stewart-like theories of fluid dynamics to
be causal far away from equilibrium. Conditions that are sufficient to ensure causality, local existence, and
uniqueness of solutions in these theories are also presented. Our results hold in the full nonlinear regime,
taking into account bulk and shear viscosities (at zero chemical potential), without any simplifying
symmetry or near-equilibrium assumptions. Our findings provide fundamental constraints on the
magnitude of viscous corrections in fluid dynamics far from equilibrium.
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Introduction.—Relativistic fluid dynamics is essential to
the state-of-the-art modeling of the quark-gluon plasma
(QGP) formed in ultrarelativistic heavy-ion collisions (see
[1–3]). However, despite its wide use and significant success,
it remains unclear why such a fluid dynamical description is
applicable given that local deviations from equilibrium
in nucleus-nucleus collisions can be very large, especially
at early times [4–6]. In fact, typical fluidlike signatures
involving anisotropic flow [7] persist even in small systems
formed in proton-nucleus and proton-proton collisions at
sufficiently high multiplicity [8–14]. Such findings have
motivated a series of new investigations on the foundations
of relativistic viscous fluid dynamics [15–18] and their
subsequent extension toward the far-from-equilibrium
regime relevant for heavy-ion collisions [19–45].
The viscous fluid description of the QGP is currently based

on ideas from Israel and Stewart (IS) [46,47] (see, also,
Mueller [48]), who proposed a way to fix the long-standing
acausality [49] and instability [50] problems of the relativistic
generalization of Navier-Stokes (NS) equations derived by
Eckart [51] and Landau and Lifshitz [52]. The general
mechanism introduced by IS to try to avoid such issues
assumes that dissipative currents such as the shear stress
tensor, πμν, and the bulk scalar,Π, are new degrees of freedom
[53,54] which obey nonlinear relaxation equations describing
how such quantities relax to their relativistic NS limits within
relaxation time scales τπ and τΠ. The same principle is also at

play in modern formulations of fluid dynamics put forward by
Ref. [55] and Ref. [56], which are currently employed in
numerical simulations (see, for instance, [57]).
It is well known that the IS-like theories are linearly

stable around equilibrium [58–61]. But physically sensible
relativistic theories of fluid dynamics must also be causal,
i.e., the equations of motion must be hyperbolic, and the
propagation of information must be, at most, the speed of
light [62]. Also, the Cauchy problem must be locally well
posed [63], i.e., given initial conditions, one must show
that the equations admit a unique solution. A common
misconception in the field is that IS-like theories have
already been proven to be causal a long time ago in
Refs. [46,58,59,64–66]. This is not the case. Those early
works only considered linearized disturbances around
equilibrium, where the background fields πμν and Π vanish
and the corresponding linear disturbances are small. Such a
linearized analysis says nothing about the nonlinear regime,
even for small πμν and Π. The far-from-equilibrium regime,
in particular, is necessarily nonlinear as πμν and Π can be as
large as the local equilibrium pressure P.
Hence, it is not known if IS theories are, indeed, sensible

in the regime probed by high energy hadronic collisions.
Understanding the far-from-equilibrium properties of such
theories is also crucial to reliably assess the role of viscous
effects in early universe cosmology [67]. Here, we make
essential steps toward solving this critical problem by
finding conditions (in the form of simple algebraic inequal-
ities that can be checked at every step of the evolution) that
must necessarily hold for IS-like theories to be causal in the
nonlinear regime. We also present conditions that are
sufficient to ensure causality, local existence, and unique-
ness of solutions of IS-like theories. Our results are the first
in the literature that hold in the full nonlinear regime, with
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bulk and shear viscosities (at zero chemical potential), in
three spatial dimensions, without recurring to any sym-
metry or near-equilibrium assumptions.
The equations of motion.—Using the Landau frame

definition of the hydrodynamic variables [52], the
energy-momentum tensor of the fluid can be written as
[We use units c ¼ ℏ ¼ kB ¼ 1. The spacetime metric
signature is ð−þþþÞ. Greek indices run from 0 to 3,
Latin indices from 1 to 3.] Tμν ¼ εuμuνþ
ðPþ ΠÞΔμν þ πμν, where uμ is the fluid’s four-velocity
(with uμuμ ¼ −1), ε is the energy density, P ¼ PðεÞ
is the equilibrium pressure defined by an equation of state,
Δμν ¼ gμν þ uμuν is the projector orthogonal to the flow,
gμν is the spacetime metric, πμν ¼ πνμ, πμνuμ ¼ 0, and
Δμνπ

μν ¼ 0. We focus on high energy collisions, and thus,
we only investigate, here, the case of zero chemical
potentials. Conservation of energy and momentum implies
that∇μTμν ¼ 0, which can be written as (c2s ¼ dP=dε is the
equilibrium speed of sound squared)

uα∇αεþ ðεþPþΠÞ∇αuα þ παμ∇αuμ ¼ 0;

ðεþPþΠÞuβ∇βuα þ c2sΔ
β
α∇βεþΔβ

α∇βΠþΔβ
α∇μπ

μ
β ¼ 0:

ð1Þ

Here, we consider the case where the dissipative currents
fπμν;Πg satisfy the following equations (Note that our
metric signature is different than in [56].), derived using the
Denicol-Niemi-Molnar-Rischke formalism [56], and com-
monly used in heavy-ion collision applications

τΠuμ∇μΠþ Π ¼ −ζ∇μuμ − δΠΠΠ∇μuμ − λΠππ
μνσμν;

ð2aÞ

τπΔ
μν
αβu

λ∇λπ
αβ þ πμν

¼ −2ησμν − δπππ
μν∇αuα − τπππ

hμ
α σνiα − λπΠΠσμν;

ð2bÞ

where σμν ¼ Δμν
αβ∇αuβ is the shear tensor, Δμν

αβ ¼
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ=2 − 1

3
ΔμνΔαβ, Ahμ

λ B
νiλ ¼ Δμν

αβA
αλBβ

λ , and
η, ζ are the shear and bulk viscosities, respectively. All the
transport coefficients, fη; ζ; τΠ; τπ; δΠΠ; λΠπ; δππ; τππ; λπΠg,
can depend on the ten dynamical variables fε; uμ; πμν;Πg
(so, in principle, they may even depend on the dissipative
tensors) but not on their derivatives. Explicit expressions
for transport coefficients in models can be found, for
instance, in [56,68,69].
We note that fη; ζ; τπ; τΠg are the only coefficients

that remain after linearization around equilibrium where
πμν ¼ 0 and Π ¼ 0. This shows why linearized analyses
[58,59] necessarily miss the effects from the other
coefficients, fδΠΠ; λΠπ; δππ; τππ; λπΠg, which contribute
to the nonlinear evolution. However, other nonlinear

terms such as πμνπ
μν, Π2, πμνΠ, πhμα πνiα, which appear

in [56], could have been trivially added to the equations
as they do not contribute to a causality analysis since they
do not involve derivatives of the fields. Nevertheless,
there are still some other nonlinear terms that can

be considered such as πhμα Ωνiα, where Ωμν ¼ ðΔα
μ∇αuν −

Δα
ν∇αuμÞ=2 is the vorticity and, also, Ωhμ

α Ωνiα [3]. The
former will be investigated in a separate publication.
The latter contributes with derivatives of the fields to
the principal part of the system of equations and, thus,
a different analysis than presented here would be
required.
Causality.—Causality is the concept in relativity theory

asserting that no information propagates faster than the
speed of light and no closed timelike curves exist (so the
future cannot influence the past). See Refs. [70–74] for a
mathematically precise definition of causality. Causality
can be investigated by determining the characteristic
manifolds associated with a system of partial differential
equations [75,76]. Let us write equations (1)–(2) as
Aα∇αΨ ¼ FðΨÞ, where we defined the vector
Ψ ¼ ðε; uν;Π; π0ν; π1ν; π2ν; π3νÞ, the 22 × 22 matrix

Aα ¼

2
6666666666664

uα ρδαν þ παν 01×1 01×4 01×4 01×4 01×4

c2sΔμα ρuαδμν − πανuμ Δμα δα0I4 δα1I4 δα2I4 δα3I4
04×1 Eα

ν τΠuα 04×4 04×4 04×4 04×4

04×1 C0δα
ν 04×1 τπuαI4 04×4 04×4 04×4

04×1 C1δα
ν 04×1 04×4 τπuαI4 04×4 04×4

04×1 C2δα
ν 04×1 04×4 04×4 τπuαI4 04×4

04×1 C3δα
ν 04×1 04×4 04×4 04×4 τπuαI4

3
777777777777775

; ð3Þ
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and FðΨÞ is a vector that does not contain derivatives of the
variables. Above, we also defined ρ ¼ εþ Pþ Π,
Eα
ν ¼ ðζ þ δΠΠΠÞδαν þ λΠππ

α
ν , Bμλα

ν ¼ 1
2
ðΔμαδλν þ Δλαδμν

− 2
3
ΔμλδανÞ, and

Cσδα
ν ¼

�
ð2ηþ λπΠΠÞδσμδδλ þ

τππ
2

πσλδ
δ
μ þ

τππ
2

πδλδ
σ
μ

�
Bμλα
ν

−
τππ
3

Δσδπαν þ δπππ
σδδαν − τπðπσνuδ þ πδνuσÞuα:

The characteristic surfaces fΦðxÞ ¼ 0g are determined by
the principal part of the equations by solving the character-
istic equation detðAαξαÞ ¼ 0, with ξα ¼ ∇αΦ [77]. The
system is causal if, for any ξi, it holds that (C1) the roots
ξ0 ¼ ξ0ðξiÞ of the characteristic equation are real and (C2)
ξα ¼ ðξ0; ξiÞ is spacelike or lightlike. Condition (C2) implies
that the characteristic surfaces fΦðxÞ ¼ 0g
are timelike or lightlike, indicating that no information
is superluminal. For instance, for an ideal fluid (where
Π ¼ 0 and πμν ¼ 0), the characteristic velocities are
determined by the speed of sound and causality implies
that c2s ≤ 1 [63].
From (3), it is clear that the characteristics associated

with the evolution depend on the dissipative tensors
fπμν;Πg. Therefore, the true causal behavior of IS theories
is necessarily a far-from-equilibrium property of the fluid,
and linear analyses around equilibrium cannot be used to
establish causality and well posedness in IS theories. The
computation of the characteristics defined by (3), which is
needed for a causality analysis, is extremely involved and is
presented in the Supplemental Material [78]. Below, we
present the main consequences of such calculations.
Let Λα, α ¼ 0, 1, 2, 3, be the eigenvalues of the πμν . The

eigenvalues are such that Λ0 ¼ 0, since uμ is in the kernel
of πμν (uμπ

μ
ν ¼ 0), and Λ1 þ Λ2 þ Λ3 ¼ 0, so that the

trace is kept zero. Without loss of generality, let us take
Λ1 ≤ Λ2 ≤ Λ3 with Λ1 ≤ 0 ≤ Λ3. Now, we state our
assumptions, which are the following: (A1) for the trans-
port coefficients and relaxation times, suppose that τΠ; τπ >
0 and η; ζ; τππ; δΠΠ; λΠπ; δππ; λπΠ; c2s ≥ 0; (A2) for the fluid
variables, suppose that ε > 0, P ≥ 0, and εþ Pþ Π > 0;
finally, we also assume that (A3) εþ Pþ Πþ Λa > 0,
a ¼ 1, 2, 3. Then, the following conditions are necessary
for causality, i.e., if any of the inequalities below is not
satisfied, then the system is not causal:

ð2ηþ λπΠΠÞ −
1

2
τππjΛ1j ≥ 0; ð4aÞ

εþ Pþ Π −
1

2τπ
ð2ηþ λπΠΠÞ −

τππ
4τπ

Λ3 ≥ 0; ð4bÞ

1

2τπ
ð2ηþ λπΠΠÞ þ

τππ
4τπ

ðΛa þ ΛdÞ ≥ 0; a ≠ d; ð4cÞ

εþ Pþ Πþ Λa −
1

2τπ
ð2ηþ λπΠΠÞ

−
τππ
4τπ

ðΛd þ ΛaÞ ≥ 0; a ≠ d; ð4dÞ

1

2τπ
ð2ηþ λπΠΠÞ þ

τππ
2τπ

Λd

þ 1

6τπ
½2ηþ λπΠΠþ ð6δππ − τππÞΛd�

þ ζ þ δΠΠΠþ λΠπΛd

τΠ
þ ðεþ Pþ Πþ ΛdÞc2s ≥ 0;

ð4eÞ

εþ Pþ Πþ Λd −
1

2τπ
ð2ηþ λπΠΠÞ

−
τππ
2τπ

Λd −
1

6τπ
½2ηþ λπΠΠþ ð6δππ − τππÞΛd�

−
ζ þ δΠΠΠþ λΠπΛd

τΠ
− ðεþ Pþ Πþ ΛdÞc2s ≥ 0;

ð4fÞ

where (4c)–(4f) must hold for a, d ¼ 1, 2, 3. The proof that
(4) are necessary conditions for causality under assump-
tions (A1)–(A3) is given in the Supplemental Material [78].
Here, we discuss the significance of this result.
We stress that assumptions (A1) and (A2) are standard in

heavy-ion collision applications [57], and (A3) is a very
natural assumption since Pþ Πþ Λa for a ¼ 1, 2, 3 may
be interpreted as the pressure in each spatial axis in the local
rest frame. Thus, if (A3) is violated, the theory would
have a pathology in the sense that fluid elements would
have negative inertia, i.e., the acceleration is opposite to the
force given by the negative of the gradient of pressure.
Furthermore, it is natural to make assumptions that hold
close to equilibrium, and since (A2) guarantees
εþ Pþ Π > 0, for small deviations from equilibrium,
Λa will be small, giving εþ Pþ Πþ Λa > 0. That said,
we stress that, although (A3) is expected to hold near
equilibrium, it is, itself, not a near-equilibrium assumption.
Conditions (4) could never have been found using a

linearized analysis, as they depend on Π and Λa, both of
which vanish in equilibrium. Consequently, if, in any fluid
dynamic simulation in heavy-ion collisions that employs
(1)–(2), the necessary conditions above are not fulfilled,
causality is necessarily violated. It is important to point out
that this causality violation has nothing to do with the
ability of numerical schemes to produce a solution, a point
we shall return to at the end of the Letter.
While the above conditions must hold for the system to

be causal, they are not sufficient conditions, i.e., by
themselves, conditions (A1)–(A3) and (4) do not assure
the system to be causal (see the Supplemental Material
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[78]). Therefore, it is important to have conditions that are
sufficient for causality. In this regard, assume, again, that
(A1)–(A3) hold. Then, the following conditions are suffi-
cient to ensure that causality holds, i.e., if they are satisfied,
then the system is causal:

ðεþPþΠ− jΛ1jÞ−
1

2τπ
ð2ηþλπΠΠÞ−

τππ
2τπ

Λ3≥0; ð5aÞ

ð2ηþ λπΠΠÞ − τππjΛ1j > 0; ð5bÞ

τππ ≤ 6δππ; ð5cÞ

λΠπ
τΠ

þ c2s −
τππ
12τπ

≥ 0; ð5dÞ

1

3τπ
½4ηþ 2λπΠΠþ ð3δππ þ τππÞΛ3�

þ ζ þ δΠΠΠþ λΠπΛ3

τΠ
þ jΛ1j þ Λ3c2s

þ
12δππ−τππ

12τπ
ðλΠπτΠ

þ c2s −
τππ
12τπ

ÞðΛ3 þ jΛ1jÞ2
εþ Pþ Π − jΛ1j − 1

2τπ
ð2ηþ λπΠΠÞ − τππ

2τπ
Λ3

≤ ðεþ Pþ ΠÞð1 − c2sÞ; ð5eÞ

1

6τπ
½2ηþ λπΠΠþ ðτππ − 6δππÞjΛ1j�

þ ζ þ δΠΠΠ − λΠπjΛ1j
τΠ

þ ðεþ Pþ Π − jΛ1jÞc2s ≥ 0;

ð5fÞ

1 ≥
12δππ−τππ

12τπ
ðλΠπτΠ

þ c2s −
τππ
12τπ

ÞðΛ3 þ jΛ1jÞ2
½ 1
2τπ

ð2ηþ λπΠΠÞ − τππ
2τπ

jΛ1j�2
; ð5gÞ

1

3τπ
½4ηþ 2λπΠΠ − ð3δππ þ τππÞjΛ1j�

þ ζ þ δΠΠΠ − λΠπjΛ1j
τΠ

þ ðεþ Pþ Π − jΛ1jÞc2s

≥
ðεþ Pþ Πþ Λ2Þðεþ Pþ Πþ Λ3Þ

3ðεþ Pþ Π − jΛ1jÞ

×

�
1þ

2½ 1
2τπ

ð2ηþ λπΠΠÞ þ τππ
2τπ

Λ3�
εþ Pþ Π − jΛ1j

�
; ð5hÞ

where condition (5h) can be dropped if δππ ¼ τππ ¼ 0. The
detailed proof can be found in the Supplemental Material
[78]. Since (4) must hold for causality, they must be
satisfied for any set of conditions that imply causality,
and it is possible to verify that (5) imply (4) under
assumptions (A1)–(A3). When shear viscous effects are
neglected, (5) reduces to the conditions for the bulk
viscosity case found in [79].

Conditions (A1)–(A3) and (5) also ensure the unique
local solvability of the initial-value problem in the class of
quasianalytic functions: given initial data of sufficient
regularity satisfying (5), there exists a unique solution to
the nonlinear equations taking the given initial data, defined
for a certain time interval. Thus, if (A1)–(A3) and (5) hold,
the evolution of the viscous fluid is guaranteed to be well
defined and causal even far from equilibrium where the
gradients (and, hence, πμν and Π) are large. This is relevant
for determining the properties of hydrodynamic attractors
[20] under general flow conditions [27,80] and, also, for an
overall validation of fluid dynamics descriptions of extreme
systems, such as proton-proton collisions. Moreover, while,
here, we focus on applications to heavy-ion collisions, so
gμν is the Minkowski metric, the methods of [79] can be
adapted to show that our conclusions hold when (1)–(2) are
coupled to Einstein’s equations. Hence, our results are also
crucial for determining the far-from-equilibrium behavior
of viscous fluids in general relativity, which may be
relevant to neutron star mergers [81]. The technical details
of these statements are provided in the Supplemental
Material [78].
When we linearize the equations around the equilibrium,

terms involving τππ; δΠΠ; λΠπ; δππ; λπΠ drop out and, thus,
(A1) can be replaced by τπ; τΠ > 0, η; ζ; c2s ≥ 0, and (A2)
and (A3) can be replaced by εþ P > 0 and P ≥ 0. Then,
conditions (5) become necessary and reduce to εþ P > 0,
εþ P − ðη=τπÞ ≥ 0, and 1=ðεþ PÞð4η=3τπ þ ζ=τΠÞ ≤
1 − c2s . These conditions coincide with the corresponding
well-known results previously found in [58,59] that ensure
causality and stability in the linearized regime around
equilibrium.
It is instructive to compare the causal propagation modes

of the full nonlinear theory determined here with that of
the dynamics linearized about equilibrium. Linearizing
Eqs. (1)–(2) around equilibrium, we find four distinct
modes of propagation which correspond to the flow lines,
the sound waves, and shear waves at two distinct speeds.
These are the same ones found in the previous works
[46,58,59,64–66], where, there, the authors find, in addi-
tion, a second longitudinal mode (second sound) due to the
fact that their equations also include a conserved current. In
the nonlinear case, we found six distinct propagation modes
corresponding to the flow lines, the sound waves, and shear
waves at four distinct speeds. This, again, highlights how
one misses an important part of the dynamics by looking
only at linearizations around equilibrium: there are two
additional speeds allowed for the shear waves that collapse
onto the remaining two upon linearization, so that these
additional velocities are not visible in the linearized
analysis.
We presented two sets of conditions for causality,

namely, conditions that are necessary and conditions that
are sufficient. Further studies must be done to discover
conditions that are necessary and sufficient, i.e., conditions
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that ensure the system to be causal if and only if they hold.
This is an extremely challenging task given the complexity
of the characteristic equation in the nonlinear problem.
Conformal limit.—To obtain some physical understand-

ing about our nonlinear constraints, consider a conformal
fluid [55], i.e., Π ¼ 0, P ¼ ε=3, δππ ¼ 4τπ=3, with η=s and
τπT being constants (here, T ∼ ε1=4 is the temperature and
s ∼ T3 is the equilibrium entropy density). Assume, for
simplicity, that all the other transport coefficients vanish (as
in [82]). The necessary conditions in (4) then impose that
Λa=ðεþ PÞ ≥ −1þ ðη=sÞð1=τπTÞ, so none of the eigen-
values of πμν can be too negative. Also, when
Λa=ðεþ PÞ > −1þ ðη=sÞð1=τπTÞ, the eigenvalues are
also limited from above since (4e) gives
Λa=ðεþ PÞ ≤ 1 − ð2=τπTÞðη=sÞ. Using typical values
motivated by heavy-ion collision applications, η=s ¼
1=ð4πÞ [83] and τπT ¼ 5η=s [84], one then finds
−4=5 < Λa=ðεþ PÞ ≤ 3=5. This implies that the relative

magnitude of the shear stress tensor,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πμνπ

μν=ðεþ PÞ2
q

,

cannot be arbitrarily large. Using a NS initial condition
where πμν ∼ −2ησμν at the initial time τ0, the corresponding
normalized eigenvalues would be parametrically given by
Λa=ðεþ PÞ ∼ ðη=sÞ=½τ0Tðτ0; x⃗Þ� (assuming σμν ∼ 1=τ0 in
the initial state). Given that our conditions imply that,
roughly, jΛa=ðεþ PÞj≲ 1, for τ0 ¼ 0.6 fm and
η=s ¼ 1=ð4πÞ, causality issues will be found where
Tðτ0; x⃗Þ≲ 30 MeV, which is below the typical values
for the freeze-out temperature. However, in initial state
models where the initialized πμν=ðεþ PÞ is large and
strongly deviates from NS, the estimate above does not
apply, and causality violations may appear in hot regions of
the plasma as well. A detailed numerical study is needed to
assess the importance of our results to current simulations
of heavy-ion collisions.
Conclusions.—In this Letter, we established, for the first

time, that causality, in fact, holds for the full set of
nonlinear equations in IS-like theories without the need
for symmetry assumptions and in the presence of both shear
and bulk viscosity. All our conditions are simple algebraic
inequalities among the dynamical variables that can be
easily checked in a given system or simulation. Previous
attempts to go beyond the linear regime were restricted to
1þ 1 dimensions [60] or assumed strong symmetry con-
ditions [61,85], which, in practice, also corresponds to
partial differential equations with only one spatial variable.
Without such restrictions, the only other work where
nonlinear causality has been shown for IS-like systems
is [79], which only included bulk viscous effects. We have
also studied the Cauchy problem for (1)–(2), establishing
that it is well defined, so that it is meaningful to talk about
solutions.
Prior to our work, unless a numerical code was specifi-

cally tailored to detect causality violations of the under-
lying equations, which typically is not a feature present in

standard codes, one could only identify whether a numeri-
cal simulation of (1)–(2) violated causality if this caused
(a) a breakdown of the simulation, (b) a manifestly spurious
solution, or (c) clear nonphysical behavior. These
constraints are all too weak, as we now explain. For
illustration, consider −∂2

tψ þ ð1þ ψÞΔψ ¼ 0, where Δ
is the Laplacian. This is a nonlinear wave equation with
(nonlinear) speed given by

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψ

p
for (For ψ < −1, the

equation is no longer a wave equation, becoming elliptic,
and it is a degenerate wave equation when ψ ¼ −1.)
ψ > −1. Indeed, the characteristics are given by
ξ0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ψ
p jξ⃗j. Therefore, the solutions are not causal

when ψ > 0, but are causal for −1 < ψ ≤ 0. Nevertheless,
the equation remains hyperbolic as long as ψ > −1.
Standard hyperbolic theory (see, e.g., [86]) ensures that,
given smooth initial data ψ jt¼0 and ∂tψ jt¼0, there exists a
unique smooth solution defined for some time. So any
numerical scheme that is able to track the unique solution
will produce results in both the acausal and causal cases
ψ > 0 and −1 < ψ ≤ 0, respectively. This makes it
extremely difficult to infer violations of causality using
(a) or (b) as criteria. Exactly the same situation can happen
in simulations of (1)–(2). We also note that linearizing
the equation about the “equilibrium” ψ ¼ 0 gives
−δψ tt þ Δδψ ¼ 0, which is always causal, reinforcing,
again, the idea that causality cannot always be obtained
from linearizations.
Criteria (c) has also limited applicability. First, there are

different mechanisms that can produce nonphysical sol-
utions. Thus, it is still important to understand whether
unphysical behavior is being caused by causality violation
or some other mechanism, such as running beyond the limit
where the effective description is valid. Second, relativistic
fluids in the far-from-equilibrium regime, such as the QGP,
may exhibit unexpected behavior, so one needs to be
careful to differentiate genuine exotic features from those
that are consequences of running a simulation in a super-
luminal regime. This may be particularly relevant to heavy-
ion simulations where the values of the fields drop
extremely rapidly at the edges of the QGP at early times
and in the cold or dilute regions of plasma where a rescaling
of dissipative tensors has been employed [87–90]. Third,
numerical simulations of relativistic fluids must be based
on equations of motion that respect causality, a fundamen-
tal physical principle in relativity.
The results we presented here are an important step

in addressing all these difficulties, as one can check if
(A1)–(A3), (4), or (5) hold at any moment in numerical
simulations [Comparing with the example of the equation
for ψ above, this would be similar to monitoring the value
of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψ

p
: if ψ > 1, then the system is not causal, which is

the analog of (5), whereas causality is guaranteed if
−1 < ψ ≤ 0, which is the analog of (5).] since all the
quantities involved in our inequalities can be readily
extracted in numerical simulations [3]. We also note that
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our results apply, in particular, to the initial conditions, so
(4) and (5) can be used to rule out initial conditions that
violate causality or to select initial conditions for which
causality holds. This can be particularly relevant to further
constrain the physical assumptions behind the modeling of
initial conditions in QGP simulations. There are many
subtleties involved in numerically solving the IS equations,
including possible violations of causality caused entirely as
an artifact of the numerical simulation. Thus, it is important
to distinguish between such numerically caused unphysical
phenomena from true violation of causality of the under-
lying equations. Our new causality criteria can be instru-
mental in such analyses.
In sum, in this Letter, we established, for the first time in

the literature, conditions to settle the longstanding ques-
tions concerning causality in Israel-Stewart theories in the
nonlinear, far-from-equilibrium regime. As such, our gen-
eral results provide the most stringent tests to date for
determining the validity of relativistic fluid dynamic
approaches in heavy-ion collisions, astrophysics, and
cosmology.
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2173 (2019).

[77] C. Courant and D. Hilbert, Methods of Mathematical
Physics, 1st ed., Vol. 2 (John Wiley & Sons, Inc., New
York, 1991).

[78] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.222301 for the de-
tails concerning the calculation of the characteristics and the
corresponding proofs of the necessary and sufficient con-
ditions presented in the main text.

[79] F. S. Bemfica, M.M. Disconzi, and J. Noronha, Phys. Rev.
Lett. 122, 221602 (2019).

[80] G. S. Denicol and J. Noronha, Nucl. Phys. A1005, 121748
(2021).

[81] M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla, and K.
Schwenzer, Phys. Rev. Lett. 120, 041101 (2018).

[82] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S.
Jeon, and C. Gale, Phys. Rev. C 91, 014903 (2015).

[83] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[84] G. S. Denicol, J. Noronha, H. Niemi, and D. H. Rischke,
Phys. Rev. D 83, 074019 (2011).

[85] S. Floerchinger and E. Grossi, J. High Energy Phys. 08
(2018) 186.

[86] C. D. Sogge, Lectures on Non-Linear Wave Equations,
2nd ed. (International Press, Boston, MA, 2008).

[87] B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C 85, 024901
(2012).

[88] P. Bozek, Phys. Rev. C 85, 034901 (2012).
[89] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U.

Heinz, Comput. Phys. Commun. 199, 61 (2016).
[90] D. Bazow, U.W. Heinz, and M. Strickland, Comput. Phys.

Commun. 225, 92 (2018).

PHYSICAL REVIEW LETTERS 126, 222301 (2021)

222301-7

https://doi.org/10.1016/j.physletb.2019.135158
https://doi.org/10.1016/j.physletb.2019.135158
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1016/j.physletb.2020.135525
https://doi.org/10.1016/0003-4916(76)90064-6
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1007/BF01326412
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevC.97.034910
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(90)90366-V
https://doi.org/10.1088/0954-3899/35/11/115102
https://doi.org/10.1088/0954-3899/35/11/115102
https://doi.org/10.1103/PhysRevD.81.114039
https://doi.org/10.1103/PhysRevD.81.114039
https://doi.org/10.1016/0375-9601(76)90075-X
https://doi.org/10.1142/S0218271817300245
https://doi.org/10.1103/PhysRevC.90.024912
https://doi.org/10.1103/PhysRevC.90.024912
https://doi.org/10.1007/JHEP02(2015)051
https://doi.org/10.1088/0951-7715/27/8/1915
https://doi.org/10.1007/BF00280740
https://doi.org/10.1007/BF02099369
https://doi.org/10.1007/BF02099369
https://doi.org/10.1007/s00023-019-00801-7
https://doi.org/10.1007/s00023-019-00801-7
https://doi.org/10.1007/s00023-019-00801-7
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.222301
https://doi.org/10.1103/PhysRevLett.122.221602
https://doi.org/10.1103/PhysRevLett.122.221602
https://doi.org/10.1016/j.nuclphysa.2020.121748
https://doi.org/10.1016/j.nuclphysa.2020.121748
https://doi.org/10.1103/PhysRevLett.120.041101
https://doi.org/10.1103/PhysRevC.91.014903
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevD.83.074019
https://doi.org/10.1007/JHEP08(2018)186
https://doi.org/10.1007/JHEP08(2018)186
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevC.85.024901
https://doi.org/10.1103/PhysRevC.85.034901
https://doi.org/10.1016/j.cpc.2015.08.039
https://doi.org/10.1016/j.cpc.2017.01.015
https://doi.org/10.1016/j.cpc.2017.01.015


Nonlinear Constraints on Relativistic Fluids Far From Equilibrium
SUPPLEMENTAL MATERIAL
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In this Supplemental Material, in Section II we provide the proof that conditions (4) are necessary for
causality, in Section III we provide the proof that conditions (5) are sufficient for causality, and in Section IV
we establish local existence and uniqueness of solutions to the initial-value problem for equations (1)-(2). All
these results depend on a careful analysis of the roots of the characteristic equation det(Aαξα) = 0. Thus,
we first present in Section I a suitable factorization of det(Aαξα). In Section V we show that conditions
(4), albeit necessary, are not sufficient for causality. In Section VI we provide the formal definition of
causality and comment on why, in our case, it can be reduced to conditions (C1) and (C2). Since causality
is intrinsically tied to concepts of relativity theory, we refer to the standard literature (e.g., [1]) for further
background. Throughout this Supplemental Material, we continue to use the notation and definitions of the
paper.

I. THE CHARACTERISTIC EQUATION

Letting b = uαξα, vµ = ∆µνξν , and wµ = πµνξν , the characteristic determinant can be written as

det(Aαξα) = b13τ16
π τΠ det

[
b ρξν + wν

bc2sv
µ ρb2δµν − bwνuµ −

C̄µν
τπ
− vµẼν

τΠ

]
= b14τ16

π τΠ det [M ] , (S1)

where M = [Mµ
ν ]4×4 with Mµ

ν = ρb2δµν −bwνuµ−
C̄µν
τπ
− vµẼν

τΠ
−c2svµ(ρξν+wν), Ẽν = Eαν ξα = (ζ + δΠΠΠ) ξν+

λΠπwν , and

C̄δν = Cσδαν ξαξσ =
1

2

[
(2η + λπΠΠ)ξµδ

δ
λ +

τππ
2
wλδ

δ
µ +

τππ
2
πδλξµ

](
vµδλν + vλδµν −

2

3
∆µλξν

)
−τππ

3
vδwν + δππw

δξν − bτπ(wνu
δ + bπδν). (S2)

Since πµν is symmetric and traceless, it can be diagonalized, so the eigenvalue problem πµν e
ν
A = ΛAe

µ
A,

with A = 0, 1, 2, 3, defines an orthonormal set of eigenvectors eµA=0 = uµ, eµA=a = eµa with real eigenvalues Λa
for a = 1, 2, 3 in the sense that gµνe

µ
Ae

ν
B = ηAB where ηAB = diag(−1, 1, 1, 1). The eigenvalues are such that

Λ0 = 0 and Λ1 + Λ2 + Λ3 = 0. Without any loss of generality, let us take Λ1 ≤ Λ2 ≤ Λ3 with Λ1 ≤ 0 ≤ Λ3 so
that the trace is kept zero (note that if πµν 6= 0, this allows degeneracies to occur with multiplicity up to two).
Since {eµA} is a complete set in R4, we may define a tetrad of dual vectors {eAν } by setting eAν ≡ ηAB(eB)ν so
that1 δBA = eνAe

B
ν . Also, the following completeness relation holds: δµν =

∑
A e

µ
Ae

A
ν = −uµuν +

∑
a e

µ
a(ea)ν .

Therefore, the components of any four-vector zµ relative to the tetrad {eµA} are defined by zA ≡ zνeAν . We
can then use this to define vA ≡ eµAvµ and ξA ≡ eµAξµ. Given that ξµ = −buµ +

∑
a v

aeµa (a = 1, 2, 3) one
finds that ξA=0 = −ξA=0 = b while ξa = va. Furthermore, wA ≡ eµAwµ = eµAπµνξ

ν = ΛAξA = ΛAvA, where

1 From now on, repeated Latin indexes are not summed unless explicitly stated.
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we used that Λ0 = 0 and again ξa = va (note also that va = va since ηab = δab). Using these observations,
we can show that the determinant det(M) needed for the characteristics in (S1) is given by

det(M) = det(E−1ME) = m0m1m2m3

×

[
1−

∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a,b
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄am̄b

]
, (S3)

where E = [eµA]4×4, E−1 = [eBν ]4×4, and E−1ME = [eAµM
µ
ν e

ν
B ]4×4. Also, we defined above m0 =

ρ
(
b2 −

∑
a gav

2
a

)
, ga = 2(2η+λπΠΠ)+τππΛa

4ρτπ
, ma = (ρ+Λa)b2− 1

2τπ
(2η+λπΠΠ)(v ·v)− τππ

4τπ

(
Λav · v +

∑
c Λcv

2
c

)
,

v̂a = va/
√
v · v (assuming v 6= 0), and m̄0 = m0/(v ·v), m̄a = ma/(v ·v). Note that

∑
a v̂

2
a =

∑
a v

2
a/(v ·v) = 1

since v · v = vµvµ =
∑
a v

2
a. Assuming v 6= 0 is allowed because v = 0 does not lead to nontrivial roots b 6= 0

of the characteristic equation if assumptions (A1)–(A3) hold.
The roots ξ of det(Aαξα) = 0 in Eq. (S1) are the 14 roots from b = uαξα = 0 and the 8 roots from

det(M) = 0 in Eq. (S3) which consist of the 2 roots from m0 = 0 and the 6 roots coming from the zeros of

f(k) = m̄1m̄2m̄3G(k), (S4)

where we defined k ≡ b2/v · v and

G(k) = 1−
∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a,b
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄am̄b
. (S5)

In this notation det(M) = m0(v · v)3f(k) because we used the definition m̄a = ma/v · v. Note that although
G(k) has m̄a appearing in denominators, these are canceled by the multiplication of G(k) by m̄1m̄2m̄3 in
the definition of f(k). Thus, f(k) is a polynomial of degree 3 in k (of degree 6 in b) and is defined for all
values of k ∈ R. Then, it is possible to factorize f(k) as

f(k) =

[
3∏
a=1

(ε+ P + Π + Λa)

]
(k − k1)(k − k2)(k − k3), (S6)

where k1, k2, k3 as the three roots of f(k). Note that for the sake of brevity, we have suppressed the depen-
dence on v̂ in writing G(k) and f(k) (to be more precise, these should have been written as G(k, v̂), f(k, v̂)).

Conditions (C1) and (C2) for causality demand that all the 22 roots ξ0 = ξ0(ξi) of det(Aαξα) = 0 are real
and satisfy ξαξ

α = −b2 + v · v ≥ 0, i.e., 0 ≤ k ≤ 1. The 14 roots b = 0 are causal. Thus, the rest the analysis
of necessary conditions in Section II will focus on the remaining roots defined by f(k) = 0. We summarize
this in the following important statement:

The system is causal if and only if for all for all v̂ on the unit sphere, the roots
of m̄0(k, v̂) = 0 and f(k, v̂) = 0 are real and 0 ≤ k ≤ 1.

(C3)

II. DERIVATION OF NECESSARY CONDITIONS FOR CAUSALITY

Here we establish that conditions (4) are necessary (but not sufficient, see Section V) for causality. More
precisely, we establish the following Theorem.
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Theorem 1. Let Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 be a smooth solution to equations (1)-(2) in
Minkowski space, with uµu

µ = −1 and πµν satisfying πµµ = 0 and uµπµν = 0. Suppose that (A1)-(A3)
hold. If any of conditions (4) is not satisfied, then Ψ is not causal in the sense of Definition 4 (see Section
VI).

Proof of Theorem 1: Our derivation of necessary conditions for causality is via the following reasoning.
Causality requires that conditions (C1) and (C2) hold for all ξi. Thus, in order to violate causality, it suffices
to show that for some ξi, (C1) or (C2) fails. Suppose now that we find a condition, say Z, for which we
can exhibit one ξi such that (C1) or (C2) fail, i.e., we obtain the statement “Z implies non-causality.” This
statement is logically equivalent to “Causality implies non-Z.” This means that non-Z is a necessary condition
for causality: if it is violated, the system is not causal. In our case, conditions like Z will be inequalities
among the scalars of the problem (e.g., the relaxation times, eigenvalues Λa, etc.) of the form A > B, whose
negation is then A ≤ B. The latter is then the necessary condition we are looking for: if A ≤ B does not
hold, the system is not causal.

Recall that (C1) and (C2) is equivalent to (C3), so in view of the foregoing discussion, we aim to violate
(C3). With the choice v̂a = δad, one can write m0 = ρ(v · v)(k − gd) = 0. Under our assumptions, the only
root is k = gd. Since we need 0 ≤ k ≤ 1, as discussed, and since g1 ≤ g2 ≤ g3, causality if violated if g1 < 0,
leading to condition (4a), or if g3 > 1, leading to condition (4b).

As for the roots of f(k), we may note that now in f(k) = m̄1m̄2m̄3G(k) we have

m̄a = (ε+ P + Π + Λa)k − 1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λa + Λd) (S7)

and

G(k) = 1−

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] + ζ+δΠΠΠ+λΠπΛd

τΠ
+ (ρ+ Λd)c

2
s

}
m̄d

(S8)

because we have set v̂a = δad. We may therefore rewrite

f(k) = m̄am̄b

[
m̄d −

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] +

ζ + δΠΠΠ + λΠπΛd
τΠ

+ (ρ+ Λd)c
2
s

}]
, (S9)

where a 6= b and a, b 6= d. Setting each of the factors ma,mb equal to zero, we obtain the roots

k =
1

2τπ
(2η + λπΠΠ) + τππ

4τπ
(Λa + Λd)

ε+ P + Π + Λa
, a 6= d. (S10)

Causality is violated if k < 0, leading to condition (4c), of if k > 1, leading to condition (4d). The remaining
root in (S9) is obtained when the term in brackets vanishes, giving

k =
1

2τπ
(2η + λπΠΠ) + τππ

2τπ
Λd

ε+ P + Π + Λd

+

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] + ζ+δΠΠΠ+λΠπΛd

τΠ
+ (ρ+ Λd)c

2
s

}
ε+ P + Π + Λd

. (S11)

Causality is violated if k < 0, leading to (4e), or if k > 1, leading to (4f). This finishes the proof.

III. DERIVATION OF SUFFICIENT CONDITIONS FOR CAUSALITY

Here we establish that conditions (5) are sufficient for causality. More precisely, we have:
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Theorem 2. Let Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 be a smooth solution to equations (1)-(2) in
Minkowski space, with uµu

µ = −1 and πµν satisfying πµµ = 0 and uµπµν = 0. Suppose that (A1)-(A3)
and (5) hold. Then Ψ is causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 2: As discussed in Section I, the 14 roots b = 0 are causal and do not need any further
treatment. The remaining 8 roots that come from det(M) = 0 are, again, the two roots of m0 and the six
roots of f(k) defined in (S4). We begin by analyzing the two roots of m0. Recalling that v = 0 does not
lead a nontrivial root of det(Aαξα) = 0, we see that the roots of m0 are given by b2 = k =

∑
a gav̂

2
a. For

these roots we need to check (according to (C3)) that

0 ≤
∑
a

gav̂
2
a ≤ 1. (S12)

(A3) together with conditions (5a) and (5b) give 0 ≤ g1 ≤ g2 ≤ g3 ≤ 1. From g1 ≤
∑
a gav̂

2
a ≤ g3, we see

that (S12) is satisfied.
Now we analyze the remaining 6 roots of det(M) = 0 coming from f(k) defined in Eq. (S4) and written

explicitly as a polynomial in (S6). We will show further below that the three roots ki in (S6) are real. But
let us first show that any real root of f must lie within [0, 1]. Since f is a cubic polynomial, it either has
only one real root, say s1, or three real roots, in which case we can order them as k1 ≤ k2 ≤ k3 in (S6).
Invoking (5a), we see that in the first case f is negative to the left of s1 and positive to its right, and in
the second case that f is a growing cubic polynomial except in the interval between the roots k1 and k3. In
either situation, any real root will be between 0 and 1 if

f(k < 0) < 0, (S13)

and

f(k > 1) > 0. (S14)

Let us first verify the inequality (S14). For k > 1

m̄a(k > 1) ≥ k(ε+ P + Π− |Λ1|)−
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3, (S15)

where we have used −2|Λ1| ≤ Λa +
∑
c Λcv̂

2
c ≤ 2Λ3. Now, observe that

k(ε+ P + Π− |Λ1|)−
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3 > (ε+ P + Π− |Λ1|)−

1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3

for k > 1, hence the condition (5a) lead us to m̄a(k ≥ 1) > 0. This guarantees that

m̄1(k > 1)m̄2(k > 1)m̄3(k > 1) > 0.

To obtain f(k > 1) > 0 in (S14), we therefore need G(k > 1) > 0. By means of (5c) and (5d),

−
∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a(k > 1)

> −
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λ3] + ζ+δΠΠΠ+λΠπΛ3

τΠ
+ (ε+ P + Π + Λ3)c2s

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

(S16)

as well as

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄a(k > 1)m̄b(k > 1)
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> −
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 − Λ1)2[

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

]2 , (S17)

and thus,

G(k > 1) > 1−
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λ3] + ζ+δΠΠΠ+λΠπΛ3

τΠ
+ (ε+ P + Π + Λ3)c2s

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

−
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

]2 . (S18)

Note that we have used maxa,b(Λa − Λb)
2 = (Λ3 − Λ1)2 = (Λ3 + |Λ1|)2, which follows from the ordering of

the eigenvalues Λa. Hence (5e) implies G(k) > 0 for k > 1.
It now remains to verify the inequality (S13). In this case, when k < 0

m̄a(k < 0) = −|k|(ε+ P + Π + Λa)− 1

2τπ
(2η + λπΠΠ)− τππ

4τπ

(
Λa +

∑
c

Λcv̂
2
c

)

< − 1

2τπ
(2η + λπΠΠ) +

τππ
2τπ
|Λ1|. (S19)

From condition (5b), one has that m̄a(k ≤ 0) < 0. Then,

f(k < 0) = m̄1(k < 0)m̄2(k < 0)m̄3(k < 0)G(k < 0) < 0

if, and only if, G(k < 0) > 0. Due to m̄a(k ≤ 0) < 0 together with (5c) and (5d), we obtain that

∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

−m̄a(k < 0)

>
1

6τπ
[2η + λπΠΠ− (6δππ − τππ)|Λ1|] + ζ+δΠΠΠ−λΠπ|Λ1|

τΠ
+ (ε+ P + Π− |Λ1|)c2s

−ma(k < 0)
. (S20)

Condition (5f) guarantees that
∑
a . . . > 0 in the above inequality. Moreover,

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄a(k < 0)m̄b(k < 0)

> −
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

1
2τπ

(2η + λπΠΠ)− τππ
2τπ
|Λ1|

]2 . (S21)

where we used (S19) and (Λ3 + |Λ1|)2 = maxa,b(Λa − Λb)
2 again. Now, since

G(k < 0) > 1−
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

1
2τπ

(2η + λπΠΠ)− τππ
2τπ
|Λ1|

]2 , (S22)

we have G(k < 0) > 0 from condition (5g), finally implying f(k < 0) < 0.
It remains to establish the reality of the roots ki in (S6). To do that, let us write G(k) as

G(k) = 1−
∑
a

Rav̂
2
a

m̄a
−
∑
a,b
a<b

Sabv̂
2
av̂

2
b

m̄am̄b
(S23)
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and

m̄a = ρak − ra, (S24)

where

Ra =
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] +

ζ + δΠΠΠ + λΠπΛa
τΠ

+ (ρ+ Λa)c2s (S25)

Sab =
12δππ − τππ

12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)
(Λa − Λb)

2, (S26)

ρa = ρ+ Λa = ε+ P + Π + Λa, (S27)

ra =
1

2τπ
(2η + λπΠΠ) +

τππ
4τπ

(
Λa +

∑
c

Λcv̂
2
c

)
. (S28)

Note, in particular, that r̄1 ≤ ra ≤ r̄3, where r̄1,3 ≡ 1
2τπ

(2η + λπΠΠ) +
τππΛ1,3

2τπ
> 0 from (5b). By applying

conditions (5) one has that Ra, Sab, ρa, ra ≥ 0. Then, f(k) can be written as

f(k) = m̄1m̄2m̄3 − m̄1m̄2R3v̂
2
3 − m̄2m̄3R1v̂

2
1 − m̄3m̄1R2v̂

2
2 − m̄1S23v̂

2
2 v̂

2
3 − m̄2S13v̂

2
1 v̂

2
3

−m̄3S12v̂
2
1 v̂

2
2

= a3k
3 + a2k

2 + a1k + a0, (S29)

where

a0 = −
(
r1r2r3 + r1r2R3v̂

2
3 + r2r3R1v̂

2
1 + r1r3R2v̂

2
2 − r1S23v̂

2
2 v̂

2
3 − r2S13v̂

2
1 v̂

2
3

−r3S12v̂
2
1 v̂

2
2

)
, (S30)

a1 = ρ1r2r3 + ρ2r1r3 + ρ3r1r2 + (ρ1r2 + ρ2r1)R3v̂
2
3 + (ρ2r3 + ρ3r2)R1v̂

2
1

+(ρ3r1 + ρ1r3)R2v̂
2
2 − ρ1S23v̂

2
2 v̂

2
3 − ρ2S13v̂

2
1 v̂

2
3 − ρ3S12v̂

2
1 v̂

2
2 , (S31)

a2 = −(ρ1ρ2r3 + ρ1ρ3r2 + ρ2ρ3r1 + ρ1ρ2R3v̂
2
3 + ρ2ρ3R1v̂

2
1 + ρ1ρ3R2v̂

2
2), (S32)

a3 = ρ1ρ2ρ3. (S33)

In view of (5), we have a3 > 0 and a2 < 0. Since all coefficients of f(k) are real, then at least one of the roots
must be real, say k = s1 ∈ R is the real root. Then, we know that the other two roots s2 and s3 are real or
complex conjugate, i.e., s∗3 = s2. Let us assume that s2 and s3 can be imaginary and set s2,3 = kR ± ikI ,
kI 6= 0. By using Vieta’s formula s1 + s2 + s3 = −a2

a3
= |a2|

a3
> 0 we obtain that

|a2|
a3
− 1 ≤ 2kR =

|a2|
a3
− s1 ≤

|a2|
a3

. (S34)

Thus, the following condition holds,

3ρ1(r̄1 +R1)

ρ2ρ3
− 1 < 2kR <

3ρ3(r̄3 +R3)

ρ1ρ2
(S35)

because the real root s1 ∈ [0, 1] when (5a)–(5g) apply, as we have already showed. Since we are assuming
s2,3 = kR ± ikI , where kI 6= 0, we have that m̄a(s2,3) = ρakR − ra ± ikI cannot be zero (unless kI = 0
and the roots are real). Consequently, from (S23) we obtain that f(s2,3) = 0 lead us to G(s2,3) = 0, where
s2,3 must obey the above conditions implied by f being a cubic polynomial, in particular the condition on
kR in (S35). Thus, let us split G(s2,3) in (S19) into GR(s2,3) + iGI(s2,3), where GR(s2,3) = <[G(s2,3)] and
GI(s2,3) = =[G(s2,3)]. In particular,

GI(s2,3) = ±kI
∑
a

v̂2
a

|m̄a|2

ρaRa +
∑
b
b>a

[ρa(ρbkR − r̄b) + ρb(ρakR − r̄a)]Sabv̂
2
b

|m̄b|2

 . (S36)
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To show that the roots are real, if suffices to have GI(s2,3) 6= 0. We distinguish two cases. If Sab = 0 then
GI(s2,3) 6= 0 because we assumed kI 6= 0. This means that in this case the roots must all be real. On the
other hand, if Sab 6= 0 and ρ1R1− r̄3 > 0, then Eq. (S36) also gives GI(s2,3) 6= 0, because then the sum over
b in (S36) is > 0. To check that ρ1R1− r̄3 > 0, note first that (5a) guarantees that ρa > ra. Then, by means
of (S35), we obtain that

ρ1kR − r̄3 >
ρ1

2

(
3ρ1(R1 + r̄1)

ρ2ρ3
− 1− 2r̄3

ρ1

)
≥ 0 (S37)

because of condition (5h), and this implies ρ1kR − r̄3 > 0. Since we have already showed that any real root
of f(k) must lie within [0, 1], this finishes our proof.

IV. LOCAL EXISTENCE AND UNIQUENESS

In this Section, we establish the local existence and uniqueness of solutions to the Cauchy problem. Below,
G is the space of Gevrey functions or quasi-analytic functions.

Theorem 3. Consider the Cauchy problem for equations (1)-(2) in Minkowski space, with initial data
Ψ̊ = (̊ε, ůν , Π̊, π̊0ν , π̊1ν , π̊2ν , π̊3ν)ν=0,...,3 given on {t = 0}. Assume that the data satisfies the constraints2

ůν ůν = −1, ůν is future-pointing, π̊νν = 0, and π̊νµů
µ = 0. Suppose that (A1)-(A3) and (5) hold for Ψ̊

in a strict form (i.e. < instead of ≤, > instead of ≥). Finally, assume that Ψ̊ ∈ Gδ({t = 0}), where
1 ≤ δ < 20/19. Then, there exist a T > 0 and a unique Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 defined on

[0, T )×R3 such that Ψ is a solution to (1)-(2) in [0, T )×R3 and Ψ = Ψ̊ on {t = 0}. Moreover, the solution
Ψ is causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 3: The calculations provided in Section I and in the proof of Theorem 2 imply that, under
the assumptions, the characteristic polynomial of the system evaluated at the initial data is a product of
strictly hyperbolic polynomials. One also sees that intersection of the interior of the characteristic cones
defined by these strictly hyperbolic polynomials has non-empty interior and lies outside the light-cone defined
by the metric. Under these circumstances we can apply theorems A.18, A.19, and A.23 of [2] to conclude
the result (the remaining assumptions of these theorems are easily verified in our case).

For the sake of brevity, we refer readers to [3] for a definition of Gδ, making only the following remarks.
The case of δ = 1 corresponds to the space of analytic functions, of which Gδ with δ > 1 is a generalization.
This is why G is sometimes referred to as the space of quasi-analytic functions. The usefulness of Gevrey
functions to the study of hyperbolic problems is at least two-fold. On the one hand, one can prove very
general existence and uniqueness theorems for Gevrey data given on a non-characteristic surface that are
akin to the Cauchy-Kovalewskaya theorem for analytic data. On the other hand, an advantage of Gevrey
maps over analytic ones is that one can construct Gevrey functions that are compactly supported; hence
one can appeal to the type of localization arguments that are so useful in the study of hyperbolic equations.
This is particularly important when one is considering coupling to Einstein’s equations.

While typical evolution problems consider solutions in more general function spaces than Gδ, we stress
that ours is the very first existence and uniqueness result for equations (1)-(2). In other words, while it is
desirable to extend our result to more general function spaces, Theorem 3 is important because it shows,
for the very first time in the literature, that the initial value problem for equation (1)-(2) is well-defined, so
that it is meaningful to talk about solutions.

We remark that the diagonalization of πµν was carried out in terms of orthonormal frames which can be
defined for any Lorentzian metric. Also, our computations are manifestly covariant. Thus, the results of

2 Alternatively, we could have only unconstrained data be prescribed and obtain the full set of data from the stated constraints.
For example, we could have ůi prescribed and define u0 so that ůν is unit time-like and future pointing.
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Theorems 1, 2, and 3, remain true in a general globally hyperbolic space-time, as mentioned in the main
text. Moreover, as also mentioned in the main text, the result extends to the case when (1)-(2) are coupled
to Einstein’s equations. This follows by computing the characteristic determinant of the coupled system and
observing that it factors into the product of the characteristic determinant of (1)-(2), which we analyzed
here, and the characteristic determinant of Einstein’s equations. The argument is the same as given in [4].

V. INSUFFICIENCY OF CONDITIONS FOR CAUSALITY

In this Section, we show that conditions (4), albeit necessary, are not sufficient for causality. We do this
by showing that causality can be violated if we only assume (A1)-(A3) and (4).

Thus, suppose that (A1)-(A3) and (4) hold. Consider the case where (Ins1) δππ = τππ/4, δΠΠ = 0,
ζ+λΠπΛa ≥ 0, λΠπ

τΠ
+ c2s− τππ

12τπ
> 0, and 1− c2s− τππ

3τπ
− λΠπ

τΠ
< 0. Also, the parameters as well as c2s obey the

necessary conditions (4). Assume also that (Ins2) Λ3 = Λ2 > 0, i.e., Λ3 is a degenerated eigenvalue. Then,
we may write

G(k) = 1−
∑
a

Rav̂
2
a

m̄a
−
∑
a,b
a<b

Sabv̂
2
av̂

2
b

m̄am̄b
, (S38)

where

Ra =
1

6τπ

[
2η + λπΠΠ +

τππ
2

Λa

]
+
ζ + λΠπΛa

τΠ
+ (ε+ P + Π + Λa)c2s (S39)

and

Sab =
τππ
6τπ

(
ΛΠπ

τΠ
+ c2s −

τππ
12τπ

)
(Λa − Λb)

2. (S40)

From (4a) together with the above choices we have that Ra, Sab > 0. Now, let us define

m̃a ≡ ε+ P + Π + Λa −
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λa. (S41)

Then, (4f) can be written as

m̃d −Rd ≥ 0, (S42)

culminating into m̃d > 0. Note that this must hold for any d = 1, 2, 3. Let us consider the case where a1 is
such that m̃a1

−Ra1
= mind(m̃d −Rd). Thus, if (S42) is verified for d = a1, it is automatically true for for

all d = 1, 2, 3. Now, we may choose the constraint in the parameters such that (Ins3) m̃a1
−Ra1

= 0, what
is in accord with (S42). The remainder of this proof relies on the choice v̂a1 =

√
1− ε2, v̂a2 = ε, and v̂a3 = 0

for ε ∈ (0, 1). Moreover, we make the assumption (Ins4) that if a1 = 3, 2, then a2 = 2, 3 while if a1 = 1, then
a2 can be either 2 or 3. Thus, one can clearly see that

f(k) = m̄a3

(
m̄a1m̄a2 − m̄a1Ra2ε

2 − m̄a2Ra1(1− ε2)− Sa1a2ε
2(1− ε2)

)
, (S43)

m̄d = (ε+ P + Π + Λd)k −
1

2τπ
(2η + λπΠΠ)− τππ

4τπ

[
Λd + Λa1

(1− ε2) + Λa2
ε2
]

= m̄0
d −

τππ
4τπ

(Λa2
− Λa1

)ε2, (S44)

where we defined

m̄0
d ≡ (ε+ P + Π + Λd)k −

1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λd + Λa1

) .
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From (4d) one may easily verify that m̄0
d(k ≥ 1) ≥ 0. In particular,

m̄0
a1

(k = 1) = m̃a1
> 0 (S45)

from (S42), while m̄0
a2,a3

(k = 1) > m̃a2,a3
> 0. (Ins2) enables us to write (note that a2 6= 1 according to

(Ins4))

Λa1(1− ε2) + Λa2ε
2

{
= Λ3 = Λ2, if a1 = 2, a2 = 3 or a1 = 3, a2 = 2,

< Λ3, if a1 = 1 ∀ ε ∈ (0, 1)
, (S46)

which results into

m̄d ≥ (ε+ P + Π + Λd)k −
1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λd + Λ3) , (S47)

and gives m̄d(k ≥ 1) ≥ 0 due to (4d) and m̄2,3(k ≥ 1) > 0 because m̃d > 0 from (S42).
The roots of f are the roots of m̄a3 and the roots in the term in brackets in (S43). Let us define it as

f̃(k) ≡ m̄a1m̄a2 − m̄a1Ra2ε
2 − m̄a2Ra1(1− ε2)− Sa1a2ε

2(1− ε2)

= m̄a1m̄a2G(k), (S48)

where

G(k) = 1− Ra2
ε2

m̄a2

− Ra1
(1− ε2)

m̄a1

− Sa1a2
ε2(1− ε2)

m̄a1
m̄a2

. (S49)

Note that since ε ∈ (0, 1), the terms m̄a1,a2
(k̄) cannot be zero if k̄ is a root of f̃ due to the term Sa1a2

. Also,

because f̃(k) = (ρ + Λa1)(ρ + Λa2)k2 + O(k) is a positive function to the right of the larger real root due
to (Ins3), then f̃(k > 1) > 0, or equivalently G(k > 1) > 0, guarantees that there is no real root for k > 1.
Because (Ins1) leads to Ra, Sab > 0, and since m̄a(k > 1) > m̄a(k = 1), then condition G(k > 1) > 0 is
equivalent to G(k = 1) ≥ 0. In other words we must have that

1− Ra2ε
2

m̄a2
(k = 1)

− Ra1(1− ε2)

m̄a1
(k = 1)

− Sa1a2ε
2(1− ε2)

m̄a1
(k = 1)m̄a2

(k = 1)
≥ 0. (S50)

Since ε < 1 we can expand (S45) in powers of it and, after using (S45) and (Ins3), obtain the causality
condition {

1− τππ
4τπm̃a1

(Λa2
− Λa1

)− Ra2

m̄0
a2

(k = 1)
− Sa1a2

m̃a1
m̄0
a2

(k = 1)

}
ε2 +O(ε4) ≥ 0. (S51)

Now, by writing

m̄0
a2

(k = 1) = m̃a1
+ (Λa2

− Λa1
)

(
1− τππ

4τπ

)
and

Ra2 = Ra1 + (Λa2 − Λa1)

(
c2s +

τππ
12τπ

+
λΠπ

τΠ

)
,

and by means of (Ins3) we may rewrite

1− Ra2

m̄0
a2

(k = 1)
=

Λa2
− Λa1

m̄0
a2

(k = 1)

(
1− c2s −

τππ
3τπ
− λΠπ

τΠ

)
≤ 0. (S52)

Note that (S52) is negative or zero because of (Ins2), (Ins3), and (Ins4). From (Ins2) and (Ins4), if a1 = 2, 3,
then a2 = 3, 2 and Λa2

−Λa1
= 0 while if a1 = 1, then a2 = 2, 3 and Λa2

−Λ1 > 0, resulting in Λa2
−Λa1

≥ 0,
while (Ins1) makes (S52) negative or zero. As a consequence of (S52), the term proportional to ε2 in the
LHS of (S51) is negative and, for some small value of ε ∈ (0, 1) it must become the leading term, turning
the LHS of (S51) strictly negative. Then, one concludes that the system is not causal and the necessary
conditions (4) are not sufficient.
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VI.FORMAL DEFINITION OF CAUSALITY AND CONDITIONS(C1) AND(C2)

Herewepresenttheprecisemathematicaldefinitionofcausalityandhowitrelatestoconditions(C1)and
(C2). Causalitycanbedefinedasfollows(see[5,page620]or[6,Theorem10.1.3]for moredetails).

Definition4. Let(M ,g)bethe Minkowskispace. ConsiderinM asystemofpartialdifferentialequations
foranunknownψ,whichwewriteasPψ=0,wherePisadifferentialoperator(whichisallowedtodepend
onψ)3. Letϕbeasolutiontothesystem. Wesaythatϕiscausalifthefollowingholdstrue:givena
CauchysurfaceΣ⊂ M,foranypointxinthefutureofΣ,ϕ(x)dependsonlyonϕ|J (x)∩Σ,whereJ−(x)
isthecausalpastofx.

Thecaseof mostinterestiswhentheCauchysurfaceisthehypersurface{t=0}whereinitialdatais
prescribed. Wealsonotethatsinceweareworkingin Minkowskispace,J−(x)issimplythepastlight-cone
withvertexatx. ThesituationinDefinition4isillustratedinFig.1.Inparticular,causalityimpliesthat
ϕ(x)remainsunchangedifthethevaluesofϕalongΣarealteredonlyoutsideJ−(x)∩Σ. Observethatthis
definitionsaysthatϕ(x)canonlybeinfluencedbypointsinthepastofxthatarecausallyconnectedtox

x

t

x

Σ

J−(x)∩Σ

,
sonoinformationisallowedtopropagatefasterthanthespeedoflight.

FIG.1:(coloronline)Illustrationofcausality.J−(x)isthepastlight-conewithvertexatx.PointsinsideJ−(x)can
bejoinedtoapointxinspace-timebyacausalpastdirectedcurve(e.g.theredline). Thevalueofϕ(x)depends
onlyonϕ|J (x)∩Σ.

TheconnectionbetweenDefinition4andconditions(C1)and(C2)isviathecharacteristicsofthesystem
Pψ =0. ItisbeyondthescopeofthisSupplemental Materialtoprovideadetaileddescriptionofthe
connectionsbetweenDefinition4andthesystem’scharacteristics. WereferreaderstoAppendixAof[2],[7,
ChapterVI],and[8]. Here,werestrictourselvestothefollowingcomments.Finitespeedofpropagationisa
propertyofhyperbolicequations.Forsuchequations,thereexistdomainsofdependencethatshowprecisely
howthevalueofasolutionatapointxisdeterminedsolelybyvalueswithinadomainofdependenceinthe
pastwith“vertex”atx(thisisexactlythegeneralizationofthepastlight-cone).Thedomainofdependence,
inturn,isdeterminedbythesystem’scharacteristics. Whileitis mathematicallypossibleforhyperbolic
equationstoexhibitdomainsofdependencewhereinformationpropagatesfasterthanthespeedoflight(see,
again,ourdiscussionintheConclusion),forsolutionstobecausal(i.e.,tonothavefaster-than-lightsignals),
thedomainsofdependence mustalwayslieinsidethelight-cones. Thisisequivalenttothestatement(C1)
and(C2)thatwehaveused. Definition4canbegeneralizedtoarbitrarygloballyhyperbolicspaces,whichis
neededfortheaforementionedgeneralizationofourTheoremstothissetting. Again,werefertoAppendix
Aof[2],[7,ChapterVI],and[8].

3Incoordinates,thissystemof PDEs wouldberepresentedbyPI
K ψK =0, I,K=1,...,N, where{ψK }N

K=1 arelocal

representationsofψ,andPI
K aredifferentialoperators(possiblydependingonψK ).
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