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A quantum random access memory (qRAM) is considered an essential computing unit to enable poly-

nomial speedups in quantum information processing. Proposed implementations include the use of neutral

atoms and superconducting circuits to construct a binary tree but these systems still require demonstra-

tions of the elementary components. Here, we propose a photonic-integrated-circuit (PIC) architecture

integrated with solid-state memories as a viable platform for constructing a qRAM. We also present an

alternative scheme based on quantum teleportation and extend it to the context of quantum networks.

Both implementations realize the two key qRAM operations, (1) quantum state transfer and (2) quantum

routing, with already demonstrated components: electro-optic modulators, a Mach-Zehnder interferometer

(MZI) network, and nanocavities coupled to artificial atoms for spin-based memory writing and retrieval.

Our approaches furthermore benefit from built-in error detection based on photon heralding. Detailed

theoretical analysis of the qRAM efficiency and query fidelity shows that our proposal presents viable

near-term designs for a general qRAM.

DOI: 10.1103/PRXQuantum.2.030319

I. INTRODUCTION

Random access memory (RAM) is a fundamental com-

puting unit that allows on-demand storage and retrieval of

data. While a classical RAM addresses one memory cell

in the database per operation, a quantum RAM (qRAM)

permits the querying of a superposition of multiple memo-

ries [1]. Given a superposition of addresses j , the “qRAM”

returns a correlated set of data Dj :

|ψ〉in =
N

∑

j =1

αj |j 〉a|∅〉b

qRAM−−−→ |ψ〉out =
N

∑

j =1

αj |j 〉a|Dj 〉b,

(1)
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where N is the number of memory cells and the sub-

scripts a and b denote the address and bus qubits, respec-

tively. One efficient implementation of qRAM proposed by

Giovannetti, Lloyd, and Maccone (GLM) [1,2] is the

“bucket-brigade model”: a binary tree of memory nodes

that direct the bus qubit to the data layer. A tree of

depth n > 1 contains a total of 2n − 1 nodes, with the

last layer containing N = 2n−1 memory cells. Each pre-

ceding layer i represents the register ki of the address

|j 〉 = |k1k2 · · · kn−1kn〉, which sets the path leading to the

corresponding memory cell Dj [Fig. 1(a)].

Principally, these memory nodes must (1) store an

address register qubit that (2) routes ensuing qubits for

addressing and retrieval. The register |ki〉 sets the inter-

nal state of layer i, which governs routing of the sub-

sequent registers {|ki+1〉, |ki+2〉, . . .}. A qRAM query thus

performs a sequence of alternating state transfer and rout-

ing operations, with each register qubit determining how

the node routes the subsequent register. Once the binary

tree has been programmed by the state of address qubits,
∑

j αj |j 〉a, it is traversed by the bus photon |↓〉b to

access the memory cells {Dj } in superposition. The bus

qubit travels back up the tree and addresses are mapped

2691-3399/21/2(3)/030319(19) 030319-1 Published by the American Physical Society



K. C. CHEN et al. PRX QUANTUM 2, 030319 (2021)

Memory cell

(a)

(d) (e)

(b)

(c)

Setting mode Routing mode

FIG. 1. An illustrative bucket-brigade model with a cavity-

coupled �-level atom at each tree node. (a) The address |j 〉
consisting of the register qubits |k0〉|k1〉|k2〉 arrives at the three-

level binary tree containing N = 23 memory cells. (b) Each

register is a frequency-encoded photonic qubit in the {ω0, ω1}
basis. (c) For our implementation, each tree node is a �-atom

coupled to a single-sided nanocavity, the resonant frequency ωc

of which is tuned to the average of the two atomic transition

frequencies, ω0 and ω1, which are separated by a Zeeman split-

ting �. For layer 1, the register |k1〉 sets the internal state of the

node to |ψA〉 = α1|↓〉 + β1|↑〉 that routes the successive register

|k2〉. Two essential operations are (d) the setting mode via cavity

reflection and (e) the routing mode.

onto the returning register qubits to disentangle them-

selves from the nodes, producing the qRAM output state

|ψ〉out. The ability to perform this operation in log(N )

time steps highlights the advantage of quantum parallelism

and offers polynomial speedups in quantum algorithms

for applications such as quantum machine learning [3],

matrix inversion [4], quantum imaging [5], and quantum

searching [6].

Despite its mathematical elegance, no qRAM propos-

als have been experimentally demonstrated. The existing

proposals are based on neutral atoms [2,7,8] and supercon-

ducting circuits [9] but still require elementary components

to be realized. Here, we introduce a scheme that assembles

separately demonstrated technologies into a photonic-

integrated-circuit (PIC) architecture integrated with arti-

ficial atoms. Namely, the system contains a high-fidelity

frequency beam splitter [10–12], nanocavities strongly

coupled to long-lived spin memories [13,14], and a scal-

able nanophotonic Mach-Zehnder interferometer (MZI)

array [15]. Importantly, the protocol relies on a cavity-

assisted controlled-phase (CZ) gate [16] the heralding of

which inherently provides the ability to detect qubit loss.

We estimate our PIC implementation of the GLM scheme

to achieve kilohertz success rate for a qRAM containing

> 102 memory cells. Furthermore, we propose an alterna-

tive approach based on quantum teleportation. This tele-

portation scheme enables scaling to 105 memories while

still achieving a greater-than-kilohertz success rate. More

importantly, the framework of the protocol applies to quan-

tum networks that require no additional modifications.

Thus, our study provides a promising blueprint for build-

ing a general qRAM essential for quantum information

processing.

II. BUCKET-BRIGADE SCHEME

In our PIC implementation, the address register and

the bus qubits are the frequency-encoded photons |ψP〉 =
α|ω0〉 + β|ω1〉 shown in Fig. 1(b) prepared by electro-

optic modulators, which together act as a frequency beam

splitter [10–12]. They arrive at each node in the binary

tree and interact with a cavity-coupled atom, which has

two spin states, |↓〉 and |↑〉. Both states are coupled to an

excited state |e〉 with respective transition frequencies ω0

and ω1, as shown in Fig. 1(c). In this proposal, we specif-

ically consider the negatively charged diamond silicon-

vacancy (SiV−) center, strongly coupled to a single-sided

cavity [13,14]. By having the cavity resonance ωc equally

detuned from the two transitions, i.e., ω0,1 = ωc ± �/2,

where � is the Zeeman splitting between the spin states,

the resulting Fano interference satisfies the following con-

ditions: upon a cavity reflection, the photon acquires no

phase shift when it is resonant with the atomic transition;

otherwise, it receives a π phase shift (see Appendix A).

This spin-dependent phase shift enables the two oper-

ation modes necessitated by the bucket-brigade model:

the photonic qubit “setting” the spin state [Fig. 1(d)]

and the spin qubit routing the subsequent register qubits

[Fig. 1(e)]. The cavity interaction enables a CZ gate for

heralding a quantum state transfer between the photonic

and the spin qubits, as shown in Fig. 2(a). The very

same phase dependence on the atomic state also allows

quantum routing by leveraging the cavity system as an

interferometer.

Explicitly, in the PIC platform, each node comprises an

MZI, an add-drop filter resonant with the ω0 component,

and a single-sided nanocavity coupled to an SiV− cen-

ter. First, in the setting mode, the atom is initialized in a

superposition state |ψA〉 = (|↓〉 + |↑〉)/
√

2 by a Hadamard

operation. Figure 2(b) shows the register qubit |ψP〉 =
α|ω0〉 + β|ω1〉 arriving at the MZI and exiting out of the
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FIG. 2. The PIC implementation of qRAM. (a) The circuit rep-

resentation of a quantum state transfer operation that maps the

register qubit |ψP〉 onto the atomic qubit |ψA〉. (b) In the set-

ting mode, the photon undergoes a CZ operation to complete

quantum state transfer. After passing through the MZI, the |ω0〉
component resonantly couples to the add-drop filter that imparts

a π phase shift upon reflection off the mirror, while the |ω1〉
component interacts with the atom-cavity system and acquires

a spin-dependent phase shift. (c) In the routing mode, the MZI

is set to a 50:50 beam splitter and the top waveguide of the add-

drop filter is decoupled such that the ring resonator imparts a π/2

phase shift to the |ω0〉 component upon a single pass. After cav-

ity reflection, the returning photon reinterferes with itself and is

routed to either the |↓〉 path with probability |α|2 or the |↑〉 path

with probability |β|2.

top output port. An add-drop filter then directs the ω0 com-

ponent to a mirror (e.g., a Sagnac-loop reflector) such that

|ω0〉 acquires a π phase shift upon reflection regardless of

the spin state. On the other hand, the ω1 component contin-

ues down the path and reflects off the atom-cavity system,

acquiring a spin-dependent phase shift. Finally, the ω0 and

ω1 components recombine and undergo a Hadamard trans-

formation by a frequency beam splitter before heralding

the completion of quantum state transfer. While heralding

conveniently provides the detection of photon loss error,

it is essential for the detection system to be shared by all

the qRAM layers at the root of the tree. A local detection

would otherwise reveal the path information and thereby

collapse the superposition of addresses. Therefore, all the

register qubits must reflect off the qRAM nodes and return

to the root to preserve entanglement between the spin

qubits and the address paths. This path erasure also ensures

that the same CZ gate applies to all the active nodes in layer

i during the setting operation.

After the photon detection, the MZI is switched to a

50:50 beam splitter and the tunable add-drop filter is turned

“off” such that the ring resonator only imparts a π/2 phase

shift to the ω0 component upon a single pass (see Appendix

B). Hence, the photon acquires a spin-dependent phase

shift independent of the frequency component. As illus-

trated in Fig. 2(c), the subsequent register qubit |k1〉 arrives

at the 50:50 beam splitter. One of the MZI output ports

connects to the same path as before, while the other leads

to a mirror. As a result, the photon taking the former route

acquires a spin-dependent phase shift from interacting with

the cavity, while one taking the latter route always acquires

a π phase from reflecting off the mirror. The returning pho-

ton then interferes with itself at the beam splitter and is

routed to an exit port, depending on the spin state. With

|α|2 probability, the photon exits out of the top path cor-

responding to the |↓〉 spin state; and with |β|2 probability,

it travels down the bottom path corresponding to the |↑〉
spin state. Effectively, the beam splitter, in conjunction

with the atom-cavity system, constitutes an MZI, with the

spin-cavity system acting as a phase shifter.

Both the setting and routing operations are repeated

alternatingly, carving out the path for the bus qubit to

arrive at the desired memory cells. The data can be trans-

ferred onto the bus qubit with the same cavity-reflection

scheme by reversing the role of the photonic and the spin

qubits, followed by a projective measurement on the atom

via single-shot readouts [17]. Finally, the sequence is run

backward to disentangle the binary tree from the address

qubits, leaving the data qubits |Dj 〉 correlated with their

respective addresses |j 〉.

A. Setting fidelity per node

In our cavity-assisted scheme, qubit loss is a heralded

error. Therefore, a sequence of successful photon detection

guarantees the absence of infidelity stemming from photon

loss in the qRAM output. Here, we analyze imperfections

in the atom-cavity system that critically affect quantum

state transfer as the primary source of infidelity in our pro-

tocol, since any inexact mapping from the register qubit

to the spin qubit would result in faulty routing of the sub-

sequent registers. To characterize the setting fidelity given

an input register |ψ〉P = α|ω0〉 + β|ω1〉, we calculate the

resultant spin state |ψ〉A after heralding via a Schrödinger

picture evolution:

|ψ〉A = [2αrm ± β(ron + roff)]|↓〉 ± β(−ron + roff)|↑〉,
(2)

where ron (roff) is the on-resonance (off-resonance) cavity

reflection and rm is the mirror reflection. Note that β is

positive (negative) if the photon is detected in the ω0 (ω1)

port (see Appendix C).

After a CZ gate (see Appendix C), the overlap between

the heralded spin state |ψs,f (i)〉 and the target state |ψ〉A =
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α|↓〉 + β|↑〉 defines the state transfer fidelity F , of which

we take the average over six representative states |φi〉 (the

axes of a Bloch sphere) [18,19]:

F =
1

6

∑

i

Fi =
1

6

∑

i

∣

∣〈φi|ψs,f (i)〉
∣

∣

2
, (3)

where |φ1〉 = |↓〉, |φ2〉 = |↑〉, |φ3,4〉 = (|↓〉 ± |↑〉)/
√

2,

|φ5,6〉 = (|↓〉 ± i|↑〉)/
√

2 in the {|↓〉, |↑〉} basis.

Due to the subnanosecond travel times of photonic

qubits and conditional gate time on the atoms (approxi-

mately 30 ns based on Ref. [14]) being short relative to

the SiV− spin coherence time T2 > 10 ms [17], we will

neglect errors caused by spin decoherence. Instead, the

performance of the setting mode relies on the coupling

strength of the cavity to the output waveguide mode. When

the waveguide-cavity coupling is unity, i.e., κwg/κ = 1,

the cavity reflection solely determines the transfer fidelity,

which scales as (C − 1)/(C + 1) in the large-cooperativity

limit [20,21]. However, for any reduced κwg/κ < 1, the

need to balance losses becomes especially important. For

example, for a desired state |φ3〉 where α = β = 1/
√

2,

balancing losses entails matching the moduli of the on- and

off-resonance cavity reflections ron ∝ κwg(C − 1)/(C + 1)

and roff ∝ κwg/κ (see Appendix C).

In Fig. 3, we analyze F as a function of κwg/κ , C

and δB, which is the deviation from the optimal mag-

netic field Bopt ∝
√

γ κ
[

2C + κ
(

κ − κwg

)

/4 − γ 2/4
]

for

the suitable Fano line shape (see Appendix A). For each

point in the fidelity contour, a particular value of rm is

chosen to optimize the fidelity, assuming that the mir-

ror is tunable. When δB = −20%, Fig. 3(a) indicates that

only a selective range of C � 20 and κwg/κ ∈ {0.83, 0.98}
result in F > 0.995. However, as the magnetic field devi-

ation reduces to −10% from the optimum, the transferred

state fidelity can exceed 0.999 for a selected range of C

and κwg/κ . Figure 3(c) shows that at the optimal mag-

netic field, i.e., δB = 0%, the transfer fidelity well exceeds

0.999 for any C > 20 and κwg/κ > 0.94. Interestingly,

a small region of cooperativities C < 20 and κwg/κ <

0.94 can still achieve F > 0.999 by carefully balancing

losses. However, the tolerance to a varying C diminishes

as κwg/κ decreases. As δB approaches 10%, however, the

setting fidelity can no longer reach 0.999. Its disparity with

δB = −10% stems from the asymmetry exhibited by Fano

interference (see Appendix A).

The fidelity considered here is the state transfer fidelity

per node, which consequently determines the routing

fidelity of the node. If we consider the probability of rout-

ing erroneously to be ε = 1 − F per node, then the query

infidelity 1 − Fquery scales polylogarithmically with the

memory size: 1 − Fquery ∼ ε log(Nmemories)
3 [22]. Hence,

the qRAM query can be performed with high fidelity

as long as ε � 1/ log(Nmemories)
3. We estimate that our
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FIG. 3. The quantum state transfer fidelities. The transferred

state fidelity for a single setting operation is plotted against the

atom-cavity cooperativity C and the waveguide-cavity coupling

strength κwg/κ for magnetic field deviations (a) δB = −20%,

(b) −10%, (c) 0%, and (d) 10%. The contour lines denote the

fidelity thresholds at F = 0.985, 0.99, 0.995, and 0.999.

qRAM architecture with state transfer infidelity ε = 10−4

per node permits querying up to Nmemories ∼ 104.

B. Efficiency

Next, we analyze the qRAM query efficiency by first

calculating the success probability of heralding each reg-

ister qubit |ki〉 and then the average rate of completing a

single query call. Recall that for the bus qubit to reach

the memory layer in an n-level qRAM, each register pho-

ton |ki〉 must travel to the node in layer i ∈ {1, . . . , n} and

return to the detector after cavity reflection. Given a prop-

agation loss ηp , the probability of completing the round

trip without loss is e−ηp L(i), where L(i) is twice the dis-

tance between the layer i and the root node. However,

since the photon can scatter off the single-sided cavity

and the mirror into nonwaveguide modes, interaction at

each layer further reduces the probability of detecting the

returning register qubit by Rcav and Rm, which represent

the cavity and mirror reflection coefficients, respectively.

We take their mean reflection coefficient and define the set-

ting efficiency as ηs = ηdet(Rm + Rcav)/2, where ηdet is the

detection efficiency. Similarly, the routing efficiency for

each layer i would be ηr = Rcav assuming lossless trans-

mission through the interferometric coupler. As a result,

the probability of successfully heralding each register |ki〉
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is

pi = e−ηp L(i)ηi−1
r ηs for i ∈ {1, . . . , n}. (4)

To calculate the success rate, we must now include both

the round-trip travel time to each layer i, denoted as

ti = LPIC(i)/vg,PIC + Ldmd(i)/vg,dmd, where LPIC (Ldmd) and

vg,PIC (vg,dmd) are the travel distance and group velocity in

the PIC (diamond) waveguide. The average time until a

successful query call can be found by using the linearity

of expectation value. For example, the expected time for a

two-level qRAM is

T̄n=2 = p1p2(t1 + t2) + (1 − p1)(T̄n=2 + t1 + τreset)

+ p1(1 − p2)(T̄n=2 + t1 + t2 + τreset), (5)

where τreset = 5 µs is the spin reset time. The first term on

the right-hand side is the case of no photons being lost; thus

its expected time is simply the product between the success

probability of two consecutive heralds p1p2 and the total

travel time t1 + t2. The next term represents the case of the

k1 register photon being lost before detection with proba-

bility 1 − p1. Consequently, the average query time T̄n=2

is penalized by the additional time t1 + τreset. Similarly, if

the k1 photon is heralded but the subsequent register k2

is lost with probability p1(1 − p2), T̄n=2 is lengthened by

t1 + t2 + τreset. Solving for T̄n=2 yields

T̄n=2 =
t1 + τreset

p1p2

+
t2

p2

− τreset. (6)

The expression can be treated as a summation of the

round-trip time of each layer weighted by its correspond

geometric mean, −τreset since the final trial is a successful

run without the need to reset.

We can generalize the average time for a n-level qRAM:

T̄ =
(

∏

i

pi

) (

∑

i

ti

)

+ (1 − p1)(T̄ + t1 + τreset)

+ p1(1 − p2)(T̄ + t1 + t2 + τreset) + · · ·

+
(

n−1
∏

i

(1 − pn)

) (

T̄ +
∑

i

ti + τreset

)

(7)

⇒ T̄ =
(

n
∑

i=1

ti
∏n

j =i pj

)

+
τreset

∏n
j =1 pj

− τreset. (8)

Finally, the success rate is then

�̄ =
1

T̄
. (9)

Figure 4(a) shows the qRAM success rate as a function

of the number of memories Nmemories = 2n for different
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FIG. 4. The efficiency of the PIC qRAM. (a) The success rate

(in hertz) is plotted against Nmemories = 2n for a n-level qRAM for

κwg/κ = 0.95, 0.965, 0.98, and 0.995 for schemes with (solid)

and without (dashed) qubit loss detection (LD) with perfect rout-

ing operation (ε = 0), as well as one with loss detection but

with routing error probability ε = 5 × 10−4 �= 0 (dashed dotted).

On a log-log scale, the success rate rolls off polynomially with

increasing Nmemories = 2n due to an exponentially decreasing suc-

cess probability of setting each layer i (see Appendix F). (b) An

enlargement of the black box in (a), highlighting the slight gain

in efficiency for the cavity-assisted scheme with LD. (c) Both the

success rate and transfer fidelity vary as a function of κwg/κ for

ε = 0. For a six-level qRAM with C = 100, there exists a trade-

off between �̄ and F after κwg/κ ≈ 0.97 where F is maximized

by perfectly balancing losses.

waveguide-cavity coupling κwg/κ = 0.95, 0.965, 0.98, and

0.995. As Nmemories increases, the rates roll off polyno-

mially on the log-log scale, since the success probability

psucc diminishes superexponentially with increasing n (see

Appendix F). Furthermore, psucc intimately depends on

the cavity-reflection coefficient Rcav ∝ κwg/κ , causing �̄

to vary drastically with the waveguide-cavity coupling.

For example, the difference between κwg/κ = 0.95 and

κwg/κ = 0.995 exceeds more than an order of magnitude

for Nmemories > 102 and the disparity grows exponentially

as the circuit depth n increases. The unforgiving drop-

off in the success rate emphasizes the need for a highly

overcoupled single-sided cavity in our protocol.

Additionally, we consider the efficiency for the cases

of having perfect (ε = 0) and imperfect (ε = 5 × 10−4)
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routing operation, represented by the solid and the dashed

dotted lines, respectively. Recall that if each node has

a routing error ε, the query error scales as 1 − Fquery ∼
ε log(Nmemories)

3 [22]. Hence, the success rate with imper-

fect routing operations would reduce by an additional

factor of 1 − ε log(Nmemories)
3.

On the other hand, the built-in LD of our cavity-assisted

scheme enables a slight boost in the success rate. For

a scheme without such loss detection, the qRAM must

complete the entire sequence of setting and routing all n

register qubits before needing to reset, assuming that qubit

loss has occurred and been detected after the query. The

corresponding success rate would be

�̄no LD = T̄−1
no LD =

(
∑

i ti + τreset
∏

i pi

− τreset

)−1

. (10)

In contrast, our protocol periodically checks for register

losses via photon detection. Therefore, time can be saved

by halting and immediately resetting the spins as soon as

quantum state transfer fails to herald. Note that the gain in

rate, however, depends on the ratio between travel time ti
and τreset. Figure 4(b) shows a modest increase in success

rate for our scheme with ti < 1 µs and τreset = 5 µs rela-

tive to one without loss detection. If τreset � ti, the slight

improvement in efficiency would dwindle as �̄ converges

to �̄no LD.

Lastly, due to the need to balance losses to achieve

high transfer fidelity as noted in Sec. II A, there exists

an inevitable fidelity-rate trade-off. Given a qRAM con-

taining 26 memory cells, Fig. 4(c) shows that F reaches

its maximum at κwg/κ ≈ 0.97 for the assumed coopera-

tivity C = 100. However, the success rate still increases

monotonically with κwg/κ even past this optimum fidelity

point. The waveguide-cavity coupling regime in which the

trade-off exists narrows with higher atom-cavity coopera-

tivity, since both |ron| and |roff| increase with C and κwg/κ .

Nonetheless, at C = 100 (which has been experimentally

demonstrated in Refs. [13,14]), the success rate can already

exceed 1 kHz while maintaining high fidelity F > 0.999.

III. TELEPORTATION SCHEME

While the aforementioned scheme is viable for a low-

depth qRAM, the need to sequentially set each address

register via cavity reflection inhibits scaling up to 106

memories due to photon loss from cavity interaction. Here,

we present an alternative approach that writes the address

registers onto all the layers simultaneously via quantum

teleportation. Crucial to this step is the ability to perform

high-fidelity two-qubit gate operation locally between an

electron spin (broker qubit) and its neighboring nuclear

spin (memory qubit). Considering that gate fidelity > 0.99

has already been achieved experimentally via compos-

ite pulses and optimal classical control [23], we assume

unity gate fidelity and success probability for the following

calculations and consider the general case in Sec. III B.

The protocol assumes two physically separated entities,

a quantum computer (QC) and a qRAM, both containing

nodes each of which includes a memory and a broker qubit.

The QC contains n nodes that hold the query addresses
∑

j αj |j 〉a stored in the memory qubits. While the mem-

ory qubit can only interact with the broker qubit locally,

the broker qubit can directly interact with photons to gen-

erate spin-photon entanglement via cavity reflection (see

Appendix C). Hence, any two nodes can be remotely

entangled by having their broker qubits to sequentially

interact with a single photon (see Appendix G 1). Subse-

quently, the two entangled broker qubits undergo a SWAP

operation with their memory qubits via hyperfine interac-

tion to preserve coherence (see Appendix G 2). In the same

manner, two neighboring Bell states can then be entan-

gled to form a four-qubit Greenberger-Horne-Zeilinger

(GHZ) state. Prior to each query operation, all the nodes

across each ith qRAM layer are entangled to generate

a 2i-qubit GHZ state: |�i〉 = (|00 · · · 0〉 + |11 · · · 1〉) /
√

2.

At the same time, the QC and the qRAM are remotely

entangled via the same photon-assisted procedure, leav-

ing the QC and the qRAM in the configuration depicted

in Fig. 5(a).

Now, each QC node undergoes a local Bell-state mea-

surement (BSM) between its memory and broker qubits as

illustrated in Fig. 5(b). As a result, the query addresses are

teleported onto all the qRAM layers in parallel. However,

since the routing operation depends on the photon inter-

acting with the cavity-coupled broker qubits, each qRAM

node undergoes a local SWAP operation immediately before

data retrieval [Fig. 5(c)]. The photonic bus qubit then

arrives at the binary tree prepared in the state shown in

Fig. 5(d).

The data retrieval process remains the same as before.

Starting from the root node, the bus photon propagates

down the binary tree and is routed based on the state-

dependent cavity reflection at each layer. After this, the

addresses are swapped onto the memory qubits in the

qRAM [Fig. 5(e)], followed by remote entanglement

between the broker qubits of the QC and the qRAM

[Fig. 5(f)]. Then, a local SWAP operation in the QC entan-

gles the memory qubits of the QC with the broker qubits

of the qRAM. Finally, local BSMs in the qRAM teleport

the query addresses back onto the QC [Fig. 5(g)], return-

ing the binary tree in its waiting state for future queries

[Fig. 5(h)].

Importantly, the proposed architecture extends beyond

a PIC platform and can be run on a quantum network, in

which each network node represents a tree node in the

qRAM. Distillation can be used to generate high-fidelity

Bell states [24], which are then joined to form the GHZ

states in the same fashion as heralding entanglement links

in a quantum repeater. The modularity of the protocol
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QC

(a)

(b)

(c)

(d)

qRAM QC qRAM

Data retrieval

(h)

(g)

(f)

(e)

QC memory qubit

QC broker qubit

qRAM memory qubit

qRAM broker qubit

FIG. 5. The step-by-step procedure of the teleportation

scheme. A quantum computer (QC) holds the query addresses

that would be mapped onto a qRAM. (a) The QC and qRAM

are remotely entangled (as represented by connecting gray lines)

and the nodes of each qRAM layer are entangled in a GHZ state.

(b) Local Bell-state measurements (BSMs) and subsequent Pauli

transformations teleport the query addresses onto the binary tree

(c) Then, in each node, the memory (red circle) and the broker

(gray circle) qubits undergo a SWAP operation, leaving (d) the

qRAM ready for the data retrieval process. (e) After the bus qubit

has completed querying, the registers are swapped back onto

the memory qubits to maintain coherence. (f) The QC and the

qRAM are then remotely entangled again via their broker qubits.

A subsequent local SWAP operation in the QC then result in entan-

glement between the memory qubits of the QC and the broker

qubits of the qRAM. (g) Local BSMs in the qRAM then teleport

the query addresses back onto the QC, returning (h) the binary

tree to its original state.

effectively allows the qRAM query to act as a subroutine

for distributed quantum computing.

A. Efficiency comparison

Here, we compare the efficiency of the two pro-

posed schemes assuming perfect spin-photon gate fidelity

(ε = 0) via optimally balancing losses. The teleportation

approach, similar to the GLM scheme, still requires restart-

ing the query procedure if the bus photon is lost during

the retrieval step, since the path information is revealed

by the environment. Despite this, the rate of success for

the teleportation scheme still scales much more favorably

than the GLM approach. Figure 6 compares the query

efficiency between the two approaches. For small circuit

sizes < 102 memories, the GLM scheme achieves higher

success rates, since the process of generating GHZ states

and remote entanglement links is more costly in time

than directly transferring the registers sequentially (see

Fig. 14). However, as the qRAM depth increases past the

crossover region with approximately 102 − 103 memories,

the efficiency of the GLM scheme rolls off rapidly.

On the other hand, the success rate of the teleportation

scheme decreases relatively slowly. Its efficiency is pri-

marily constrained by the retrieval step that succeeds with

probability ∝ ηn
r , as opposed to ∝ η

n(n−1)/2
r ηn

s in the GLM

scheme. Its favorable scaling is conducive to increasing the

circuit size for general-purpose applications such as quan-

tum machine learning [3]. Our efficiency simulations (see

Appendix G 5) show that the teleportation-based approach

can theoretically achieve an average > kHz success rate

for a qRAM containing 105 memories.

B. Query fidelity

One drawback of the teleportation approach is decoher-

ence lowering its query fidelity. This is especially prob-

lematic for the teleportation scheme because the protocol

requires the spin qubits to wait until remote entangle-

ment links are generated between the QC and the qRAM.

Specifically, its requirement to prepare a GHZ state, the

decoherence rate of which increases linearly with its size,

could further worsen the query fidelity. On the other hand,

the GLM scheme that sequentially writes the addresses

is not constrained by decoherence. As noted previously,

the time scales at which the photon traverses through the

PIC and the CZ gate is applied are much shorter than the

electron spin coherence time. In essence, the teleportation

scheme trades fidelity off for a substantial gain in efficiency

(see Fig. 6).

Let us consider the worst case where the entirety of the

binary tree is active, meaning that all possible addresses are

used. Assuming the coherence times of the electron [17]

and nuclear spins [25] to be 10−2 s and 10 s, respectively,

we estimate the infidelity caused by decoherence to be

< 10−1 for Nmemories = 103 (see Appendix G 7). Engineer-

ing a 12C-rich environment [26] could further improve the

coherence times and thereby reduce the infidelity.

Other sources of infidelity include depolarization, mea-

surement errors, and imperfect two-qubit interaction

between nuclear and electron spins. To simplify the dis-

cussion, we combine all types of errors into one collective

“physical error rate” ε. We propose having interconnects

interspersed between the layers that allow for arbitrary

routing (see Appendix G 6). As a result, for applications

that require querying a small subset of possible addresses

sparsely spanning the binary tree, only the necessary num-

ber of nodes are activated to minimize infidelity caused by

physical errors.

However, for applications that require querying most

addresses, the physical error rate could quickly deco-

here the qRAM, since the infidelity rapidly grows as
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FIG. 6. An efficiency comparison between the conventional GLM scheme (dashed dot) and the teleportation scheme. For the

teleportation scheme, the solid lines are analytical fits to the simulation data represented by the dashed lines (see Appendix G 5).

Each scheme is evaluated at different cavity-waveguide coupling strengths κwg/κ = 0.95, 0.965, 0.98, and 0.995.

1 − Fq ∝ (1 − ε)2n−1 for a circuit depth of n. Assuming a

physical error rate of ε = 10−4 and n = 10, the query infi-

delity is already approximately 10−1. Therefore, scaling up

of the qRAM necessitates further exploration in convert-

ing each tree node to a logical qubit and adapting quantum

error correction [27,28].

IV. EXPERIMENTAL CONSIDERATIONS

Here, we address several experimental considerations

concerning inhomogeneity in the solid-state defects.

(1) Spectral diffusion, i.e., slow fluctuation in the opti-

cal transitions of the emitter (ω0, ω1), can make

it difficult to maintain the cavity resonance at the

target ωc = (ω0 + ω1)/2 Fortunately, recent experi-

ments on group IV vacancy centers (including the

SiV− center considered here) have shown spec-

tral diffusion far below the radiative line width in

nanophotonic waveguides and cavities [14,29]. This

stability is due in part to the atomic inversion sym-

metry of group IV vacancy centers in diamond,

which makes optical transitions first-order insensi-

tive to stray electric fields [30]. In particular, recent

demonstrations of SiV− centers coupled to cavi-

ties have achieved cooperativities C > 100 [14],

which bounds spin-photon gate errors ∝ 1/C (see

Appendix A). Further gains in cooperativity are

possible with improved cavity designs and reduced

environment noise through improved surfaces [31].

(2) Inhomogeneous distribution in the optical transi-

tions (ω0, ω1) (caused by variations in the micro-

scopic environments) would detune the spin-based

nodes across the network. Fortunately, these detun-

ings can be corrected by strain tuning, which has

been shown to align emitters across nearly the full

inhomogeneous distribution < 50 GHz [29,32].

V. CONCLUSION

In summary, we introduce a qRAM implementation in

a PIC platform integrated with solid-state spin memo-

ries. Our numerical simulations show that our architecture

can achieve > 0.99 fidelity with > kHz success rate for

a qRAM containing 102 memory cells. Moreover, our

cavity-assisted scheme relies on heralding the requisite

operations, thereby providing built-in qubit loss detection

that further improves the query efficiency. Although high

success rates demand a sufficiently overcoupled cavity to

the waveguide, existing photonic crystal cavity designs

[33–35] already show that they can reach near-unity cou-

pling. We stress that our architecture is technologically

feasible given rapidly advancing electro-optic platforms

[36,37] and experimentally shown large-scale integration

of artificial atoms in PICs [29].

Additionally, we propose an alternative scheme based

on quantum teleportation that allows for efficiency scal-

ing favorably with the circuit size. With sufficiently strong

cavity-waveguide coupling, the teleportation approach

enables a greater-than-kilohertz success rate for a qRAM

containing 105 memories, a size unattainable by the con-

ventional approach. We emphasize that the protocol is

modular and can be applied to a quantum network, in

which each network node acts as a tree node in the qRAM.

The nodes would again be entangled via heralding, which

removes qubit loss as a potential error.

The architecture also extends to other atomic memo-

ries: quantum dots [38] and rare-earth ions [39] strongly

coupled to nanocavities, and even trapped-ions [40] and

neutral atoms [41] suitable for creating large-GHZ states.

With rapid advancements in constructing high-fidelity

030319-8



SCALABLE AND HIGH-FIDELITY QUANTUM RANDOM... PRX QUANTUM 2, 030319 (2021)

atom-photon interfaces, our proposal presents a scalable

design of a general qRAM in the NISQ era.
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APPENDIX A: ATOM-CAVITY PARAMETERS

The reflection of a single-sided cavity coupled with a

quantum emitter is

r(ω) = 1 −
κwg [i�a + (γ /2)]

[i�c + (κ/2)] [i�c + (γ /2)] + g2
, (A1)

where g is the atom-cavity coupling strength, γ is the spon-

taneous emission rate of the emitter, κ is the total decay

rate of the cavity, κwg is the waveguide-cavity coupling

rate, and �a = ωa − ω and �c = ωc − ω are the atomic

and cavity detuning from the probe, respectively. In the

large-cooperativity C = 4g2/κγ � 1 limit and consider-

ing a perfectly overcoupled cavity, the reflection of an

on-resonance probe �a = �c = 0 simplifies to

r(ω)
C�1−−→

C − 1

C + 1
. (A2)

Therefore, r approaches +1 when C increases, whereas

a far off-resonance emitter decoupled from the cavity

mode would yield r → −1. In our cavity-assisted scheme,

the photonic qubits are encoded in the frequency basis

{ω0, ω1}. By appropriately choosing the atomic and cav-

ity detuning, the resultant Fano interference can satisfy

the truth table shown in Table I, an entry in which rep-

resents the acquired phase of the probe from reflecting off

the nanocavity.

This can be satisfied by demanding the reflection to be

+1 when the spin state is on resonance and −1 when it is

off resonance. Using Eq. (A1), we arrive at the following

equation:

Re

{

κwg [i�a + (γ /2)]

[i�c + (κ/2)] [i�a + (γ /2)] + g2

}

= 2. (A3)

TABLE I. The frequency- and spin-dependent phase acquired

by the reflected photon.

|↓〉 |↑〉
|ω0〉 0 π

|ω1〉 π 0

We center the cavity resonance between the two transi-

tion frequencies: ωc = (ω0 + ω1)/2. Therefore, given the

Zeeman splitting �, the cavity detuning would be half

of the spin driving frequency: �c = �/2. Similarly, the

atomic detuning would exactly equal the splitting: �a =
�. In the Purcell regime, Eq. (A3) leads to the following

condition:

� ≈
√

2g2 +
κ

4

(

κ − κwg

)

−
γ 2

4
. (A4)

Therefore, given a fixed set of atom-cavity parameters

{g, γ , κ , κwg}, we may set the corresponding magnetic field

Bopt that satisfies the appropriate Zeeman splitting � ∼
µgBopt/� where µ = q�/2me is the Bohr magneton and

g ≈ 2 is the Lande g factor.

As an illustrative example, we plot the reflection r of

a perfectly overcoupled cavity (κwg/κ = 1) against the

probe frequency ω/κ . Figure 7(a) shows r = +1 at the

probe frequency ω = ωc + �/2, whereas r = −1 at ω =
ωc − �/2 when the spin population resides in state |↓〉,
and vice versa as shown in Fig. 7(b).

APPENDIX B: FREQUENCY-DEPENDENT

ADD-DROP FILTER

To perform both the (1) setting and (2) routing opera-

tions, the add-drop filter must resonantly couple to only the

ω0 component to impart (1) a π phase shift upon reflection

off a mirror and (2) a π/2 phase shift through a single pass

after decoupling the resonator from the mirror waveguide.

The system can be modeled by tracking the evolution of

the field propagating through the MZI (or interferometric)

couplers [42]. As illustrated in Fig. 8(a), the outputs of the

MZI couplers are

[

sout

sci−

]

= T
(i)

[

sin

sci+

]

,

[

sm+
scm+

]

= T
(m)

[

sm−
scm−

]

, (B1)

where T (n) = C(n)Z(n)C(n) for n = {m, i}. The matrices

C(n) and Z(n) are transfer matrices that describe the beam

splitter and the interferometer arms:

C(n) =
[

νn i
√

1 − ν2
n

i
√

1 − ν2
n νn

]

, Z(n) =
[

ei�nT 0

0 ei�nB

]

,

(B2)

where νn represents the coupling to the through waveg-

uide and �nT and �nB are the phases accumulated in
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FIG. 7. The cavity reflection as a function of the probe fre-

quency. The normalized probe frequency ω/κ is centered at the

cavity resonance (black dashed line) ωc. The magnetic field is

appropriately chosen such that the two atomic transition fre-

quencies ω0 and ω1 coincide with the cavity-reflection maximum

r = +1 and minimum r = −1. The reflection when (a) the spin

is in the |↓〉 state is the mirror of when (b) the spin is in the |↑〉
state.

the phase shifter and the resonator arms, respectively.

For the remainder of the section, we assume a balanced

interferometric coupler such that νn = 1/
√

2.

Explicitly, we can write the MZI transfer matrix as

T = ei�nR

[

(1 + eiφn)ν2
n − 1 i(1 + eiφn)νn

√

1 − ν2
n

i(1 + eiφn)νn

√

1 − ν2
n ν2

n − eiφn(1 − ν2
n)

]

∀n ∈ {m, i}, (B3)

where φn(ω) = k(ω)�Ln + �φn and k(ω) = (neff/c)ω0 +
(ng,PIC/c)(ω − ω0). Here, �Ln is the path-length difference

between the two arms and k(ω) is the propagation constant

governed by the effective and group indices in the PIC, neff

and ng,PIC, respectively.

For the interest of our operations, we can set sin = 1 and

sm− = 0. The resultant system of equations is as follows:

sout = T
(i)
1,1sin + T

(i)
1,2sci+, (B4)

sci− = T
(i)
2,1sin + T

(i)
2,2sci+, (B5)

(a)

Mirror

(b) (c)

FIG. 8. A schematic of the add-drop filter. (a) Each of the

propagating fields in the add-drop filter is labeled for deriving

the transfer matrices. The ring resonator (the resonance of which

can be tuned by �φR) is coupled to the waveguides via balanced

MZI, or interferometric, couplers, each containing a phase shifter

�φi,m. When the top waveguide is coupled to the resonator, the

ω0 component is routed to reflect off a Sagnac-loop reflector

(mirror). (b) The output intensity toward the mirror |sm|2 as a

function of �φi and �φm. (c) The output intensity of the through

component |sout|2.

from which, after solving for sout and sm+ = T
(m)

1,2 scm−, we

obtain

sout = ei�iR

(

T
′(i)
1,1 +

eiφcζmT
′(i)
1,2 T

′(i)
2,1

1 − eiφcζiζm

)

, (B6)

sm+ =
eiφimT

(m)

1,2 T
(i)
2,1

1 − eiφcζiζm

, (B7)

where φc(ω) = ψiR + φim + ψmR + φmi = k(ω)Lc is the

phase acquired in the resonator and ζn = ν2
n − eiφn(1 −

ν2
n). For the routing operation, we wish to have sm =

sm+ = 1 (correspondingly, sout = 0) such that the ω0 com-

ponent is entirely directed to the mirror. In Figs. 8(b) and

8(c), we plot the output intensity |sm|2 and |sout|2 as a

function of �φi and �φm set by the phase shifters in the

MZI couplers. In order to maximize |sm|2, we find that the

phases must satisfy the condition �φi + �φm = π .

It is equally essential for the resonator to have a suffi-

ciently high quality factor (Q) such that the line width is

narrow enough to only couple to the ω0 instead of both

frequencies. For the simulations presented in the main

text, the Zeeman splitting is assumed to be approximately

12 GHz, which implies that Q must be > 104 to resolve

between ω0 and ω1. In Fig. 9(a), we find that κ is smallest
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FIG. 9. The decay rate of the ring resonator. (a) The total

decay rate (line width) of the resonator is plotted as a function

of �φi and �φm on a log scale. κ reaches its minimum near

�φi = ±π and �φm = 0, at which the resonator is decoupled

from the waveguides. κ (in gigahertz) is plotted against �φi for

(b) the setting mode and (c) the routing mode.

at �φi = ±π , which corresponds to the resonator being

completely decoupled from the input waveguide (source)

and cavity leakage being maximally suppressed. Similarly,

when �φm = 0, the ring (source) is completely decoupled

from the mirror waveguide. As long as �φi is sufficiently

close to π , Fig. 9(b) indicates that the resonator line width

is sufficiently smaller than the Zeeman splitting of approx-

imately 12 GHz. For example, at �φi = 0.95π such that

�φm = 0.05π , |sm|2 is approximately unity and hence sat-

isfies the setting mode. In the routing mode, we only need

to minimally shift �φm to 0 such that |sout|2 = 1 and

|sm|2 = 0, as indicated by the drastically varying region

near �φi = π and �φm = 0, as shown in Figs. 8(b) and

8(c). With �φm = 0 fixed, we validate that the narrowness

of the resonator line width is as illustrated by Fig. 9(c).

κ is expectedly smaller in the routing mode than the set-

ting mode, since the resonator is decoupled from the mirror

waveguide, thereby having one less leakage channel.

Lastly, we can appropriately choose �φR, which is the

phase shifter within the resonator, such that traversing

through the resonator imparts a π/2 phase to the ω0 com-

ponent upon a single pass. In a round-trip, |ω0〉 effectively

TABLE II. After the Pauli X gate on the ω0 component, both

frequency modes acquire the same spin-dependent phase.

|↓〉 |↑〉
|ω0〉 0 π

|ω1〉 π 0

−−−−→
X on ω0

|↓〉 |↑〉
|ω0〉 π 0

|ω1〉 π 0

undergoes a Pauli X gate, rendering the truth table shown

in Table II.

APPENDIX C: QUANTUM STATE TRANSFER

1. Photon-to-spin

The atom is first initialized in a superposition of the two

ground states: |ψA〉 = (|↓〉 + |↑〉)/
√

2. With the incom-

ing frequency-encoded photonic qubit, |ψP〉 = α|ω0〉 +
β|ω1〉, the joint (unnormalized) photon-atom state is

|ψ〉 = |ψP〉 ⊗ |ψA〉
= (α|ω0〉 + β|ω1〉)(|↓〉 + |↑〉). (C1)

The add-drop filter resonantly couples to only the ω0 com-

ponent, which then reflects off a mirror, acquiring a π

phase shift regardless of the atomic state. On the other

hand, the ω1 component interacts with the atom-cavity sys-

tem and acquires a spin-dependence phase shift. After the

CZ operation, the photon and the atom are entangled:

|ψ〉 = −α|ω0, ↓〉 − α|ω0, ↑〉 − β|ω1, ↓〉 + β|ω1, ↑〉.
(C2)

The returning photon then goes through a frequency beam

splitter that performs a Hadamard gate, after which the

two frequency components are routed to different photon

detectors:

|ψ〉 = −α(|ω0〉 + |ω1〉)(|↓〉 + |↑〉)
− β(|ω0〉 − |ω1〉)(|↓〉 − |↑〉)

= |ω0〉 ⊗ [−(α + β)|↓〉 − (α − β)|↑〉]
+ |ω1〉 ⊗ [−(α − β)|↓〉 − (α + β)|↑〉] . (C3)

Upon heralding, the atom undergoes another Hadamard

gate to complete quantum teleportation:

|ψ〉 = |ω0〉 ⊗ [−(α +β)(|↓〉+ |↑〉)− (α − β)(|↓〉− |↑〉)]
+ |ω1〉 ⊗ [−(α − β)(|↓〉 + |↑〉)
− (α + β)(|↓〉 − |↑〉)]

= −|ω0〉 ⊗ (α|↓〉 + β|↑〉) + |ω1〉 ⊗ (−α|↓〉 + β|↑〉).
(C4)
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The end result is

|ψ〉 = α|↓〉 + β|↑〉 if ω0 is detected

or α|↓〉 − β|↑〉 if ω1 is detected,

neglecting global phase. Note that an additional Pauli-Z

operation is needed if ω1 is detected.

Now, let us consider an imperfectly overcoupled single-

sided cavity with waveguide-cavity coupling κwg/κ < 1.

We denote roff and ron as the off- and on-resonance cavity

reflections and rm as the mirror reflection. Assuming that

the interferometric couplers are lossless in the add-drop

filter, the photon-atom entangled state is then

|ψ〉 = αrm|ω0, ↓〉 + αrm|ω0, ↑〉 + βroff|ω1, ↓〉 + βron|ω1, ↑〉. (C5)

After the Hadamard on the photon,

|ψ〉 = αrm(|ω0〉 + |ω1〉)(|↓〉 + |↑〉) + β(|ω0〉 − |ω1〉)(roff|↓〉 + ron|↑〉)
= |ω0〉 ⊗ [(αrm + βroff)|↓〉 + (αrm + βron)|↑〉] + |ω1〉 ⊗ [(αrm − βroff)|↓〉 + (αrm − βron)|↑〉] . (C6)

The additional Hadamard on the atom would yield

|ψ〉 = |ω0〉 ⊗ [(αrm + βroff)(|↓〉 + |↑〉) + (αrm + βron)(|↓〉 − |↑〉)]
+ |ω1〉 ⊗ [(αrm − βroff)(|↓〉 + |↑〉) + (αrm − βron)(|↓〉 − |↑〉)]

= |ω0〉 ⊗ [(2αrm + β(ron + roff))|↓〉 + β(−ron + roff)|↑〉]
+ |ω1〉 ⊗ [(2αrm − β(ron + roff))|↓〉 + β(ron − roff)|↑〉] . (C7)

If the register qubit is |ψP〉 = (|↓〉 + |↑〉)/
√

2 such that

α = β = 1/
√

2 and we assume that |rm| = 1, detection on

the ω0 port would herald the state

|ψ〉 = (2 + ron + roff)|↓〉 + (−ron + roff)|↑〉. (C8)

Since sgn(ron) = 1 and sgn(roff) = −1, we see that |ψ〉 ⇒
|↓〉 + |↑〉 requires |ron| = |roff|, which hints at the need to

“balance” these two reflections. Equation (A1) dictates that

ron ∝ κwg(C − 1)/(C + 1) while roff ∝ κwg/κ , such that

only a suitable regime of {g, γ , κ , κwg} would maximize

the quantum state transfer fidelity as shown in Fig. 3.

2. Spin-to-photon

Once the bus qubit retrieves the data from the mem-

ory layer, we must extract the address out of the qRAM

to obtain the correlated output state
∑

j αj |j 〉a|Dj 〉b. By

sending additional photons, we can perform quantum state

transfer that maps the spin qubits onto the photonic qubits.

Similar to the heralding procedure for transferring the

photonic states to spin qubits, the spins must undergo pro-

jective measurements to complete the spin-to-photon map-

ping. While it is feasible to perform single-shot readout

on one spin, it is experimentally difficult to simultaneously

perform projective measurements on multiple spins within

one layer. The issue can be circumvented by introducing an

ancillary photon that is entangled with the spins for each

layer, and heralding on such photon equates to performing

projective readout on the spin qubits.

After data retrieval, the spin holds the routing state

|ψA〉 = α|↓〉 + β|↑〉. The incoming photon initialized in

the superposition state (unnormalized) |ψP1〉 = |ω0〉1 +
|ω1〉1 interacts with the cavity, producing the output state

|�〉 = −α|ω0〉1|↓〉 − α|ω1〉1|↓〉 − β|ω0〉1|↓〉 + β|ω1〉1|↑〉
= −α(|ω0〉1 + |ω1〉1)|↓〉 − β(|ω0〉1 − |ω1〉1)|↑〉.

(C9)

After a Hadamard operation on the spin qubit, the entan-

gled state becomes

|�〉 = −α(|ω0〉1 + |ω1〉1)(|↓〉 + |↑〉)
− β(|ω0〉1 − |ω1〉1)(|↓〉 − |↑〉). (C10)

A subsequent Hadamard operation (via the frequency

beam splitter) on the photon yields

|�〉 = −α|ω0〉1(|↓〉 + |↑〉) − β|ω1〉1(|↓〉 − |↑〉)
= −|↓〉 ⊗ (α|ω0〉1 + β|ω1〉1)

− |↑〉 ⊗ (α|ω0〉1 − β|ω1〉1). (C11)
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We then send a subsequent photon |�P2〉 = |ω0〉2 + |ω1〉2

that will entangle with the spin qubit for performing

the projective measurement. Similarly, the composite

state undergoes a CZ operation upon cavity reflection,

resulting in

|�〉 = |↓〉(|ω0〉2 + |ω1〉2)(α|ω0〉1 + β|ω1〉1)

+ |↑〉(|ω0〉2 − |ω1〉2)(α|ω0〉1 − β|ω1〉1). (C12)

Another Hadamard operation on the second photon would

produce an entangled state:

|�〉 = |↓〉|ω0〉2(α|ω0〉1 + β|ω1〉1)

+ |↑〉|ω1〉2(α|ω0〉1 − β|ω1〉1). (C13)

As a result, any projection on the frequency-encoded pho-

ton is a projective measurement on the spin as well. If |ω0〉2

is detected, the effective projection onto |↓〉 results in the

transferred state onto the first photon. If, instead, |ω1〉2 is

detected, an additional π pulse would be applied to the first

photon to construct α|ω0〉1 + β|ω1〉1. Imperfections in the

cavity system would be treated in the same fashion as in the

previous section by taking account of nonunity reflections:

ron, roff, and rm.

APPENDIX D: QUANTUM ROUTING

In the routing mode, the MZI in Fig. 2(c) is tuned to

operate as a 50:50 beam splitter, the unitary matrix of

which is denoted by B. Let a and b be the annihilation

operators for the top and bottom spatial modes such that

a†|0〉a|0〉b = |1〉a|0〉b represents one photon present in the

top waveguide and no photon in the bottom waveguide.

The MZI provides the following unitary transformation on

the operators:

BaB† =
1

√
2
(a + ib), (D1)

BbB† =
1

√
2
(b + ia). (D2)

Assuming input strictly from the top waveguide, our initial

state is |φ0〉 = |1〉a|0〉b = a†|0〉a|0〉b. After passing through

the MZI, the state becomes

|φ1〉 = B|φ0〉

= Ba†|0〉a|0〉b = Ba†B†B|0〉a|0〉b

=
1

√
2
(a† − ib†)|0〉a|0〉b. (D3)

We can denote the unitary transformation of the atom-

coupled cavity system (in conjunction with the resonator)

as PaP† = aeiφ . Note that it is only acting on the top

waveguide and has no effect on b. As a result, the photonic

qubit after reflection off the mirror and the cavity system

becomes

|φ2〉 = P|φ1〉

=
1

√
2
(Pa† − ib†)P†P|0〉a|0〉b

=
1

√
2
(eiφa† − ib†)|0〉a|0〉b. (D4)

Lastly, the photon returns to and interacts with the MZI

once again:

|φ3〉 = B†|φ2〉

=
1

√
2

B†(eiφa† − ib†)BB†|0〉a|0〉b

=
1

2

(

eiφ(a† + ib†) − i(b† + ia†)
)

|0〉a|0〉b

= eiφ/2

[(

eiφ/2 + e−iφ/2

2

)

a† + i

(

eiφ/2 − e−iφ/2

2

)

b†

]

× |0〉a|0〉b

= eiφ/2

[

cos

(

φ

2

)

|1〉a|0〉b − sin

(

φ

2

)

|0〉a|1〉b

]

.

(D5)

In summary, the photon exiting the MZI output a

[Fig. 2(c)] has a constant π phase shift upon reflec-

tion off the mirror, whereas one exiting the MZI

output b has a spin-dependent {0, π} phase shift.

Together, the MZI-cavity-spin system functions as a spin-

dependent router, mapping (α|↓〉 + β|↑〉) ⊗ |0〉a|0〉b to

α|↓〉|1〉a|0〉b + β|↑〉|0〉a|1〉b.

APPENDIX E: PIC IMPLEMENTATION

Figure 10 illustrates a more detailed schematic of our

PIC implementation for each tree node. Specifically, a cir-

culator is appended so that the incoming photon can be

routed to the children nodes as opposed to returning to the

root.

APPENDIX F: SUCCESS PROBABILITY

Recall that each register i can be written with success

probability pi [Eq. (4)]. A successful qRAM query would

consequently occur with a probability that is the product of

all the layer probabilities:

psucc =
n

∏

i=1

pi = e−
∑

i ηp (i)L(i)ηn(n−1)/2
r ηn

s . (F1)

As expected, Fig. 11 shows a polynomial roll-off in the

success probability psucc as the number of memory cells
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Setting mode

Routing mode 

FIG. 10. A detailed PIC implementation of a tree node. Paths

that are inactive in each mode are faded out.

Nmemories = 2n increases. Since the waveguide-cavity cou-

pling κwg/κ mainly determines the cavity reflection, psucc

can differ by orders of magnitude and the difference

increases with Nmemories.

APPENDIX G: TELEPORTATION SCHEME

Essential to the setup of the teleportation scheme is

to create a GHZ state for each layer prior to quantum

teleportation. Below, we break down its creation process

into three critical steps: photon-assisted Bell-state creation,

Bell-state swap between nuclear (memory) and electron

(broker) spins, and GHZ-state creation by joining adja-

cent pairs. After this, we explain how a BSM can be

made on two remotely entangled spins via the photon-

assisted cavity interaction. Lastly, we provide an example

of how teleportation enables transferring addresses onto

the qRAM.

10
1

10
2

10
3

10
–5

10
0

wg
/  = 0.950

wg
/  = 0.965

wg
/  = 0.980

wg
/  = 0.995

FIG. 11. The retrieval probability as a function of the number

of memories on a log-log scale. psucc displays a polynomial roll-

off as Nmemories increases for waveguide-cavity coupling κwg/κ =
0.95, 0.965, 0.98, and 0.995.

1. Photon-assisted Bell-state creation

In order to create a Bell state between neighboring

matter qubits, a photon is sent to reflect off each cavity con-

secutively. Importantly, the node is in the “setting” mode

such that reflection off the cavity system generates a CZ

gate. Here, we provide an example of how a photon inter-

acting with two cavities aids construction of a Bell state

between the two spin qubits. We begin with the photonic

and the spin qubits prepared in the |+〉 state such that

composite state is

|ψ〉 = (|ω0〉 + |ω1〉) (|↓〉1 + |↑〉1) (|↓〉2 + |↑〉2) , (G1)

where the subscripts 1 and 2 denote different spins.

After the photon reflects off the first spin qubit coupled

to the cavity, the state becomes an entangled state:

|ψ〉 = − [(|ω0〉 + |ω1〉) |↓〉1

+ (|ω0〉 − |ω1〉) |↑〉1] (|↓〉2 + |↑〉2)

= −[(|ω0〉|↓〉2 + |ω1〉|↓〉2 + |ω0〉|↑〉2 + |ω1〉|↑〉2) |↓〉1

+ (|ω0〉|↓〉2 − |ω1〉|↓〉2 + |ω0〉|↑〉2

− |ω1〉|↑〉2) |↑〉1] . (G2)

Upon reflecting off the second cavity system, it produces

the state

|ψ〉 = {[(|ω0〉 + |ω1〉) |↓〉2 + (|ω0〉 − |ω1〉) |↑〉2] |↓〉1

+ + [(|ω0〉 − |ω1〉) |↓〉2 (|ω0〉 + |ω1〉) |↑〉2] |↑〉1} .

(G3)

A Hadamard operation on the photon leads to the final

state:

|ψ〉 = |ω0〉 (|↓↓〉 + |↑↑〉) + |ω1〉 (|↓↑〉 + |↑↓〉) . (G4)

If the ω0 detection port clicks, the Bell state |�+〉 =
|↓↓〉 + |↑↑〉 is heralded. On the other hand, if the ω1 port

registers a click, the Bell state |�+〉 = |↓↑〉 + |↑↓〉 is cre-

ated. A Pauli X gate can be applied to the second spin qubit

to transform |�+〉 to |�+〉.
Multiple pairs of adjacent tree nodes can simultane-

ously undergo the aforementioned evolution to create Bell

states. Then, the entangled spin-qubit pairs can be linked

by the same procedure. As opposed to having a single pho-

ton reflecting off all the nodes across each layer to create

a GHZ-like state, a process that inevitably suffers from

exponentially decaying success probability, the pairwise

creation protocol described here is much more efficient.

2. Bell-state swap between electron and nuclear spins

Figure 12(a) shows two electron spins eL and eR entan-

gled in a Bell state: |00〉e + |11〉e. Let the nuclear spins
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Electron Nuclear CNOT(a)

(b)

FIG. 12. Operations to: (a) swap a Bell state between a pair of

entangled electron spins and a pair of nuclear spins; (b) entangle

two pairs of Bell states to form a four-qubit GHZ state in the

nuclear spins.

initialized in the ground state |0〉nL/nR. A controlled NOT

(CNOT) operation, where eL acts as the control and nL

as the target, yields an effective GHZ state: |0〉nL|00〉e +
|1〉nL|11〉e. Then, an X measurement on eL disentangles

the electron spin from the GHZ state, leaving the final

state |ψ〉:

|ψ〉 = (〈0| ± 〈1|)eL (|0〉nL|00〉e + |1〉nL|11〉e) (G5)

= |0〉nL|0〉eR ± |1〉nL|1〉eR. (G6)

Similarly, a CNOT operation between eR and nR pro-

duces |0〉nL|0〉eR|0〉nR ± |1〉nL|1〉eR|1〉nR. A subsequent X

measurement on eR then leaves a Bell state between the

nuclear spins:

|ψ〉 = (〈0| ± 〈1|)eR (|0〉eR|00〉n ± |1〉eR|11〉n) (G7)

= |00〉n ± |11〉n. (G8)

3. GHZ-state creation

Now, we assume that two adjacent pairs of nuclear

spins, {n1, n2} and {n3, n4}, are entangled in a Bell state,

as shown in Fig. 12(b). The corresponding electron spins

of n2 and n3 are also entangled in a Bell state via a

photon-assisted interaction. We first consider the compos-

ite state including n1, n2, eL, and eR after a CNOT operation

between n2 and eL, in which n2 is the control and eL is the

target:

|ψ〉 = |00〉n|00〉e + |00〉n|11〉e + |11〉n|10〉e + |11〉n|01〉e

(G9)

= (|00〉n|0〉eR + |11〉n|1〉eR) |0〉eL

+ (|00〉n|1〉eR + |11〉n|0〉eR) |1〉eL, (G10)

QC qRAM

BSM

FIG. 13. A two-level qRAM is first entangled with a remote

QC. Local BSMs in the QC complete quantum teleportation of

the query addresses onto the binary tree. The memory layer is

not shown in the schematic for simplicity.

where |ij 〉e = |i〉eL|j 〉eR. A subsequent Z measurement on

eL followed by a conditional Pauli transformation on eR

yields a GHZ state: |00〉n|0〉eR + |11〉|1〉eR.

Then, similarly, a CNOT operation between n3 and eR

followed by a Z measurement on eR yields the final

GHZ state (conditional Pauli transformation on the nuclear

spins):

|ψ〉 = |0000〉n + |1111〉n. (G11)

4. Teleportation

We present here an example of mapping two-register

addresses
∑

j αj |k1,j k2,j 〉 onto a two-level binary tree. Sup-

pose that the query addresses compose the superposition

state, α|00〉 + β|01〉 + γ |10〉 + δ|11〉, where each register

represents the state of the corresponding node at each tree

level. We consider the formalism that the atomic state |0〉
routes the subsequent qubit to the left branch and |1〉 to the

right. For an instance, the address |01〉 means that the root

(level-1) node is in the state |0〉 and that the left node of

level 2 is in the state of |1〉.
Each layer in the qRAM is initialized as a GHZ state,

e.g.,
(

|0̃〉 + |1̃〉
)

/
√

2, where |ĩ〉 = |ii · · · i〉. Importantly,

the first register of each GHZ state belongs to an ancillary

qubit in the QC, as shown in Fig. 13.

The unnormalized composite state would then be

|�〉 = (α|00〉 + β|01〉 + γ |10〉 + δ|11〉)
⊗ (|00〉 + |11〉)1(|000〉 + |111〉)2, (G12)

where the subscripts 1 and 2 denote the layer number.

The state can be rewritten as

|�〉 = α
[

(|�+〉 + |�−〉)|0〉 + (|�+〉 + |�−〉)|1〉
]

1

⊗
[

(|�+〉 + |�−〉)|00〉 + (|�+〉 + |�−〉)|11〉
]

2

(G13)

+ β
[

(|�+〉 + |�−〉)|0〉 + (|�+〉 + |�−〉)|1〉
]

1

⊗
[

(|�+〉 − |�−〉)|00〉 + (|�+〉 − |�−〉)|11〉
]

2

(G14)
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102 104

104

105

FIG. 14. The generation rates for the GHZ state and the remote entanglement link are evaluated at different cavity-waveguide

coupling strengths κwg/κ = 0.95, 0.965, 0.98, and 0.995.

+ γ
[

(|�+〉 − |�−〉)|0〉 + (|�+〉 − |�−〉)|1〉
]

1

⊗
[

(|�+〉 + |�−〉)|00〉 + (|�+〉 + |�−〉)|11〉
]

2

(G15)

+ δ
[

(|�+〉 − |�−〉)|0〉 + (|�+〉 − |�−〉)|1〉
]

1

⊗
[

(|�+〉 − |�−〉)|00〉 + (|�+〉 − |�−〉)|11〉
]

2

(G16)

= |�+〉1|�+〉2 (α|0〉1|00〉2 + β|0〉1|11〉2

+ γ |1〉1|00〉2 + δ|1〉1|11〉2) + · · · (G17)

BSMs for each layer would then project the composite

state into one of the 16 possible combinations. Followed

by conditional Pauli transformations, the query addresses

are finally teleported onto the binary tree.

5. Efficiency simulations

The teleportation scheme includes four steps: (1) initial-

izing the entanglement links, (2) teleporting the addresses

to the qRAM, (3) querying, and (4) teleporting the

addresses back to the QC. We perform event-based sim-

ulations to estimate the time of completing all four steps.

In step (1), all the nodes except the leftmost node within

each qRAM layer are entangled to form a GHZ state.

It is created by heralded entanglement between nearest-

neighbor pairs with success probability pep = ηpathη
2
s ηdet

(ep refers to entangled pair) (see Sec. F). If the entan-

glement attempt fails, the spins undergo reinitialization

for τreset = 5 µs. If it succeeds, the electron spins (bro-

ker qubits) are swapped with their respective nuclear spins

(memory qubits), an operation that we assume to take

te→n = 16 µs. Then, the unlinked neighbors are subse-

quently entangled in the same fashion. To reduce computa-

tional costs, we assume that the rate is limited by the largest

layer and only simulate its GHZ-state creation process.

Simultaneously, in step (2), we attempt to generate

entanglement between the broker qubit of the QC and the

leftmost node of the qRAM for each layer. Once the entan-

glement link is generated, the electron and nuclear spins

are again swapped. In simulation, we take the maximum

between the time to generate a GHZ state and the time

to produce QC-qRAM Bell state. The generation rates for

both the GHZ state and the remote entanglement link are

plotted in Fig. 14. Once both states are constructed, the

leftmost node is entangled with the GHZ state composed

of the remaining nodes within the same layer. Then, a

local BSM is made between the address register and the

QC ancillary qubits. To fairly compare the efficiency of

the teleportation scheme with that of the GLM scheme,

we neglect the physical distance between the QC and the

qRAM in Fig. 6.

In step (3), a bus photon arrives at the root node of the

binary tree and is routed to the memory layer with the

query success probability pi for an i-level qRAM. Finally,

in step (4), a QC-qRAM Bell state is constructed again for

each layer with probability pep, followed by local BSMs on

the leftmost nodes in the qRAM.

In Fig. 6, the simulation data are plotted along with their

analytical fits. Recall that the GHZ states are produced by

linking multiples of Bell pairs. If each Bell-pair creation

succeeds with probability p , it would take a geometric

mean of 1/p attempts. In the case of p = 1, the GHZ-state

creation process would merely be a two-step process. For

example, for a layer with four nodes, nodes 1 and 2 as well

030319-16



SCALABLE AND HIGH-FIDELITY QUANTUM RANDOM... PRX QUANTUM 2, 030319 (2021)

TABLE III. The parameter values.

ωc 406.774 THz

κ 20.34 GHz [14]

γ 94 MHz

τreset 5 µs

ηstr 2.7 dB [37]

ηbend 9.3 dB [37]

ηdet 1.3 dB [11]

Rresonator 50 µm [36]

neff 2.2645

ng,PIC 2.3862

ng,dmd 2.4513

te→n 16 µs

tn→e 30 ns

a 1.7094

b 0.79386

as nodes 3 and 4 are entangled in the first time step. Then,

nodes 2 and 3 are entangled to complete the GHZ state cre-

ation. However, with a nonunity p , the GHZ-state creation

is ultimately limited by the pair that fails the most number

of times. In other words, the rate is mainly determined by

the outlier. We fit the guessed model f (N ) = aN−b multi-

plied with the analytical rate (based on geometric mean) to

the simulation data, where N is the number of nodes within

the largest layer. The coefficients a and b capture the scal-

ing of the outlier with the circuit depth. Their fitted values

averaged over the considered κwg/κ ratios are summarized

in Table III.

6. PIC interconnect

In contrast with the GLM scheme, the teleportation

scheme requires greater connectivity in the qRAM. Each

node is not only connected to two children nodes in the

next layer, but also to the rest of the nodes in the same

layer. Here, we detail its PIC construct. Importantly, as

shown in Fig. 15(a), the architecture requires interconnect

layers interspersed between the binary tree layers. Addi-

tionally, a photon-detection system resides between each

neighboring pair. Assuming that the single photons are

propagating in one direction, i.e., incoming from the right

of each layer, the detector would register photons after they

interact with the cavities to its right.

Within each interconnect layer, MZI switches are classi-

cally controlled to enable routing of the single photons to

individual cavities. The cavity depicted in Fig. 15(b) is the

same construct shown in Fig. 10. To entangle two neigh-

boring nodes, each tree node first operates in the setting

mode. A single photon reflects off the first cavity and is

directed to the second cavity via a circulator. After enter-

ing the second node through the MZI and reflecting off the

cavity, the photon is again routed to an MZI switch via a

circulator—except that now, the switch directs the photon

to the detector for heralding a Bell-state creation. We stress

Interconnect

…
…

Laser

Laser

Upper 

node

SPD Cavity
Left 

node

Right 

node

…

MZI

(a)

(b)

FIG. 15. The proposed PIC architecture for the teleportation

scheme. (a) The qRAM binary tree contains interspersed inter-

connect layers that enable intralayer connectivity. (b) Within

each interconnect layer, a network of MZIs is classically con-

trolled to direct the single photons to either the subsequent cavity

or the detection system for heralding during GHZ-state creation.

It is then switched to a transparent state during the data retrieval

step.

here that the interconnect layer enables beyond-nearest-

neighbor connection. Therefore, given prior knowledge of

the query addresses, the architecture provides the ability

to only entangle the necessary nodes and reduces state

infidelity.

After the addresses are teleported from the QC to the

qRAM, the cavity nodes are changed to the routing mode

to direct the bus qubit to the memory layer at the bottom

of the binary tree. In this step, the interconnect layer is

essentially transparent by having the photon bypassing the

circulators.

7. Infidelity from decoherence

We define the query fidelity as the fidelity of the pre-

pared tree state. To calculate the infidelity caused by

decoherence for each layer, we take the decoherence rate

γd to be proportional to Nte→n/T2,n/e, where N is the num-

ber of nodes, T2,n/e is the coherence time for the nuclear

(electron) [subscript n (e)] spin, and te→n is the approxi-

mate entanglement time. We assume perfect single qubit

rotations, readout, and setting fidelity by optimally balanc-

ing losses (see Sec. II A). We only consider the effect of
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FIG. 16. The query fidelity as a function of the qRAM size.

The nuclear and electron spin coherence times are, respectively,

assumed to be: (a) T2,n = 100 s and T2,e = 10−2 s, (b) T2,n =
101 s and T2,e = 10−1 s.

decoherence caused by continuous dephasing and neglect

other physical errors such as imperfect nuclear-electron

spin interaction. In Fig. 16(a), at Nmemories = 103, the query

fidelity drops to near Fq = 0.5, suggesting that the pre-

pared tree is no better than a maximally mixed state.

Improvements on the nuclear and electron spin coherence

times by an order of magnitude can increase the fidelity to

Fq > 0.9, as shown in Fig. 16(b).
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