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Response time has started to play an increasingly important role in educational and
psychological testing, which prompts many response time models to be proposed
in recent years. However, response time modeling can be adversely impacted by
aberrant response behavior. For example, test speededness can cause response time
to certain items to deviate from the hypothesized model. In this article, we introduce
a robust estimation approach when estimating a respondent’s working speed under
the log-normal model by down-weighting aberrant response times. A simulation
study is carried out to compare the performance of two weighting schemes and a
real data example is provided to showcase the use of the new robust estimation
method. Limitations and future directions are also discussed.

Introduction

Collecting response times during an assessment is becoming more prominent in
educational and psychological research (Lee & Jia, 2014). Response times have
much to add to the measurement community, such as improved estimation of item
response models (van der Linden et al., 2010), item selection algorithms in comput-
erized adaptive testing (Choe, Kern, & Chang, 2017; Fan, Wang, Chang, & Douglas,
2012; Cheng, Diao, & Behrens, 2017), and detection of aberrant respondents (Mari-
anti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014; Wang, Xu, & Shang, 2016).

There are several ways to model response times (Van Zandt, 2000; Rouder, Sun,
Speckman, Lu, & Zhou, 2003). For instance, some models assume the response
times follow a Weibull distribution (Rouder et al., 2003), Gamma distribution (Maris,
1993), Poisson counting process (Ratcliff & Smith, 2004), and others motivated by
psychological theory capturing the cognitive process. In recent years, several re-
searchers have utilized the log-normal model in educational measurement (van der
Linden, 2006; Thissen, 1983), which has an interpretation analogous to item re-
sponse theory (IRT). Unfortunately, a specific response time model may not be able
to explain the variability of the response times for all respondents of a survey or
assessment. This lack of model fit may be due to aberrant behavior such as item
preknowledge (cheating), speededness, or a warm-up effect (Sinharay, 2018). If one
assumes a parametric model, aberrant response times violate any assumptions of the
model when those response times are not taken into account. Parameter estimates
will, therefore, be biased unless one takes into consideration the deviating behavior.

In order to overcome this obstacle, one may instead employ robust estimation pro-
cedures (Huber & Ronchetti, 2009). Robust estimation has been applied in the gen-
eral statistical literature, and can overcome violations of model-based assumptions
such as heteroscedastic errors in the linear model (Wilcox, 2012). Robust estimation
is also one way to effectively improve the estimates of a parametric model when
there are outliers or aberrant response patterns in the data. When the population
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distribution of a sample is unknown, robust procedures produce more efficient pa-
rameter estimates compared to maximum-likelihood (ML) estimates. Although there
are many robust estimation approaches, we will limit our discussion to M-estimators,
which were proposed by Huber (1967) since they are closely related to ML estima-
tors. M-estimation works by down-weighting data points that are considered extreme
cases compared to the rest of observations (Wilcox, 2012; Huber & Ronchetti, 2009).
It has been shown to perform well with data that contain outliers (Huber & Ronchetti,
2009; Tyler, 1984; Yuan & Zhong, 2013).

M-estimation has successfully been employed in the general psychometric liter-
ature. For example, in the structural equation modeling (SEM) framework, it has
been shown to improve the performance of fit indices and relative fit indices (Yuan
& Zhong, 2013). Robust estimation has also been shown to improve the ability to
produce less biased estimates and better coverage rates of psychometric statistics
and indices, such as reliability coefficients α and ω of scores based on psychological
scales (Zhang & Yuan, 2016).

In the context of IRT, robust estimation has been employed to address similar con-
cerns (Hong & Cheng, 2019; Schuster & Yuan, 2011; Wainer & Thissen, 2008). M-
estimation has been shown to improve latent trait or ability estimates when response
vectors are contaminated with careless responses or test speededness (Schuster &
Yuan, 2011; Wainer & Thissen, 2008; Mislevy & Bock, 1982). More recently, M-
estimation has also been found to improve the ability to recover structural or item
parameters using the same general framework (Hong & Cheng, 2019). Employing
robust estimation has also been shown to improve the ability to detect deviating be-
havior compared to no downweighting or data removal (Hong & Cheng, 2019; Kim,
Reise, & Bentler, 2018; Sinharay, 2018).

Robust estimation for models beyond those applied to item scores collected dur-
ing the measurement process has not been previously investigated, which is the aim
of the current study. With the advent of technology-enhanced assessment platforms,
new information about individuals, such as process data, is becoming more ubiq-
uitous (Bergner & von Daiver, 2018). Data such as eye- and motion-tracking, log
data, and response times generated under computerized assessments and game-based
learning systems are gaining unprecedented attention in the field of psychometrics.
However, similar issues as those observed in traditional assessment settings may oc-
cur with new data sources, such as speededness, inattentiveness, and cheating. This
problem motivates the current paper’s discussion of robust estimation for process
data, with a specific emphasis on response time modeling.

We will provide a general framework to estimate participants’ working speed pa-
rameter based on van der Linden’s (2006) log-normal model. More specifically, (ML)
and two types of robust estimators, using either Tukey’s bisquare/biweight (BW)
or Huber (HU) weight functions, will be investigated when estimating the working
speed parameter for an individual (Huber, 1964; Schuster & Yuan, 2011). To the au-
thors’ knowledge, this is the first time robust estimation has been introduced in the
literature for latent variable models with response time data.

In the following sections, we will first introduce a response time model, the log-
normal model, by van der Linden (2006). Next, we will review robust statistics and
introduce how M-estimation can be used when estimating a participant’s working
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speed. A simulation study will be presented that demonstrates how robust estimation
can improve the parameter estimates of the response time model in terms of bias and
efficiency under several conditions. An applied analysis will also be conducted based
on a large-scale examination. We will conclude with a discussion of future directions
and limitations of the current study.

Response Time Model

van der Linden (2006) introduced how a latent variable model with a log-normal
link function can be used to model response times. Given a test with I items, let ti
denote the response time for an examinee on the ith item, where i = 1, 2, . . . , I . As-
suming the log response times for an individual are independent, given a participant’s
latent working speed, τ:

log(ti)|τ ∼ N

(
βi − τ,

1

α2
i

)
. (1)

The average (log) response time for a given item is βi − τ, with a variance of 1
α2

i
.

βi is the time-intensity parameter and αi is the discrimination parameter for item i.
The item and person parameters can be interpreted in a similar fashion to the two-
parameter logistic item response model (Birnbaum, 1968). αi is analogous to the
item discrimination parameter in the 2PL model, and βi is analogous to the difficulty
parameter. The interpretation of the latent working speed τ is analogous to the latent
ability in an item response model. We omit any person subscript. For example, a
test taker with high working speed is likely to show quicker response times when
completing an item compared to test-takers with low working speed. In order to
ensure the model is identifiable, τ is assumed to have a mean of 0.

Equivalent to Equation 1, one can write out the model as follows:

f (ti|τ) = αi

ti
√

2π
exp

{
−1

2
[αi(log ti − (βi − τ))]2

}
. (2)

To obtain an estimate of τ through ML estimation, we take the derivative with respect
to τ over i items of the (log) likelihood and set it equal to 0. The likelihood can be
written out as:

L(τ) =
I∏

i=1

Li(τ|αi, βi ) =
I∏

i=1

αi

ti
√

2π
exp

{
−1

2
[αi(log ti − (βi − τ))]2

}
, (3)

and the log-likelihood function as:

l (τ) =
I∑

i=1

li(τ|αi, βi ) =
I∑

i=1

log αi − log ti
√

2π − 1

2
[αi(log ti − (βi − τ))]2. (4)

According to van der Linden (2006), the ML estimate of τ (or τ̂ml ) is:

τ̂ml =
∑I

i α2
i (βi − log ti )∑

α2
i

. (5)
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Estimates of τ are often used in subsequent analyses, such as item selection al-
gorithms (Choe et al., 2017; Cheng et al., 2017) or investigating test speededness
(van der Linden, 2007; Sinharay, 2018). Hence it is very important to ensure its esti-
mation accuracy and precision. Note that when estimating τ through Equation 5, each
item has a weight proportional to αi, or how discriminating the item is. However, each
item is equally weighted when summing across each item in the log-likelihood func-
tion. Aberrant response behavior such as speededness, inattentiveness, and cheating
can influence response times, similar to influencing item responses because of equal
contribution when estimating τ. When participants speed through some of the items,
those response times deviate from the log-normal model, which will bias the esti-
mate of τ for that test-taker. The bias in τ would impact any subsequent analyses
or uses of τ in operational testing. For instance, if a test-taker takes longer periods
of time during the beginning of an exam due to an unfamiliar environment, our es-
timate of τ would be negatively biased compared to if they were already familiar
with the testing environment. Therefore, item selection algorithms, such as in Cheng
et al. (2017) and Choe et al. (2017), would select inappropriate items later in the
test, such as easier items that may require less time. Robust estimation of τ could
assuage the impact of earlier warm-up effects and improve test administration. Post
hoc analysis, such as diagnosing test speededness, would also improve with robust
estimation for response time models. Speedeness is a known nuisance variable where
test takers are unable to fully understand a question due to time pressures and can
compromise the validity of a test or scale (van der Linden, 2007). Detection methods
used to identify test speededness, such as person fit statistics, require good estimates
of a user’s working speed when analyzing response times (Sinharay, 2018). By using
robust methods, one would have a better estimate of τ they could plug into the per-
son fit statistic and have more power to detect said individuals because the deviating
behavior is downweighted.

In the next section, we introduce a new robust estimation method for estimating τ

using M-estimation, which down-weights the items to which participants respond in
an aberrant manner.

Robust Estimation for Response Time Models

A more general approach to estimating τ is to include a weight function in the (log)
likelihood. Instead of defining the ML estimator of working speed as the solution to
the equation

∑
i dli/dτ = 0, one can define weights, w(ri ), as a function of residual,

ri, for item i, and use a weighted likelihood equation,

I∑
i

w(ri )

(
dli
dτ

)
= 0, (6)

to solve for the unknown parameter τ. This leads to another closed-form solution for
τ̂:

τ̂rml =
∑

i w(ri )α2
i (βi − log ti )∑

i w(ri)α2
i

. (7)
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Equation 7 differs from Equation 5 by including the weights, w(ri ), in both summa-
tions in the numerator and denominator. In the robust literature, w(ri ) is determined
by two decisions (Huber & Ronchetti, 2009): define the form of the residual and
weight function. The residual, ri, is a measure of which response times are incon-
sistent under the assumed response model for a given participant. Given a response
vector for an individual, under the log-normal model for response times, we can
define the residual for a single item similar to Sinharay (2018):

ri = αi(log(ti ) − (βi − τ̂)). (8)

Other residuals in the context of response time models can be used (van der Linden
& van Krimpen-Stoop, 2003). This residual has the same desirable properties as
the residual defined for item response models in Schuster and Yuan (2011). The
larger the discrepancy between the expected time on the log scale, βi − τ̂, the larger
the residual for the observed log-time. Response times with large residuals would
contribute less to the estimation of τ. Items that are highly discriminating would
also be up-weighted, which is desirable because these items have more information
about τ. These two features combined make the residual by Sinharay (2018) a prime
candidate to plug into τ̂rml . Note that ri is conditionally normally distributed given a
fixed value of τ. This can be derived following Equation 8.

Second, one needs to specify a weight function w(·), which can be selected from a
standard pool of functions; see table 11-1 in Hoaglin, Mosteller, and Tukey (2006).
Two common weight functions used in this study are the so-called Huber (HU) and
Tukey’s Biweight (BW) or bisquare functions. The general form of the BW weight
function is:

w(ri ) =
{

[1 − (ri/B)2]
2
, for |ri| < B

0, for |ri| ≥ B.

)
(9)

The tuning constant, B, determines which residuals are down-weighted when esti-
mating τ. Smaller values of B lead to more observations with a weight of 0. For a
given ri, smaller B leads to smaller weight. Previous research in item response mod-
els have found B = 4 to be an adequate cut-off (Schuster & Yuan, 2011). For B = 4,
any response with a residual that is larger than 4 will be removed entirely when es-
timating τ. Another weight function is HU-type weights. The formula for HU-type
weights is:

w(ri ) =
{

1, for |ri| ≤ H
H/|ri|, for |ri| > H.

)
(10)

Similar to the BWs, large values of H will lead to less down-weighting and small
values lead to more down-weighting of the observations. Previous literature have
found that when H = 1, the BW function appears to work well (Schuster & Yuan,
2011). In order to get a sense of how the different weight functions perform, Figure 1
plots the different weights and values of B and H against the residuals for both HU
and BW functions. The BW function decreases immediately when the residual de-
viates from 0, whereas the HU weights down-weight responses for any residual less
than or equal to H. Note that the HU weight function asymptotically approaches 0 as
the residual approaches positive or negative infinity.
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Figure 1. Comparison of bisquare and Huber-type weight functions with different tuning
parameters.

Algorithm 1 outlines the robust estimation algorithm to compute τ̂rml . For a single
response time vector, one first calculates τ̂ml , which is also the first estimate of τ̂rml .
Next, one plugs in the current estimate of τ̂rml into Equation 8 to obtain the residuals
for each item i. One then transforms the residuals calculated in the previous step
using a suitable weight function, such as Equation 9 or 10. Finally, one calculates a
new τ̂rml , which is also τ̂m+1 or the new current estimate τ̂rml , in the algorithm. We
repeat the steps starting from calculating the residuals using the new estimate τ̂rml

until some convergence criteria is met. The algorithm needs to be iterated because
the residuals depend on the current estimate of τ. Two criteria are the total number
of iterations, m = 1 . . . M, and the absolute difference in adjacent estimates of τ̂, or
|τ̂(m+1) − τ̂(m)|. If the total number of iterations reach M or if the absolute difference
between adjacent iterations of τ̂ drops below some threshold K , the algorithm is
terminated and the most recent estimate is used as τ̂rml . In the current study, we fixed
M to be 30 and K to be .0001. However, it is rare for the algorithm to reach M. In the
following sections, we will illustrate how τ̂rml compares to τ̂ml in a simulation study.

Algorithm 1: Robust estimation for τ based on van der Linden (2006)’s log normal
model
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Simulation

A simulation study was conducted to compare three estimators: ML and robust
estimators using either BW or HU weight functions. Response times were gener-
ated with 30, 50, or 100 items under van der Linden’s (2006) log-normal model.
Data were simulated such that β ∼ N (3.8, .25) and α ∼ U (1.75, 3.25), which mir-
rors previous simulation studies with response times (Patton, 2014). These choices
generate response times that are in the scale of seconds (instead of minutes or hours)
and are congruent with the expected amount of time necessary to complete an item.
Working speed τ was generated at fixed values between −2.0 and 2.0 at intervals of
.5.

We generated three types of aberrancy of response time that mirror real testing
scenarios. We followed work done by van der Linden & van Krimpen-Stoop (2003):

log(ti )|τ ∼ N

(
βi − τ + δ,

1

α2
i

)
, (11)

where δ introduces a shift due to aberrant behavior. We varied δ from -2 to 2 by
increments of .5. When δ = 0, Equation 11 reduces to Equation 1 where there is no
aberrant behavior. Larger absolute values of δ correspond to more deviant behavior.
When δ > 0, the aberrant behavior mimics test speededness. Speededness occurs
when participants take shorter time due to fatigue or time pressure (van der Linden,
2009). When δ < 0, the aberrant behavior mimics warm-up effect. A warm-up effect
occurs when participants take a longer time for items in the beginning of a test, which
could be due to unfamiliarity with the testing environment (van der Linden, 2009).
In order to avoid computational errors, each observed response time was constrained
to never be lower than 1 second. We varied the number of aberrant response times to
be either 0%, 10%, 20%, or 30% of a test.

In total, we had 9 fixed levels of τ, 3 estimation techniques (ML, HU, BW), 18
types of aberrant behavior (values of δ), 4 levels of aberrancy (0%, 10%, 20%, or 30%
items), and 3 test lengths (30, 50, and 100). We also varied the parameter B to be 2,
4, and 6 and H to be 0.5, 1, and 1.5 to examine the effect of the tuning parameters.
The tuning parameters were based on values used when evaluating item response
models (Mislevy & Bock, 1982; Wainer & Thissen, 2008). We replicated each con-
dition 1,000 times and evaluated each condition in terms of bias, 1

1,000

∑
(τ̂ − τ), and

MSE, 1
1,000

∑
(τ̂ − τ)2. Example code for the estimation process can be found in the

supplementary material.

Simulation Results

Due to the large number of simulation conditions, results from a subset of the
conditions are presented. Other simulation conditions can be obtained by contacting
the authors. We only present the simulation results with tuning parameters B = 4 and
H = 1. This is due to the fact that using these tuning parameters resulted, on average,
the smallest MSE across simulation conditions. The tuning parameter appears to be
only sensitive when using the BW function when there are no aberrant responses.
When there is warm-up response in the data for a 30 item test, when τ = 0, the
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Table 1
Bias using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Is No Contamination in the Data

τ

ML Items −2 −1.5 −1 −0.5 0 .5 1 1.5 2

30 −.000 .001 .001 .001 −.000 .000 .001 −.002 .001
50 −.001 −.001 .000 .001 −.001 −.001 .001 .001 .001

100 .000 .000 −.001 −.001 .001 .001 −.001 −.000 −.000

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 −.001 .001 .001 .001 −.001 .000 .000 −.001 .001
50 .002 .001 .000 −.001 −.001 −.001 −.003 .001 .000

100 .002 −.001 .000 .000 .000 .000 −.001 −.001 .000

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 −.001 .001 .001 .001 −.001 .000 .001 −.001 .001
50 −.001 .000 .000 .001 −.001 −.001 .001 .001 .001

100 .001 .001 −.001 −.001 .001 −.000 −.001 −.000 −.001

MSE is .020, .020, .024 when H is .5, 1, or 1.5, respectively, and the MSE is .018,
.013, .020 when B is 2, 4, or 6, respectively. When there is aberrant behavior in the
data, fixing B = 4 and H = 1 appears to work the best. However, it is important to
note there are only small differences when we change the tuning parameter when
comparing MSE.

Table 1 presents the average bias across 1,000 replications when there is no con-
tamination in the data, or δ = 0. Across all simulation conditions, both the robust
and ML estimation provide unbiased estimates of τ. Table 2 presents the MSE across
1,000 replications when there is no contamination in the data. We find that there is lit-
tle difference between ML and robust estimation when we consider the MSE across
all simulation conditions when there is no contamination in the data. When there was
a longer scale, the MSE decreased from .005 to .002 when the test length was 30 or
100, respectively. These findings suggest that when there is no contamination in the
data, one does not need to worry about using either ML or robust estimation because
they produce similar results.

When analyzing simulation results with contaminated data, increasing δ or the
proportion of aberrant responses led to more bias and larger MSE across simulation
conditions. Moreover, MLE had larger bias and MSE with increasing δ or the pro-
portion of aberrant responses. Therefore, we averaged across these factors. Interested
readers can contact the authors for detailed information.

Table 3 presents the bias using ML and both robust estimation methods of working
speed when there are warm-up response times. There were little differences between
test length. On average, using either HU or Tukey weights led to less biased estimates
compared to ML estimation. Between the two robust estimation methods, Tukey
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Table 2
MSE Using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Is No Contamination in the Data

τ

ML Items −2 −1.5 −1 −0.5 0 .5 1 1.5 2

30 .005 .005 .005 .005 .005 .005 .005 .005 .005
50 .003 .003 .003 .003 .003 .003 .003 .003 .003

100 .002 .002 .002 .002 .002 .002 .002 .002 .002

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .005 .006 .006 .006 .005 .005 .006 .006 .006
50 .004 .004 .004 .003 .004 .003 .003 .004 .003

100 .002 .002 .002 .002 .002 .002 .002 .002 .002

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .005 .006 .006 .006 .005 .005 .006 .006 .006
50 .003 .003 .004 .003 .004 .003 .003 .004 .003

100 .002 .002 .002 .002 .002 .002 .002 .002 .002

weights tend to provide less biased estimates on average. For instance, when τ =
0 for a 30-item test, ML estimation bias was −.345. Robust estimation using HU
weights bias was −.213 and Tukey weights bias was −.113. This finding provides
some evidence that using Tukey weights are superior to HU weights and both robust
estimation procedures are superior to ML. This is most likely due to features of the
weight functions themselves. Tukey weights down-weight response times more so
than HU weights conditioning on different values of the residual. Therefore, Tukey
weights should provide less biased estimates than HU weights.

Table 4 presents the MSE using ML and both robust estimation methods of work-
ing speed when there are warm-up response times. Longer tests in general lead to
smaller MSE. On average, using either HU or Tukey weights led to smaller MSE
estimates. However, Tukey weights tend to provide smaller MSE on average. For
instance, when τ = 0 for a 30-item test, ML estimation MSE was .161. Robust esti-
mation using HU weights MSE was .063 and Tukey weights MSE was .029.

Table 5 presents the bias using ML and both robust estimation methods of working
speed when there are speeded response times in the data. One important note is that
the bias observed for the speeded response times has the opposite affect compared
to the warm-up effect. For instance, when τ = 0 for a 30-item test, ML estimation
bias was −.345 when there is warm-up effect compared to .346 when there was test
speededness. We find similar patterns across different test lengths and values of τ.
On average, using either HU or Tukey weights led to less biased estimates. How-
ever, Tukey weights tend to provide less biased estimates on average. For instance,
when τ = 0 for a 30-item test, ML estimation bias was .346. Robust estimation using
HU weights bias was .213 and Tukey weights bias was .113. This finding provides
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Table 3
Bias Using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Are Warm-Up Responses in the Data

τ

ML Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 −.380 −.366 −.397 −.398 −.345 −.390 −.385 −.369 −.385
50 −.373 −.367 −.376 −.385 −.364 −.377 −.387 −.380 −.378

100 −.376 −.375 −.377 −.379 −.367 −.390 −.377 −.374 −.377

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 −.228 −.228 −.251 −.252 −.213 −.243 −.239 −.230 −.243
50 −.238 −.232 −.232 −.242 −.228 −.236 −.240 −.233 −.234

100 −.238 −.234 −.236 −.235 −.230 −.240 −.236 −.233 −.237

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 −.114 −.112 −.121 −.121 −.113 −.117 −.117 −.113 −.120
50 −.116 −.120 −.116 −.115 −.114 −.118 −.118 −.116 −.116

100 −.114 −.115 −.114 −.111 −.117 −.110 −.113 −.113 −.118

some evidence that using Tukey weights are superior to HU weights and both robust
estimation procedures are superior to ML when there are speeded response times.
This finding corroborates when there are warm-up response times. Regardless of the
underlying mechanism generating the data in the context of this simulation study,
Tukey weights provide the least biased estimates of working speed across different
test lengths and values of τ.

Table 6 presents the MSE using ML and both robust estimation methods of work-
ing speed when there are speeded response times in the data. Longer tests lead to
smaller MSE. Moreover, both warm-up and speeded response times provide similar
trends when we compare MSE. On average, using either Huber or Tukey weights led
to smaller MSE estimates. However, Tukey weights tend to provide smaller MSE on
average. For instance, when τ = 0 for a 30-item test, ML estimation MSE was .162.
Robust estimation using Huber weights MSE was .063 and Tukey weights MSE
was .029. Putting it all together, both data generation mechanisms imply that Tukey
weights provide the smallest MSE and least biased estimates across different simu-
lation conditions.

Our simulations results are consistent with the robust literature. τ̂rml was less bi-
ased or comparable to τ̂ml across simulation conditions when data were contaminated
with speededness or warm-up effect. In the majority of the simulation conditions,
τ̂rml achieved smaller MSE compared to using traditional ML estimation. Moreover,
our simulations suggest that using the Tukey-weights would be preferred.

This finding contradicts findings from Schuster and Yuan, (2011). Their simulation
results suggest that using Huber weights are preferred, at least in the context of item
response models. An important distinction between Schuster and Yuan (2011) and
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Table 4
MSE Using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Are Warm-Up Responses in the Data

τ

ML Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .194 .181 .205 .221 .161 .203 .194 .185 .201
50 .192 .176 .180 .198 .177 .185 .194 .185 .188

100 .187 .181 .187 .185 .175 .196 .184 .182 .185

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .071 .073 .087 .093 .063 .081 .079 .074 .084
50 .080 .071 .070 .080 .070 .073 .075 .070 .072

100 .075 .069 .072 .070 .067 .072 .072 .070 .072

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .032 .031 .038 .041 .029 .034 .035 .032 .034
50 .029 .029 .028 .029 .027 .029 .030 .029 .029

100 .024 .024 .024 .022 .025 .022 .024 .024 .025

this study is that we focus on response time models. The data generation scheme to
generate aberrancy is different for response times. For instance, aberrant behavior
on a test can result in a string of incorrect answers where a user has 50% chance of
a correct response for an item with two categories. Aberrant behavior for response
times can manifest itself differently as demonstrated in the simulation studies and
what is observed in practice.

Furthermore, our simulations focus on different models that have different link
functions compared to (Schuster & Yuan, 2011). Convergence issues for item re-
sponse models can arise when there is a significant amount of aberrant behavior.
This is due to the fact that downweighing a significant amount of item responses can
lead to unstable parameter estimates when using a Newton Raphson algorithm when
estimating latent ability. Response time models do not suffer from extreme loss of in-
formation, at least in the simulation conditions considered in this study. One does not
need to use a Newton Raphson algorithm to estimate τ because there is a closed-form
solution for both the robust and ML estimation. We only need to iterate to update the
residual for response time data. Therefore, using either Huber or Tukey weights does
not suffer from convergence issues for response time models.

An Application to Real Data

In this section, we compare all three estimators for τ with data obtained from a
large-scale test administered to a midwestern region of the United States. The test
was administered as a low-stakes computerized exam to assess how third-grade stu-
dents perform on a language/arts domain compared to other schools in the state.
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Table 5
Bias Using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Are Speeded Responses in the Data

τ

ML Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .380 .365 .400 .396 .346 .391 .385 .367 .387
50 .375 .367 .376 .384 .363 .376 .386 .381 .379

100 .377 .374 .377 .378 .367 .391 .375 .374 .377

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .227 .229 .253 .250 .213 .243 .238 .229 .246
50 .240 .232 .231 .241 .226 .235 .238 .236 .235

100 .239 .233 .235 .234 .231 .241 .234 .233 .237

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .112 .113 .122 .120 .113 .116 .118 .113 .123
50 .118 .119 .114 .113 .111 .117 .117 .118 .117

100 .116 .115 .113 .111 .118 .111 .111 .113 .118

Motivation, warm-up or fatigue effects may be present due to the nature and nov-
elty of the assessment. The data included 49,163 response times from students on 32
items from the language arts subject area. Only a subset of the data was used.

The response time data were recorded in seconds. Data were then cleaned to in-
clude only complete response times and response times with total response time of
at least 1 second per item (minimum total of 32 seconds). Two analyses were per-
formed. First, item (and person) parameters of the log-normal response time model
were obtained for each item through Bayesian estimation, as described in van der
Linden (2006), on a randomly selected subsample of N = 5, 000. Details on how
this procedure was implemented can be found in the Appendix. Although working
speed was also estimated, only the mean of the posterior distributions of the item
parameters, α and β, were used. Those were taken as true item parameter estimates
in subsequent analyses and are presented in Table 7.

In the second analysis, the working speed parameter was estimated on a separate
sample of N = 1, 000 using the ML and robust estimation with either Huber or BW
functions, assuming known item parameters from the first subsample. In Figure 2,
the boxplots show the sampling distribution of τ̂ for each estimator. Estimates of τ

obtained using ML were binned into six intervals for graphical purposes. Standard
errors (SEs) for τ̂ were estimated by calculating the standard deviation of τ̂ for each
estimator within each of the six intervals, which had a sample size of 6, 125, 455,
281, 79, and 54 in increasing order of τ̂, respectively. Note that intervals with fewer
individuals are less reliable compared to other cells.

Based on our empirical analysis, SEs are larger for extreme values of the working
speed parameter using any type of estimation method. We assume it is due to less
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Table 6
MSE Using Maximum Likelihood (ML), Biweight (B = 4), and Huber (H = 1) Estimation of
Working Speed When There Are Speeded Responses in the Data

τ

ML Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .194 .181 .207 .219 .162 .203 .195 .184 .202
50 .193 .177 .180 .198 .176 .184 .194 .186 .188

100 .187 .180 .187 .185 .176 .197 .183 .182 .184

Huber Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .071 .073 .088 .091 .063 .081 .079 .074 .084
50 .080 .071 .069 .079 .069 .072 .074 .071 .073

100 .075 .069 .071 .070 .068 .073 .072 .070 .072

Tukey Items −2 −1.5 −1 −.5 0 .5 1 1.5 2

30 .031 .031 .038 .042 .029 .034 .035 .032 .035
50 .029 .028 .027 .028 .026 .028 .030 .029 .029

100 .024 .024 .024 .022 .026 .022 .024 .024 .025

information for individuals when τ > .5. In other words, we are unable to measure
these individuals well given the current item features. For instance, the average time
for individuals with a τ = 0 is approximately 20 seconds. On the other hand, the
average time for individuals who have a τ = 1 is approximately 7.38 seconds. Our
item bank may not be able to differentiate between individuals that take a shorter
amount time. Moreover, the robust estimators had larger standard errors compared
to using the ML. This is not surprising, as there can be a bias-variance trade-off
when using robust estimators (Carroll & Pederson, 1993). This finding has also been
reported when using robust estimation with item response models (Schuster & Yuan,
2011).

Figure 3 plots the values of τ̂ml and τ̂rml using either weight functions. In most
cases, we see that the robust estimators produce similar estimates of τ when using
ML, suggesting that there are not many aberrant cases in the dataset. Given the data
come from a well-established large-scale operational testing program, this is not a
surprise because quality control measures have been taken to minimize warm-up
or speededness. Nonetheless, there are a small number of individuals with smaller
estimates or larger estimates of τ̂rml compared to τ̂ml . Both robust estimators tend to
have similar estimates of τ. In order to probe whether the small number of individuals
with larger or smaller τ̂rml were possibly affected by warm-up or speededness effects,
we further investigate each case individually.

Warm-up respondents were those whose median total response times (on the first
seven items) were larger than the 80th percentile, and whose overall τ̂bisquare −
τ̂MLE > .1. Only four respondents met this criteria. In Figure 4, median response
times (in seconds) for each item are plotted for the warm-up group compared to
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Table 7
Estimates of the Item Parameters

Item α β Item α β

1 1.45 3.17 17 1.68 2.79
2 1.52 3.46 18 1.71 3.57
3 1.75 3.39 29 2.08 3.26
4 1.25 3.22 20 1.72 3.30
5 1.91 3.66 21 1.75 3.10
6 2.05 3.34 22 1.75 3.41
7 2.14 3.52 23 1.10 2.89
8 2.11 3.42 24 1.24 3.39
9 1.83 3.32 25 1.51 3.48
10 1.79 3.54 26 1.92 3.32
11 1.80 3.43 27 1.20 3.40
12 1.28 3.59 28 1.67 3.39
13 1.94 3.40 29 1.67 3.27
14 2.20 3.59 30 1.69 3.42
15 2.13 3.34 31 1.95 3.16
16 1.33 3.26 32 1.57 3.29

Figure 2. Comparison of sampling distributions of τ̂ using ML and robust methods with
Huber or biweight functions.

Figure 3. Comparison of ML, bisquare, and Huber-type estimates of τ. [Color figure can be
viewed at wileyonlinelibrary.com]
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Figure 4. Median response times of warm-up/speeded respondents.

the overall median response time without those warm-up response times. Longer
response times in the warm-up group are associated with underestimating τ when
using the ML compared to the robust approach. Median estimates of τ were .47, .51,
and .59 when using ML, Huber weights, and bisquare weights, respectively. Thus,
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these trends parallel results from our simulation studies, where ML tended to be
biased downwards when there was a warm-up effect.

Speeded respondents were identified by selecting those whose median total re-
sponse times (on the last 7 items) were smaller than the 20th percentile, and whose
overall τ̂bisquare − τ̂MLE < −.1. A total of 20 respondents met this criteria. Similarly,
in Figure 4, median response times (in seconds) are plotted for the speeded group
versus the overall sample without those speeded response times. Smaller response
times than overall in the speeded group are associated with overestimating τ when
using the ML versus when applying a robust approach. Median estimates of τ were
.24, .09, and .05 when using ML, Huber weights, and bisquare weights, respectively.
Thus, similarly to our simulation results, the robust estimates correct the upward bias
in τ caused by the speeded response times.

Discussion

Statistical models are always approximations of the true model. With real data,
a useful model may not be able to capture fully explain the response process for
each individual. In other words, some outliers or deviating individuals may exist
and do not conform to the assumed model. In such a case, using ML estimates will
produce biased estimates. Our simulation and applied analysis suggest that param-
eter estimates can be improved using M-estimation in the context of response time
modeling.

This study proposes robust estimators based on van der Linden’s (2006) response
time model. The robust estimators were studied under a variety of conditions and
evaluated in a simulation study and real data example. The proposed method was
shown to reduce bias when estimating the working speed parameter when there is
either test speededness or warm-up effect in the data. However, there is a trade-off
between bias and efficiency. This study extends previous work in the robust esti-
mation framework designed for item responses to response times (Hong & Cheng,
2019; Schuster & Yuan, 2011). Moreover, our paper suggests that including BW
functions for robust estimators would be appropriate for response time modeling
with a tuning parameter set to B = 4. This finding is different compared to Schuster
and Yuan (2011). Schuster and Yuan (2011) demonstrated how BWs had some con-
vergence issues. In our study, we did not encounter the same problem with response
time models.

There are several future directions not addressed in the current study. First, we
did not consider item order. Aberrant responses can easily manifest themselves in
different portions of the assessment Shao, Li, and Cheng (2016). Second, we only
proposed robust estimators for the working speed parameter, τ. A limitation of the
current study is that we assume there is a small amount of aberrant responses so
that the item parameters are close enough to the true values. In practice, this may or
may not hold. One could attempt to robustly estimate structural parameters as done
in Hong and Cheng (2019) or attempt to perform a cleansing method as described
in Patton et al. (2019). Third, robust estimators have been shown to improve other
psychometric analysis such as identifying aberrant responders (Sinharay, 2016). One
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could further investigate the utility of robust estimators for response time models in
this context.

In conclusion, our study provides a framework for researchers who want to ana-
lyze response time data with robust methodology. We also provide an R function for
applied researchers in the supplementary material.

Appendix A: Estimation of the Log-Normal Model Using JAGS

Bayesian estimation of the log-normal model was implemented in JAGS through
the R package rjags. To set the scale of the working speed parameter, we chose
a normal prior centered around 0 for τ and a multivariate normal prior for the item
parameters. Additionally, the variance of τ was a hyperparameter with prior distribu-
tion �−1(2, 2), where the inverse-gamma distribution is a common conjugate prior
for variance parameters. The mean and variance of the multivariate normal prior
were hyperparameters with hyperprior distributions set as a multivariate normal and
inverse-Wishart distribution, respectively. The prior distribution for the mean had
mean μα,β = (1, 3) and variance–covariance matrix equal to the variance–covariance
matrix of the distribution for the item parameters. The inverse-Wishart distribution
had a variance–covariance matrix

� =
[
.2 0
0 .2

]

and k = 2. The chosen priors were set as to represent expected mean values of α and
β and as to approximate to the expected variance for such parameters.
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