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A Comprehensive Review and Comparison of CUSUM and Change-Point-
Analysis Methods to Detect Test Speededness

Xiaofeng Yua,b and Ying Chenga

aDepartment of Psychology, University of Notre Dame; bDepartment of Psychology, Jiangxi Normal University

ABSTRACT
Cumulative sum (CUSUM) and change-point analysis (CPA) are two well-established statis-
tical process control methods to detect changes in a sequence. Both have been used in psy-
chometric research to detect aberrant responses in a response sequence, e.g., test
speededness, inattentiveness, or cheating. However, the pros and cons of CUSUM and CPA
in different testing settings still remain unclear. In this paper, we conduct a comprehensive
comparison of the performance of twelve CUSUM-based statistics and three CPA-based pro-
cedures in detecting test speededness. Two speededness mechanisms are considered,
namely the graduate change model (GCM) and the hybrid model (HM), to test the robust-
ness and flexibility of the two methods. Simulation studies show that the performances of
the statistics are affected by the underlying data generating model, the severity of speeded-
ness, and the test length. Generally, under HM some CUSUM statistics perform much better
than the CPA-based statistics. Under the GCM, the performance of the CPA statistics is dra-
matically improved. Taken together, due to the unknown mechanism of speededness in real
applications, two CUSUM-based statistics are recommended when the test length is long
(e.g., 80 items), regardless of the underlying mechanism being HM or GCM. In a relatively
short (e.g., 40 items) or medium-length (e.g., 60 items) test, no statistic always ends up in
the top three under both HM and GCM. In those cases, either one of the two CUSUM-based
statistics mentioned above can be a reasonable choice because of their good (though not
necessarily the best) performance in a wide range of conditions.

KEYWORDS
Speededness; cumulative
sum control chart; change
point analysis; item
response theory;
intra-individual change;
gradual change

Test speededness occurs when not all respondents
have sufficient time to fully consider the answer for
each question on a test within a fixed time limit
(Bejar, 1985). According to Schnipke and Scrams
(1997), speededness refers to the extent to which
respondents’ test scores are affected by time limits, as
often measured by calculating the proportion of
respondents who cannot complete a certain percent-
age of test items. According to van der Linden (2011),
speededness in testing is the end results of the inter-
action between three important factors: the cognitive
speed at which the test taker works during the test,
the amount of labor required by the items, and the
time limit on the test.

Speededness has been a long-standing issue in test
theory (Schnipke & Scrams, 1997). Glliksen (1950, p.
367) pointed out that the item indices of classical test
theory developed for power tests might not be appro-
priate if a test is speeded. For example, split-half reli-
ability indices are abnormally high in speeded tests

(Gulliksen, 1950, p. 236). Lu and Sireci (2007) noted
that test speededness affects the accuracy of the reli-
ability and validity estimates, as well as the accuracy
of identifying the correct factor structure.

Under the item response theory (IRT) framework,
Hambleton and Swaminathan (1985) pointed out that
unidimensional IRT models implicitly assume that the
test is unspeeded. If a test is speeded, the unidimen-
sionality assumption might be violated. This was ech-
oed in Yen (1993), which identified test speededness
as one of the most prevalent causes of local depend-
ence in educational testing. Oshima (1994), Schnipke
(1996), and Shao et al. (2016) showed that IRT item
and person parameter estimates are distorted by
speededness. Wollack et al. (2003) studied the effect
of test speededness on equating. Schlemer (2007)
showed that in a computerized adaptive test (CAT)
speededness could have a more detrimental impact on
ability estimates than in a paper-and-pencil (P&P)
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test. Han (2013) also suggested that speededness
might increase measurement errors in a CAT.

All these studies pointed to the critical importance
of controlling test speededness. However, it is nearly
impossible to completely eliminate speededness in a
high-stakes test due to the necessity of time limits.
Over the years, two approaches have been developed
to address test speededness. One is to directly model
it. In other words, instead of using the regular, unidi-
mensional IRT models such as the one-, two-, or
three-parameter logistic (1PL, 2PL, 3PL) models that
assume the tests are non-speeded, new models directly
take test speededness into account. These models treat
speededness as a decrease in ability during the testing
process that abruptly changes the probability of an
examinee giving correct responses (Yamamoto, 1989),
or as a process that gradually reduces the probability
of correct responses as test progresses (Wollack &
Cohen, 2004; Goegebeur et al., 2008), or as an auxil-
iary dimension in addition to the dimension of ability
(van der Linden et al., 1999; van der Linden & Xiong,
2013). Some others model the testing process as a
mixture of normal responding behavior and speeded-
ness (Bolt et al., 2002; Rost, 1990; Schnipke & Scrams,
1997; Wang & Xu, 2015; Yamamoto, 1989; Yamamoto
& Everson, 1997). By accounting for test speededness
in the model, one can obtain better item parameter
estimates (Oshima, 1994; Suh et al., 2012), and more
accurate ability estimates (Shao et al., 2016; van der
Linden, 2009).

The second approach is to detect (examinees with)
speeded responses and that will be the focus of our
study. This is typically done by modeling the regular
responses, and flagging responses or response patterns
that do not conform to the regular response model.
Many studies of this second approach fall under the
umbrella of detection of aberrant responses. In this
paper, we compare the performance of two statistical
process control (SPC, which is a collection of methods
for monitoring, controlling and improving a random
process through statistical analysis) methods: CUSUM
(Cumulative SUM; Page, 1954) and CPA. CUSUM
procedure has been widely used in SPC, and it is
effective in detecting small shifts in the mean of the
variable being measured, originally proposed by Page
(1954). In educational and psychological testing,
researchers have proposed various CUSUM indices to
detect aberrant response behaviors, such as Armstrong
and Shi (2009a, 2009b), Bradlow et al. (1998),
Egberink et al. (2010), Meijer (2002), Shi (2007),
Tendeiro and Meijer (2012), Tendeiro et al. (2013),

and van Krimpen-Stoop and Meijer (2000, 2001). This
paper will briefly summarize these indices.

Another SPC procedure that can be used to detect
aberrant response behaviors is the CPA. CPA is also a
flexible tool to detect abrupt changes in a sequence of
data which can be dated back to the 1950s. In recent
years, CPA has also been used in educational testing
to detect the unusual change in the mean score of
international testing programs over time (Lee & von
Davier, 2013), or change in the behavior of test items
over time due to potentially compromised item pool
(Zhang, 2014), or to detect response anomaly during
the test taking process due to item preknowledge,
speededness, person misfit (Shao et al., 2014, 2016;
Sinharay, 2016, 2017a, 2017b) or carelessness (Yu &
Cheng, 2019).

Even though both CUSUM and CPA have been
applied to educational testing data to detect aberrant
responses, all existing research focused only on one of
these two methods, with Sinharay (2016, 2017b) being
the two exceptions. Sinharay (2016) proposed three
CPA-based statistics and compared their performance
against four CUSUM-based indices in evaluating per-
son-fit. He found that the CPA-based statistics were
more powerful under his simulation conditions.
However, the primary purpose of Sinharay (2016) was
still to investigate and establish the effectiveness of
CPA in evaluating person fit in the context of compu-
terized adaptive testing. In order to provide a general
review of tests of a change point in psychometric
problems, Sinharay (2017b) answered three basic
questions of applying the two methods. In the review
below, we have identified at least twelve CUSUM-
based statistics in the existing literature, which
includes the four used in Sinharay (2016). Little is
known on how these statistics compare against each
other, let alone how they compare against the CPA-
based methods in detecting test speededness. In other
words, a comprehensive comparison of CUSUM- and
CPA-based methods has been lacking.

More importantly, it is well known that the
CUSUM procedures are the most appropriate (in the
sense of being the most powerful) when the parame-
ters of the underlying statistical model before and
after the change are known (Hawkins et al., 2003;
Montgomery, 2013). If one or more of the parameters
are unknown, the application of tests based on CPA
may be more appropriate than that of the CUSUM
procedures (Sinharay, 2016, 2017b). For this reason,
we suspect that the relative advantage of CPA over
the CUSUM-based procedures found in Sinharay
(2016) may or may not hold depending on the
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underlying mechanism of speededness. Given this
consideration, in this study we include two well-
known models of speededness: the gradual change
model (GCM; Suh et al., 2012; Wollack & Cohen,
2004) and the hybrid model (HM; Yamamoto, 1989;
Yamamoto & Everson, 1997). The two models reflect
two distinct mechanisms of speededness. The GCM,
first proposed by Wollack and Cohen (2004), allows
for a gradual decline in the probability of correct
responses, mimicking the effect of increasingly felt
time pressure on the part of test takers. Yamamoto
and Everson (1997) proposed a hybrid model, which
assumed that every item before the speeding point
could be modeled by the ordinary 2PL model, and
after that point, by random guessing. The model rep-
resents the situation of a student randomly choosing a
response option when running out of time. The differ-
ence is that the GCM models a gradual decline in the
probability of a correct answer, while the HM models
an abrupt change. In particular, for the HM, the prob-
ability of answering an item correctly is fixed to a
pre-determined constant. Hence CUSUM procedures
may work better under the HM. In this paper we will
conduct a comprehensive examination of the perform-
ance of CUSUM and CPA statistics, and evaluate each
method’s robustness and flexibility under both GCM
and HM.

Methods

In educational and psychological measurement, test tak-
ing is often a sequential process, resembling an indus-
trial process. This is more true than ever when many
tests are given through the computer, and items are pre-
sented sequentially to the test takers, and one has to
respond to the current item before moving on to the
next one. In statistical process control literature, the
CUSUM control chart is effective in detecting small
shifts in the mean of the variable being measured, while
the CPA is adept at detecting abrupt changes in a
sequence of data. The use of CUSUM procedure to
detect aberrant response patterns can be traced back to
Bradlow et al. (1998), while the application of CPA in
detecting intra-individual change in test taking is much
more recent (e.g., Shao et al., 2016). Our literature
review covers at least twelve CUSUM indices and three
CPA statistics and they are summarized below.

CUSUM and existing CUSUM indices

Consider a manufacturing process from which we
collected n products at sequential time points. The

observation is denoted as xj, j ¼ 1, 2, :::, n: Then
the CUSUM control chart is created based on the
scatter plot of Cþ and C� over time, where Cþ and
C� are the cumulative sum of the consecutive positive
and negative residuals, respectively. Mathematically,
Cþ and C� are oftentimes defined as
max 0, xj � l̂

� �� �
and min 0, xj � l̂

� �� �
, where l̂ is

the estimate of the in-control mean. As long as the
production process remains in control, xj should be
centered at l̂, and the control chart should fluctuate
in a random pattern centering around zero. If the
mean shifts upward, the curve drawn by the value of
Cþ points will eventually drift upward; or if the pro-
cess mean continues decreasing, the curve drawn by
the value of C� point will drift downward. Detection
of a mean change can be triggered when Cþ or C�

reaches a predefined critical value.
A general formula of the CUSUM can be presented

as

Cþ
j ¼ max 0,Tj þ Cþ

j�1

n o
, (1)

C�
j ¼ min 0,Tj þ C�

j�1
� �

, (2)

Cþ
0 ¼ C�

0 ¼ 0, (3)

where Tj is the jth observed residual in the sequential
process. Let UB and LB denote pre-specified upper
and lower bound (van Krimpen-Stoop & Meijer,
2000), respectively. In an educational test, Tj can be
some kind of residual (weighted or unweighted)
between the expected and observed score of item j.
Existing CUSUM statistics for detecting aberrant
behaviors mostly differ in their definitions of Tj:

Based on the logic of CUSUM, a response pattern
would be identified as aberrant response pattern when
Cþ
j > UB or C�

j < LB: A response pattern would be
classified as normal otherwise.

To illustrate the application of CUSUM chart to
testing, consider a response pattern of someone taking
a 20-item dichotomous test given in Table 1 (column
“u”). This response pattern was observed in one fixed-
form module of a multistage computerized test. The

ability of the examinee was estimated with ĥ ¼ �0.06
based on his/her responses to these 20 items, based
on 3PLM item parameters that were known in
advance (also shown in Table 1). The definition of Tj

used in this example is 1
n uj � PjðĥnÞ
h i

, which is the

T5j statistic introduced in the next section. It is a
residual defined as the difference between an observed
item response and the model-based expected
item response.
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In Figure 1, the item number and the cumulative
residual are represented by the horizontal and the ver-
tical axis, respectively. Two horizontal lines show the
upper bound (0.18) and the lower bound (-0.08),
respectively. The two bounds here were obtained
based on a Monte Carlo simulation (details are pro-
vided in the section “Simulation Studies”). The solid
dot curve exceeds the upper bound 0.18, which indi-
cates that the respondent has some kind of aberrant
behavior that leads to the aberrant upward shift,
which may be possibly indicative of the test taker’s
item preknowledge.

Bradlow et al. (1998) first adopted CUSUM to
detect outliers in a CAT. They were interested in four
types of outliers, representing effect of warm-up,
fatigue, sub-expertise, and lack-of-fit. Here sub-expert-
ise may be caused by extra or pre-knowledge or train-
ing in certain content areas of the test or on some
items. Lack-of-fit refers to those people with implaus-
ible response patterns, e.g., answering difficult items
correctly but easy ones wrong. van Krimpen-Stoop
and Meijer (2000) reviewed some person-fit research
in the context of P&P tests, and proposed eight statis-
tics to investigate person fit in CAT based on
CUSUM. They conducted a simulation study to inves-
tigate the numerical values of the upper and lower
thresholds for the statistics, and investigated the
power of these statistics. The results showed that the
bounds of most of the eight CUSUM procedures were
stable across h-values. van Krimpen-Stoop and Meijer
(2001) introduced two strategies for the proposed Z-
statistics, in which they used all administered items

and the final ability ĥn to classify each examinee in
the first strategy, while dividing each item response
pattern into disjoint subsets in the second strategy.
The bound of the CUSUM procedure was obtained by
solving Siegmund’s approximation (Siegmund, 1985,
pp. 24–30), and their results showed the proposed
statistic had a relatively high detection rate for misfit-
ting item-score patterns. Both in the context of paper-
and-pencil (P&P) testing and computerized adaptive
testing, van Krimpen-Stoop and Meijer (2002) eval-
uated the performances of the popular person-fit stat-
istic lðpÞz (Drasgow et al., 1985) and a CUSUM statistic
to detect person misfit with polytomous items. Results
showed the detection rates for the CUSUM statistic
were reasonably high. Meijer (2002) applied some
CUSUM statistics to classify a response pattern as fit-
ting or misfitting the underlying item response theory
model in CAT based on empirical data, and the ana-
lysis showed that different types of misfit involved
could be distinguished.

Shi (2007) proposed a likelihood-based statistic to
detect the aberrant response patterns, and extended
the statistics to model-free detection, which means
that the statistics do not rely on any pre-specified
item response function. Armstrong and Shi (2009a,
2009b) evaluated and compared some non-likelihood-
based person-fit statistic with the likelihood-based
statistic, and used a quadratic curve to represent the
aberrant shifts: the aberrant upward shift and the
aberrant downward shift. In these studies, the statis-
tical critical values used for hypothesis testing were
calculated empirically with Monte Carlo simulations.
Based on empirical data, Egberink et al. (2010) con-
sidered applying the CUSUM procedure to detect the
inconsistent item score patterns in a polytomous
CAT. Armstrong and Kung (2011) developed a
CUSUM statistic to identify aberrant behavior in a
sequential, multiple-choice standardized examination.

Figure 1. The CUSUM chart for a respondent with ability esti-
mation: -0.06.

Table 1. CUSUM procedure for an observed response pattern.
Item a b c u P T Cþ C�

1 0.976 �0.693 0.371 0 0.163 �0.008 0 �0.008
2 0.973 0.600 0.224 1 0.419 0.029 0.029 0
3 0.871 �0.607 0.159 1 0.741 0.013 0.042 0
4 0.768 �0.637 0.377 1 0.800 0.010 0.052 0
5 0.940 �1.095 0.159 1 0.865 0.007 0.059 0
6 1.109 �0.202 0.146 1 0.630 0.019 0.077 0
7 1.063 �0.679 0.181 1 0.798 0.010 0.087 0
8 0.888 0.058 0.251 1 0.592 0.020 0.108 0
9 0.648 �0.822 0.179 1 0.752 0.012 0.120 0
10 0.733 �0.768 0.214 1 0.770 0.012 0.132 0
11 0.800 �0.737 0.312 1 0.804 0.010 0.141 0
12 0.823 �1.158 0.224 0 0.138 �0.007 0.135 �0.007
13 0.611 �0.294 0.246 1 0.669 0.017 0.151 0
14 0.965 �0.856 0.225 1 0.835 0.008 0.159 0
15 1.052 �0.833 0.155 1 0.830 0.009 0.168 0
16 0.937 �0.613 0.166 1 0.756 0.012 0.180 0
17 0.894 �0.151 0.456 1 0.747 0.013 0.193 0
18 0.720 �0.614 0.327 0 0.227 �0.011 0.181 �0.011
19 0.686 �0.070 0.112 0 0.442 �0.022 0.159 �0.033
20 0.608 �0.806 0.169 1 0.737 0.013 0.173 �0.020

Note: u ¼ item scores, P ¼ probability of endorsing an item given ĥn, T
¼weighted difference between the observed and expected score, Cþ ¼
maximum value of the CUSUM and C� ¼ minimum value of the
CUSUM. The column shaded is the test-taker’s response pattern.
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In their research, the responses were taken as finite
Poisson trials, the significance level was computed
with Markov chains, and they examined the perform-
ance of the statistic based on both simulated and
empirical data. Further, Tendeiro and Meijer (2012)
extended the procedure of Armstrong and Shi (2009a)
and presented the theoretical ground of the CUSUM
statistic based on likelihood ratio. They proposed a
different version of the statistic and compared the
detection rates of some statistics based on simulation
data. Tendeiro et al. (2013) applied several CUSUM
statistics besides the likelihood-based CUSUM statistic
to detect the inconsistencies in an unproctored inter-
net test.

Twelve CUSUM statistics

Through literature review we identified 12 CUSUM
statistics for detection of intra-individual change dur-
ing test-taking process. As we mentioned before, most
of them differ in their definition of Tj: Eight of the
CUSUM indices were developed in van Krimpen-
Stoop and Meijer (2000), and they all defined their
Tj’s as some variations of the difference between
observed and model-implied responses, which are
labeled T1j to T8j :

T1j ¼ 1
n

uj � PjðĥjÞ
h i

, (4)

T2j ¼ T1j � Pj
�
ĥjÞ 1� PjðĥjÞ

h i� ��1
2

, (5)

T3j ¼ T1j � ½I ĥj
� 	

��1
2, (6)

T4j ¼ T1j �
ffiffi
j

p
, (7)

T5j ¼ 1
n

uj � PjðĥnÞ
h i

, (8)

T6j ¼ T5j � Pj
�
ĥnÞ 1� PjðĥnÞ

h i� ��1
2

, (9)

T7j ¼ T5j � ½I ĥj
� 	

��1
2, (10)

T8j ¼ T5j �
ffiffi
j

p
, (11)

where n is the test length, and j denotes the jth item
in the test, j > 1: ĥj is the estimated h based on the
first j answered items, and ĥn refers to the h estimate
based on the whole test. Without loss of generality,
the subscript of the examinee is omitted. IðĥjÞ and
IðĥnÞ are the test information evaluated at ĥj and ĥn,
respectively. By plugging in a different Tj into Eqs 1

and 2, one obtains a different CUSUM procedure.
Here we label them as CT1 - CT8 :

In addition to these eight statistics, for analyzing
person fit in adaptive testing Sinharay (2016) consid-
ered four additional CUSUM statistics, CLR, LARD, CT

and Cl�z : In our study, these four statistics are denoted
as CT9 , CT10 , CT11 and CT12 , respectively. The corre-
sponding definitions of Tj are named as T9j, T10j, T11j,
T12j: T9j was first defined in Bradlow et al. (1998) as

T9j ¼
Pn

j¼1 uj � PjðĥjÞ
h i��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1Pj
�
ĥjÞ 1� PjðĥjÞ

� 	r : (12)

This statistic in form has some resemblance to T2j

and T6j:

Armstrong and Shi (2009a) suggested a statistic
based on the CUSUM and a likelihood ratio statistic.
Their statistic defines Tj differently in Cþ and C�,
and the associated two Tj definitions are named as
TU
10j and TL

10j, which denote two likelihood ratio statis-
tics for testing whether there is an “aberrant upward
shift’’ and “aberrant downward shift” of the probabil-
ity of a correct answer, respectively:

TU
10j ¼ ln

gUj pjðhÞ
� �
pjðhÞ , (13)

TL
10j ¼ ln

gLj pjðhÞ
� �
pjðhÞ , (14)

where gUj pjðhÞ
� �

and gLj pjðhÞ
� �

are two continuous
curves that match an aberrant upward shift and an
aberrant downward shift, respectively. Details for
obtaining gUj pjðhÞ

� �
and gLj pjðhÞ

� �
can be found in

Armstrong and Shi (2009a).
Based on the definition of T1j, Sinharay (2016)

suggested another CUSUM statistic, which is referred
to as CT11 in this article. Note that CT1 is also defined
on T1j – it is obtained by plugging T1j into Eqs 1 and
2. Meanwhile, CT11 is obtained by plugging T1j into
Eq. 19 (see below).van Krimpen-Stoop and Meijer
(2001) also suggested a CUSUM statistic based on the
l�Z statistic (Snijders, 2001), which is denoted as T12j as
follows:

TU
12j ¼ l�Z þ 0:5, (15)

TL
12j ¼ l�Z � 0:5, (16)

where l�Z is a variation of the person-fit statistics lz
proposed in Snijders (2001).

Different from the first eight CUSUM statistics,
CT9 , CT10 , CT11 and CT12 take different forms, which
are provided as follows:

MULTIVARIATE BEHAVIORAL RESEARCH 5



CT9 ¼ max
1�j�n

T9j, (17)

CT10 ¼ max
1�j�n

Cþ
T10, j

� 	
� min

1�j�n
C�
T10, j

� �
, (18)

where Cþ
T10, j

¼ max1�j�n 0,Cþ
T10, j�1

þ TU
10j

� 	
and

C�
T10, j ¼ min1�j�n 0,C�

T10, j�1
þ TL

10j

� 	
:

CT11 ¼ max
1�j�n

Cþ
T11, j

� 	
� min

1�j�n
C�
T11, j

� �
, (19)

where Cþ
T11, j and C�

T11, j can be obtained based on the

general formulas of CUSUM, that is, Cþ
T11, j

¼
max 0,T11jþ

�
Cþ
T11, j�1

g, C�
T11, j ¼ min 0,T11j þ C�

T11, j�1

n o
:

Note that CT11 only has one single value which meas-
ures the dispersion of an individual’s performance. In
contrast, CT1 has the typical form of a CUSUM statis-
tic, which has two values at the point j : Cþ

T1, j

and C�
T1, j :

Similarly, CT12 is defined as follows:

CT12 ¼ max
1�j�n

Cþ
T12, j

� 	
� min

1�j�n
C�
T12, j

� �
, (20)

where Cþ
T12, j ¼ max1�j�n 0,TU

12j þ Cþ
T12, j�1

� 	
, and

C�
T12, j ¼ min1�j�n 0,TL

12j þ C�
T12, j�1

� 	
:

Note that CT1 - CT8 involve a positive or negative
residual for each item; that is, a large (in absolute
value) CUSUM statistic suggests an aberrant response
pattern. However, each of the last four CUSUM statis-
tics (CT9 - CT12 ) only involves a single residual, by
which CT9 measures the largest absolute realized
deviation, while CT10 , CT11 and CT12 measure the
dispersion of the individual’s performance during
the test.

CPA and previous studies

Recently there have been a handful of studies that use
CPA to detect intra-individual change during a test-
taking process. Shao et al. (2016) used CPA to classify
examinees into speeded and non-speeded groups, and
estimated the point at which an examinee starts to
speed. They conducted a simulation study to evaluate
the performance of the CPA to detect the speededness
when the speededness mechanism followed the GCM.
Results showed that the CPA is efficient in detecting
both speeded examinees and the speeding point. They
adopted a permutation method to generate the null
distribution of the CPA test statistic. Shao (2016)
investigated whether CPA can help improve item cali-
bration in the presence of speededness, applied the

CPA method to warm-up effect detection, and con-
ducted the CPA to detect the speededness based on
response-time data. Sinharay (2016) suggested three
statistics based on CPA to detect any abrupt changes
during CAT, and compared the performances of the
new statistics with four aforementioned CUSUM sta-
tistics (i.e., CT9 - CT12Þ, and used the asymptotic crit-
ical values for the significance level of the null
distribution. All these studies used some or all of the
three statistics that are introduced below.

Three CPA statistics

The Wald Test. Splitting a test into two subtests, subt-
est1 and subtest2 at point j, the Wald test can be
used to detect whether a respondent’s ability (denoted
by h) has changed from subtest1 to subtest2. The cor-
responding Wald test statistic can be formulated as

Wj ¼
ĥ1j � ĥ2j

� 	2

1
I1jðĥnÞ þ

1
I2jðĥnÞ

, (21)

where ĥ1j and ĥ2j denote the maximum likelihood
estimate of ability based on subtest1 (from item 1 to
item j) and subtest2 (from item jþ 1 to n), respect-
ively. I1jðĥnÞ and I2jðĥnÞ are the test information for
subtest1 and subtest2, respectively, both evaluated at
ĥn, which is the ability estimate based on the
whole test.

In practice, the change point is unknown, and there
are (n-1) possible change positions. Therefore, the
corresponding statistic is taken as the maximum over
all possible change points, i.e.,

Wmax ¼ max
1�j�n�1

Wjf g: (22)

Any respondent will be flagged as aberrant if his or
her associated Wmax is significantly larger than 0,
which signals a significant change in the underlying h
in the test taking process. The change point is esti-
mated to be the point where Wmax is achieved.

The likelihood ratio test
According to Shao et al. (2016) and Sinharay (2016),
the likelihood ratio test statistic can be formulated as
follows:

Dlj ¼ �2 l ĥn;Y1,Y2, :::,Yn

� �
�
h
l ĥ1j;Y1,Y2, :::,Yj

� 	�

þl ĥ2j;Yjþ1,Yjþ2, :::,Yn

� 	io
, (23)

where l ĥn;Y1,Y2, :::,Yn

� �
refers to the log-likelihood

for the whole test evaluated at ĥn, while
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l ĥ1j;Y1,Y2, :::,Yj

� 	
þ l ĥ2j;Yjþ1,Yjþ2, :::,Yn

� 	
is the

alternative likelihood that allows separate h estimates
before and after item j. As encountered previously,
the test statistic is taken as the maximum of the likeli-
hood-ratio test statistic due to the unknown change
position in a real test:

Lmax ¼ max
1�j�n�1

Dlj
� �

: (24)

Similar to Wmax, if Lmax is significantly larger than
0, the respondent will be flagged as aberrant with the
change point estimated to be the point where Lmax

is achieved.

The score test
The score test can also be used to test the significant
difference in ability between subtest1 and subtest2. It
is defined as follows:

Sj ¼
r ĥn;Y1,Y2, :::,Yj

� 	� 	2

I1jðĥnÞ

þ
r ĥn;Yjþ1,Yjþ2, :::,Yn

� 	� 	2

I2jðĥnÞ
, (25)

where r ĥ0;Y1,Y2, :::,Yj

� 	
and

r ĥ0;Yjþ1,Yjþ2, :::,Yn

� 	
are the first-order derivatives

with respect to h of the log likelihood of subtest1 and
subtest2, respectively. The test statistic is the max-
imum of the Sj :

Smax ¼ max
1�j�n�1

Sj
� �

: (26)

Similar to Wmax and Lmax, a response pattern will
be flagged if Smax is significantly larger than 0, and
the change point is estimated to be the point where
Smax is achieved.

Shao et al. (2016) proposed to use the likelihood
ratio test and to obtain critical values for this test stat-
istic through permutation of the data. Sinharay (2016)
suggested that it is possible to use the asymptotic crit-
ical values provided in Andrews (1993), and that the
asymptotic critical values for the three statistics are
the same. In this study, we propose to use Monte
Carlo simulations to obtain critical values as done in
Worsley (1979) and Shao (2016). This is because per-
mutation can be computationally inefficient for long
tests, and the asymptotic values may not be applicable
if the change point appears early or late on a test
(Andrews, 1993; Sinharay, 2016). They are not

Table 2. The summaries of the fifteen statistics.
Statistic Mathematical definition Source of reference

W
ĥ1j�ĥ2jð Þ2
1

I1j ðĥn Þ
þ 1

I2j ðĥn Þ
Sinharay (2016)

L �2 l ĥn; Y1, Y2, :::, Yn
� �

� l ĥ1j; Y1, Y2, :::, Yj
� 	

þ l ĥ2j; Yjþ1, Yjþ2, :::, Yn
� 	h in o

Shao et al. (2016)
Sinharay (2016, 2017a)

S
r ĥn ;Y1 , Y2 , :::, Yjð Þð Þ2

I1jðĥnÞ þ r ĥn ;Yjþ1 , Yjþ2 , :::, Ynð Þð Þ2
I2jðĥnÞ Sinharay (2016, 2017a)

CT1 T1 ¼ 1
n uj � Pjðĥ jÞ
h i

van Krimpen-Stoop and Meijer (2000)

CT2 T2 ¼ T1j � Pjðĥ jÞ 1� Pjðĥ jÞ
h in o�1

2

CT3 T3 ¼ T1j � ½I ĥ j

� 	
��1

2

CT4 T4 ¼ T1j �
ffiffi
j

p

CT5 T5 ¼ 1
n uj � PjðĥnÞ
h i

CT6 T6 ¼ T5j � PjðĥnÞ 1� PjðĥnÞ
h in o�1

2

CT7 T7 ¼ T5j � ½I ĥ j

� 	
��1

2

CT8 T8 ¼ T5j �
ffiffi
j

p

CT9 T9 ¼
Pn

j¼1
uj�Pjðĥ jÞ½ �

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1
Pjðĥ jÞ 1�Pjðĥ jÞð Þ

q Bradlow et al. (1998); Sinharay (2016)

CT10 TU10j ¼ ln
gUj pjðhÞð Þ

pjðhÞ , TL10j ¼ ln
gLj pjðhÞð Þ
pjðhÞ Armstrong and Shi (2009a)

Sinharay (2016)

CT11
1
n uj � Pjðĥ jÞ
h i

=ki Sinharay (2016)

CT12 TU12j ¼ l�Z þ 0:5, TL12j ¼ l�Z � 0:5 Sinharay (2016); van Krimpen-Stoop and Meijer (2001)

Note: The first three shaded entries are CPA-based statistics, and the rest are the CUSUM-based statistics. For the first eight CUSUM-based statistics,
CT1 -CT8 , they use the general formula of CUSUM statistics, which are shown in Eqs. 1–3, while the latter four take different forms, which are provided
in Eqs. 17–20.
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applicable for CUSUM statistics, either. Hence all crit-
ical values in this study are obtained through Monte
Carlo simulations. All the fifteen statistics of interest
in this article are summarized in Table 2.

Simulation studies

Different statistics may be sensitive to different types
of aberrant response behaviors. There is no known
method that can always guarantee identification of all
types of aberrant item response patterns with a high
success rate (Tendeiro & Meijer, 2012). The focus of
this study is test speededness. The same as the above
literature, we focus on dichotomous items with known
parameters from the IRT model that the regular
response data are assumed to follow.

Underlying mechanism of speededness

As stated previously, we consider two models with
distinct assumptions regarding the underlying mech-
anism of speededness, GCM and HM, the former cap-
turing gradual change while the latter abrupt change.
The HM assumes that all responses after the speeding
point will be completely random which is a rather
strict assumption. The GCM, on the other hand, con-
siders that each speeded examinee has a unique speed-
ing point, and the probabilities for answering those
speeded questions will gradually decrease toward the
end of the test.

The HM models examinees who randomly guess
on some items, typically items toward the end of the
test in the context of speededness. The 2PL version of
the HM takes the following form:

P�
ij ¼

P uij ¼ 1jhi, cj
� �

, before the change point
r , after the change point

,

�

(27)

where P uij ¼ 1jhi, cj
� �

is the ordinary 2PL IRT model,
and r is the random guessing probability, which is
independent to the examinee’s true ability, and often
assumed to equal the reciprocal of the number of
response options of a multiple-choice item. cj refers to
the item parameters for item j: In the case of 2PL,
cj ¼ aj, bj

� �0, where aj, bj are the item discrimin-
ation and difficulty parameter for item j, respectively.
P uij ¼ 1jhi, cj
� �

, the response function of the 2PL IRT
model takes the following form:

P uij ¼ 1jhi, cj
� � ¼ 1

1þ e�1:7aj hi�bjð Þ , (28)

The GCM was first proposed by Wollack and
Cohen (2004) to generate speeded responses.
Goegebeur et al. (2008, 2010) showed how to estimate
the model parameters, and evaluated the model fit by
comparing the model-implied proportions of the cor-
rect responses against the observed proportions. Suh
et al. (2012) fitted the GCM to classify examinees into
speeded and non-speeded classes. The 2PL version of
the GCM takes the following form:

P�
ij ¼ P uij ¼ 1jhi, cj

� ��min 1, 1� j
n
� gi

� 
� �� 
ki

,

(29)

where the speeding point is modeled by the parameter
ð0 � gi � 1Þ, and the speededness rate is modeled by
the parameter ki ðki � 0Þ: Because of speededness, a
larger gi means a later speeding point which translates
to less severe speededness, and a larger ki suggests a
faster decline of P�

ij:

Simulation design

For the comparison of speededness detection based on
CUSUM and CPA under different situations, three

Table 3. The parameters setting for simulation studies.

Type Parameter
Distribution

Condition a b

GCM parameters g Beta distribution (a, b) C1 146.345 62.910
C2 14.048 6.211
C3 3.033 1.490
C4 143.367 95.689
C5 13.768 9.290
C6 2.970 2.091
C7 124.500 124.500
C8 12.000 12.000
C9 2.625 2.625

k Log normal (3.912,1)
Item parameters a Log normal (0,0.05)

b Normal (0,1)
Ability parameters h Normal (0,1)

Note. C1 means Condition 1 (gmedian ¼ 0:7, gvariance ¼ 0:001), C2 means Condition 2 (gmedian ¼ 0:7, gvariance ¼ 0:01).
The settings of item parameters and ability parameters are common in GCM and HM.
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simulation studies were conducted to evaluate the per-
formance of 15 statistics, three based on CPA: Wmax,
Lmax, Smax; and twelve based on CUSUM: CT1 - CT12 :

In the first two studies, the lower and upper bounds
of the CUSUM and the critical values of the CPA sta-
tistics are obtained by Monte Carlo simulations based
on 10,000 normal response patterns. In the third
study (presented in the appendix), we use existing
asymptotic critical values for the CPA statistics. In
each study, two hundred data sets, each consisting of
10,000 normal score patterns, were generated based
on the 2PL IRT model. The item and ability parame-
ters were generated based on the distributions sum-
marized in Table 3.

For each response pattern, twelve different CUSUM
statistics plus three CPA statistics were calculated.
Detection of speededness was done using a 5% nom-
inal type-I error level for each statistic. That is, the
statistics were compared to the critical values or
upper/lower bounds that were obtained at a 5% nom-
inal type-I error level. For the three CPA statistics and
the last four CUSUM statistics (CT9 - CT12 ), 10,000 val-
ues for each statistic were sorted in descending order.
The corresponding values of the bound and critical
values were taken to be the value in the 500th pos-
ition. For the first eight CUSUM statistics (CT1 - CT8 ),
the lower values of the bound were taken to be in the
9, 750th position, and the upper values of the bound
were taken to be in the 250th position. All the bound
or critical values were shown in Tables 4 and 5.

Table 4 presents empirical critical values for the
three CPA-based statistics. The critical values for Lmax

and Smax show smaller fluctuation than the Wmax, and
they are closer to the asymptotic critical values pro-
vided in Sinharay (2016). Table 5 provides the values
of the bound for the twelve CUSUM-based statistics.
For the first eight CUSUM statistics CT1 - CT8 , the
values of UB and LB are almost symmetric around 0.
Because the alternative hypothesis of interest for CT9 ,
CT10 , CT11 , CT12 is one-sided, the lower values of the
bound for these four statistics were left blank in
Table 5.

Item response data affected by speednedness are
generated following the HM and the GCM. As
described in Shao (2016), examinees will be classified
into two groups, speeded vs. non-speeded under the

mixture-modeling framework. In all three studies in
this paper, different prevalence and severity rates of
speededness were considered. Prevalence refers to the
proportion of examinees who have exhibited speeded
response behaviors in their tests, and severity refers to
the proportion of items affected by speededness of
those examinees with speeded behaviors, which is
regulated by the speeding point. In Study 1, speeded-
ness detection based on Monte Carlo critical values
under HM was conducted. Different from Study 1,
the GCM was adopted in Study 21. The maximum
likelihood estimation (MLE; Baker & Kim, 2004) algo-
rithm was used to obtain the interim h estimates for
each respondent during the test. Respondents with all
correct or all wrong answers were assigned ability esti-
mates 3 or �3.

Study 1

The first study used the HM as the true model to gen-
erate item responses affected by speededness. More
specifically, respondents have a probability of .2 to
respond correctly to items that are affected by speed-
edness, or r is set to .2 in Eq. 27. For the respondents
without speededness, their response patterns were
generated based on the ordinary 2PL IRT model.
Then we applied the 12 CUSUM procedures and 3
CPA statistics to detect the speededness with empiric-
ally derived critical values. For the prevalence of
speededness, 10% and 30% of the examinees were ran-
domly chosen to be affected by speededness. The last
30%, 40%, and 50% of the items in the test, which are
referred to as low, medium, and high level of severity

Table 4. Empirical critical values for CPA-based statistics.

Test length

Critical Value

L W S

40 8.087 27.194 6.978
60 8.481 32.979 8.972
80 8.874 58.898 13.13

Table 5. Empirical values of the bound for CUSUM-
based statistics.

Statistic

40 items 60 items 80 items

LB UB LB UB LB UB

CT1 �0.131 0.127 �0.110 0.110 �0.097 0.097
CT2 �0.329 0.322 �0.283 0.276 �0.251 0.244
CT3 �0.046 0.046 �0.030 0.032 �0.029 0.030
CT4 �0.593 0.582 �0.626 0.632 �0.643 0.636
CT5 �0.103 0.101 �0.087 0.086 �0.076 0.074
CT6 �0.271 0.274 �0.232 0.227 �0.200 0.195
CT7 �0.022 0.023 �0.016 0.016 �0.013 0.013
CT8 �0.479 0.467 �0.508 0.504 �0.526 0.513
CT9 2.517 2.878 3.524
CT10 2.545 2.790 2.564
CT11 20.558 39.109 53.970
CT12 0.170 0.144 0.127

Note. All the values are based on the average of 200 replications.

1We also conducted a Study 3 where the performance of the three CPA
statistics was evaluated based on asymptotic critical values (see Table 2
of Sinharay, 2016) instead of empirically derived critical values under HM
and GCM. Everything was kept the same as in Studies 1 and 2 except for
the critical values. Results of Study 3 are summarized in the Appendix.
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of speededness, were chosen to be answered aberrantly
for those affected by speededness. The simulated sam-
ple consisted of 1,000 respondents with their abilities
randomly generated from the standard normal distri-
bution N 0, 1ð Þ: 40, 60 and 80 pairs of 2PL item
parameters were generated with the distributions
specified in Table 3. Based on the simulated parame-
ters and the HM, the response matrix can be gener-
ated. Overall there are 18 conditions: 3 test lengths
(40, 60 and 80)� 2 prevalence rates (10% and 30%)�
3 severity rates (30%, 40%, and 50%). Each condition
was replicated 200 times. For every response pattern
in each dataset, the values for the 15 statistics can be
calculated based on the corresponding formulas and
compared to their respective bound or critical values.

Study 2

Different from the Study 1, Study 2 generated data
from the GCM. Everything else is kept the same as
Study 1. The same distributions of g, k as in Shao
et al. (2016) were used in this study (see Table 3). g
determines the change point at which an examinee
starts his/her speededness behavior – this dictates the
severity level. Its distribution was manipulated
through a Beta distribution in a 3� 3 design, with
three levels of the median of g (0.7, 0.6 and 0.5), and
three levels of variance (0.001, 10� 0.001, 40� 0.001)
(see the corresponding a and b parameter values of
the Beta distribution in Table 3). This resulted in nine
different g conditions denoted as C1-C9. The Same as
in study 1, we included three levels of test length: 40,
60 and 80, the sample size was fixed at 1,000, and
true abilities were generated following the standard
normal distribution. In total there were 54 conditions:
3 test lengths (40, 60 and 80)�3 g medians (0.7, 0.6
and 0.5) �3 g variances (original, 10�, and 40�)�2
prevalence levels (10% and 30%). For the respondents
without speededness, their response patterns were
generated based on the ordinary 2PL IRT model. Each
condition was replicated 200 times. The same as
Study 1, values for the 15 statistics for each respond-
ent was calculated and compared to their respective
bound/critical values.

Evaluative measures

While obtaining the values of the 15 statistics for the
response pattern of each respondent, the correct clas-
sification rates (CCR), type I error and power rates
were obtained by comparing their values with the
associated cutoffs presented in Tables 4 and 5, where

CCR or the hit rate refers to the chance of classifying
each respondent based on his/her behavior correctly
into the speeded or non-speeded group. Correct clas-
sification occurs when a respondent is classified into
the group to which he or she truly belongs. All results
of Studies 1 and 2 are summarized in Tables 6–13,
while results for Study 3 are presented in Tables A1
and A2 in the appendix.

Results

The results are presented and organized based on the
generating model. Two levels (10% and 30%) for
speededness prevalence were simulated for both the
HM and GCM. Under the HM, three tables were cre-
ated for results for test lengths of 40, 60, and 80 with
three levels of speededness severity (30%, 40%, and
50%), respectively. Under the GCM, there are nine
tables (nine conditions for speededness severity, C1-
C9) for each test length. Due to the space limit and
the large number of conditions, only results of the
high-severity conditions, C7-C9, were presented in
this paper. Results of the low-severity conditions (C1-
C3) and the middle-severity conditions (C4-C6) show
the same trend as C7 – C9 except with generally lower
power. These results are available from the authors
upon request.

Generating model: HM

Tables 6–8 showed the results of speededness detec-
tion under different levels of prevalence and severity
when the speeded responses were generated based on
HM. The outputs were generated based on the fifteen
statistics: Wmax, Lmax, Smax, and CT1 - CT12 :

Considering power, Lmax and Smax always perform bet-
ter than Wmax, which has the smallest detection rate.
For example, under HM, 40 items, 10% speededness
prevalence, 30% speededness severity, the CCR of
Wmax, Lmax, Smax are 0.872, 0.918 and 0.912, respect-
ively (see Table 6). The power for the three statistics
are: 0.202, 0.628 and 0.556. The CCR is generally high
in spite of the low power because the speeded preva-
lence (i.e., the base rate) is low. The type I error rates
for the CPA-based statistics are always close to the
corresponding nominal level. Meanwhile, among 12
CUSUM statistics, CT2 , CT6 and CT9 perform better in
the 40-item and 60-item tests in terms of power, while
in the 80-item test, CT6 , CT7 , and CT9 are the top
three. The same as CPA-based statistics, the type I
error rates for the 12 CUSUM-based statistics are also
close to the nominal level. For each statistic of
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interest, with the increase of test length or speeded-
ness severity, the power generally increases. We also
conducted a simulation with lower speededness sever-
ity (10% and 20%), and the power for some statistics
decreased quickly. This indicates that more serious
speeded response behavior can be more easily
detected. For the comparison of all methods, at least
three CUSUM-based statistics (e.g., CT2 , CT6 , CT9 for
40- and 60-item tests, and CT6 , CT7 , CT9 for 80-item
test) outperformed the three CPA-based statistics.
This indicates that CUSUM-based statistics are
favored when the respondents affected by speededness
apply the random response strategy to the end of the
test, which is consistent with the expectation that
CUSUM-based methods are more powerful when the
parameters before/after the change is known. In this
study, the probability of answering an item correctly
after the change point under HM is known to be .2.
In general, some CUSUM procedures such as CT9

consistently shows a promising power rate at .75 or
above across a variety of conditions in Tables 6–8.

Generating model: GCM

Compared to HM, most statistics have higher detec-
tion rates under the GCM. Tables 9–11 present the

corresponding results under the GCM, high-severity
conditions (C7-C9) with three test lengths, respect-
ively. Under GCM, for the twelve CUSUM-based
statistics, CT7 is the most powerful. For the three
CPA-based statistics, the same as under HM, Lmax,
Smax outperform Wmax: For all statistics, the type I
error rates are well controlled. It also can be seen that
the test length has a positive effect on power. Nine
conditions for the speededness severity, C1-C9, can be
binned into three groups based on the median or the
variance of the starting position of speededness. Given
a fixed median of the speededness starting position,
the power will decrease with the increase of the pos-
ition variance. Given a variance of the speededness
starting position, the power will decrease with the
increase of the speed position median. In general,
Lmax, Smax, and CT7 are the top three statistics in
terms of power in the 40-item and 60-item test, while
Smax, CT7 , and CT9 are the top three for the 80-item
test. This shows clear contrast with results under the
HM, where none of the CPA statistics lead to compar-
able performance to the top CUSUM procedures, cor-
roborating with previous findings that CPA is more
helpful when the parameters before and/or after the
change point are unknown.

Table 6. Results based on HM, speededness severity ¼ 30%, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

30% 10% W 0.872 0.202 0.054 0.894 0.396 0.051 0.899 0.470 0.054
L 0.918 0.628 0.050 0.921 0.664 0.051 0.930 0.741 0.049
S 0.912 0.556 0.049 0.915 0.585 0.048 0.931 0.741 0.047
CT1 0.897 0.430 0.051 0.908 0.524 0.049 0.926 0.729 0.052
CT2 0.925 0.701 0.050 0.928 0.734 0.051 0.926 0.735 0.053
CT3 0.878 0.225 0.049 0.889 0.345 0.051 0.901 0.469 0.05
CT4 0.906 0.514 0.050 0.915 0.588 0.049 0.933 0.775 0.05
CT5 0.903 0.477 0.050 0.913 0.576 0.049 0.933 0.748 0.047
CT6 0.930 0.746 0.050 0.930 0.749 0.050 0.931 0.788 0.053
CT7 0.899 0.427 0.049 0.910 0.556 0.051 0.94 0.797 0.044
CT8 0.911 0.545 0.049 0.916 0.602 0.049 0.934 0.786 0.05
CT9 0.934 0.767 0.048 0.932 0.803 0.054 0.937 0.826 0.050
CT10 0.882 0.235 0.046 0.898 0.427 0.050 0.901 0.430 0.047
CT11 0.868 0.147 0.052 0.877 0.237 0.052 0.874 0.193 0.051
CT12 0.907 0.527 0.051 0.915 0.600 0.050 0.931 0.750 0.049

30% W 0.719 0.194 0.055 0.778 0.383 0.053 0.800 0.460 0.055
L 0.850 0.618 0.051 0.863 0.663 0.051 0.888 0.746 0.052
S 0.831 0.546 0.047 0.838 0.569 0.047 0.890 0.741 0.047
CT1 0.791 0.424 0.051 0.818 0.513 0.051 0.886 0.733 0.049
CT2 0.867 0.675 0.050 0.882 0.730 0.053 0.886 0.73 0.047
CT3 0.728 0.214 0.051 0.763 0.323 0.048 0.807 0.457 0.044
CT4 0.819 0.516 0.051 0.839 0.583 0.050 0.899 0.777 0.048
CT5 0.807 0.466 0.047 0.838 0.572 0.048 0.894 0.751 0.045
CT6 0.880 0.721 0.051 0.892 0.745 0.045 0.9 0.782 0.05
CT7 0.798 0.429 0.044 0.836 0.556 0.044 0.91 0.793 0.04
CT8 0.827 0.539 0.050 0.845 0.595 0.048 0.895 0.753 0.045
CT9 0.890 0.743 0.047 0.902 0.793 0.052 0.906 0.808 0.052
CT10 0.733 0.224 0.049 0.794 0.427 0.048 0.788 0.407 0.049
CT11 0.703 0.141 0.056 0.732 0.225 0.051 0.723 0.195 0.051
CT12 0.819 0.514 0.050 0.846 0.607 0.051 0.893 0.761 0.050

Note: W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 - CT12 refer to the twelve CUSUM-
based statistics.
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Table 7. Results based on HM, speededness severity ¼ 40%, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

40% 10% W 0.872 0.206 0.054 0.894 0.397 0.051 0.905 0.532 0.054
L 0.919 0.636 0.049 0.923 0.670 0.049 0.931 0.761 0.050
S 0.915 0.594 0.049 0.917 0.604 0.048 0.930 0.741 0.049
CT1 0.906 0.520 0.051 0.914 0.582 0.049 0.932 0.763 0.049
CT2 0.926 0.698 0.049 0.929 0.750 0.051 0.93 0.779 0.053
CT3 0.887 0.322 0.050 0.901 0.449 0.049 0.914 0.576 0.048
CT4 0.911 0.584 0.053 0.919 0.629 0.049 0.936 0.811 0.05
CT5 0.909 0.524 0.048 0.916 0.590 0.048 0.936 0.788 0.047
CT6 0.928 0.741 0.051 0.937 0.801 0.048 0.937 0.842 0.053
CT7 0.913 0.540 0.046 0.917 0.590 0.047 0.945 0.843 0.043
CT8 0.913 0.596 0.052 0.918 0.624 0.050 0.936 0.814 0.05
CT9 0.932 0.775 0.050 0.937 0.814 0.050 0.943 0.873 0.050
CT10 0.890 0.319 0.046 0.907 0.504 0.049 0.909 0.546 0.050
CT11 0.879 0.266 0.053 0.891 0.372 0.051 0.902 0.474 0.050
CT12 0.909 0.550 0.051 0.918 0.636 0.051 0.933 0.748 0.046

30% W 0.720 0.195 0.055 0.778 0.384 0.052 0.818 0.517 0.053
L 0.854 0.630 0.050 0.863 0.663 0.052 0.895 0.768 0.051
S 0.842 0.584 0.048 0.844 0.590 0.047 0.891 0.743 0.046
CT1 0.811 0.495 0.054 0.839 0.575 0.048 0.898 0.765 0.046
CT2 0.874 0.690 0.048 0.882 0.732 0.054 0.903 0.785 0.047
CT3 0.758 0.313 0.051 0.803 0.451 0.047 0.845 0.584 0.044
CT4 0.830 0.559 0.054 0.854 0.625 0.048 0.909 0.806 0.047
CT5 0.817 0.502 0.049 0.846 0.587 0.044 0.905 0.787 0.044
CT6 0.889 0.739 0.047 0.899 0.780 0.050 0.92 0.841 0.046
CT7 0.823 0.521 0.048 0.846 0.587 0.044 0.923 0.842 0.042
CT8 0.835 0.564 0.049 0.853 0.615 0.046 0.913 0.82 0.047
CT9 0.893 0.759 0.050 0.905 0.809 0.054 0.929 0.877 0.049
CT10 0.758 0.316 0.053 0.812 0.490 0.049 0.829 0.553 0.052
CT11 0.741 0.261 0.053 0.772 0.363 0.053 0.803 0.465 0.052
CT12 0.821 0.539 0.057 0.851 0.627 0.053 0.898 0.774 0.048

Note: W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 - CT12 refer to the twelve CUSUM-
based statistics.

Table 8. Results based on HM, speededness severity ¼ 50%, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

50% 10% W 0.872 0.200 0.054 0.892 0.388 0.052 0.900 0.488 0.054
L 0.920 0.647 0.049 0.923 0.683 0.050 0.931 0.759 0.050
S 0.918 0.613 0.048 0.921 0.641 0.048 0.929 0.725 0.048
CT1 0.908 0.551 0.052 0.914 0.613 0.052 0.931 0.763 0.051
CT2 0.929 0.757 0.052 0.928 0.768 0.054 0.929 0.786 0.055
CT3 0.898 0.424 0.050 0.909 0.543 0.050 0.92 0.655 0.051
CT4 0.913 0.601 0.053 0.920 0.648 0.050 0.935 0.802 0.05
CT5 0.909 0.539 0.050 0.918 0.623 0.049 0.935 0.784 0.049
CT6 0.932 0.802 0.054 0.935 0.814 0.051 0.936 0.840 0.054
CT7 0.915 0.590 0.048 0.922 0.638 0.047 0.945 0.855 0.045
CT8 0.913 0.593 0.052 0.921 0.640 0.048 0.937 0.825 0.05
CT9 0.938 0.820 0.049 0.941 0.830 0.047 0.945 0.887 0.049
CT10 0.894 0.408 0.052 0.916 0.562 0.045 0.917 0.618 0.050
CT11 0.889 0.369 0.053 0.902 0.471 0.050 0.906 0.497 0.049
CT12 0.911 0.575 0.052 0.921 0.651 0.049 0.933 0.764 0.049

30% W 0.720 0.195 0.056 0.775 0.370 0.052 0.803 0.469 0.054
L 0.856 0.635 0.050 0.868 0.677 0.050 0.894 0.763 0.051
S 0.849 0.606 0.047 0.854 0.626 0.048 0.885 0.724 0.047
CT1 0.827 0.536 0.049 0.847 0.606 0.050 0.893 0.769 0.054
CT2 0.889 0.746 0.049 0.889 0.747 0.050 0.896 0.774 0.052
CT3 0.784 0.395 0.049 0.824 0.526 0.048 0.857 0.635 0.048
CT4 0.839 0.580 0.050 0.859 0.646 0.050 0.905 0.81 0.054
CT5 0.821 0.520 0.050 0.853 0.613 0.045 0.903 0.789 0.048
CT6 0.902 0.788 0.049 0.907 0.809 0.051 0.916 0.843 0.052
CT7 0.840 0.571 0.045 0.858 0.629 0.044 0.926 0.851 0.042
CT8 0.836 0.575 0.052 0.858 0.637 0.047 0.911 0.828 0.054
CT9 0.910 0.824 0.054 0.913 0.829 0.051 0.934 0.892 0.048
CT10 0.783 0.395 0.051 0.833 0.553 0.047 0.848 0.614 0.051
CT11 0.766 0.347 0.054 0.802 0.461 0.051 0.807 0.481 0.053
CT12 0.826 0.549 0.056 0.859 0.651 0.051 0.901 0.780 0.047

Note: W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 - CT12 refer to the twelve CUSUM-
based statistics.
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Table 9. Results based on GCM, speededness severity: C7, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

C7 10% W 0.907 0.561 0.054 0.913 0.594 0.052 0.921 0.687 0.053
L 0.938 0.823 0.050 0.943 0.892 0.051 0.948 0.933 0.050
S 0.943 0.865 0.049 0.949 0.931 0.049 0.956 0.987 0.048
CT1 0.924 0.698 0.051 0.927 0.77 0.056 0.945 0.895 0.050
CT2 0.926 0.708 0.050 0.927 0.767 0.055 0.943 0.888 0.051
CT3 0.924 0.676 0.049 0.93 0.766 0.052 0.952 0.956 0.049
CT4 0.928 0.740 0.051 0.932 0.799 0.053 0.947 0.913 0.050
CT5 0.915 0.622 0.052 0.925 0.725 0.053 0.939 0.853 0.052
CT6 0.922 0.684 0.051 0.928 0.752 0.052 0.942 0.899 0.054
CT7 0.943 0.874 0.049 0.947 0.904 0.049 0.958 1.000 0.047
CT8 0.920 0.671 0.052 0.926 0.753 0.054 0.942 0.891 0.052
CT9 0.952 0.773 0.028 0.961 0.890 0.031 0.954 0.975 0.048
CT10 0.931 0.745 0.048 0.935 0.769 0.047 0.941 0.866 0.050
CT11 0.885 0.300 0.050 0.891 0.377 0.052 0.898 0.415 0.048
CT12 0.916 0.652 0.054 0.934 0.768 0.048 0.944 0.870 0.048

30% W 0.823 0.544 0.057 0.838 0.584 0.053 0.873 0.700 0.054
L 0.915 0.832 0.050 0.932 0.892 0.051 0.944 0.930 0.050
S 0.929 0.872 0.047 0.948 0.934 0.046 0.963 0.987 0.047
CT1 0.876 0.707 0.052 0.899 0.781 0.05 0.934 0.899 0.051
CT2 0.877 0.715 0.054 0.899 0.779 0.049 0.934 0.896 0.049
CT3 0.868 0.675 0.049 0.899 0.779 0.05 0.957 0.965 0.047
CT4 0.894 0.763 0.049 0.909 0.813 0.05 0.942 0.920 0.049
CT5 0.850 0.619 0.051 0.884 0.731 0.05 0.925 0.859 0.047
CT6 0.873 0.692 0.049 0.892 0.761 0.052 0.932 0.897 0.053
CT7 0.931 0.886 0.050 0.936 0.901 0.048 0.966 1.000 0.048
CT8 0.867 0.675 0.051 0.894 0.766 0.051 0.932 0.887 0.049
CT9 0.918 0.793 0.029 0.945 0.890 0.031 0.960 0.970 0.044
CT10 0.893 0.758 0.050 0.896 0.766 0.049 0.927 0.867 0.047
CT11 0.746 0.275 0.053 0.765 0.338 0.052 0.775 0.364 0.049
CT12 0.862 0.660 0.051 0.902 0.787 0.049 0.924 0.868 0.053

Note. W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 - CT12 refer to the twelve CUSUM-
based statistics.

Table 10. Results based on GCM, speededness severity: C8, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

C8 10% W 0.902 0.503 0.053 0.910 0.564 0.052 0.918 0.665 0.054
L 0.937 0.817 0.050 0.941 0.869 0.051 0.947 0.926 0.051
S 0.940 0.848 0.050 0.947 0.913 0.049 0.955 0.985 0.049
CT1 0.921 0.687 0.053 0.927 0.752 0.053 0.943 0.888 0.051
CT2 0.924 0.694 0.050 0.928 0.752 0.053 0.942 0.877 0.051
CT3 0.919 0.656 0.052 0.931 0.753 0.049 0.950 0.930 0.048
CT4 0.928 0.735 0.051 0.93 0.786 0.054 0.945 0.903 0.050
CT5 0.917 0.613 0.049 0.923 0.704 0.053 0.940 0.847 0.050
CT6 0.920 0.680 0.053 0.926 0.746 0.054 0.941 0.882 0.052
CT7 0.940 0.849 0.050 0.947 0.877 0.045 0.958 0.998 0.046
CT8 0.921 0.664 0.050 0.927 0.735 0.052 0.943 0.868 0.049
CT9 0.952 0.768 0.027 0.960 0.869 0.030 0.952 0.962 0.049
CT10 0.929 0.729 0.049 0.934 0.753 0.046 0.939 0.836 0.050
CT11 0.879 0.260 0.052 0.885 0.316 0.052 0.891 0.341 0.048
CT12 0.919 0.640 0.050 0.928 0.744 0.051 0.940 0.854 0.050

30% W 0.813 0.504 0.055 0.833 0.562 0.051 0.865 0.677 0.054
L 0.913 0.826 0.051 0.928 0.880 0.051 0.942 0.926 0.052
S 0.924 0.858 0.047 0.943 0.921 0.047 0.962 0.983 0.047
CT1 0.870 0.687 0.052 0.894 0.767 0.052 0.930 0.881 0.048
CT2 0.876 0.702 0.049 0.892 0.761 0.051 0.928 0.879 0.050
CT3 0.864 0.661 0.049 0.895 0.76 0.047 0.946 0.934 0.048
CT4 0.888 0.744 0.050 0.9 0.792 0.053 0.937 0.906 0.050
CT5 0.843 0.604 0.055 0.876 0.708 0.052 0.918 0.844 0.050
CT6 0.870 0.685 0.050 0.887 0.741 0.051 0.930 0.883 0.050
CT7 0.924 0.859 0.047 0.931 0.88 0.047 0.966 0.991 0.045
CT8 0.864 0.664 0.050 0.883 0.738 0.054 0.926 0.868 0.050
CT9 0.915 0.778 0.027 0.941 0.874 0.031 0.955 0.961 0.047
CT10 0.887 0.735 0.048 0.892 0.752 0.048 0.917 0.840 0.050
CT11 0.736 0.243 0.053 0.754 0.309 0.055 0.761 0.329 0.053
CT12 0.857 0.647 0.052 0.893 0.761 0.050 0.925 0.863 0.049

Note. W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 - CT12 refer to the twelve CUSUM-
based statistics.
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To obtain a general overview of the performances
for these 15 statistics, a comprehensive comparison
for CUSUM and CPA based on HM and GCM were

conducted, respectively. Ovearll, both CUSUM-based
and CPA-based statistics can get well-controlled type I
error rates in detecting speededness. Therefore, the fol-
lowing comparison will primarily consider power. The
number in each cell of Tables 12 and 13 means the
percentage of times for the statistic to rank in the top
three in terms of power among the 15 statistics in all
the simulation settings under each test length. For
example, the number 0.333 (frequency of being in the
top three for the power of Lmax statistic under GCM in
the 40-item test) means Lmax is in the top three highest
power indices about one third of the times among all
conditions under the GCM. Under the HM, CT2 , CT6 ,
and CT9 are the most frequent winners for the 40- and
60-item test, while CT6 , CT7 , and CT9 are for the 80-
item tests. In most cases, CT9 has the highest detection
rate. Under the GCM, Lmax, CT7 and Smax are the most
frequent winners for the 40- and 60-item test, while
CT7 , CT9 and Smax are for the 80-item test. Some statis-
tics with three zeros mean these statistics never end up
in the top three in terms of power.

Figure 2 compares the top three statistics in power
for each test length under HM. The figures show that
CT9 always outperforms the other statistics. In the 40-
and 60-item tests, CT6 has relatively higher power
than CT2 , while their powers become pretty close in

Table 11. Results based on GCM, speededness severity: C9, speededness prevalence ¼ 10%, 30%.

Severity Prevalence Statistics

40 Items 60 Items 80 Items

CCR Power Type-I Error CCR Power Type-I Error CCR Power Type-I Error

C9 10% W 0.896 0.433 0.053 0.907 0.535 0.052 0.912 0.595 0.052
L 0.933 0.786 0.050 0.937 0.819 0.050 0.945 0.892 0.049
S 0.936 0.793 0.048 0.942 0.858 0.049 0.952 0.948 0.048
CT1 0.914 0.602 0.051 0.922 0.675 0.051 0.936 0.821 0.051
CT2 0.915 0.652 0.055 0.919 0.67 0.054 0.935 0.814 0.052
CT3 0.910 0.548 0.050 0.919 0.653 0.052 0.936 0.808 0.050
CT4 0.920 0.668 0.052 0.926 0.712 0.05 0.939 0.852 0.052
CT5 0.909 0.544 0.051 0.917 0.625 0.05 0.931 0.773 0.051
CT6 0.915 0.642 0.055 0.919 0.66 0.052 0.937 0.821 0.050
CT7 0.932 0.774 0.050 0.933 0.782 0.05 0.952 0.936 0.046
CT8 0.912 0.604 0.054 0.918 0.644 0.052 0.936 0.822 0.052
CT9 0.946 0.705 0.028 0.950 0.787 0.032 0.945 0.899 0.050
CT10 0.915 0.619 0.052 0.921 0.664 0.050 0.925 0.715 0.052
CT11 0.872 0.199 0.054 0.883 0.272 0.050 0.885 0.290 0.049
CT12 0.912 0.579 0.051 0.924 0.677 0.049 0.932 0.793 0.052

30% W 0.782 0.404 0.056 0.817 0.513 0.053 0.842 0.603 0.055
L 0.905 0.801 0.051 0.912 0.827 0.052 0.933 0.893 0.051
S 0.909 0.806 0.047 0.927 0.867 0.047 0.952 0.952 0.047
CT1 0.846 0.608 0.052 0.87 0.687 0.052 0.909 0.820 0.053
CT2 0.863 0.660 0.050 0.872 0.688 0.05 0.909 0.819 0.053
CT3 0.838 0.581 0.052 0.87 0.676 0.047 0.915 0.831 0.049
CT4 0.865 0.676 0.054 0.883 0.727 0.051 0.918 0.848 0.052
CT5 0.826 0.537 0.050 0.853 0.628 0.051 0.895 0.780 0.056
CT6 0.859 0.648 0.051 0.865 0.673 0.052 0.912 0.831 0.054
CT7 0.905 0.787 0.045 0.905 0.798 0.049 0.947 0.928 0.045
CT8 0.845 0.605 0.052 0.865 0.667 0.051 0.908 0.813 0.051
CT9 0.897 0.721 0.028 0.917 0.793 0.029 0.936 0.907 0.051
CT10 0.862 0.651 0.048 0.869 0.679 0.049 0.888 0.739 0.049
CT11 0.718 0.186 0.054 0.736 0.238 0.051 0.740 0.251 0.051
CT12 0.842 0.591 0.051 0.871 0.684 0.049 0.904 0.798 0.051

Note. W, L, and S refer to the statistics of Wald test, likelihood ratio test, and score test, respectively. CT1 � CT12 refer to the twelve CUSUM-
based statistics.

Table 12. Relative frequency of each statistic ending up in
the top three in terms of power across conditions under
the HM.

40 Items 60 Items 80 Items

Statistics Power Type I Error Power Type I Error Power Type I Error

W 0 0 0 0 0 0
L 0 0 0 0 0 0
S 0 0.278 0 0.222 0 0.167
CT1 0 0.056 0 0.056 0 0
CT2 0.333 0.056 0.333 0 0 0
CT3 0 0 0 0 0 0.111
CT4 0 0 0 0.056 0 0
CT5 0 0.056 0 0.167 0 0.278
CT6 0.333 0.056 0.333 0.056 0.333 0
CT7 0 0.222 0 0.278 0.333 0.333
CT8 0 0 0 0.111 0 0
CT9 0.333 0.167 0.333 0 0.333 0
CT10 0 0.111 0 0.056 0 0
CT11 0 0 0 0 0 0
CT12 0 0 0 0 0 0.111

Note: (1) all the percentages were calculated based on Study 1. For the
top three statistics in power for each test length, the cells are shaded
with solid gray color. For the top three statistics in type I error rates for
each test length, the cells are shaded with gray lines. Shaded entries
mean empirical type-I error closest to 5%.

(2) W, L, and S refer to the statistics of Wald test, likelihood ratio test,
and score test, respectively. CT1 � CT12 refer to the twelve CUSUM-
based statistics.
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the 80-item test, suggested by the almost overlapping
curves in Figure 2.

Figures 3 illustrates the power for the top three sta-
tistics under GCM. It can be seen that the three statis-
tics corresponding to each test length show different
patterns. Take the 40-item test as an example: the top
three statistics, CT7 , Lmax, and Smax have relatively
close power in the median- and high-severity condi-
tions (median severity: from C4 to C6, high-severity:
from C7 to C9), while Lmax outperforms CT7 and Smax

in the low-severity conditions (low severity: from C1
to C3). However, Smax seems to yield relatively high
detection rates in the median- and high-severity con-
ditions in 40- and 60-item tests. When the test length
goes up to 80, CT7 , CT9 , and Smax have close detection
rates in the median- and high-severity conditions,
while Smax shows an advantage in the low-severity
conditions. Overall, Smax yields a power of .7 or above
in all conditions. Taking everything together, it seems
that CT9 and Smax are the best statistic under HM and
GCM, respectively.

From Figures 2 and 3, some interesting patters of
power in relation to other manipulated factors can be
observed. The power increases with the extent of the
speededness severity (small median suggesting more
responses being affected by speededness in a response
sequence). Power also increases with the increase of
test length (with fixed speededness severity). With
known item parameters, speededness prevalence
shows little effect on power as speededness detection

is performed on each response pattern separately,
independent of other response patterns.

Real data example

To further evaluate the performance of the speeded-
ness detection statistics, we applied four statistics that
outperform others in the simulation studies (CT7 ,
CT9 , Lmax, SmaxÞ to an empirical dataset of a large-
scale standardized state assessment. In this study, the
data was collected from 2012–2013 in Indiana, and a
total of 32 items were administered online. Responses
of 49,767 respondents to thirty multiple-choice items
were used in the analysis after removing the two non-
multiple-choice items. The dataset was also used in
Shao et al. (2016), in which they illustrated the use of
the likelihood ratio test. The entire dataset was fitted
based on the 2PL model, and the means of the diffi-
culty parameter and the discrimination parameter are
�.0575, 1.179, respectively. The variances of the diffi-
culty parameter and the discrimination parameter are
0.739, 0.231, respectively.

Three thousand respondents were randomly
sampled from the dataset. We then applied the four
chosen statistics (Lmax, Smax, CT7 , CT9Þ to identify the
respondents with speededness behavior. Their critical
or bound values were obtained based on simulation.
As summarized in Table 14, the critical values of Lmax

and Smax are 8.134 and 7.785, respectively, and the
values of the bound for CT7 are [-0.034, 0.035], and
2.713 for CT9 :

After obtaining the associated critical values and
the values of the bound, we calculated the value of
each statistic for each possible position for each exam-
inee, with the ability parameter updated by MLE.
Then if the value surpasses the critical value or the
bound, this means the examinee may have exhibited
certain aberrant behavior beyond this item position,
such as speededness, preknowledge, etc. Since speed-
edness is generally considered detrimental to response
accuracy, we compared the ability estimate to confirm
if the aberrant behavior could be speededess or not. If
the ability estimate drops after the change point, the
examinee would be flagged for possible speededness.

Table 14 summarizes the number of flagged
respondents for possible speededness by the four top
statistics. The numbers vary from 111 to 159, with the
CPA statistics Lmax and Smax flagging more than the
CUSUM statistics. Regardless of the statistic used,
only between 110 to 160 respondents were flagged for
possible speededness out of 3000 participants, suggest-
ing that speededness is not a prevalent issue for this

Table 13. Relative frequency of each statistic ending up in
the top three in terms of power across conditions under
the GCM.

Statistics

40 Items 60 Items 80 Items

Power Type I Error Power Type I Error Power Type I Error

W 0 0 0 0 0 0
L 0.333 0.037 0.315 0 0.111 0.019
S 0.333 0.241 0.333 0.241 0.333 0.296
T1 0 0 0 0.019 0 0.019
T2 0 0.074 0 0 0 0
T3 0 0.111 0 0.111 0 0.093
T4 0 0 0 0.019 0 0.037
T5 0 0.019 0 0.019 0 0.019
T6 0 0.037 0.019 0 0 0
T7 0.333 0.074 0.241 0.074 0.315 0.241
T8 0 0.019 0 0.037 0 0.019
T9 0 0.333 0.093 0.333 0.241 0.185
T10 0 0.056 0 0.111 0 0.037
T11 0 0 0 0 0 0.019
T12 0 0 0 0.037 0 0.019

Note: (1) all the percentages were calculated based on Study 2. For the
top three statistics in power for each test length, the cells are shaded
with solid gray color. For the top three statistics in type I error rates for
each test length, the cells are shaded with gray lines. Shaded entries
mean empirical type-I error closest to 5%.

(2) Note. W, L, and S refer to the statistics of Wald test, likelihood ratio
test, and score test, respectively. T1 - T12 refer to the twelve CUSUM-
based statistics.
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testing program. This is unsurprising because a stand-
ardized statewide assessment has undergone rigorous
quality control process. We also looked into the

agreement of the respondents flagged by the four sta-
tistics of interest. Results show that 61 respondents
were flagged by both of the two CPA-based statistics

Figure 2. Comparison of power for top three indices under HM, speededness prevalence: 10% (left) and 30% (right). Speededness
severity: low (30%), medium (40%), high (50%).
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and 48 for the two CUSUM-based statistics. 33
respondents were flagged by all the four statistics.
Different sets of respondents flagged by these statistics

suggest that: a) Different mechanisms of speededness
might exist in the data; and b) We need to exercise
caution before flagging a respondent as aberrant in

Figure 3. Comparison of power for top three indices under GCM, speededness prevalence: 10% (left) and 30% (right).
Speededness severity: low (C1, C2, C3), medium (C4, C5, C6), high (C7, C8, C9).
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practice. Flagged response patterns require careful
human review, ideally along with auxiliary
information such as response time and log data,
if available.

Figure 4 shows the response sequence and ability
estimates of a respondent flagged by all four statistics.
Its left and right panel shows how his or her
responses and provisional ability estimates change
over the item sequence, respectively. As we can see,
there is a clear drop in ability estimates, and a consist-
ent drop in proportion of correct responses at the end
of the test. This indicates that the flagged respondents
may have suffered from the time pressure toward the
end of the test and their performance was nega-
tively impacted.

Discussion

Results from our simulation studies show the per-
formances of CUSUM procedures and CPA methods
in detecting speededness depend on the underlying
mechanism of speededness and the severity of the
speeded behaviors. When the test is relatively short
(e.g., 40 items) or of medium-length (e.g., 60 items),
among all statistics, Lmax, Smax and CT7 are more
powerful than the others under the GCM, while CT2 ,

CT7 and CT9 perform the best under the HM. When
the test is long (80), Smax,CT7 and CT9 outperform the
others under the GCM, in contrast to CT6 ,CT7 and
CT9 under HM. When comparing the two types of
methods against each other, the advantage of CUSUM
statistics are pronounced under the HM, while the
performance of CPA statistics improve substantially
under the GCM. In reality, due to the unknown
mechanism of speededness, we recommend the use of
CT7 and CT9 when the test length is 80, regardless of
HM and GCM. They can reach respectable power (.75
or above) across a wide range of conditions under
either model. In a short or medium-length test, no
statistic always ends up in the top three under both
HM and GCM. In this case, CT9 is a reasonable choice
because although it doesn’t end up in the top three
list under the GCM, it still has a relatively high power
and comes in as the 4th.

In addition to the underlying mechanism of speed-
edness, results also reveal that the test length needs to
be considered as a factor for choosing the statistic to
detect speededness in real applications. In general, the
power increases as the test gets longer. If the test
length reaches 80, some CUSUM-based statistics may
be more effective. Meanwhile, Lmax and Smax can
always be used as options. The relative performance
may change when the test length differs, and this
result is consistent with what is found in Sinharay
(2016). Meanwhile, some statistics show better per-
formances in the median- and high-severity condi-
tions, and some are favored in the low-severity
condition. One thing we need to be aware of is that
examinees with low abilities (such as h less than or
close to �2) pose challenges to the detection of speed-
edness even when they are affected by speededness.

Figure 4. Responses and ability estiamtes of a flagged respondent.

Table 14. Information for the flagged examinees with
speededness.

Statistics
Critical Values or

Values of the Bound
Numbers of

Flagged Respondents

L 8.134 159
S 7.785 122
CT7 [-0.034, 0.035] 111
CT9 2.713 112
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This is because there may be only a very small differ-
ence between their normal behavior and speeded
behavior in terms of probability of getting a correct
response. In this case, response time information may
be particularly helpful for detecting speededness (Shao
& Cheng, 2017).

In spite of the very informative findings, there are
some limitations of the current study. First, we only
considered two mechanisms of test speededness repre-
sented by the HM and GCM, respectively, while aber-
rant response behavior is so complicated that it can
never be fully captured by any single model. Second,
we examine the situation when all speeded examinees
only follow one underlying speededness mechanism
or has only one change point. In reality, examinees
may exhibit more complex patterns of aberrant
response behavior. Further, in this study only P&P
test is considered. Other important testing modes, for
example, typical computerized adaptive test (CAT; van
der Linden & Glas, 2000) and computerized multi-
stage test (MST; Yan et al., 2014) should be consid-
ered in future studies, because aberrant response
behavior could have a larger influence on CAT than
on a P&P test. Moreover, the item parameters are
assumed known in the current study. This is not an
unreasonable assumption, as many testing programs
calibrate their items in pretesting and treat the item
parameters estimates as known in operations anyways.
For example, many applications of IRT models rely
on estimated item parameters such as scoring of test
takers (Cheng & Yuan, 2010; Zwick et al., 1995),
fixed- and variable-length computerized adaptive test-
ing (Cheng et al., 2015; Meijer & Nering, 1999; Patton
et al., 2019), estimation of classification accuracy and
consistency (Lathrop & Cheng, 2013), equating (Kolen
& Brennan, 2014; Skaggs & Lissitz, 1986), and so on
so forth. However, given that the true item parameters
are actually never known, the advantage of CUSUM
statistics may diminish if estimation error is taken
into account. Further research is warranted on
this issue.

Finally, it is important to note that flagging an
aberrant response pattern is always a controversial
practice, especially in those high-stakes setting. For
example, removing the flagged patterns may affect
parameter estimation (Michaelides, 2010), and test
information, reliability, validity (Hong et al., 2020),
and representation of the overall test construct
(Ozturk & Karabatsos, 2017). Therefore, in real appli-
cations, it is prudent to use caution before removing
any responses.

Open practices statement

We have provided sample matlab codes for researchers
to replicate real data analysis with two CPA statistics
and two CUSUM statistics. Please see the supplemental
file: SpeedednessDetectionDemo.m.
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Appendix

Study 3: Performance of under HM and GCM based
on asymptotic critical values
In order to further evaluate the performance of the three
CPA statistics in speededness detection based on asymptotic
critical values (see Table 2 of Sinharay, 2016) under HM

and GCM, a simulation study was conducted. Everything
else was kept the same as the previous studies except the
critical values. It should be noted that there is some differ-
ence in calculating every statistic for each examinee in this
Study, as these asymptotic critical values are only applicable
when the speededness point is within the middle 70% of
the test (Sinharay, 2016). For example, we only survey from

the 6th to the 34th item for a 40-item test. Tables A1 and
A2 show the results of Wmax, Lmax, and Smax based on the
asymptotic critical values. Only the results for the 80-item
test were reported due to the space limit. Compared to the
results in the first two studies, this study shows a somewhat
different trend because Wmax has a comparable detection
rate with Lmax and Smax based on the asymptotic critical val-
ues. Regardless of HM or GCM, the asymptotic critical
value seems too liberal for Wmax, which leads the detection
rate and the type I Error rate to increase considerably and
simultaneously. Under the HM, Smax always has a higher
detection rate than Lmax: A similar conclusion can be drawn
under the GCM. The inflated type I Error rate of Smax indi-
cates that its asymptotic critical value is also too liberal for
the 80-item test. The same as Study 1 and Study 2, the three
CPA-based statistics performed better under the GCM than
under HM as expected. Lmax showed particularly strong per-
formance with a high classification accuracy rate and a rela-
tively small type I Error rate.

What leads to the increased power and in some cases,
inflated Type-I error? The reason could lie in the critical
values and the search range. The critical values for Wmax

obtained by Monte Carlo simulations are much larger than
the asymptotic critical values, because we search for the

change point from the beginning to the end of the test in
Study 1 and Study 2, but only for the middle range of the
test in Study 3. This may lead to large values for Wmax in
some cases in the simulations, and in turn a larger critical
value, especially under the MLE ability estimator in which
the boundary values (set to �3 or 3 in the study) of the
ability estimate were assigned to those test takers with all
wrong or all correct answers. Therefore, the simulated crit-
ical value are more conservative than the asymptotic critical
value for Wmax:

Table A1. Results based on HM, J¼ 80, speededness preva-
lence: 10% & 30%, speededness severity: 30%, asymptotic crit-
ical value.

100�n1/n Statistics

10% 30%

CCR Power Type I Error CCR Power Type I Error

5 W 0.781 0.765 0.218 0.774 0.779 0.228
L 0.944 0.712 0.03 0.894 0.721 0.032
S 0.9 0.792 0.088 0.879 0.806 0.09

10 W 0.851 0.772 0.14 0.834 0.775 0.141
L 0.943 0.726 0.033 0.898 0.739 0.034
S 0.909 0.811 0.08 0.886 0.815 0.083

15 W 0.88 0.779 0.109 0.855 0.778 0.111
L 0.941 0.736 0.037 0.897 0.744 0.037
S 0.922 0.807 0.065 0.894 0.805 0.069

20 W 0.894 0.759 0.091 0.864 0.769 0.095
L 0.939 0.727 0.037 0.894 0.736 0.038
S 0.927 0.794 0.058 0.902 0.808 0.058

Note. W, L, and S refer to the statistics of Wald test, likelihood ratio test,
and score test, respectively.

Table A2. Results based on GCM, J¼ 80, C7, speededness
prevalence: 10% & 30%, asymptotic critical value.

100�n1/n Statistics

10% 30%

CCR Power Type I Error CCR Power Type I Error

5 W 0.671 0.887 0.353 0.719 0.891 0.355
L 0.965 0.916 0.029 0.956 0.925 0.03
S 0.916 0.996 0.092 0.936 0.995 0.089

10 W 0.816 0.891 0.193 0.836 0.896 0.190
L 0.962 0.923 0.033 0.954 0.927 0.035
S 0.930 0.997 0.078 0.942 0.996 0.081

15 W 0.892 0.901 0.109 0.894 0.897 0.108
L 0.96 0.932 0.037 0.954 0.931 0.036
S 0.937 0.997 0.069 0.951 0.997 0.069

20 W 0.908 0.901 0.091 0.907 0.899 0.09
L 0.961 0.929 0.036 0.953 0.932 0.038
S 0.946 0.999 0.06 0.959 0.999 0.058

Note. W, L, and S refer to the statistics of Wald test, likelihood ratio test,
and score test, respectively.
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