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Abstract. In this manuscript, we study the theory of conformal relativistic
viscous hydrodynamics introduced in [4], which provided a causal and sta-

ble first-order theory of relativistic fluids with viscosity. Local existence and

uniqueness of solutions to its equations of motion have been previously estab-
lished in Gevrey spaces. Here, we improve this result by proving local existence

and uniqueness of solutions in Sobolev spaces.

1. Introduction. Relativistic hydrodynamics is an essential tool in several branch-
es of physics, including high-energy nuclear physics [3], astrophysics [33], and cos-
mology [38], and it is also a fertile source of mathematical problems (see, e.g., the
monographs [2, 10, 11, 12, 33] and references therein). This paper is concerned with
the local Cauchy problem to the equations of motion of relativistic viscous fluids.

More precisely, we consider the energy-momentum tensor for a relativistic con-
formal fluid given by

Tαβ = (ε+A)(uαuβ +
1

3
Παβ)− ησαβ + uαQβ + uβQα, (1.1)
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where

A = 3χ(
1

θ
uµ∇µθ +

1

3
∇µuµ),

Qα = λ(
1

θ
Πµα∇µθ + uµ∇µuα),

σαβ = Πµα∇µuβ + Πµβ∇µuα −
2

3
Παβ∇µuµ.

Above, ε is the fluid’s energy density; u is the fluid’s four-velocity, which satisfies
the constraint

gαβu
αuβ = −1, (1.2)

where g is the spacetime metric1; Π is the projection onto the space orthogonal to
u, given by Παβ = gαβ + uαuβ ; θ is the temperature that satisfies ε = ε0θ

4, where
ε0 > 0 a constant; η, χ, and λ are transport coefficients, which are known functions
of ε and model the viscous effects in the fluid; and ∇ is the covariant derivative
associated with the metric g. Indices are raised and lowered using the spacetime
metric, lowercase Greek indices vary from 0 to 3, Latin indices vary from 1 to 3,
repeated indices are summed over their range, and expressions such as zα, wαβ ,
etc. represent the components of a vector or tensor with respect to a system of
coordinates {xα}3α=0 in spacetime, where the coordinates are always chosen so that
x0 = t represents a time coordinate. We will consider the fluid dynamics in a fixed
background, so that the metric g is given.

The equations of motion are given by

∇αT αβ = 0 (1.3)

supplemented by the constraint (1.2).
We now state our result. After the statement, we discuss our assumptions and

provide some further context. We note that in view of (1.2), it suffices to provide
the components of u tangent to {t = 0} as initial data; this explains the statement
involving the projector P in the Theorem, where we recall that u is the fluid’s
four-velcity. We also observe that in view of the relation ε = ε0θ

4 between the
energy density and the temperature, it suffices to provide initial data for θ (which
is what we in fact use in Section 3). The conclusion of the Theorem, however, is
more appropriately stated in terms of ε, since fluid dynamic equations are more
commonly written in terms of the energy density (this is particularly the case for
perfect fluids, which provide a basis for comparisons with viscous ones).

Theorem 1.1. Let g be the Minkowski metric on R×T3, where T3 is the three-
dimensional torus. Let η : (0,∞)→(0,∞) be an analytic function, χ=a1η, and λ=
a2η, where a1 and a2 are positive constants satisfying a1>4 and a2≥3a1/(a1 − 1).
Let θ(0)∈Hr(T3,R), θ(1)∈Hr−1(T3,R), u(0)∈Hr(T3,R3), and u(1)∈Hr−1(T3,R3)
be given, where Hr is the Sobolev space and r> 7/2. Assume that θ(0)≥C > 0 for

some constant C. Let ε(0) =ε0θ
4
(0) and ε(1) =4ε0θ

3
(0)θ(1), where ε0>0 is a constant.

Then, there exists a T > 0, a function

ε ∈ C0([0, T ), Hr(T3,R)) ∩ C1([0, T ), Hr−1(T3,R)) ∩ C2([0, T ), Hr−2(T3,R)),

and a vector field

u ∈ C0([0, T ), Hr(T3,R4)) ∩ C1([0, T ), Hr−1(T3,R4)) ∩ C2([0, T ), Hr−2(T3,R4))

1By “metric” we always mean a “Lorentzian metric.”
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such that equations (1.2) and (1.3) hold on [0, T ) × T3, and satisfy ε(0, ·) = ε(0),
∂tε(0, ·) = ε(1), Pu(0, ·) = u(0), and P∂tu(0, ·) = u(1), where ∂t is the derivative

with respect to the first coordinate in [0, T ) × T3 and P is the canonical projection
from the tangent bundle of [0, T ) × T3 onto the tangent bundle of T3. Moreover,
(ε, u) is the unique solution with the stated properties.

Relativistic viscous hydrodynamics is important in many areas of physics, such
as in the study of the quark-gluon-plasma that forms in heavy ion-collisions [3, 24]
or in neutron star mergers [1]. In fact, in the heavy-ions community, for example,
all current studies within the scope of fluid theories are done using viscous models
[3, 24].

One of the main challenges in the theory of relativistic viscous hydrodynamics is
to construct physically meaningful theories that respect causality, (linear) stability,
and local existence and uniqueness of solutions. Despite the importance of relativis-
tic viscous hydrodynamics, very few models have been showed to be causal, stable,
and to admit local existence and uniqueness of solutions, and typical results of this
nature have been only partial [5, 13, 14, 21, 28]. The literature on this topic is vast
and we refer the reader to [3, 17, 18, 24, 25, 26, 33, 35, 36] and references therein
for discussion and background.

The energy-momentum (1.1) was introduced in [4], where a new approach to the
formulation of relativistic viscous hydrodynamics was proposed for the case of a
conformal fluid. Conformal fluids satisfy the property that the ratio between any
two transport coefficients is constant [3, 7], which explains our assumption that
χ and λ are a multiple of η. Under the assumptions on a1 and a2 stated in the
Theorem, the equations of motion derived from (1.1) (i.e., (1.2) and (1.3)) were
showed to be causal and linearly stable in [4, 16]. The physical significance of our
assumptions on η, χ, and λ is highlighted by the fact that causality and linear
stability are basic physical properties of relativistic viscous fluids. Further physical
properties of equations (1.2) and (1.3), such as the non-relativistic limit, entropy
production, and connections with kinetic theory, are also discussed in [4].

In the works [4, 16], it is was also showed that equations (1.2) and (1.3) admit
local existence and uniqueness of solutions in Gevrey spaces (see Section 3.1 for the
definition of Gevrey functions). The goal of this manuscript is to extend these result
by establishing local existence and uniqueness of solutions in Sobolev spaces2.

We work on T3 for simplicity, since using the domain of dependence property
(proved in [16]) one can adapt the proof to R3. The assumption θ(0) ≥ C > 0, on
the other hand, is crucial. Without it the equations can degenerate. This can be
seen more clearly from the matrix Aα in Section 3: some entries of Aα involve θ−1,
but multiplying the system by θ would cause the matrix Aα to become singular.
It is possible that the proper context to understand the situation when θ (or ε)
can vanish is that of a free-boundary dynamics. However, free-boundary problems
remain largely open even in the case of a relativistic perfect fluid [8, 9, 15, 20, 22,
23, 27, 30, 31, 32].

We remark that it is likely that our results can be extended to non-conformal
fluids, but we focus here on the conformal case as this seems to provide the simplest
setting where the equations simplify considerably, while being at the same time of
direct physical relevance (since conformal viscous fluids are used in the study of

2However, only the case of a fixed background Minkowski metric is treated here, whereas in
[4, 16] the coupling of (1.1) with Einstein’s equations has also been studied.
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the quark-gluon plasma). In fact, historically conformal fluids have served as an
efficient test-case of ideas in the study of viscous relativistic hydrodynamics. In
this regard, we point out that for an energy-momentum tensor of the form (1.1)
but with a general barotropic equation of state, causality and local existence and
uniqueness of solutions in Gevrey spaces have been established in [6].

We also stress that our results can be generalized to curved fixed backgrounds,
but we focused on Minkowski space for simplicity and because the most physically
relevant system for conformal relativistic viscous fluids is the quark-gluon-plasma,
which evolves on a Minkowski background. We stress, however, that while our
proof could be adapted to a curved background, considering coupling to Einstein’s
equations is significantly more complicated. This is because in our derivation of the
new system of equations of Section 2, we commute derivatives, which would produce
terms proportional to the the Riemann tensor. Such terms will be lower order (in
fact, zero in Minkowski) in terms of the fluid variables whenever the metric is given
(i.e., in a fixed background), but they will be top-order when coupled to Einstein’s
equations.

2. A new system of equations. In this section we derive a new system of equa-
tions that will allow us to establish Theorem 1.1. In order to do so, throughout this
section, we assume to be given a sufficiently regular solution to (1.2)-(1.3).

Using (1.2) to decompose ∇αT αβ in the directions parallel and orthogonal to u,

we can rewrite (1.3) as

uα∇αA+
4

3
A∇αuα +∇αQα +Qαu

λ∇λuα −
1

2
ησµνσµν +

4

3χ
ε0θ

4A = 0, (2.1a)

1

3
Παµ∇αA+

4

3
Auα∇αuµ − η∇ασαµ +

η

2
σαβσαβuµ + 3ησµλu

α∇αuλ + uα∇αQµ

− uµQλuα∇αuλ +∇αuαQµ +Qα∇αuµ +
4ε

3λ
Qµ −

3η

λ
σµνQ

ν = 0. (2.1b)

Introducing

S β
α = Πµα∇µuβ , Sα = uµ∇µuα,

we find

uµ∇µA+∇µQµ + r1 = 0, (2.2a)

Παµ∇µA+ 3uµ∇µQα +B αµλ
ν ∇λS ν

µ + r2 = 0, (2.2b)

− 1

χ
Παµ∇µA+

3

λ
uµ∇µQα − 3uµ∇µSα + Παµ∇µS ν

ν + r3 = 0, (2.2c)

uµ∇µS β
α − Πνα∇νSβ + r4 = 0, (2.2d)

1

θ
uµ∇µθ +

1

3
∇µuµ + r5 = 0, (2.2e)

1

θ
Παµ∇µθ + uµ∇µuα + r6 = 0, (2.2f)

where

B αµλ
ν = −3η(δανΠ

µλ + δλνΠ
αµ − 2

3
δµνΠ

αλ),

and ri, i = 1, . . . , 6 are smooth functions of A, Qα, Sα, S β
α , θ, and uα; no derivative

of such quantities appears in the ri’s. Above and throughout, δ is the Kronecker
delta.
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The derivation of (2.2) is as follows: equations (2.2a) and (2.2b) are equations
(2.1a) and (2.1b), respectively; equations (2.2e) and (2.2f) are simply the definition
of A and Qα; equations (2.2c) and (2.2d) follow from contracting the identities

∇µ∇νθ−∇ν∇µθ = 0, ∇µ∇νuα −∇ν∇µuα = R α
µν λu

λ = 0,

with uµ and then with Πνλ. We also used the identities

1

θ
∇αθ = − 1

3χ
uαA+

1

λ
Qα +

1

3
uαS

µ
µ − ΠαµS

µ, ∇αuβ = −uαSβ + S β
α .

We write equations (2.2) as a quasilinear first order system for the the variable
Ψ = (A,Qα, Sα, S α

0 , S α
1 , S α

2 , S α
3 , θ, uα)T , with T being the transpose, as

Aα∇αΨ +R = 0, (2.3)

where R = (r1, . . . , r6)T and Aα is given by

Aα=



uα δαν 01×4 01×4 01×4 01×4 01×4 0 01×4

Πµα 3uαI4 04×4 B µ0α
ν B µ1α

ν B µ2α
ν B µ3α

ν 04×1 04×4

−Πµα

χ
3uα

λ
I4 −3uαI4 δ0

νΠ
µα δ1

νΠ
µα δ2

νΠ
µα δ3

νΠ
µα 04×1 04×4

04×1 04×4 −Πα0 I4 uαI4 04×4 04×4 04×4 04×1 04×4

04×1 04×4 −Πα1 I4 04×4 uαI4 04×4 04×4 04×1 04×4

04×1 04×4 −Πα2 I4 04×4 04×4 uαI4 04×4 04×1 04×4

04×1 04×4 −Πα3 I4 04×4 04×4 04×4 uαI4 04×1 04×4

0 01×4 01×4 01×4 01×4 01×4 01×4
uα

θ

δαν
3

04×1 04×4 04×4 04×4 04×4 04×4 04×4
Πµα

θ
I4 u

α


.

Equation (2.3) is the main equation we will use to derive estimates. Observe that
Ψ has 30 components and the matrices Aα are 30× 30 matrices.

3. Diagonalization. Here, we show that under assumptions consistent with those
of Theorem 1.1, we can diagonalize the principal part of (2.3).

Proposition 1. Let ξ be a timelike vector and assume that χ > 4η > 0 and that
λ ≥ 3χη

χ−η . Then:

(i) det(Aαξα) 6= 0;
(ii) For any spacelike vector ζ, the eigenvalue problem Aα(ζα + Λξα)V = 0 has

only real eigenvalues Λ and a complete set of eigenvectors V .

Remark 1. In practice we will take ξ = (1, 0, 0, 0) and ζ = (0, ζ1, ζ2, ζ3). We note
that the assumptions on χ, λ, and η on Theorem 1.1 imply the assumptions on
these coefficients in the Proposition.

Proof. Let a and b be the projection of ζ + Λξ on the direction orthogonal and
parallel to u, i.e., aα = Παµ(ζµ + Λξµ) and b = (ζα + Λξα)uα. Then

aµaµ

=ΠαµΠαν(ζµ+Λξµ)(ζν+Λξν)=(gαµ+uαuµ)(ζµ+Λξµ)(gαν+uαuν)(ζν+Λξν)

=(ζα + Λξα)(ζα + Λξα) + b2.

To simplify the notation, set Ξα = ζα + Λξα. Then

det(ΞαAα)
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= det



b ΞT 01×4 01×4 01×4 01×4 01×4 0 01×4

a 3bI4 04×4 D µ0
ν D µ1

ν D µ2
ν D µ3

ν 04×1 04×4

− a
χ

3b
λ
I4 −3bI4 δ0

νa δ1
νa δ2

νa δ3
νa 04×1 04×4

04×1 04×4 −a0I4 uαI4 04×4 04×4 04×4 04×1 04×4

04×1 04×4 −a1I4 04×4 bI4 04×4 04×4 04×1 04×4

04×1 04×4 −a2I4 04×4 04×4 bI4 04×4 04×1 04×4

04×1 04×4 −a3I4 04×4 04×4 04×4 bI4 04×1 04×4

0 01×4 01×4 01×4 01×4 01×4 01×4
b
θ

ΞT

3
04×1 04×4 04×4 04×4 04×4 04×4 04×4

a
θ

bI4


=m1m2,

where we write ΞT to emphasize that ΞT represents a 1 × 4 piece, and D αµ
ν =

B αµλ
ν Ξλ. m2 is given by

m2 = det

[
b
θ

ΞT

3
a
θ

bI4

]
=
b3

3θ
(3b2 − ΠαβΞαΞβ),

whereas

m1 = det



b ΞT 01×4 01×4 01×4 01×4 01×4

a 3bI4 04×4 D µ0
ν D µ1

ν D µ2
ν D µ3

ν

− a
χ

3b
λ
I4 −3bI4 aδ0

ν aδ1
ν aδ2

ν aδ3
ν

04×1 04×4 −a0I4 bI4 04×4 04×4 04×4

04×1 04×4 −a1I4 04×4 bI4 04×4 04×4

04×1 04×4 −a2I4 04×4 04×4 bI4 04×4

04×1 04×4 −a3I4 04×4 04×4 04×4 bI4


(3.1)

= b9 det

 1 ΞT 01×4

a 3b2I4 D µα
ν aα

− a
χ

3b2I4
λ

−3b2I4 + aµaν

 (3.2)

= b9 det

3b2I4 a Eµν
ΞT 1 01×4

3b2

λ
I4 − a

χ
−3b2I4 + aµaν

 (3.3)

= 27b15 det

[
3b2 − aµaµ −ΞµE

µ
ν

λ+χ
λχ

a 3b2I4 − aµaν +
Eµν
λ

]
(3.4)

= 27b15 det

[
F dν
cµ hµν

]
=

27b15

F 3
det(Fhµν − cµdν) (3.5)

=
27b15

F 3
det(FGδµν −Hνa

µ) = 27b15G3(FG−Hµa
µ) (3.6)

= 27b15G3(FG− λ + η

λ
F (aµaµ)− κ). (3.7)

We now detail how the computations (3.1)-(3.7) were carried out. These computa-
tions made successive use of the formula

det

[
M1 M2

M3 M4

]
= det(M1) det(M4 −M3M

−1
1 M2) (3.8)

= det(M4) det(M1 −M2M
−1
4 M3) (3.9)
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when M−1
1 or M−1

4 exist, and we defined

Eµν = −3η(aαaαδ
µ
ν + aµΞν −

2

3
aµaν),

F = 3b2 − aµaµ,
dν = −2ηaαaα(aν − 3Ξν),

cµ =
λ + χ

λχ
aµ,

hµν = 3b2δµν − aµaν +
Eµν
λ

= 3(b2 − aαaαη

λ
)δµν −

λ− 2η

λ
aµaν −

3η

λ
aµΞν ,

G = 3(b2 − aαaαη

λ
),

Hν = F (
λ− 2η

λ
aν +

3η

λ
Ξν) +

λ + χ

λχ
dν ,

Hµa
µ =

λ + η

λ
F (aµaµ) + κ,

κ = cµdµ =
4η(λ + χ)

λχ
(aαaα)2. (3.10)

From (3.1) to (3.2) we used (3.8) by setting

M1 =

 b ΞT 01×4

a 3bI4 04×4

− a
χ

3b
λ
I4 −3bI4


withM2, M3, andM4 following accordingly. Although det(M4) = b16, we multiplied
lines 2 to 9 by b and divided column 1 by b. Then, the overall multiplicative
factor was modified by b16b−8b1 = b9, resulting in (3.2). After that, we performed
the following permutations in (3.2): the fifth line was brought to the first line
after 4 line permutations and the fifth column became the first column after 4
column permutations, obtaining (3.3), where Eµ was defined in (3.10). From (3.3)
to (3.4) we made again use of (3.8) by setting M1 = 3b2I4, where M2, M3, and M4

are chosen accordingly. The resulting matrix has the overall factor multiplied by
detM1 = 81b8, but since we multiplied the first line of the resulting matrix by 3b2,
it reduces to 27b6 and, then, by changing the sign of the last 4 lines, Eq. (3.4) is
obtained. The first equality in (3.5) corresponds to (3.4) with the definitions that
appear in (3.10). Setting F = M1, where M2, M3, and M4 are chosen accordingly,
we have applied equation (3.9) to the second equality. The first equality of (3.6)
corresponds to the second equality in (3.5) by using the definitions in (3.10). From
the first to the second equality in (3.6), we used the formula

det(Aδµν + αµβν) = A4 +A3αµβµ

with A = FG, αµ = aµ, and βν = −Hν . Finally,

det(ΞαAα) = m1m2 =
9b18

θ
G3(3b2 − aµaµ)(FG− F λ + η

λ
aµaµ − κ).

We set det(ΞαAα) equal to zero to find the eigenvalues and eigenvectors. Thus, we
need to find the roots Λ of b = 0 with multiplicity 18, G = 0 (which gives a total
of two roots with multiplicity 3), 3b2 − aµaµ (which gives a total of 2 roots with

multiplicity 1), and FG − F λ+η
λ
aµaµ − κ = 0 (which gives a total of 4 roots with

multiplicity 1), and the corresponding eigenvectors in all cases.
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b18 = 0 gives

Λ1 = −u
αζα

uβξβ
.

There are 18 corresponding linearly independent eigenvectors given by

 0
wνa

025×1

 , [026×1

wνa

]
,



χfλλ
08×1

fν0
fν1
fν2
fν3

05×1


,

where wνa = {wν1 = uν , wν2 , w
ν
3} are 3 linearly independent vectors orthogonal to

ζλ+Λ1ξλ, and fνλ totalizes 16 components that define the entries in the last vector.
However, since these 16 components are constrained by the 4 equations χfλλa

µ +
D µλ
ν fνλ = 0 (where aα is as above but with Λ = Λ1), we end up with 12 independent

entries. Then, 3 + 3 + 12 = 18, which equals the multiplicity of the root Λ1.
3b2 − aµaµ = 0 can be written as b2 − βaµaµ = 0, where β = 1

3 . The roots are

then Λ2,± = (−uµζµuνξν + βΠµνξµζν ±
√

∆)/((uµξµ)2(1− β)− βξµξµ), where

∆ =β(((uµξµ)2 − Πµνξµξν)(Παβζαζβ − (uαζα)2) + (uµξµu
νζν + Πµνξµζν)2

+ (1− β)(ΠµνξµξνΠ
αβζαζβ − (Πµνξµζν)2)).

We note that these roots are always real when 0 < β < 1 because Παβξ
αξβ <

(ξαu
α)2, Παβζ

αζβ > (ζαu
α)2, and (Πµνξµζν)2 ≤ ΠµνξµξνΠ

αβζαζβ . Thus, Λ2,±
has two distinct roots giving two linearly independent eigenvectors.
G3 = 0 can also be written as b2−βaµaµ = 0, where β = η

λ
. The roots are written

the same way as Λ2,± with the particularity that now each one has multiplicity 3.
We note that these roots are real because 0<β<1. The corresponding eigenvectors
are 

C±
Dν
±
eν±
a±0 e

ν
±

b±
a±1 e

ν
±

b±
a±2 e

ν
±

b±
a±3 e

ν
±

b±

05×1


,

where a± is as a above but with Λ = Λ3,±, b± is as b above but with Λ = Λ3,± (so
that b2± = β(a±)µ(a±)µ),

C± = − λ

λ + χ
((2λ + χ)(e±)µ(Ξ±)µ −

λ

3η
(2η + χ)(a±)µ(e±)µ),

Dµ
± =

λ + χ

3b2±λ
((a±)ν(e±)ν(a±)µ − 3b2±χ(e±)µ − (e±)νD µλ

ν (a±)λ),
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where Ξ± is as Ξ above but with Λ = Λ3,±, and e± obeys the following constraint

λ + χ

λχ
c±b± −

3η

λ
(Ξ±)µ(e±)µ +

2η− λ

λ
(a±)µ(e±)µ = 0.

Thus, the eigenvectors are written in terms of 3 independent components of eµ for
each root, giving a total of 6 eigenvectors.
FG− F λ+η

λ
aµaµ − κ = 0 can be written as

9λχb4 − 6(λ + 2η)χaµaµb
2 + λ(χ− 4η)(aµaµ)2 = 0.

This is a quadratic equation for b2 that has positive discriminant, i.e.,

(aµaµ)2ηχ(λ2 + ηχ + λχ) > 0.

In order to obtain real roots Λ, we need

0 <
b2

aµaµ
=

2χ(λ + η)±
√
ηχ(λ2 + ηχ + λχ)

3λχ
≤ 1.

This gives the condition

2χ(λ + η)−
√
ηχ(λ2 + ηχ + λχ) > 0,

which is satisfied in view of χ > 4λ, and

2χ(λ + η) +
√
ηχ(λ2 + ηχ + λχ)

3λχ
≤ 1,

which is satisfied in view of λ ≥ 3χλ
χ−λ . We also observe that these four roots are

distinct, so that we obtain four linearly independent eigenvectors.
Finally, we notice that condition (i) can be verified upon setting ζ = 0 in the

above computations.

From the above Proposition, we immediately obtain:

Corollary 1. Assume that χ > 4η > 0 and that λ ≥ 3χη
χ−η . Then, the system (2.3)

can be written as

∇0Ψ + Ãi∇iΨ = R̃, (3.11)

where Ãi = (A0)−1Ai and R̃ = −(A0)−1R, and the eigenvalue problem (Ãiζi −
ΛI)V = 0 possesses only real eigenvalues Λ and a set of complete eigenvectors V .

Existence and uniqueness of solutions to (3.11) is proved in the next Proposition.

Proposition 2. Given Ψ(0) ∈ Hr(T3,R30), r > 5
2 , under the assumptions of

Corollary 1, there exist a T > 0 and a unique

Ψ ∈ C0([0, T ), Hr(T3,R30)) ∩ C1([0, T ), Hr−1(T3,R30))

that is a solution to (3.11) with initial data Ψ(0).

Proof. The proof of the Proposition is essentially contained in the proof of [37,
Proposition 2.2, Section 16.2] and [37, Proposition 2.1, Section 16.2]. There, a
proof is given for strictly hyperbolic systems. Inspecting the proof, one sees that
the strict hyperbolicity assumption is used to diagonalize the system. In our case,
although we do not have a strictly hyperbolic system, we were able to show that
the system can still be diagonalized. Once one has a system in diagonal form, the
proof given for the diagonalized system in [37, Proposition 2.2, Section 16.2] can be
applied here.
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Remark 2. We make two important observations regarding the proof of Proposi-
tion 2. First, it implies a proof of existence and uniqueness of solutions to (2.3).
Second, the proof is based on energy estimates, which in particular ensure that a
Hr solution Ψ to (2.3), r > 5/2, defined on a time interval [0, T ], satisfies

‖Ψ‖C0([0,T ],Hr(T3,R30)) ≤ CT ‖Ψ(0)‖Hr(T3,R30),

where CT > 0 is a continuous increasing function of T . Using the equations of
motion, we can then further derive a bound for ‖Ψ‖C1([0,T ],Hr−1(T3,R30)) in term
of CT and the initial data. Combining these norm-bounds with the estimates for
the difference of solutions (which are used to establish [37, Proposition 2.1, Section

16.2]), we also obtain an estimate in Hr− for the difference of two solutions in terms
of the difference of their data.

3.1. Solution to the original system. Our proof of Theorem 1.1 is based on
an approximation argument combined with the existence, uniqueness, and energy
estimates valid for (2.3), as explained in Remark 2. The idea is similar to the one
used to establish existence and uniqueness for the relativistic Euler equations by
coupling it with the vorticity evolution [19], wherein (i) one derives a separate evo-
lution equation for the vorticity (which depends on first derivatives of the velocity);
(ii) proves existence for the system coupled to the vorticity as if the latter were an
independent variable; (iii) uses the fact that the analytic Cauchy problem for the
original equations can be solved, and (iv) finally obtains solutions to the original
system by approximating the data by analytic data. In our case, we will use an
approximation by Gevrey functions, defined as follows (see, e.g., [34]). The Gevrey
space Gs(T3,Rm), s ≥ 1, consist of C∞ maps f : T3 → Rm such that, for every
compact set K ⊆ T3, there exists a constant C > 0 such that, for all multiindices
α and all x ∈ K, it holds that

|Dαf(x)| ≤ C |α|+1(α!)s.

Using Taylor’s estimates, one sees in particular that the case s = 1 corresponds to
analytic functions. The usefulness of Gevrey functions to the study of hyperbolic
problems is two-fold. On the one hand, one can prove very general existence and
uniqueness theorems for Gevrey data given on a non-characteristic surface that
are akin to the Cauchy-Kovalewskaya theorem for analytic data. On the other
hand, an advantage of Gevrey functions over analytic ones is that one can construct
Gevrey functions that are compactly supported; hence one can appeal to the type of
localization arguments that are so useful in the study of hyperbolic equations (this
is particularly important when one is considering coupling to Einstein’s equations,
as in [16]). One can show that Gevrey functions are dense in C∞ and then establish
the density of Gevrey functions in Sobolev spaces [29].

For Gevrey-regular data Gs (for suitable s, but the precise value of s is not
important here), equations (1.2) and (1.3) admit a unique Gevrey-regular solution
[4, 16]. For this, we observe that, in the spirit of obtaining Gevrey regular solutions
as a generalization of the Cauchy-Kowalevskaya theorem, we use in an essential
manner the fact that the surface {t= 0} is non-characteristic for the system (see
[16]). A solution to (1.2) and (1.3) for Sobolev regular data, as in Theorem 1.1,
thus follows by a standard approximation argument similar to [19], which we now
outline.

Consider the initial data I = (ε(0), ε(1), u(0), u(1)) ∈Hr for (1.2)-(1.3) as in the
assumptions of Theorem 1.1, and let Ik be a sequence of Gevrey regular data
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converging to I in Hr. For each k, let Vk=(εk, uk) be the Gevrey regular solution
to (1.2)-(1.3) with data Ik, whose existence is ensured by [4, 16]. In view of the way
(2.3) was derived from (1.2)-(1.3), for each k, we obtain a Gevrey regular solution
Ψk to (2.3), withΨk defined in terms of Vk according to the definitions of Section2.

Let Ψ0 be initial data for (2.3) constructed out of I, i.e., we define Ψ0 in terms
of I using the definitions of Section 2. This is possible since the entries of Ψ0 will
be simple algebraic expressions in terms of I.

Let Ψ be the solution to (2.3) with data Ψ0. Note that we do not assume that Ψ
is given in terms of the original fluid variables via the relations of Section 2 since at
this point we do not yet have a solution to (1.2)-(1.3) with data I. In other words,
the entries of Ψ are treated as independent variables; at this point the only relation
between Ψ and the original system (1.2)-(1.3) is that Ψ0 is constructed out of I.

The estimates for solutions to (2.3) (see Remark 2) imply that as Ik → I in

Hr, Ψk(t) converges to Ψ(t) in Hr− , and thus the solutions Vk(t) to (1.2)-(1.3)

converge to a limit V (t) in Hr− , and this limit is in fact in Hr. Since r > 7/2, we
can pass to the limit in the equations (1.2)-(1.3) satisfied by Vk to conclude that
V solves (1.2)-(1.3) as well (and that Ψ is in fact given in terms of V by the same
expressions that define Ψk in terms of Vk). By construction, V takes the data I.
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