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A quantum random access memory (QRAM) is considered an essential computing unit to enable poly-
nomial speedups in quantum information processing. Proposed implementations include the use of neutral
atoms and superconducting circuits to construct a binary tree but these systems still require demonstra-
tions of the elementary components. Here, we propose a photonic-integrated-circuit (PIC) architecture
integrated with solid-state memories as a viable platform for constructing a qRAM. We also present an
alternative scheme based on quantum teleportation and extend it to the context of quantum networks.
Both implementations realize the two key qRAM operations, (1) quantum state transfer and (2) quantum
routing, with already demonstrated components: electro-optic modulators, a Mach-Zehnder interferometer
(MZI) network, and nanocavities coupled to artificial atoms for spin-based memory writing and retrieval.
Our approaches furthermore benefit from built-in error detection based on photon heralding. Detailed
theoretical analysis of the qRAM efficiency and query fidelity shows that our proposal presents viable

near-term designs for a general QRAM.
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I. INTRODUCTION

Random access memory (RAM) is a fundamental com-
puting unit that allows on-demand storage and retrieval of
data. While a classical RAM addresses one memory cell
in the database per operation, a quantum RAM (qRAM)
permits the querying of a superposition of multiple memo-
ries [1]. Given a superposition of addresses j , the “qRAM”
returns a correlated set of data D; :
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where N is the number of memory cells and the sub-
scripts a and b denote the address and bus qubits, respec-
tively. One efficient implementation of qRAM proposed by
Giovannetti, Lloyd, and Maccone (GLM) [1,2] is the
“bucket-brigade model”: a binary tree of memory nodes
that direct the bus qubit to the data layer. A tree of
depth n > 1 contains a total of 2" — 1 nodes, with the
last layer containing N = 2"~! memory cells. Each pre-
ceding layer i represents the register k; of the address
/) = lkiky - - - k1K), which sets the path leading to the
corresponding memory cell D; [Fig. 1(a)].

Principally, these memory nodes must (1) store an
address register qubit that (2) routes ensuing qubits for
addressing and retrieval. The register |k;) sets the inter-
nal state of layer i, which governs routing of the sub-
sequent registers {|kiy1), |kir2),-..}. A qRAM query thus
performs a sequence of alternating state transfer and rout-
ing operations, with each register qubit determining how
the node routes the subsequent register. Once the binary
tree has been programmed by the state of address qubits,
Zj @j|j)q, it is traversed by the bus photon [|), to
access the memory cells {D;} in superposition. The bus
qubit travels back up the tree and addresses are mapped
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FIG. 1. An illustrative bucket-brigade model with a cavity-
coupled A-level atom at each tree node. (a) The address |j)
consisting of the register qubits |ky)|k;)|ky) arrives at the three-
level binary tree containing N =23 memory cells. (b) Each
register is a frequency-encoded photonic qubit in the {wg, w;}
basis. (c¢) For our implementation, each tree node is a A-atom
coupled to a single-sided nanocavity, the resonant frequency w,
of which is tuned to the average of the two atomic transition
frequencies, wy and w;, which are separated by a Zeeman split-
ting A. For layer 1, the register |k;) sets the internal state of the
node to [Y4) = a1 |]) + B1]71) that routes the successive register
|k2). Two essential operations are (d) the setting mode via cavity
reflection and (e) the routing mode.

onto the returning register qubits to disentangle them-
selves from the nodes, producing the qRAM output state
[Y)out- The ability to perform this operation in log(N)
time steps highlights the advantage of quantum parallelism
and offers polynomial speedups in quantum algorithms
for applications such as quantum machine learning [3],
matrix inversion [4], quantum imaging [5], and quantum
searching [6].

Despite its mathematical elegance, no qRAM propos-
als have been experimentally demonstrated. The existing
proposals are based on neutral atoms [2,7,8] and supercon-
ducting circuits [9] but still require elementary components
to be realized. Here, we introduce a scheme that assembles
separately demonstrated technologies into a photonic-
integrated-circuit (PIC) architecture integrated with arti-
ficial atoms. Namely, the system contains a high-fidelity
frequency beam splitter [10—12], nanocavities strongly

coupled to long-lived spin memories [13,14], and a scal-
able nanophotonic Mach-Zehnder interferometer (MZI)
array [15]. Importantly, the protocol relies on a cavity-
assisted controlled-phase (CZ) gate [16] the heralding of
which inherently provides the ability to detect qubit loss.
We estimate our PIC implementation of the GLM scheme
to achieve kilohertz success rate for a qRAM containing
> 102 memory cells. Furthermore, we propose an alterna-
tive approach based on quantum teleportation. This tele-
portation scheme enables scaling to 10° memories while
still achieving a greater-than-kilohertz success rate. More
importantly, the framework of the protocol applies to quan-
tum networks that require no additional modifications.
Thus, our study provides a promising blueprint for build-
ing a general qRAM essential for quantum information
processing.

II. BUCKET-BRIGADE SCHEME

In our PIC implementation, the address register and
the bus qubits are the frequency-encoded photons |p) =
a|wg) + Blw,) shown in Fig. 1(b) prepared by electro-
optic modulators, which together act as a frequency beam
splitter [10—12]. They arrive at each node in the binary
tree and interact with a cavity-coupled atom, which has
two spin states, || ) and |1). Both states are coupled to an
excited state |e) with respective transition frequencies wg
and wy, as shown in Fig. 1(c). In this proposal, we specif-
ically consider the negatively charged diamond silicon-
vacancy (SiV ™) center, strongly coupled to a single-sided
cavity [13,14]. By having the cavity resonance w. equally
detuned from the two transitions, i.e., wo1 = w, £ A /2,
where A is the Zeeman splitting between the spin states,
the resulting Fano interference satisfies the following con-
ditions: upon a cavity reflection, the photon acquires no
phase shift when it is resonant with the atomic transition;
otherwise, it receives a 7 phase shift (see Appendix A).

This spin-dependent phase shift enables the two oper-
ation modes necessitated by the bucket-brigade model:
the photonic qubit “setting” the spin state [Fig. 1(d)]
and the spin qubit routing the subsequent register qubits
[Fig. 1(e)]. The cavity interaction enables a CZ gate for
heralding a quantum state transfer between the photonic
and the spin qubits, as shown in Fig. 2(a). The very
same phase dependence on the atomic state also allows
quantum routing by leveraging the cavity system as an
interferometer.

Explicitly, in the PIC platform, each node comprises an
MZI, an add-drop filter resonant with the wy, component,
and a single-sided nanocavity coupled to an SiV™ cen-
ter. First, in the setting mode, the atom is initialized in a
superposition state [v4) = (1) + |1))/ V2 by a Hadamard
operation. Figure 2(b) shows the register qubit |yp) =
a|wg) + Blw) arriving at the MZI and exiting out of the
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FIG. 2. The PIC implementation of qRAM. (a) The circuit rep-
resentation of a quantum state transfer operation that maps the
register qubit |yp) onto the atomic qubit |¥4). (b) In the set-
ting mode, the photon undergoes a CZ operation to complete
quantum state transfer. After passing through the MZI, the |wy)
component resonantly couples to the add-drop filter that imparts
a m phase shift upon reflection off the mirror, while the |w)
component interacts with the atom-cavity system and acquires
a spin-dependent phase shift. (¢) In the routing mode, the MZI
is set to a 50:50 beam splitter and the top waveguide of the add-
drop filter is decoupled such that the ring resonator imparts a 77 /2
phase shift to the |wy) component upon a single pass. After cav-
ity reflection, the returning photon reinterferes with itself and is
routed to either the ||) path with probability |«|? or the |1) path
with probability | 8|2

top output port. An add-drop filter then directs the w, com-
ponent to a mirror (e.g., a Sagnac-loop reflector) such that
|wo) acquires a 7w phase shift upon reflection regardless of
the spin state. On the other hand, the w; component contin-
ues down the path and reflects off the atom-cavity system,
acquiring a spin-dependent phase shift. Finally, the wg and
| components recombine and undergo a Hadamard trans-
formation by a frequency beam splitter before heralding
the completion of quantum state transfer. While heralding
conveniently provides the detection of photon loss error,
it is essential for the detection system to be shared by all
the qRAM layers at the root of the tree. A local detection
would otherwise reveal the path information and thereby
collapse the superposition of addresses. Therefore, all the
register qubits must reflect off the qRAM nodes and return
to the root to preserve entanglement between the spin
qubits and the address paths. This path erasure also ensures
that the same CZ gate applies to all the active nodes in layer
i during the setting operation.

After the photon detection, the MZI is switched to a
50:50 beam splitter and the tunable add-drop filter is turned
“off” such that the ring resonator only imparts a 7t /2 phase
shift to the wy component upon a single pass (see Appendix
B). Hence, the photon acquires a spin-dependent phase
shift independent of the frequency component. As illus-
trated in Fig. 2(c), the subsequent register qubit |k;) arrives
at the 50:50 beam splitter. One of the MZI output ports
connects to the same path as before, while the other leads
to a mirror. As a result, the photon taking the former route
acquires a spin-dependent phase shift from interacting with
the cavity, while one taking the latter route always acquires
a i phase from reflecting off the mirror. The returning pho-
ton then interferes with itself at the beam splitter and is
routed to an exit port, depending on the spin state. With
|a|* probability, the photon exits out of the top path cor-
responding to the ||) spin state; and with |S|*> probability,
it travels down the bottom path corresponding to the |1)
spin state. Effectively, the beam splitter, in conjunction
with the atom-cavity system, constitutes an MZI, with the
spin-cavity system acting as a phase shifter.

Both the setting and routing operations are repeated
alternatingly, carving out the path for the bus qubit to
arrive at the desired memory cells. The data can be trans-
ferred onto the bus qubit with the same cavity-reflection
scheme by reversing the role of the photonic and the spin
qubits, followed by a projective measurement on the atom
via single-shot readouts [17]. Finally, the sequence is run
backward to disentangle the binary tree from the address
qubits, leaving the data qubits |D;) correlated with their
respective addresses | ).

A. Setting fidelity per node

In our cavity-assisted scheme, qubit loss is a heralded
error. Therefore, a sequence of successful photon detection
guarantees the absence of infidelity stemming from photon
loss in the qRAM output. Here, we analyze imperfections
in the atom-cavity system that critically affect quantum
state transfer as the primary source of infidelity in our pro-
tocol, since any inexact mapping from the register qubit
to the spin qubit would result in faulty routing of the sub-
sequent registers. To characterize the setting fidelity given
an input register |V )p = o|wg) + Blw;), we calculate the
resultant spin state |y) 4 after heralding via a Schrodinger
picture evolution:

V)4 = [20rm £ B(ron + rom]I) £ B(—7on + rom 1),
)

where 7o, (7o) 1S the on-resonance (off-resonance) cavity
reflection and 7, is the mirror reflection. Note that 8 is
positive (negative) if the photon is detected in the wy (wy)
port (see Appendix C).

After a CZ gate (see Appendix C), the overlap between
the heralded spin state |1 ¢ (i)) and the target state [y) 4 =
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all) + B|1) defines the state transfer fidelity F, of which
we take the average over six representative states |¢;) (the
axes of a Bloch sphere) [18,19]:
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where  [¢1) = 1), 1¢2) = 1), I¢3a) = (1) £ [1)/V2,
|ps6) = (14) £il1))/+/2 in the {|{), 1)} basis.

Due to the subnanosecond travel times of photonic
qubits and conditional gate time on the atoms (approxi-
mately 30 ns based on Ref. [14]) being short relative to
the SiV™ spin coherence time 7, > 10 ms [17], we will
neglect errors caused by spin decoherence. Instead, the
performance of the setting mode relies on the coupling
strength of the cavity to the output waveguide mode. When
the waveguide-cavity coupling is unity, i.e., Kyg/k =1,
the cavity reflection solely determines the transfer fidelity,
which scales as (C — 1)/(C + 1) in the large-cooperativity
limit [20,21]. However, for any reduced kyg/k < 1, the
need to balance losses becomes especially important. For
example, for a desired state |¢3) where o« = =1/ V2,
balancing losses entails matching the moduli of the on- and
off-resonance cavity reflections 7, o kyg(C — 1)/(C+ 1)
and 7,f X kwg/k (see Appendix C).

In Fig. 3, we analyze F as a function of xye/k, C
and 8B, which is the deviation from the optimal mag-
netic field By o \/]/K [2C+ K (k — Kwg) /4 — y2/4] for
the suitable Fano line shape (see Appendix A). For each
point in the fidelity contour, a particular value of 7, is
chosen to optimize the fidelity, assuming that the mir-
ror is tunable. When §B = —20%, Fig. 3(a) indicates that
only a selective range of C < 20 and kyg/k € {0.83,0.98}
result in F > 0.995. However, as the magnetic field devi-
ation reduces to —10% from the optimum, the transferred
state fidelity can exceed 0.999 for a selected range of C
and kyg/k. Figure 3(c) shows that at the optimal mag-
netic field, i.e., 8B = 0%, the transfer fidelity well exceeds
0.999 for any C > 20 and kyg/k > 0.94. Interestingly,
a small region of cooperativities C < 20 and kyg/k <
0.94 can still achieve F > 0.999 by carefully balancing
losses. However, the tolerance to a varying C diminishes
as Kwg /K decreases. As 8B approaches 10%, however, the
setting fidelity can no longer reach 0.999. Its disparity with
8B = —10% stems from the asymmetry exhibited by Fano
interference (see Appendix A).

The fidelity considered here is the state transfer fidelity
per node, which consequently determines the routing
fidelity of the node. If we consider the probability of rout-
ing erroneously to be ¢ = 1 — F per node, then the query
infidelity 1 — Fquery scales polylogarithmically with the
memory size: | — Fauery ~ € 10g(Nimemories)® [22]. Hence,
the qRAM query can be performed with high fidelity
as long as € < 1/10g(Nmemorics)>- We estimate that our

(d) 68 = +10%

Il 1.00
0.99
0.98
0.97

0.96

0.9 1.0
K/ K

FIG. 3. The quantum state transfer fidelities. The transferred
state fidelity for a single setting operation is plotted against the
atom-cavity cooperativity C and the waveguide-cavity coupling
strength «y,/« for magnetic field deviations (a) 6B = —20%,
(b) —10%, (c) 0%, and (d) 10%. The contour lines denote the
fidelity thresholds at F = 0.985, 0.99, 0.995, and 0.999.

qRAM architecture with state transfer infidelity € = 10~
per node permits querying up to Npemories ™ 104

B. Efficiency

Next, we analyze the qRAM query efficiency by first
calculating the success probability of heralding each reg-
ister qubit |k;) and then the average rate of completing a
single query call. Recall that for the bus qubit to reach
the memory layer in an n-level qRAM, each register pho-
ton |k;) must travel to the node in layer i € {1,...,n} and
return to the detector after cavity reflection. Given a prop-
agation loss 7),, the probability of completing the round
trip without loss is e ¥ where L(i) is twice the dis-
tance between the layer i and the root node. However,
since the photon can scatter off the single-sided cavity
and the mirror into nonwaveguide modes, interaction at
each layer further reduces the probability of detecting the
returning register qubit by R, and R,, which represent
the cavity and mirror reflection coefficients, respectively.
We take their mean reflection coefficient and define the set-
ting efficiency as 1y = Nget (R + Reav) /2, where nget is the
detection efficiency. Similarly, the routing efficiency for
each layer i would be 1, = R¢,, assuming lossless trans-
mission through the interferometric coupler. As a result,
the probability of successfully heralding each register |4;)
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—pLO i1

pi=e fori e {l,...,n}. 4)
To calculate the success rate, we must now include both
the round-trip travel time to each layer i, denoted as
ti = Lpic(9) /vgpic + Lamd())/Vg,amd> Where Lpic (Lgma) and
Vg pic (Vg,ama) are the travel distance and group velocity in
the PIC (diamond) waveguide. The average time until a
successful query call can be found by using the linearity
of expectation value. For example, the expected time for a
two-level qRAM is

Tn:Z =P1P2(f1 + t2) + (1 _pl)(Tn:2 +h+ Treset)
+p1(1 = p2) Ty + 11 + 1 + Treset)s (5)

where Teset = 5 s is the spin reset time. The first term on
the right-hand side is the case of no photons being lost; thus
its expected time is simply the product between the success
probability of two consecutive heralds p;p, and the total
travel time #; + ;. The next term represents the case of the
ki register photon being lost before detection with proba-
bility 1 — p;. Consequently, the average query time 7,—,
is penalized by the additional time #| + Tyeser. Similarly, if
the k; photon is heralded but the subsequent register
is lost with probability p;(1 — p,), T,—> is lengthened by
1) 4ty + Treser. Solving for T),—; yields

_ Hh+rt t
Tn=2 = S + _2 — Treset- (6)
pip2 p2

The expression can be treated as a summation of the
round-trip time of each layer weighted by its correspond
geometric mean, — Tyesee Since the final trial is a successful
run without the need to reset.

We can generalize the average time for a n-level gQRAM:

T= <1_[pl> (Z ti) + (1 —Pl)(T+ H+ Treset)

+p1(1 —Pz)(_T-i- 4+t 4 Treset) + - -

n—1
+ (l_[(l —pn)) <T+ Zt,- + Treset) (7)

Treset
7 — Treset- 3
(Z [T/ ,p/> [Ti-ip
Finally, the success rate is then
F= ©)
==

Figure 4(a) shows the qRAM success rate as a function
of the number of memories Npemories = 2" for different

w/o LD: Kwg/k = 0.95
w/0 LD: Kyg/k = 0.965
w/o LD: Kyg/k = 0.98
w/o LD: Kwg/k = 0.995

—_
o
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FIG. 4. The efficiency of the PIC qRAM. (a) The success rate
(in hertz) is plotted against Nyemories = 2" for a n-level qQRAM for
kwg/k = 0.95, 0.965, 0.98, and 0.995 for schemes with (solid)
and without (dashed) qubit loss detection (LD) with perfect rout-
ing operation (¢ = 0), as well as one with loss detection but
with routing error probability € = 5 x 10~* # 0 (dashed dotted).
On a log-log scale, the success rate rolls off polynomially with
increasing Npemories = 2" due to an exponentially decreasing suc-
cess probability of setting each layer i (see Appendix F). (b) An
enlargement of the black box in (a), highlighting the slight gain
in efficiency for the cavity-assisted scheme with LD. (c¢) Both the
success rate and transfer fidelity vary as a function of iy, /x for
€ = 0. For a six-level qRAM with C = 100, there exists a trade-
off between " and F after ky,/k ~ 0.97 where F is maximized
by perfectly balancing losses.

waveguide-cavity coupling kwg/x = 0.95,0.965, 0.98, and
0.995. As Nmemories increases, the rates roll off polyno-
mially on the log-log scale, since the success probability
Psuce diminishes superexponentially with increasing » (see
Appendix F). Furthermore, pg,. intimately depends on
the cavity-reflection coefficient R,y o kywg/k, causing r
to vary drastically with the waveguide-cavity coupling.
For example, the difference between ky,/k = 0.95 and
kwg/k = 0.995 exceeds more than an order of magnitude
for Nmemories > 10? and the disparity grows exponentially
as the circuit depth »n increases. The unforgiving drop-
off in the success rate emphasizes the need for a highly
overcoupled single-sided cavity in our protocol.
Additionally, we consider the efficiency for the cases
of having perfect (¢ = 0) and imperfect (¢ =5 x 107%)
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routing operation, represented by the solid and the dashed
dotted lines, respectively. Recall that if each node has
a routing error €, the query error scales as 1 — Fquery ™~
€ 10g2(Nmemories)> [22]. Hence, the success rate with imper-
fect routing operations would reduce by an additional
factor of 1 — € 10g(Nmemorics)” -

On the other hand, the built-in LD of our cavity-assisted
scheme enables a slight boost in the success rate. For
a scheme without such loss detection, the qRAM must
complete the entire sequence of setting and routing all »
register qubits before needing to reset, assuming that qubit
loss has occurred and been detected after the query. The
corresponding success rate would be

Z,‘ ti + Treset
l_[,-pi

In contrast, our protocol periodically checks for register
losses via photon detection. Therefore, time can be saved
by halting and immediately resetting the spins as soon as
quantum state transfer fails to herald. Note that the gain in
rate, however, depends on the ratio between travel time ¢,
and Tese¢. Figure 4(b) shows a modest increase in success
rate for our scheme with #; < 1 us and Tresey = 5 us rela-
tive to one without loss detection. If Tpset >> ;, the slight
improvement in efficiency would dwindle as I converges
to 1_‘no LD-

Lastly, due to the need to balance losses to achieve
high transfer fidelity as noted in Sec. I A, there exists
an inevitable fidelity-rate trade-off. Given a qRAM con-
taining 2® memory cells, Fig. 4(c) shows that F reaches
its maximum at ky,/k ~ 0.97 for the assumed coopera-
tivity C = 100. However, the success rate still increases
monotonically with «yg/k even past this optimum fidelity
point. The waveguide-cavity coupling regime in which the
trade-off exists narrows with higher atom-cavity coopera-
tivity, since both |ro,| and |r,g| increase with C and kg /K.
Nonetheless, at C = 100 (which has been experimentally
demonstrated in Refs. [13,14]), the success rate can already
exceed 1 kHz while maintaining high fidelity F > 0.999.

-1
Fhop = 7:(,ILD = ( - Treset) . (10)

III. TELEPORTATION SCHEME

While the aforementioned scheme is viable for a low-
depth qRAM, the need to sequentially set each address
register via cavity reflection inhibits scaling up to 10°
memories due to photon loss from cavity interaction. Here,
we present an alternative approach that writes the address
registers onto all the layers simultaneously via quantum
teleportation. Crucial to this step is the ability to perform
high-fidelity two-qubit gate operation locally between an
electron spin (broker qubit) and its neighboring nuclear
spin (memory qubit). Considering that gate fidelity > 0.99
has already been achieved experimentally via compos-
ite pulses and optimal classical control [23], we assume

unity gate fidelity and success probability for the following
calculations and consider the general case in Sec. III B.

The protocol assumes two physically separated entities,
a quantum computer (QC) and a qRAM, both containing
nodes each of which includes a memory and a broker qubit.
The QC contains » nodes that hold the query addresses
Z/‘ @ |j ), stored in the memory qubits. While the mem-
ory qubit can only interact with the broker qubit locally,
the broker qubit can directly interact with photons to gen-
erate spin-photon entanglement via cavity reflection (see
Appendix C). Hence, any two nodes can be remotely
entangled by having their broker qubits to sequentially
interact with a single photon (see Appendix G 1). Subse-
quently, the two entangled broker qubits undergo a SWAP
operation with their memory qubits via hyperfine interac-
tion to preserve coherence (see Appendix G 2). In the same
manner, two neighboring Bell states can then be entan-
gled to form a four-qubit Greenberger-Horne-Zeilinger
(GHZ) state. Prior to each query operation, all the nodes
across each ith qRAM layer are entangled to generate
a 2/-qubit GHZ state: |W;) = (]00---0) + [11---1)) /v/2.
At the same time, the QC and the qRAM are remotely
entangled via the same photon-assisted procedure, leav-
ing the QC and the qRAM in the configuration depicted
in Fig. 5(a).

Now, each QC node undergoes a local Bell-state mea-
surement (BSM) between its memory and broker qubits as
illustrated in Fig. 5(b). As a result, the query addresses are
teleported onto all the qRAM layers in parallel. However,
since the routing operation depends on the photon inter-
acting with the cavity-coupled broker qubits, each gRAM
node undergoes a local SWAP operation immediately before
data retrieval [Fig. 5(c)]. The photonic bus qubit then
arrives at the binary tree prepared in the state shown in
Fig. 5(d).

The data retrieval process remains the same as before.
Starting from the root node, the bus photon propagates
down the binary tree and is routed based on the state-
dependent cavity reflection at each layer. After this, the
addresses are swapped onto the memory qubits in the
gRAM [Fig. 5(e)], followed by remote entanglement
between the broker qubits of the QC and the qRAM
[Fig. 5(f)]. Then, a local SWAP operation in the QC entan-
gles the memory qubits of the QC with the broker qubits
of the qRAM. Finally, local BSMs in the qRAM teleport
the query addresses back onto the QC [Fig. 5(g)], return-
ing the binary tree in its waiting state for future queries
[Fig. 5(h)].

Importantly, the proposed architecture extends beyond
a PIC platform and can be run on a quantum network, in
which each network node represents a tree node in the
gRAM. Distillation can be used to generate high-fidelity
Bell states [24], which are then joined to form the GHZ
states in the same fashion as heralding entanglement links
in a quantum repeater. The modularity of the protocol
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FIG. 5. The step-by-step procedure of the teleportation
scheme. A quantum computer (QC) holds the query addresses
that would be mapped onto a qRAM. (a) The QC and qRAM
are remotely entangled (as represented by connecting gray lines)
and the nodes of each qRAM layer are entangled in a GHZ state.
(b) Local Bell-state measurements (BSMs) and subsequent Pauli
transformations teleport the query addresses onto the binary tree
(c) Then, in each node, the memory (red circle) and the broker
(gray circle) qubits undergo a SWAP operation, leaving (d) the
qRAM ready for the data retrieval process. (¢) After the bus qubit
has completed querying, the registers are swapped back onto
the memory qubits to maintain coherence. (f) The QC and the
qRAM are then remotely entangled again via their broker qubits.
A subsequent local SWAP operation in the QC then result in entan-
glement between the memory qubits of the QC and the broker
qubits of the qRAM. (g) Local BSMs in the qRAM then teleport
the query addresses back onto the QC, returning (h) the binary
tree to its original state.

@ gRAM memory qubit
© gRAM broker qubit

effectively allows the qRAM query to act as a subroutine
for distributed quantum computing.

A. Efficiency comparison

Here, we compare the efficiency of the two pro-
posed schemes assuming perfect spin-photon gate fidelity
(e = 0) via optimally balancing losses. The teleportation
approach, similar to the GLM scheme, still requires restart-
ing the query procedure if the bus photon is lost during
the retrieval step, since the path information is revealed
by the environment. Despite this, the rate of success for
the teleportation scheme still scales much more favorably
than the GLM approach. Figure 6 compares the query
efficiency between the two approaches. For small circuit
sizes < 10> memories, the GLM scheme achieves higher
success rates, since the process of generating GHZ states

and remote entanglement links is more costly in time
than directly transferring the registers sequentially (see
Fig. 14). However, as the qRAM depth increases past the
crossover region with approximately 10> — 10° memories,
the efficiency of the GLM scheme rolls off rapidly.

On the other hand, the success rate of the teleportation
scheme decreases relatively slowly. Its efficiency is pri-
marily constrained by the retrieval step that succeeds with
probability o 77, as opposed to o¢ 71"~y in the GLM
scheme. Its favorable scaling is conducive to increasing the
circuit size for general-purpose applications such as quan-
tum machine learning [3]. Our efficiency simulations (see
Appendix G 5) show that the teleportation-based approach
can theoretically achieve an average > kHz success rate
for a qRAM containing 10° memories.

B. Query fidelity

One drawback of the teleportation approach is decoher-
ence lowering its query fidelity. This is especially prob-
lematic for the teleportation scheme because the protocol
requires the spin qubits to wait until remote entangle-
ment links are generated between the QC and the qRAM.
Specifically, its requirement to prepare a GHZ state, the
decoherence rate of which increases linearly with its size,
could further worsen the query fidelity. On the other hand,
the GLM scheme that sequentially writes the addresses
is not constrained by decoherence. As noted previously,
the time scales at which the photon traverses through the
PIC and the CZ gate is applied are much shorter than the
electron spin coherence time. In essence, the teleportation
scheme trades fidelity off for a substantial gain in efficiency
(see Fig. 6).

Let us consider the worst case where the entirety of the
binary tree is active, meaning that all possible addresses are
used. Assuming the coherence times of the electron [17]
and nuclear spins [25] to be 1072 s and 10 s, respectively,
we estimate the infidelity caused by decoherence to be
< 107! for Nmemories = 10° (see Appendix G 7). Engineer-
ing a 12C-rich environment [26] could further improve the
coherence times and thereby reduce the infidelity.

Other sources of infidelity include depolarization, mea-
surement errors, and imperfect two-qubit interaction
between nuclear and electron spins. To simplify the dis-
cussion, we combine all types of errors into one collective
“physical error rate” €. We propose having interconnects
interspersed between the layers that allow for arbitrary
routing (see Appendix G 6). As a result, for applications
that require querying a small subset of possible addresses
sparsely spanning the binary tree, only the necessary num-
ber of nodes are activated to minimize infidelity caused by
physical errors.

However, for applications that require querying most
addresses, the physical error rate could quickly deco-
here the qRAM, since the infidelity rapidly grows as
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FIG. 6. An efficiency comparison between the conventional GLM scheme (dashed dot) and the teleportation scheme. For the
teleportation scheme, the solid lines are analytical fits to the simulation data represented by the dashed lines (see Appendix G 5).
Each scheme is evaluated at different cavity-waveguide coupling strengths «y,/k = 0.95, 0.965, 0.98, and 0.995.

1 — F, oc (1 — €)*"~! for a circuit depth of n. Assuming a
physical error rate of € = 10™* and n = 10, the query infi-
delity is already approximately 10~!. Therefore, scaling up
of the qRAM necessitates further exploration in convert-
ing each tree node to a logical qubit and adapting quantum
error correction [27,28].

IV. EXPERIMENTAL CONSIDERATIONS

Here, we address several experimental considerations
concerning inhomogeneity in the solid-state defects.

(1) Spectral diffusion, i.e., slow fluctuation in the opti-
cal transitions of the emitter (wp,®;), can make
it difficult to maintain the cavity resonance at the
target w, = (wo + w1)/2 Fortunately, recent experi-
ments on group IV vacancy centers (including the
SiV™ center considered here) have shown spec-
tral diffusion far below the radiative line width in
nanophotonic waveguides and cavities [14,29]. This
stability is due in part to the atomic inversion sym-
metry of group IV vacancy centers in diamond,
which makes optical transitions first-order insensi-
tive to stray electric fields [30]. In particular, recent
demonstrations of SiV™ centers coupled to cavi-
ties have achieved cooperativities C > 100 [14],
which bounds spin-photon gate errors o 1/C (see
Appendix A). Further gains in cooperativity are
possible with improved cavity designs and reduced
environment noise through improved surfaces [31].

(2) Inhomogeneous distribution in the optical transi-
tions (wy,w;) (caused by variations in the micro-
scopic environments) would detune the spin-based
nodes across the network. Fortunately, these detun-
ings can be corrected by strain tuning, which has

been shown to align emitters across nearly the full
inhomogeneous distribution < 50 GHz [29,32].

V. CONCLUSION

In summary, we introduce a qRAM implementation in
a PIC platform integrated with solid-state spin memo-
ries. Our numerical simulations show that our architecture
can achieve > 0.99 fidelity with > kHz success rate for
a qRAM containing 10> memory cells. Moreover, our
cavity-assisted scheme relies on heralding the requisite
operations, thereby providing built-in qubit loss detection
that further improves the query efficiency. Although high
success rates demand a sufficiently overcoupled cavity to
the waveguide, existing photonic crystal cavity designs
[33-35] already show that they can reach near-unity cou-
pling. We stress that our architecture is technologically
feasible given rapidly advancing electro-optic platforms
[36,37] and experimentally shown large-scale integration
of artificial atoms in PICs [29].

Additionally, we propose an alternative scheme based
on quantum teleportation that allows for efficiency scal-
ing favorably with the circuit size. With sufficiently strong
cavity-waveguide coupling, the teleportation approach
enables a greater-than-kilohertz success rate for a QRAM
containing 10° memories, a size unattainable by the con-
ventional approach. We emphasize that the protocol is
modular and can be applied to a quantum network, in
which each network node acts as a tree node in the qRAM.
The nodes would again be entangled via heralding, which
removes qubit loss as a potential error.

The architecture also extends to other atomic memo-
ries: quantum dots [38] and rare-earth ions [39] strongly
coupled to nanocavities, and even trapped-ions [40] and
neutral atoms [41] suitable for creating large-GHZ states.
With rapid advancements in constructing high-fidelity
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atom-photon interfaces, our proposal presents a scalable
design of a general qRAM in the NISQ era.
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APPENDIX A: ATOM-CAVITY PARAMETERS

The reflection of a single-sided cavity coupled with a
quantum emitter is

Kwe LA+ (¥/2)]

" = A T GeiA + T+

(AT)

where g is the atom-cavity coupling strength, y is the spon-
taneous emission rate of the emitter, « is the total decay
rate of the cavity, kyg is the waveguide-cavity coupling
rate, and A, = w, — w and A, = w. — w are the atomic
and cavity detuning from the probe, respectively. In the
large-cooperativity C = 4g?/ky > 1 limit and consider-
ing a perfectly overcoupled cavity, the reflection of an
on-resonance probe A, = A, = 0 simplifies to

(A2)

Therefore, » approaches +1 when C increases, whereas
a far off-resonance emitter decoupled from the cavity
mode would yield » — —1. In our cavity-assisted scheme,
the photonic qubits are encoded in the frequency basis
{wo, w1}. By appropriately choosing the atomic and cav-
ity detuning, the resultant Fano interference can satisfy
the truth table shown in Table I, an entry in which rep-
resents the acquired phase of the probe from reflecting off
the nanocavity.

This can be satisfied by demanding the reflection to be
+1 when the spin state is on resonance and —1 when it is
off resonance. Using Eq. (A1), we arrive at the following
equation:

Re { Kwg [1Aa + (v/2)] } —2. (A3

[iAc+ (k/D][iAa + (/D] + &2

TABLE I. The frequency- and spin-dependent phase acquired
by the reflected photon.

1) 1)
lwo) 0 7T
1) b4 0

We center the cavity resonance between the two transi-
tion frequencies: w, = (wy + w;)/2. Therefore, given the
Zeeman splitting A, the cavity detuning would be half
of the spin driving frequency: A, = A /2. Similarly, the
atomic detuning would exactly equal the splitting: A, =
A. In the Purcell regime, Eq. (A3) leads to the following
condition:

K y2
A%\/Zgz—i—Z(K_ng)_Z'

Therefore, given a fixed set of atom-cavity parameters
{8, v, K, Kkwg}, we may set the corresponding magnetic field
By that satisfies the appropriate Zeeman splitting A ~
ugBopt/h Where = gh/2m, is the Bohr magneton and
g ~ 2 is the Lande g factor.

As an illustrative example, we plot the reflection » of
a perfectly overcoupled cavity (kwg/k = 1) against the
probe frequency w/k. Figure 7(a) shows » = +1 at the
probe frequency w = w. + A/2, whereas r = —1 at w =
w, — A /2 when the spin population resides in state || ),
and vice versa as shown in Fig. 7(b).

(A4)

APPENDIX B: FREQUENCY-DEPENDENT
ADD-DROP FILTER

To perform both the (1) setting and (2) routing opera-
tions, the add-drop filter must resonantly couple to only the
wy component to impart (1) a 7 phase shift upon reflection
off a mirror and (2) a /2 phase shift through a single pass
after decoupling the resonator from the mirror waveguide.
The system can be modeled by tracking the evolution of
the field propagating through the MZI (or interferometric)
couplers [42]. As illustrated in Fig. 8(a), the outputs of the
MZI couplers are

Sout S {0 Sin Sm+ — Tm Sm— (B1)
Sci— Sci+ ’ Sem+ Scem— ’

where 7" = CWZMWC™ for n = {m,i}. The matrices
C™ and Z™ are transfer matrices that describe the beam
splitter and the interferometer arms:

cm _ Vy iy/1 —v? PO e 0
iy/1—2 vy ’ 0 V]

(B2)

where v, represents the coupling to the through waveg-
uide and W,7 and W, are the phases accumulated in
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FIG. 7. The cavity reflection as a function of the probe fre-

quency. The normalized probe frequency w/« is centered at the
cavity resonance (black dashed line) w.. The magnetic field is
appropriately chosen such that the two atomic transition fre-
quencies wy and w; coincide with the cavity-reflection maximum
7 = 41 and minimum » = —1. The reflection when (a) the spin
is in the || ) state is the mirror of when (b) the spin is in the |1)
state.

the phase shifter and the resonator arms, respectively.
For the remainder of the section, we assume a balanced
interferometric coupler such that v, = 1/+/2.

Explicitly, we can write the MZI transfer matrix as

T = eV [

(492 — 1 i(l+e%n)v,,/1 — 12
i(14 ey, /1 —v2 V2 — (1 —12)

Vn € {m,i}, (B3)

where ¢, (w) = k(w)AL, + A¢, and k(w) = (neg/c)wy +
(ngpic/c)(@ — wy). Here, AL, is the path-length difference
between the two arms and k(w) is the propagation constant
governed by the effective and group indices in the PIC, neg
and ng pic, respectively.

For the interest of our operations, we can set s;, = 1 and
sm— = 0. The resultant system of equations is as follows:

Sout = TY)lsin + T(ll’)zsci-i-’ (B4)

Seie = T8 8in + T3 3Sciss (BS)

(a) Smt DA¢m Sm-
Mirror '\ cm—
SCl+\ Sci—
Sin Ag; Sout
lsm|? (€)
1.0
0.8
06 &
04 5
0.2 —-0.5
-1.0
-1 0 1
A¢//W A¢;/7T

FIG. 8. A schematic of the add-drop filter. (a) Each of the
propagating fields in the add-drop filter is labeled for deriving
the transfer matrices. The ring resonator (the resonance of which
can be tuned by A¢r) is coupled to the waveguides via balanced
MZI, or interferometric, couplers, each containing a phase shifter
A¢;,n. When the top waveguide is coupled to the resonator, the
wp component is routed to reflect off a Sagnac-loop reflector
(mirror). (b) The output intensity toward the mirror |s,,|* as a
function of A¢; and A¢,,. (c) The output intensity of the through
component |sou|?.

from which, after solving for so and s,,+ = Ti”;)scm_, we
obtain

. /(o
Sout = el%R <T1(11) +

iDim m) (i)
e T§,2 T;,l
1 - ei‘pcé—ié—m ’

C (i) ’()
l¢ é‘mTIIZ 211 (B6)
- eld)cgi{m ’

Sm+ = (B7)

where ¢c(a)) = WiR + dim + me + Gmi = k(a))Lc is the
phase acquired in the resonator and ¢, = v2 — (1 —
v2). For the routing operation, we wish to have s, =
Sm+ = 1 (correspondingly, squ¢ = 0) such that the wy com-
ponent is entirely directed to the mirror. In Figs. 8(b) and
8(c), we plot the output intensity |s,|> and |seu|® as a
function of A¢; and A¢,, set by the phase shifters in the
MZI couplers. In order to maximize |s,,|?, we find that the
phases must satisfy the condition A¢; + A¢,, = 7.

It is equally essential for the resonator to have a suffi-
ciently high quality factor (Q) such that the line width is
narrow enough to only couple to the wy instead of both
frequencies. For the simulations presented in the main
text, the Zeeman splitting is assumed to be approximately
12 GHz, which implies that Q must be > 10* to resolve
between wy and w;. In Fig. 9(a), we find that « is smallest
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FIG. 9. The decay rate of the ring resonator. (a) The total
decay rate (line width) of the resonator is plotted as a function
of A¢; and A¢,, on a log scale. x reaches its minimum near
A¢; = £ and A¢,, = 0, at which the resonator is decoupled
from the waveguides. k (in gigahertz) is plotted against A¢; for
(b) the setting mode and (c) the routing mode.

at A¢; = £m, which corresponds to the resonator being
completely decoupled from the input waveguide (source)
and cavity leakage being maximally suppressed. Similarly,
when A¢,, = 0, the ring (source) is completely decoupled
from the mirror waveguide. As long as A¢; is sufficiently
close to 77, Fig. 9(b) indicates that the resonator line width
is sufficiently smaller than the Zeeman splitting of approx-
imately 12 GHz. For example, at A¢; = 0.957 such that
Ag,, = 0.057, |s,,|* is approximately unity and hence sat-
isfies the setting mode. In the routing mode, we only need
to minimally shift A¢, to 0 such that |s,,|> =1 and
Ism|> = 0, as indicated by the drastically varying region
near A¢; = w and A¢,, = 0, as shown in Figs. 8(b) and
8(c). With A¢,, = 0 fixed, we validate that the narrowness
of the resonator line width is as illustrated by Fig. 9(c).
k is expectedly smaller in the routing mode than the set-
ting mode, since the resonator is decoupled from the mirror
waveguide, thereby having one less leakage channel.
Lastly, we can appropriately choose A¢g, which is the
phase shifter within the resonator, such that traversing
through the resonator imparts a 7 /2 phase to the wy com-
ponent upon a single pass. In a round-trip, |wo) effectively

TABLE II.  After the Pauli X gate on the wy, component, both
frequency modes acquire the same spin-dependent phase.

W) 1) )11

|wo) 0 T —— |wy) T 0
o) 7 0 ™ o) 1 0

undergoes a Pauli X gate, rendering the truth table shown
in Table II.

APPENDIX C: QUANTUM STATE TRANSFER
1. Photon-to-spin

The atom is first initialized in a superposition of the two
ground states: |¥4) = (|1) + [1))/+/2. With the incom-
ing frequency-encoded photonic qubit, |{p) = a|wg) +
Blwy), the joint (unnormalized) photon-atom state is

V) = ¥p) ® [Yu)

= (alwo) + Blor) () + [1). (CD)
The add-drop filter resonantly couples to only the w, com-
ponent, which then reflects off a mirror, acquiring a 7
phase shift regardless of the atomic state. On the other
hand, the w; component interacts with the atom-cavity sys-
tem and acquires a spin-dependence phase shift. After the
CZ operation, the photon and the atom are entangled:

V) = —alwo, |) — alwo, 1) = Blwi, |) + Bloi, 1).

(€2

The returning photon then goes through a frequency beam
splitter that performs a Hadamard gate, after which the
two frequency components are routed to different photon
detectors:

V) = —a(jwo) + [w1)(I]) + 1))
— B(lwo) = lor)(N) = [1)
= |wo) ® [ (a + HIL) — (@ = p)[1)]
I

+lo) @[—(@=HN) —(@+BA)IN)].  (C3)
Upon heralding, the atom undergoes another Hadamard

gate to complete quantum teleportation:

V) = lwo) @ [—(a+ B)(IL) + 1) — (@ = B)(IL) — [1))]
+ 1) @ [—(a = B)(L) + 1)
—(@+BHN) —IM)]
= —|wo) ® (@|l) + BI1) + |o1) ® (—all) + BIT)).
(C4)
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The end result is
) =all) + BI1)
or «all)—pBI1)

neglecting global phase. Note that an additional Pauli-Z
operation is needed if w, is detected.

if wy 1s detected

if w; is detected,

V) = armlwo, L) + armlwo, 1) + Broglwr, |) 4 Bronlwr, 1).

After the Hadamard on the photon,

Now, let us consider an imperfectly overcoupled single-
sided cavity with waveguide-cavity coupling xye/k < 1.
We denote 7o and 7y, as the off- and on-resonance cavity
reflections and 7, as the mirror reflection. Assuming that
the interferometric couplers are lossless in the add-drop
filter, the photon-atom entangled state is then

(C5)

V) = arn(|wo) + |w1)) (L) + 1) + B(lwo) — [@1) (ot L) + 7on| 1))

= |wo) ® [(arm + Brom ) + (@rm + Bron) 1] + |w1) & [(@rm — Brow ) + (@rm — Bron)|1)].

The additional Hadamard on the atom would yield

(Co)

[¥) = |wo) & [(arm + Brom) (L) + 1)) + (@rm + Bron) (I4) — [1))]
+ |o1) & [(ary — Brom) (1) + [1)) + (@rm — Bron) (1) — [1))]
= |wo) ® [Rary, + B(ron +Fo)) ) + B(—Fon + For)|1)]

+ |w1) ® [Qarm — B(Fon + o)) ) + B(ron — 7o) | 1)] .

If the register qubit is [{¥p) = (|) + 14))/~/2 such that
a=p=1/ V2 and we assume that |r,,| = 1, detection on
the wy port would herald the state

V) = 2+ 7on + 7o) + (=Fon + 7o) | 1). (C8)

Since sgn(r,,) = 1 and sgn(rox) = —1, we see that |) =
[{) + |1) requires |ron| = |Fof|, which hints at the need to
“balance” these two reflections. Equation (A1) dictates that
Fon X Kywe(C — 1)/(C+ 1) while rof o kwg/k, such that
only a suitable regime of {g, ¥, «,kyw,} would maximize
the quantum state transfer fidelity as shown in Fig. 3.

2. Spin-to-photon

Once the bus qubit retrieves the data from the mem-
ory layer, we must extract the address out of the qRAM
to obtain the correlated output state Zj a;|j)alDj)p. By
sending additional photons, we can perform quantum state
transfer that maps the spin qubits onto the photonic qubits.
Similar to the heralding procedure for transferring the
photonic states to spin qubits, the spins must undergo pro-
jective measurements to complete the spin-to-photon map-
ping. While it is feasible to perform single-shot readout
on one spin, it is experimentally difficult to simultaneously
perform projective measurements on multiple spins within
one layer. The issue can be circumvented by introducing an

(C7)

(

ancillary photon that is entangled with the spins for each
layer, and heralding on such photon equates to performing
projective readout on the spin qubits.

After data retrieval, the spin holds the routing state
[V4) = a|l) 4+ B|1). The incoming photon initialized in
the superposition state (unnormalized) |V¥p1) = |wo)1 +
|wy )1 interacts with the cavity, producing the output state

W) = —alwo)1 V) — alw)il{) = Blwo)1[L) + Ble)i|1)
= —a(Jwo)1 + w1) D) = B(lwo)r — [@w1) DI
(C9)

After a Hadamard operation on the spin qubit, the entan-
gled state becomes

W) = —a(jwo)1 + [0 (L) + 1))

— B(lwo)1 — ) D)) — I1). (C10)

A subsequent Hadamard operation (via the frequency
beam splitter) on the photon yields

W) = —alwo)i (V) + 1) — Blo)1(4) —11)
= —|) ® (a|wo)1 + Blwi)1)

— 1) ® (a|wo)1 — Blw)r). (C11)
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We then send a subsequent photon |Wp;y) = |wp)2 + |w1)2
that will entangle with the spin qubit for performing
the projective measurement. Similarly, the composite
state undergoes a CZ operation upon cavity reflection,
resulting in

W) = [{)(lwo)2 + |wi1)2) (at|wo)1 + Blwi)1)

+ 1) (lwo)2 — l@r)2)(etlwo)1 — Blwr)r).  (C12)
Another Hadamard operation on the second photon would
produce an entangled state:

W) = ) wo)2(lwo)r + Blwi)1)

+ [ w1)2 (@)1 — Blwr)1). (C13)
As a result, any projection on the frequency-encoded pho-
ton is a projective measurement on the spin as well. If |wg),
is detected, the effective projection onto || ) results in the
transferred state onto the first photon. If, instead, |w1), is
detected, an additional ;v pulse would be applied to the first
photon to construct «|wp); + Blw;)1. Imperfections in the
cavity system would be treated in the same fashion as in the
previous section by taking account of nonunity reflections:
Ton, Foff, and 7.

APPENDIX D: QUANTUM ROUTING

In the routing mode, the MZI in Fig. 2(c) is tuned to
operate as a 50:50 beam splitter, the unitary matrix of
which is denoted by B. Let a and b be the annihilation
operators for the top and bottom spatial modes such that
a'10),]0), = |1)4]0), represents one photon present in the
top waveguide and no photon in the bottom waveguide.
The MZI provides the following unitary transformation on
the operators:

BaB" = %(a + ib), (D1)
BbB = %(b + ia). (D2)

Assuming input strictly from the top waveguide, our initial
state is [¢g) = |1)4]0), = a']0),]0),. After passing through
the MZI, the state becomes

1) = Bleo)
= Ba'|0),]0), = Ba"B'B|0),|0),

1
= E(aT — ib")]0),4]0),. (D3)

We can denote the unitary transformation of the atom-
coupled cavity system (in conjunction with the resonator)
as PaP" = ae®. Note that it is only acting on the top

waveguide and has no effect on b. As a result, the photonic
qubit after reflection off the mirror and the cavity system
becomes

|$2) = Pl¢1)

L ot — iphypt

_ %(ei"’aT — i5)(0)10)s. (D4)

Lastly, the photon returns to and interacts with the MZI
once again:

l¢3) = BY|¢)

1 o
= —B'*a" — ib"BB0),|0)
V2 ’

- % (% (a’ +ib") — i(d" + ia")) 10),10)s

[/ oi®/2 —i¢/2 i9/2 __ ,—ip/2
= ¢'?/2 (e—l -;e l )aT—i-i(—el 26 l >b{|

% 10)410)s

— (/2 :COS ("%) 11)4]0), — sin (%) |O>a|1>b] :

(D5)

In summary, the photon exiting the MZI output «
[Fig. 2(c)] has a constant m phase shift upon reflec-
tion off the mirror, whereas one exiting the MZI
output b has a spin-dependent {0,7} phase shift.
Together, the MZI-cavity-spin system functions as a spin-
dependent router, mapping (x|{) + B|1)) ® [0),]0), to
a[{)1)al0)s + BI1)0)al1)p.

APPENDIX E: PIC IMPLEMENTATION

Figure 10 illustrates a more detailed schematic of our
PIC implementation for each tree node. Specifically, a cir-
culator is appended so that the incoming photon can be
routed to the children nodes as opposed to returning to the
root.

APPENDIX F: SUCCESS PROBABILITY

Recall that each register i can be written with success
probability p; [Eq. (4)]. A successful qRAM query would
consequently occur with a probability that is the product of
all the layer probabilities:

n
— >y OLG —1)/2
Psuce = 1_[ pi = e Dl OLOgnti=h/2)n
i=1

(F1)

As expected, Fig. 11 shows a polynomial roll-off in the
success probability pg, as the number of memory cells
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FIG. 10. A detailed PIC implementation of a tree node. Paths
that are inactive in each mode are faded out.

Nmemories = 2" increases. Since the waveguide-cavity cou-
pling xwg/k mainly determines the cavity reflection, pgycc
can differ by orders of magnitude and the difference
increases with Nmemories-

APPENDIX G: TELEPORTATION SCHEME

Essential to the setup of the teleportation scheme is
to create a GHZ state for each layer prior to quantum
teleportation. Below, we break down its creation process
into three critical steps: photon-assisted Bell-state creation,
Bell-state swap between nuclear (memory) and electron
(broker) spins, and GHZ-state creation by joining adja-
cent pairs. After this, we explain how a BSM can be
made on two remotely entangled spins via the photon-
assisted cavity interaction. Lastly, we provide an example
of how teleportation enables transferring addresses onto
the QRAM.

0

. 10
=t
B8
<
~8 )
8 —e—nwg/n =0.950
Tg —e—/cwg/n =0.965
it k. [k =0.980
2 wa >
é —e—mwg/n =0.995

_5 \ , J

10
10’ 102 103
N, memories
FIG. 11. The retrieval probability as a function of the number

of memories on a log-log scale. pg. displays a polynomial roll-
off as Nimemories increases for waveguide-cavity coupling kyg/k =
0.95, 0.965, 0.98, and 0.995.

1. Photon-assisted Bell-state creation

In order to create a Bell state between neighboring
matter qubits, a photon is sent to reflect off each cavity con-
secutively. Importantly, the node is in the “setting” mode
such that reflection off the cavity system generates a CZ
gate. Here, we provide an example of how a photon inter-
acting with two cavities aids construction of a Bell state
between the two spin qubits. We begin with the photonic
and the spin qubits prepared in the |+) state such that
composite state is

W) = (o) + l1) (U1 + 1) ()2 + 112, (G1)
where the subscripts 1 and 2 denote different spins.

After the photon reflects off the first spin qubit coupled
to the cavity, the state becomes an entangled state:

1) = = [(Jwo) + 1)) [{)1
+ (lwo) = lw1) [T11] ()2 + [1)2)
= —[(lwo) )2 + w1} )2 + lwo) | 1)2 + i) [1)2) W h
+ (lwo) )2 = [ )2 + |wo)[1)2

— lon) 1)) IThl. (G2)
Upon reflecting off the second cavity system, it produces
the state

1) = {[(wo) + 1)) 1 )2 + (lwo) — |w1)) [1)2] I )

+ 4 [(lwo) = |w1)) V)2 (Iwo) + lw1)) [T)2] [T}
(G3)

A Hadamard operation on the photon leads to the final
state:

1) = lwo) (L) + M) + o) (1) +114) . (G4)
If the wq detection port clicks, the Bell state |®) =
[{1) + [11) is heralded. On the other hand, if the w; port
registers a click, the Bell state |¥) = [| 1) + [1) is cre-
ated. A Pauli X gate can be applied to the second spin qubit
to transform |W™) to |®T).

Multiple pairs of adjacent tree nodes can simultane-
ously undergo the aforementioned evolution to create Bell
states. Then, the entangled spin-qubit pairs can be linked
by the same procedure. As opposed to having a single pho-
ton reflecting off all the nodes across each layer to create
a GHZ-like state, a process that inevitably suffers from
exponentially decaying success probability, the pairwise
creation protocol described here is much more efficient.

2. Bell-state swap between electron and nuclear spins

Figure 12(a) shows two electron spins eL and eR entan-
gled in a Bell state: |00), + |11).. Let the nuclear spins
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FIG. 12. Operations to: (a) swap a Bell state between a pair of
entangled electron spins and a pair of nuclear spins; (b) entangle
two pairs of Bell states to form a four-qubit GHZ state in the
nuclear spins.

initialized in the ground state |0),;/,z. A controlled NOT
(CNOT) operation, where eL acts as the control and nL
as the target, yields an effective GHZ state: |0),.]00), +
[1),111).. Then, an X measurement on el disentangles
the electron spin from the GHZ state, leaving the final
state |):

1) = (0] £ (1D (10)42100)¢ + [1)nz]11)e)
= 10)nLl0)er £ [1)nz]1)er-

(G5)
(G6)

Similarly, a CNOT operation between eR and nR pro-
duces |O>nL|O>eR|O>nR + |1>nL|1>eR|l>nR- A subsequent X
measurement on eR then leaves a Bell state between the
nuclear spins:

1) = ({01 £ (1Dr (10)er|00), £ [1)er|11),)
= [00), & [11),.

(G7)
(G8)

3. GHZ-state creation

Now, we assume that two adjacent pairs of nuclear
spins, {nl,n2} and {n3, n4}, are entangled in a Bell state,
as shown in Fig. 12(b). The corresponding electron spins
of n2 and n3 are also entangled in a Bell state via a
photon-assisted interaction. We first consider the compos-
ite state including n1, n2, eL, and eR after a CNOT operation
between n2 and eL, in which #2 is the control and el is the
target:

[¥) = 100),[00), +[00),,[11)¢ + [11),]10)¢ 4 [11),]01).
(G9)

= (100)410)er + [11)4[1)er) [0)er

+ (100),[Der + [11)n[0)er) 1)er, (G10)

qRAM

FIG. 13. A two-level qRAM is first entangled with a remote
QC. Local BSMs in the QC complete quantum teleportation of
the query addresses onto the binary tree. The memory layer is
not shown in the schematic for simplicity.

where |ij ). = |i)er|] )er- A subsequent Z measurement on
eL followed by a conditional Pauli transformation on eR
yields a GHZ state: |00),]0)og + |11)]1)z.

Then, similarly, a CNOT operation between n3 and eR
followed by a Z measurement on eR yields the final
GHZ state (conditional Pauli transformation on the nuclear
spins):

) = |0000), + [1111),,. (G11)

4. Teleportation

We present here an example of mapping two-register
addresses Zj aj |k ky ;) onto a two-level binary tree. Sup-
pose that the query addresses compose the superposition
state, «|00) + B|01) + y|10) + §|11), where each register
represents the state of the corresponding node at each tree
level. We consider the formalism that the atomic state |0)
routes the subsequent qubit to the left branch and [1) to the
right. For an instance, the address |01) means that the root
(level-1) node is in the state |0) and that the left node of
level 2 is in the state of |1).

Each layer in the qRAM is initialized as a GHZ state,

e.g., (l()) + |I)> /ﬁ, where i) = |ii---i). Importantly,
the first register of each GHZ state belongs to an ancillary

qubit in the QC, as shown in Fig. 13.
The unnormalized composite state would then be

|¥) = (]00) 4 B|01) + y[10) + 5[11))

® (100) + [11))1(]000) + [111))2, (G12)

where the subscripts 1 and 2 denote the layer number.
The state can be rewritten as

W) = a [(|F) +[27)DI0) + (WF) + ¥ )I1)],

® [(|DT) 4+ [©7))[00) 4+ (¥F) + [ )[11)],
(G13)

+B[(PF) +DTNI0) + (W) + ¥ DI

® [(1¥H) — [W7)[00) + (|OF) — [@7)[11)],
(G14)
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FIG. 14. The generation rates for the GHZ state and the remote entanglement link are evaluated at different cavity-waveguide

coupling strengths ke /k = 0.95, 0.965, 0.98, and 0.995.

+y [ = wTDI0) + (jF) — e NID],

® [(|DT) + [@7))]00) 4+ (W) + [¥7)|11)],
(G15)

FS (1) = [¥TNI0) + (19T) — [@7NID)],

® [(1WH) — [W7)]00) + (|]F) — [@7)[11)],
(G16)

= |®")11®7) (@]0)1100)2 + B10)1[11)2

+ vI1)1100)2 + 8[1)1[11)2) + - -- (G17)

BSMs for each layer would then project the composite
state into one of the 16 possible combinations. Followed
by conditional Pauli transformations, the query addresses
are finally teleported onto the binary tree.

5. Efficiency simulations

The teleportation scheme includes four steps: (1) initial-
izing the entanglement links, (2) teleporting the addresses
to the qRAM, (3) querying, and (4) teleporting the
addresses back to the QC. We perform event-based sim-
ulations to estimate the time of completing all four steps.

In step (1), all the nodes except the leftmost node within
each qRAM layer are entangled to form a GHZ state.
It is created by heralded entanglement between nearest-
neighbor pairs with success probability pe, = npathﬂszﬂdet
(ep refers to entangled pair) (see Sec. F). If the entan-
glement attempt fails, the spins undergo reinitialization
for Treset = 5 ws. If it succeeds, the electron spins (bro-
ker qubits) are swapped with their respective nuclear spins
(memory qubits), an operation that we assume to take

tesn = 16 us. Then, the unlinked neighbors are subse-
quently entangled in the same fashion. To reduce computa-
tional costs, we assume that the rate is limited by the largest
layer and only simulate its GHZ-state creation process.

Simultaneously, in step (2), we attempt to generate
entanglement between the broker qubit of the QC and the
leftmost node of the qRAM for each layer. Once the entan-
glement link is generated, the electron and nuclear spins
are again swapped. In simulation, we take the maximum
between the time to generate a GHZ state and the time
to produce QC-qRAM Bell state. The generation rates for
both the GHZ state and the remote entanglement link are
plotted in Fig. 14. Once both states are constructed, the
leftmost node is entangled with the GHZ state composed
of the remaining nodes within the same layer. Then, a
local BSM is made between the address register and the
QC ancillary qubits. To fairly compare the efficiency of
the teleportation scheme with that of the GLM scheme,
we neglect the physical distance between the QC and the
gRAM in Fig. 6.

In step (3), a bus photon arrives at the root node of the
binary tree and is routed to the memory layer with the
query success probability p; for an i-level qRAM. Finally,
in step (4), a QC-qRAM Bell state is constructed again for
each layer with probability pe,, followed by local BSMs on
the leftmost nodes in the gqRAM.

In Fig. 6, the simulation data are plotted along with their
analytical fits. Recall that the GHZ states are produced by
linking multiples of Bell pairs. If each Bell-pair creation
succeeds with probability p, it would take a geometric
mean of 1/p attempts. In the case of p = 1, the GHZ-state
creation process would merely be a two-step process. For
example, for a layer with four nodes, nodes 1 and 2 as well
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TABLE III. The parameter values.
We 406.774 THz
K 20.34 GHz [14]
14 94 MHz
Treset 5 ,LLS
Nstr 2.7 dB [37]
Nbend 9.3 dB [37]
Ndet 1.3dB[11]
Rresonator 50 pum [36]
Aefr 2.2645
ng pIC 2.3862
Ng dmd 2.4513
toosn 16 us
thse 30 ns
a 1.7094
b 0.79386

as nodes 3 and 4 are entangled in the first time step. Then,
nodes 2 and 3 are entangled to complete the GHZ state cre-
ation. However, with a nonunity p, the GHZ-state creation
is ultimately limited by the pair that fails the most number
of times. In other words, the rate is mainly determined by
the outlier. We fit the guessed model /(N) = aN ~* multi-
plied with the analytical rate (based on geometric mean) to
the simulation data, where N is the number of nodes within
the largest layer. The coefficients a and b capture the scal-
ing of the outlier with the circuit depth. Their fitted values
averaged over the considered xy,/k ratios are summarized
in Table III.

6. PIC interconnect

In contrast with the GLM scheme, the teleportation
scheme requires greater connectivity in the qRAM. Each
node is not only connected to two children nodes in the
next layer, but also to the rest of the nodes in the same
layer. Here, we detail its PIC construct. Importantly, as
shown in Fig. 15(a), the architecture requires interconnect
layers interspersed between the binary tree layers. Addi-
tionally, a photon-detection system resides between each
neighboring pair. Assuming that the single photons are
propagating in one direction, i.e., incoming from the right
of each layer, the detector would register photons after they
interact with the cavities to its right.

Within each interconnect layer, MZI switches are classi-
cally controlled to enable routing of the single photons to
individual cavities. The cavity depicted in Fig. 15(b) is the
same construct shown in Fig. 10. To entangle two neigh-
boring nodes, each tree node first operates in the setting
mode. A single photon reflects off the first cavity and is
directed to the second cavity via a circulator. After enter-
ing the second node through the MZI and reflecting off the
cavity, the photon is again routed to an MZI switch via a
circulator—except that now, the switch directs the photon
to the detector for heralding a Bell-state creation. We stress

KARERA
EAERER SRS +

Upper
" hode

Laser

T

W

Laser

MZI

S |
fEéi&;]

Left Right
node node

||
j_"—l SPg

FIG. 15. The proposed PIC architecture for the teleportation
scheme. (a) The qRAM binary tree contains interspersed inter-
connect layers that enable intralayer connectivity. (b) Within
each interconnect layer, a network of MZIs is classically con-
trolled to direct the single photons to either the subsequent cavity
or the detection system for heralding during GHZ-state creation.
It is then switched to a transparent state during the data retrieval
step.

here that the interconnect layer enables beyond-nearest-
neighbor connection. Therefore, given prior knowledge of
the query addresses, the architecture provides the ability
to only entangle the necessary nodes and reduces state
infidelity.

After the addresses are teleported from the QC to the
qRAM, the cavity nodes are changed to the routing mode
to direct the bus qubit to the memory layer at the bottom
of the binary tree. In this step, the interconnect layer is
essentially transparent by having the photon bypassing the
circulators.

7. Infidelity from decoherence

We define the query fidelity as the fidelity of the pre-
pared tree state. To calculate the infidelity caused by
decoherence for each layer, we take the decoherence rate
va to be proportional to Nt._,,/T5 /., where N is the num-
ber of nodes, 7 ,/. is the coherence time for the nuclear
(electron) [subscript n (e)] spin, and ?,_,, is the approxi-
mate entanglement time. We assume perfect single qubit
rotations, readout, and setting fidelity by optimally balanc-
ing losses (see Sec. I1 A). We only consider the effect of
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FIG. 16. The query fidelity as a function of the qRAM size.
The nuclear and electron spin coherence times are, respectively,
assumed to be: (a) T, = 10° s and T, = 1072 s, (b) T», =
10'sand T, = 107! s.

decoherence caused by continuous dephasing and neglect
other physical errors such as imperfect nuclear-electron
spin interaction. In Fig. 16(a), at Npemories = 103, the query
fidelity drops to near F, = 0.5, suggesting that the pre-
pared tree is no better than a maximally mixed state.
Improvements on the nuclear and electron spin coherence
times by an order of magnitude can increase the fidelity to
Fy > 0.9, as shown in Fig. 16(b).
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