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ABSTRACT

In this work, we consider the problem of optimal design of an acoustic cloak under
uncertainty and develop scalable approximation and optimization methods to solve this
problem. The design variable is taken as an infinite-dimensional spatially-varying field
that represents the material property, while an additive infinite-dimensional random
field represents, e.g., the variability of the material property or the manufacturing error.
Discretization of this optimal design problem results in high-dimensional design variables
and uncertain parameters. To solve this problem, we develop a computational approach
based on a Taylor approximation and an approximate Newton method for optimization,
which is based on a Hessian derived at the mean of the random field. We show
our approach is scalable with respect to the dimension of both the design variables
and uncertain parameters, in the sense that the necessary number of acoustic wave
propagations is essentially independent of these dimensions, for numerical experiments
with up to one million design variables and half a million uncertain parameters. We
demonstrate that, using our computational approach, an optimal design of the acoustic
cloak that is robust to material uncertainty is achieved in a tractable manner. The optimal
design under uncertainty problem is posed and solved for the classical circular obstacle
surrounded by a ring-shaped cloaking region, subjected to both a single-direction single-
frequency incident wave and multiple-direction multiple-frequency incident waves. Finally,
we apply the method to a deterministic large-scale optimal cloaking problem with complex
geometry, to demonstrate that the approximate Newton method’s Hessian computation is
viable for large, complex problems.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

We first present a short review for optimal design of acoustic metamaterials by different techniques in Section 1.1, fol-
lowed by Section 1.2 on the introduction of our main contribution of the formulation, algorithms, and numerical experiments
for optimal design of acoustic metamaterial cloaks under uncertainty.
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11. A short review for optimal design of acoustic metamaterials

Research on acoustic and elastic metamaterials is a product of a unique combination of technological advances that have
been made over the last three decades to achieve extraordinary redirection, absorption, or amplification of acoustic or elas-
tic wave disturbances by designing the sub-wavelength structure of the medium through which mechanical disturbances
propagate [47,37,60]. Of specific interest here is the field of acoustic and elastic metamaterials that make use of the conver-
gence of novel concepts in physics with advances in technology and computational methods, primarily the field of additive
manufacturing (AM) [65,62,81] and access to robust computational tools [4,1,30,12]. The simultaneous rapid maturation
of AM and computational methods allows researchers to rapidly simulate, build, and test elaborate structures for acoustic
wave manipulation that follow from rigorous mathematical predictions such as transformation acoustics (TA) [36,22]. TA is a
mathematical approach that uses coordinate transformations to map the physical space to a different space of interest using
a one-to-one map between the two domains [36,38,67,22]. The mathematical map is then used to determine the material
properties in the region of the transformed fields that produce the same effect in the physical space. For example, mapping
the acoustic field in a finite volume surrounding a small scatterer to that of a shell surrounding a larger object allows one
to determine the material properties within the shell that produce a cloak capable of rerouting acoustic waves around the
large object. This approach provides a forward model for the determination of the material properties required to generate
an acoustic cloak using TA.

However, the true research challenge is to define material microstructure that generates effective material properties that
meet the prescription provided by TA for the frequencies of interest using existing materials and manufacturing methods.
Coordinate transformation and its application to the manipulation of electromagnetic waves preceded the application of
coordinate transformations to acoustic waves. Indeed the concept of transformation acoustics was initially facilitated by uti-
lizing the direct analogy that exists in two dimensions between Maxwell’s equations and the equations describing acoustic
wave propagation [36,22]. Slight differences in the coordinate transformation were found for 3D geometries, arising from
the fundamental differences of 3D wave propagation for transverse (electromagnetic) and longitudinal (acoustic) waves
[38]. Although highly anisotropic, such effective fluids could be theoretically realized using alternating layered structures
with ordinary (isotropic) fluid-like properties [79] or frequency-dependent waveguide designs [83]. However, coordinate
transformation of elastic materials, in which compressional and transverse shear waves co-exist, require a far more exotic
metamaterial with a fundamentally new type of microstructure: pentamode (PM) materials. PM materials are defined as
materials whose stiffness tensors have only one non-null eigenvalue out of a possible six [67]. In other words, these materi-
als have five deformation modes that can be imposed without storing energy in the material [67] and they can therefore be
thought of as quasi-fluids. While the transformation acoustics provides an exact analytical solution for the material proper-
ties required to create a perfect cloak, it suffers from several serious drawbacks. The primary problem with this approach is
that while it prescribes the material properties required to achieve cloaking, it cannot define the sub-wavelength structure
that will generate the required properties. In this sense, coordinate transformation methods are simply analytical methods
to solve forward problems and shed no light on how the behavior of interest can be generated. The vast majority of acoustic
cloaking research has therefore relied on physical insight and researcher creativity to find material structures that generate
the required material properties to achieve cloaking of an object.

A powerful technique to achieve cloaking can be accomplished using a plasmonic cloak, also known as a scattering
cancellation (SC) cloak, which is a non-resonant means of eliminating the field scattered from an object, thereby hiding it
from detection. This was originally applied and demonstrated for electromagnetic waves [7,72] using plasmonic materials
to achieve the necessary cloaking layer properties. The SC approach to cloaking was subsequently shown to be an effective
means of cloaking acoustic waves [43,41]. Unlike cloaks developed using a coordinate transformation approach [57,67], only
the scattered field in the surrounding medium is eliminated, and therefore this solution does not limit the incident wave
from interacting with the object. As a result, there is no restriction on the use of isotropic materials to create a plasmonic
cloak, and it may be used to suppress the scattering from sensors [8,9,42]. In previous work, the composition of an SC
cloak for cylindrical or spherical objects was found by minimizing the total scattering cross-section of the object and cloak
by varying the number, radius, and material properties of layers surrounding the object to be cloaked [7,43,41,44]. This
approach was later extended to the design of cloaks for non-spherical objects and collections of objects [45]. Further, the SC
method is well-suited for numerical approaches to determining material property distributions required to achieve cloaking.
It has been applied to design three-dimensional cloaks with unidirectional performance [75] and two-dimensional cloaks
that exploit Bézier scatterers in the cloaking region to minimize the scattered field [59]. A similar computational approach
employs a gradient-based optimization algorithm to minimize the total scattering cross section (TCSC) of a collection of
rigid or elastic cylinders surrounded cylindrical scatterers that collectively act as a unidirectional cloak [10]. Similar work
by Andkjer and Sigmund employed topology optimization to design a cloak that used a small number of scatterers in the
cloaking region to conceal a circular region in two-dimensional space from detection via airborne sound [11]. Each of these
contributions employ numerical optimization to determine the geometry and properties in the cloaking region. However,
these works and many others have only paid cursory attention to the influence that variation in material properties or
geometry may have on cloaking performance. Further, to the authors’ knowledge, there has been no effort to study how
cloaking design may change when variability is accounted for in the design. Given that fabrication of cloaks must consider
real-world variation in as-built material properties or achievable levels of manufacturing precision, addressing this problem
is central to the creation of reliable acoustics cloaks.
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We remark that future work will extend this research to consider elastic cloaks. However, we believe that the use of
the acoustic wave equation does not significantly limit the contribution for two primary reasons. First, there are numerous
applications, primarily in the case of underwater acoustics, where nearly incompressible media such as elastomers may
be used as the cloaking material. In these materials, wave motion is principally longitudinal and shear contributions can
be neglected, especially when losses are present. It is therefore possible that realistic cloaks may be designed and created
using this simplifying assumption even when considering only conventional materials. The second justification for the use
of the acoustic wave equation as a realistic simplification for cloaking design is that recent research has show that it
is possible to create structured elastic media that only support longitudinal wave motion over very large bandwidths. In
these frequency bands, the acoustic wave equation fully describes propagating mechanical disturbances. These materials
are known as pentamode acoustic materials. They were first conceptualized by Milton [63] and later shown by Norris to
be applicable to the design of acoustic cloaks based on the theory of transformation elastodynamics [67]. These materials
were later experimentally demonstrated in the underwater environment as an acoustic lens by Su et al. [77] and as a two-
dimensional cloak by Chen et al. [33]. Similar physical behavior was subsequently studied in the context of linear wave
propagation in elastic materials subjected to large elastic pre-strains [68,40]. Since pentamode materials can only be created
using intricate lattices of elastic media [15,77,33], realistic limitations imposed by fabrication uncertainty can be directly
tied to the design of these exotic materials and their application to the creation of acoustic cloaks.

1.2. Optimal design of acoustic metamaterial cloaks under uncertainty

In the optimal design of acoustic cloaks, uncertainties may arise from various sources, including material property vari-
ability and flaws or deviations introduced by the manufacturing process. It is therefore important to take uncertainties into
account in order to design a robust cloak that can cancel the scattered wave as much as possible under different realiza-
tions of the uncertainty. For this purpose we consider the problem of optimal design of an acoustic cloak under uncertainty.
While our methodology can be applied more generally, the case considered here is that of time-harmonic acoustic wave
propagation and scattering from an impenetrable obstacle. The wave motion in the background medium and the cloak is
described by the Helmholtz equation with varying wavenumber, i.e., a spatially-varying sound speed in the cloaking region.
We model the sound speed in the cloak as a perturbation of the sound speed in the host homogeneous medium by an ex-
ponential factor, which is taken as an infinite-dimensional spatially-varying design variable field. The uncertain parameter is
modeled as a Gaussian random field that is additive to the design variable supported in the same cloak region. The objective
for the optimal design is to minimize the scattered wave outside the obstacle and cloak region, for which we take a suitable
norm of this quantity as the design objective. Since the design objective depends on the uncertain parameter through the
Helmholtz equation, it is also an uncertain or random function. To account for this uncertainty in the optimal design, we
consider both the mean and the variance of the design objective and minimize an objective functional including a weighted
combination of the two. To promote the sparsity of the design material, we add a weighted L!-norm of the design variable
as a penalty to the objective functional.

The optimal design under uncertainty problem presented above leads to a random partial differential equation (PDE)-
constrained optimization problem, which after appropriate discretization results in high-dimensional uncertain parameters
and optimization variables. Solution of this class of problems faces enormous challenges, and has received increasing atten-
tion in recent years [14,76,49,46,73,52,78,29,56,23,53,55,66,24,54,51,13,4,6,30,28]. One prominent challenge is the evaluation
of the high-dimensional integral involved in the mean and variance of the design objective. A straightforward approach is to
use Monte Carlo integration, which amounts to the sample average approximation (SAA) method, which has a convergence
rate (0 (M~1/2) with M samples) that does not depend on the parameter dimension. Nevertheless, its convergence is often
too slow, so a large number of samples is required to achieve a certain required accuracy. Since one PDE has to be solved
for each sample, this leads to an optimization constrained by a large number of PDEs, and thus this method is usually
computationally prohibitive. As an alternative, rapidly-convergent methods such as stochastic Galerkin and collocation have
been applied [49,46,78,73,52,56,29,23,55,54]. However, they often face the curse of dimensionality, i.e., the computational
complexity grows exponentially with respect to the uncertain parameter dimension, which prevents their use for problems
with high-dimensional uncertain parameters.

Another challenge is that discretization of the design variable field leads to a high-dimensional optimization problem.
A simple steepest descent based method will require far too many optimization iterations to converge, while a Newton
method may converge rapidly but require the computation of the Hessian of the objective functional acting in given direc-
tions, which is often too complex for sophisticated approximations of the objective functional as we employ here. In this
work, we propose a computational approach based on a Taylor approximation for the evaluation of the high-dimensional
integral in the objective functional and an approximate Newton method for the high-dimensional optimization problem.
We employ the Taylor approximation based optimization strategy proposed in [4,30,28], by which we approximate the
design objective by its (quadratic) Taylor expansion with respect to the uncertain parameter and compute the trace of
the preconditioned Hessian resulting from this approximation by a randomized singular value decomposition (SVD) algo-
rithm. The computational complexity measured in terms of the number of PDE solves depends only on the—often small
and dimension independent—number of dominant eigenvalues of the preconditioned Hessian, and not on the nominal large
uncertain parameter dimension. Thus this approximation is scalable with respect to the parameter dimension. To solve the
high-dimensional optimization problem, we propose an approximate Newton method in which the Hessian of the objective
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functional based on the quadratic Taylor approximation, which is too complex to compute, is approximated by that of the
deterministic objective functional, i.e., one that is evaluated at the mean of the random variable. Provided the uncertainty
is not too large, e.g., the noise-to-signal ratio or the ratio between the magnitude of the uncertain parameter and that of
the design variable is less than 20% in our application, the deterministic Hessian provides a good approximation of the
true Hessian, thus leading to an optimization method that is (effectively) scalable with respect to the optimization variable
dimension. We caution that both the Taylor approximation and the approximate Hessian may become less accurate when
the uncertainty becomes large. To partially address this limitation, a Taylor expansion-based variance reduction technique
was developed in [30], in which the quadratic approximation is used as a control variate. Such an approximation could be
used if the uncertainty exceeds 20% of the baseline. We assume this is not the case, since one would not want to design a
metamaterial for sensitive applications with such variability.

We apply the proposed computational approach to the optimal design under uncertainty of the acoustic cloak in several
different settings. A classical circular obstacle surrounded by a ring-shaped cloak is used to demonstrate the efficacy of op-
timal design under uncertainty and our scalable computational approach. First, we consider a deterministic approximation
of the objective functional, which results in a deterministic optimal design problem. In this setting, the scattered field is
efficiently eliminated by the optimization. Second, we compare this design with the optimal design under uncertainty and
show that the latter achieves a significant reduction in variability of the scattered field relative to the deterministic opti-
mal design. Third, to demonstrate the scalability of the Taylor approximation and the approximate Hessian-based Newton
optimization methods, we solve the optimal design problem for a sequence of refined finite element discretizations with
dimension up to half a million for the uncertain parameters and one million for the design variables. Scalability with re-
spect to the dimensions of the uncertain parameters and the design variables is demonstrated by dimension-independence
of (1) the convergence of the optimizer, (2) the spectral decay of the eigenvalues of the preconditioned Hessian of the
design objective with respect to the uncertain parameters, and (3) the accuracy of the Taylor approximation. Fourth, we
extend the optimal design problem with single direction, single frequency incident wave to one with multiple directions
and multiple frequencies, and demonstrate the efficacy of the acoustic cloak. Finally, we consider a more complex geometry
representative of a stealth aircraft, for which we also obtain an effective acoustic cloak.

The rest of the paper is organized as follows: In Section 2, we formulate the optimal design of the acoustic cloak
under uncertainty problem, including the governing Helmholtz PDE constraint, the uncertain parameters and design vari-
ables, and the formulation of the mean-variance objective functional and sparsifying penalty term. Section 3 presents the
approximation methods of the mean-variance functional, including the deterministic approximation, the sample average
approximation, and the Taylor approximation with randomized SVD computation of the resulting trace. The optimization
method is presented in Section 4, in which the computation of the gradient and (approximate) Hessian of the objective
functional with respect to the design variables, as well as the approximate Newton method itself, are derived. Several nu-
merical experiments for the optimal design of an acoustic cloak are presented in Section 5, which is followed by conclusions
in Section 6.

2. Problem formulation

In this section, we formulate the problem of optimal design of an acoustic cloak under uncertainty. The forward problem
consists of time-harmonic acoustic wave scattering in an inhomogeneous medium described by the Helmholtz equation,
in a region truncated by perfectly matched layer. We describe the representation of the design variables and uncertain
parameters, the mean-variance objective functional, and the formulation of the optimal design under uncertainty problem.

2.1. Acoustic wave scattering

The time-harmonic acoustic wave scattering of an incident wave in a host medium from an impenetrable obstacle sur-
rounded by an inhomogeneous metamaterial medium is governed by the following Helmholtz equation [34]:

Au+kPu = (K3 — k*)u"  inRY\ D,, (1a)

Vu-n=-vVu™.n onaD,, (1b)
d

lim r@-1/2 (a—l; - iku) =0, (1c)

r—o00

where R? is the physical space of dimension d =2, 3, D, c R? is the region of the obstacle with boundary 9D,. u'" is the
incident wave given by u'"® = etko¥b in direction b € RY with the complex unit i = +/—1; u is the scattered wave; the total
wave is given by uf = u +u'™. In addition, ko is the wavenumber in the background medium given by the positive constant
ko = w/co with frequency w and constant speed of sound cp in the host medium, while k(x) = w/c(x) is a spatially-varying
wavenumber in the inhomogeneous medium. c(x) denotes the speed of sound at x € R? in the inhomogeneous medium.
A sound-hard boundary condition is imposed on the boundary dD, in (1b) for the impenetrable obstacle, where n denotes
the outward unit normal vector along dD,. Eq. (1c) is the Sommerfeld radiation condition that guarantees that the scattered
wave is outgoing, which is realized by a perfectly matched layer (PML) condition [80]. r(x) = |x| denotes the distance from x
to the origin.
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Fig. 1. Sketch of the domain for acoustic wave scattering in an inhomogeneous medium.

2.2. Weak formulation with PML condition

To solve the problem numerically, we consider a bounded and square computational domain D c R%\ D, that includes
the inhomogeneous metamaterial medium as shown in Fig. 1, and use a PML condition [80] on its outgoing boundary to
prevent reflection of the scattered wave as imposed by (1c). In two dimensions, i.e., d = 2, the PML condition leads to [80]

S S i
axl (fa’ﬁ u) + axZ (£8X2u> + kzsxl Sl = (k(z) - kz)umc inD, (2)
1 2
where
O; O;
Sx1=1+i SxZ=1+£ (3)

ik’ ik’

where k(x) = ko/n(x) = w/c(x), oy, and oy, are real valued continuous functions in the PML region Dp, which depend only
on the physical coordinate x; and x;, respectively. Outside the PML region, i.e., D \ D, we have oy, =0 and oy, =0, so
that (2) becomes the same equation as (1a). The wave function u is complex valued, which can be written as u = uq +iup
with the real and imaginary parts u; and uy, respectively. Then (2) can be written as a set of two equations in D with real
coefficients as

Oy, (a10x, U1 — A2y, U2) + dx, (A30x, U1 — Aadx,Uz) + biuy — byuy = (k3 — k*yuinc ”
Ox; (@10, U2 + A2y, U1) + Bx, (a30x,U2 + Aadx,U1) + biu + byug = (k3 — k*)ulne
where uilrlc = cos(kox - b), ui]rlc =sin(kgx - b); the coefficients are given by
o - k2 + 0y, 0%, L= k(oy, — Ox,) - k2 +0x,0x,  k(ox, —0Ox) (5)
k2402 k2402 k2+0x22 ' k2+0X22
and
b] = kz - GX10X27 bz = _’<(UX1 +0X2)' (6)

To state the weak formulation of the equations (4), we introduce the following notation. Let L*(D) denote the Hilbert
space of square-integrable functions in D, and let H1(D) := {v € L2(D), |Vv| € L%(D)}, V = H1(D) x HY(D). Then the weak
formulation of (4) can be written as: find u = (uq, uy) € V, such that

A, v)=FW), VYv=(vy,vy)eV, (7)

where the bilinear form A:V x V — R is given by
A(w,v) = /(a18x1 W1 — a0x W2)x, V1 + (@30x, W1 — A40x, W2)0x, V1 dX
D
+ f(a1 Ox; W2 + 0205, W1)9x, V2 + (a30x, W2 + 040x, W1)Ox, V2 dX (8)
D

- /(b1W1 —bowy)v1 4+ (bywa +bywr) vy dx
D

5
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and the linear form F : V — R is given by

F(v) = /(k% — k) ulMvy + (k3 — k)ulMvodx — / VUl nvy + Vull . nvyds. 9)
D 3D,

2.3. Uncertain parameter and design variable

To manufacture the acoustic cloak, additive manufacturing (AM) offers significant promise since it allows the fabrica-
tion of complex parts that cannot be readily created using traditional techniques [64,62]. Of specific interest here is the
potential to construct materials with spatially graded material properties by adjusting process control variables within the
build volume. However, this capability is not perfect and errors can be introduced at each manufacturing step. Further, each
fabrication approach has some level of uncertainty in the as-built material properties, whose contribution to the final man-
ufacturing accuracy is unclear [69,71]. In this work, we do not address the faithful modeling of these uncertainties (which
would require analysis of a sufficient amount of experimental data), but consider an aggregated multiplicative uncertainty
and incorporate it into the sound speed in the cloak, which is represented by

c(x, w) = coef®FP)TX  yx e D, ae @ e (10)

Here, 7 is the spatially-varying deterministic design variable field of the cloak in the design region D, which exists in
a separable Banach space Z. At every x € D, {(x,-) is a real valued random variable defined in the probability space
(22, F, P), with the sample space €2, a set of events ¥, and the probability function P : # — [0, 1]. To accommodate the
spatial correlation of the random variables ¢(x, -) at different x € D;, we consider one of the most popular random fields—
Gaussian random fields with probability measure © = N(z,C) defined in a Hilbert space X with dual X’, where ¢ € X is
the mean and C is the covariance operator that can be viewed as an integral operator with suitable covariance kernel. A
very general covariance kernel widely used in spatial statistics, geostatistics, machine learning, etc., is the Matérn covariance,
which leads to the Gaussian field ¢ as a solution of the stochastic fractional PDE [58] with homogeneous Neumann boundary
condition

(—yA+8DY%(¢ —)=W inDp,
V¢-n=0 onaDp,

(11)

where W represents the spatial Gaussian white noise with unit variance, I, V, and A are the identity, gradient, and Laplace
operators, and n is the outward unit normal vector along dDp,. Thus C = (—y A + 81)™%, with o > d/2 controlling the
regularity, § and y controlling the variance, and y /8 controlling the correlation length of ¢. Moreover, C is self-adjoint,
positive, and of trace class. Therefore, sampling ¢ involves solution of the elliptic stochastic PDE (11). Generalizations of the
stochastic PDE (11) may be used to model non-stationary, non-isotropic, complex random fields [58].

2.4. Optimal design of acoustic cloak

Recall that D, and D,, denote the regions of the obstacle and the metamaterial cloak surrounding the obstacle, respec-
tively; let Dy =D \ (D, U D) denote the host medium where we can observe the scattered wave. Our goal is to minimize
the scattered wave in Dy so that the obstacle becomes “invisible”, i.e., no wave scattering observed outside of the obstacle
and its cloak. To achieve this, we define the design objective as

Qw = [ (jur +uzP) . (12)
Dy

which is the scattered wave amplitude measured in the L%-norm. The design objective Q is random and depends on the
random (field) variable ¢ through the random scattered wave u as a solution of (7), where we write u = u(¢, T) to indicate
that the scattered wave depends on the random variable ¢ and the design variable 7. To quantify the randomness of Q, we
use a mean-variance measure and consider the following objective functional to be minimized

J(@) =E[Q](r) + Bv Var[Q](T) + Bp P(T), (13)

where the mean and variance of Q are given by

E[Q](T)=/Q(u(§,f))du and Var[Q](T)=/(Q(u(§,f))—E[Q](f))zdu, (14)
X X

where the integration is taken with respect to the Gaussian measure p = N(Z,C) in X. P(t) is a penalty term on the
deterministic control T € Z. To promote the sparsity of the material in the cloak, we consider an L'-norm for 7, i.e.,

6
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— ~ 2 1/2
P(t)y= | |[t(x)|dx~ | (t°(x) +¢&)"/“dx, (15)
D Dm

where we use the approximate form with a small € > 0 to make P(t) differentiable with respect to T and thus facilitate
gradient based optimization. Further, By > 0 and Bp > 0 in (13) are scalar parameters that weight the importance of the
variance and penalty with respect to the mean. The problem of the optimal design of the acoustic cloak under uncertainty
is finally formulated as the PDE-constrained stochastic optimization problem

mi?](r), subject to (7). (16)

2.5. Optimal design with multiple directions and frequencies

In the above formulation of the optimal design of the acoustic cloak under uncertainty, we consider only one direction

b and one frequency w for the incident wave u"® = etkoXb where kg = w/co. In this section, we extend the formulation to

incident waves with multiple directions and multiple frequencies. For notational clarity, for direction b; and/or frequency
w;, i=1,...,1I for I e N, we write the weak formulation (7) as: find u' = (u}, u},) € V such that

A, v =Fi(vh), wi=@ivh)eV, (17)

and write the design objective (12) as

Q=)= [ (1 +1ub ) dx. (18)
Dp
The objective functional (13) then becomes

I

j(r)=Z(]E[Qi](f)+ﬂvVar[Qi](T))+ﬁPP(T), (19)

i=1

where the mean, variance, and penalty are given as in (14) and (15). Therefore, the optimal design problem with multiple
directions and frequencies becomes

mi?j(t), subjectto (17), i=1,...,1. (20)
Te
Note that the approximation and optimization methods developed in the rest of the paper for the optimal design problem

(16) with single direction and frequency can be straightforwardly extended to the optimal design problem (20) with multiple
directions and frequencies. For simplicity, we present methods for only the former case.

3. Approximation of the mean-variance objective

In this section, we present three classes of approximation methods for the evaluation of the mean and variance in
the objective functional: one is a deterministic approximation with the design objective evaluated only at the mean of the
random variable ¢, the second is a classical sample average approximation, and the third is a quadratic Taylor approximation.
For notational simplicity, whenever there is no ambiguity, we denote Q (¢) for the random objective Q (u(¢, T)) at design
T € Z, and keep in mind that the dependence of Q on ¢ is implicit through u.

3.1. Deterministic approximation

In this approach, we evaluate the design objective at only one fixed sample, e.g., the mean ¢ of the random variable ¢,
so that the expectation and variance of the design objective are approximated as

E[Q]~ Q(¢) and Var[Q] ~ 0, (21)

which leads to a deterministic optimization problem at ¢.
3.2. Sample average approximation

Let &, m=1, ..., M, denote i.i.d. random samples drawn from the Gaussian distribution N(Z, C), then the mean of Q
can be approximated by the average
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M
1
E[Q]~ MmZ:l Q (m), (22)

which is known as sample average approximation or Monte Carlo approximation. The variance can be approximated similarly
by the average

M M 2
_ 29 2. 1 2 a
Var[Q]=E[Q°] - (E[Q D" ~ M;Q (&m) (MmZ:;Q(Cm)> . (23)

We remark that to balance the approximation errors of the mean and variance, different numbers of i.i.d. random samples
can be used for the mean and variance evaluation.

3.3. Taylor approximation

Following the previous work [4,30], we present a Taylor approximation for the design objective Q and the closed form
of the mean and variance based on the Taylor approximation. A formal functional Taylor approximation of the objective Q
at the mean ¢, truncated with K terms, is written as

K
TkQ@) =Y Q@) — ), (24)
k=0
where we assume that Q is K-th order Fréchet differentiable with respect to ¢. The term aé‘Q(E)(g — 7)* denotes the k-th

order (tensor) derivative Bé‘Q(E) at ¢ acting on ¢ — ¢ in each of the k directions, k=1, ..., K. For K =2, we can write the
Taylor approximation (24) more explicitly as

_ _ S _ _
where Q € R, g e X/, and H : X — X’ denote the objective and its gradient and Hessian with respect to ¢, evaluated at the

mean ¢, respectively, and (-, -) = x/(-, -)x represents the duality pairing in X’ x X. Since ¢ is a Gaussian field, the mean and
variance of the Taylor approximation of the objective truncated at the quadratic term can be written explicitly as [4]

-1 - o 1 _
E[T2Q]=Q + Jtr(CH) and Var[T;Q]=(g,Cg) + 5 tr(CH)?), (26)
where we recall that C: X’ — X is the covariance of ¢, and tr(-) denotes the trace, with
tr(CH) = Y knand tr(CH)?) = > A7 (27)
n>1 n>1

Here, (An)n>1 are the eigenvalues of CH, which are equivalent to the generalized eigenvalues of (7-_( ,C™1), i.e., in weak form
we can write

(Hym, ¢) = (:nC "W, ¢) Yope X, n>1, (28)

where (¥n)n>1 € X are the generalized eigenfunctions that satisfy the C~-orthonormality condition
(C™ ", Ym) =8mn, m=1,n>1. (29)

3.3.1. Randomized algorithm

It is intractable to solve the generalized eigenvalue problem (28) for all of the eigenvalues. In practice, these (absolute)
eigenvalues decay rapidly as proven for the Hessians of some model problems and numerically demonstrated for many
others [12,39,17,19,18,16,21,3,4,2,35,70,50,61,20,25,30,26,31,27,32,82]. Therefore, we can compute the dominant eigenvalues

M, ..., AN, With [A1] >--- > |AN]| = A, for any n > N, and approximate the trace by
) N ) N
tr(CH) ~ Y " apand tr(CH)?) ~ D a2, (30)
n>1 n>1

To solve the generalized eigenvalue problem (28) for the N dominant eigenvalues, we apply a randomized algorithm [48,74]
in Algorithm 1, where H,C~! of dimension N, x Nj, denote the discrete approximation of  and C~!, e.g., by finite
elements. Here, Ny is the number of mesh degrees of freedom representing the discretized field ¢.

8
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Algorithm 1 Randomized algorithm for the generalized eigenvalue problem (H, C~1).

Input: the number of eigenpairs N, an oversampling factor p < 10.
Output: (Ay, Vy) with Ay =diag(rq, ..., An) and Wy = (Y, ..., WN).
1. Draw a Gaussian random matrix Q € RNix(N+p),

2. Compute Y = C(HS).

3. Compute QR factorization Y = QR such that Q TC™'Q = In4p.

4. Form T=Q "HQ and compute eigendecomposition T = SAS'.

5. Extract Ay =A(1:N,1:N) and Wy = QS with Sy =S(;,1:N).

We remark that the computational cost of Algorithm 1 is dominated by the Hessian actions HQ2 and HQ, as presented
in the next section. These entail 2(N + p) forward and adjoint solutions of the Helmholtz equation. The remaining linear
algebra in Algorithm 1 is negligible in comparison. The advantages of Algorithm 1 are [30,26]: (i) the error in the eigenvalues
An, n=1,..., N, is bounded by the remaining ones A,, n > N, which is small if they decay rapidly; (ii) the computational
cost is dominated by 2(N + p) Hessian actions (the application of C on a vector is inexpensive, e.g., it takes only O(Np)
operations by a multigrid solver for C discretized from an elliptic differential operator); (iii) it is scalable as the number of
dominant eigenvalues N typically does not depend on the mesh size Nj; (iv) computing the Hessian actions H2 and HQ
can be asynchronously parallelized.

3.3.2. ¢-gradient and ¢ -Hessian

The Taylor approximation along with the randomized eigensolver requires the computation of the gradient of Q (¢) with
respect to the random parameter field (the “¢-gradient”) and the action of the Hessian of Q (¢) (the “z-Hessian”) in an
arbitrary direction, both evaluated at the mean ¢. To do this, we employ a Lagrangian method as in [30,26]. We begin by
forming the Lagrangian

Lu,v;¢,1)=Qw) + A(u,v;¢, ) — F(v; ¢, 1), (31)

where the bilinear form A and the linear form F defined in (8) and (9) depend on the random parameter and design
variable ¢, T through the representation (10). The adjoint variable v is a Lagrange multiplier for the forward Helmholtz
equation (7). Then the state u is obtained by setting the variation of the Lagrangian (31) with respect to the adjoint v to
zero to obtain the Helmholtz equation evaluated at E i.e., find u € V such that

A, v;¢,1)=F@{@;¢,T1) VYveV, (32)

which is the same as (7) evaluated at ¢. The adjoint variable v is obtained by setting the variation of (31) with respect to
the state u to zero to obtain the adjoint Helmholtz equation evaluated at ¢, i.e., find v € V such that

A, v;z,T)=—(0,Q(u), i) YieV. (33)

Then the gradient of the design objective Q with respect to the random variable ¢ evaluated at , acting in any direction
¢ € X, is given by the variation of the Lagrangian with respect to ¢, i.e.,

(8,8) = (L, v; L, 1), 8) = (8 A, v; £, T) — 9 F(v; £, 7)., ). (34)

Therefore, the computation of ¢-gradient involves the solution of the Helmholtz equation (32) for u and the Helmholtz
equation (33) for v.

To compute the Hessian of Q at ¢ acting in a given direction E € X, we form the second Lagrangian L by adding the
(weak formulation of the) forward and adjoint Helmholtz equations to the (directional) gradient to obtain

L, v,0,0;¢,2, 1) = A, v;¢,7) — F(V; ¢, 1)
+ AW, v; £, T) 4+ (3,Q (u), 1) (35)
+ (9 A, v; £, T) — 9 F(v; £, 7),8),

where 7, ﬁ,;: are the Lagrange multipliers for the forward Helmholtz equation (32), the adjoint Helmholtz equation (33),
and the gradient (34). Proceeding as with the gradient derivation, we set the variation of Lf with respect to v and u to
obtain the incremental state variable ii as the solution of the “incremental forward Helmholtz equation” (evaluated at ¢)

A, V;2,7)=—(0; A, V; £, T) — 3 F(¥;2,7),L) VieV, (36)
and the incremental adjoint variable ¥ as the solution of the “incremental adjoint Helmholtz equation” (evaluated at ¢)

A, V52, 7) = —(0u Q (WL, &) — (8 A, v; ,T),) ViieV. (37)
Finally, the Hessian action at ¢ in direction Z, tested again Z, can be evaluated as

9
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- A~

(HE, £y = (0, L1, 0) = (9 Aw, :8,7) = 3 F (93, 7),7)
+ (9 A, v; 2, T), ) (38)
+ (8 AW, V3 8, T8 = 3 F(V; 8,18, D).
Therefore, each Hessian action involves the solution of the incremental forward Helmholtz equation (36) and the incremental
adjoint Helmholtz equation (37). To compute the objective functional (13) with the quadratic Taylor approximation (25) and

the randomized algorithm for trace estimation (Algorithm 1), we need to solve one forward Helmholtz equation (32), one
adjoint Helmholtz equation (33), and 2(N + p) pairs of incremental forward and adjoint Helmholtz equations (36) and (37).

4. Optimization

In the PDE-constrained optimization problem (16), the design variable field is a function over the cloaking region, and is
thus high-dimensional after discretization by finite elements. To solve the resulting high-dimensional optimization problem,
we propose an approximate Newton method with backtracking line search for globalization, where the Hessian of the
objective functional with respect to the design variable, denoted as the t-Hessian, is approximated by the Hessian evaluated
at the mean of the random field, while the gradient, denoted as the 7-gradient, is computed accurately. The Newton system
is solved inexactly in matrix-free fashion by a preconditioned conjugate gradient method. In this section, we present the
computation of the t-Hessian at the mean as well as the t-gradient of the objective functional (13) for both the sample
average approximation of Section 3.2 and the Taylor approximation of Section 3.3.

4.1. t-gradient and T-Hessian for the deterministic approximation

Using the deterministic approximation of Section 3.1, we obtain the deterministic optimization problem:

min Jz(t) where J;(7) = Q)+ BpP(7),
TeZ } ) (39)
subjectto A(u,v;¢,7)=F(v;¢,T) VveV.

To compute the gradient and Hessian of the objective functional with respect to the design variable t, we use a Lagrangian
method akin to that presented in Section 3.3.2 for the gradient and Hessian of the design objective with respect to the
random variable. Specifically, we first form the Lagrangian

L, v;§,7) = Q)+ BpP(T) + AU, v; §,7) — F(v; , 7). (40)

The state variable u and the adjoint variable v are obtained by setting the variation of this Lagrangian with respect to
the adjoint v and the state u to zero and solving the forward and adjoint Helmholtz equations, which leads to the same
problems as in (32) and (33). The t-gradient (the Fréchet derivative of the objective in a direction 7) is then given by

(V‘E.]E(TL f) = (a‘ELE(u9 V; E? T)7 f)
= (BpVeP(T) + 8: AU, v; £, T) — 9 F(v; £, T), T).

To compute the T-Hessian acting in a direction 7 € Z, we form the second Lagrangian

(41)

L’g(u, v, 0,9:2,1,8) =A@, V;Z,T) — F(¥;:Z,1)
+A®M, v; ¢, T) + (3,Q (u), 1) (42)
+ (BpVeP(T) + 0: A(u, v; T, T) — 3 F(v; £, 7). T),

where V,1, T are the Lagrange multipliers for the forward Helmholtz equation (32), the adjoint Helmholtz equation (33),
and the gradient (41), respectively. Once again, by setting the variation of L? with respect to v and u to zero, we obtain

the incremental state variable & as the solution of the incremental forward Helmholtz equation
AW, V¢, 1) =—(3:Au, V;¢, 1) — 3 F(V:¢,7),T) VieV, (43)
and the incremental adjoint variable ¥ as the solution of the incremental adjoint Helmholtz equation
A, V;¢,7) = — (3 Q ()i, U) — (3:A(l, v; £,7),T) VueV. (44)
Then the t-Hessian action at 7 in a direction 7, tested against T, can be evaluated as
(Ve JpT.T) = (0 L] T)
= (9 A, V;¢,7) =8 F(V; ¢, 1), T)
+ (0 AW, v; £, 7), T)
+ (B Ve P(D)T + e A, vi &, )T — 8ec F(v; 6, DT, T).

10
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Therefore, at each t, after solving the forward Helmholtz equation (32) and the adjoint Helmholtz equation (33), to compute
the 7-Hessian action in each direction 7, we need to solve two PDEs—one incremental forward Helmholtz equation (43) and
one incremental adjoint Helmholtz equation (44). In Section 4.4, we derive how this capability for computing the action of
the t-Hessian in an arbitrary direction can be used to solve the (approximate) Newton system by conjugate gradients.

4.2. t-gradient for the sample average approximation

With the sample average approximation (SAA), the optimization problem (16) becomes

min Jsaa(T)
teZ (46)
subjectto A(um, V; ¢m, T) =F(V;im,T) VYveV, m=1,..., M,

where u;,; = u(¢y, T) represents the solution at ¢, and t, and the SAA of the objective functional, Jsaa(T), is given by

2
1 M
Jsma(m) = — ZQ(um>+ ZQ (Um) — By <Mm2_1 Q(um)> +BpP(2). (47)

To compute the ‘c-gradlent of Jsaa, we forrn the Lagrangian

LSAA((um)%Izp (Vm)nnfl;]; (Cm)nn{[;], T)

M
(48)
= Jsaa(T) + Z A(Um, Vm; Cm, T) — F(Vin; &m, T),
m=1
where v, m=1,..., M, are the adjoint variables or the Lagrange multipliers. By setting the variation of the Lagrangian
with respect to the state up to zero for each m=1,..., M, we obtain: find v,; € V such that
A(ﬁ,Vm;é‘myr):Cm(auQ(um)sa> Vﬁevs m:]7'-'7M7 (49)
where the constant Cp; is given by
M
1 1
Cn=—7 (1 +2Bv Q (um) — 2By (Mn; Q(um)>) . m=1,....M. (50)
The t-gradient of Jsaa(T) in (47) can be computed as
Ve Jsan(t) = dz Lsaa (W)=t (Vi)in—1; (Gm)pnzy > T)
u (51)
=BpVeP(T)+ Y 3 Altm, Vini G, T) — 32 F (Vins &, T).
m=1

Hence, M forward Helmholtz problems in (46) are solved to compute Jsaa(T), and M adjoint problems (49) are solved to
compute its T-gradient.

4.3. t-gradient for the quadratic Taylor approximation

With the quadratic Taylor approximation of the design objective T, Q, the objective functional (13) becomes

Jn@=Qw+ 5 an + By (<g ce) + ZAZ) +BpP(1), (52)
where the 7-gradient g is given by (34). Then the optimization problem (16) reads
min Jr,(7) (53)
TeZ
subject to

A, v;¢,1)=F{@;C,T1)Vv eV,
AL, viZ,T)=—(0,Qu), I)ViL eV,

A(lin, V; £, 7) = —(3: AU, V; £, T) + 0 F(V; £, T), Ym), ¥ e V,n=1,...,N,

- A = " (54)
AU, Vp; &, T) = —(0uu Q (W) Up,

) — (3 A, v; ¢, T), Ym)ViieV,n=1,...,N,
(Hm, ) = (bnC "Yn, ¢) Vo € X,.n=1,... N,
C W, Yym)=1, myn=1,...,N,

11
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which correspond to the forward Helmholtz equation (32), the adjoint Helmholtz equation (33), the incremental forward
Helmholtz equation (36) for E =vyn,n=1,...,N, the incremental adjoint Helmholtz equation (37) for_gC =Yy, n=1,...,N,
the generalized eigenvalue problem (28) for the eigenpairs (A, ¥), where the 7-Hessian action Hv,, is given by (38),
n=1,...,N, and the orthonormality condition (29) for the eigenfunctions v, n=1,..., N. As can be seen, the dominant
cost of computing the objective functional Jr,(7) is N pairs of (incremental) forward/adjoint Helmholtz equations. This is

in contrast with the M forward Helmholtz equations which must be solved to compute the SAA objective Jsaa.

To compute the 7-gradient of the approximate objective functional (53) with the PDE constraints (54), we form the

Lagrangian

Lty (u, v, @)pq. (Dn)ply. Gandpys (Widniy.
v @nsgs Dnzrs Gondmnets hzq, ©)
= J1,(7)
+ A, ve, 1) —F(v¥C, 1)
+ AW, v; 2, T) + (0, Q (u), u*)

N
+ ) Al V5 2. T) + (0 A, U5 . T) + 0 F(05: 2. 7). ¥n)
n=1

N
+ Y AR Uns £, T) 4 (0uu Q (W ln, ) + (3 ATy, vi T, T). Yin)

n=1

N
+ ) (HYn, ) — AaC ™ Y, ¥

n=1
N
+ > M (€7 W ¥im) — Bmn)
m,n=1
By setting the variation of this Lagrangian with respect to A, to zero, we obtain

1+28vA
Vn=—"—

By setting the variation with respect to ¥, to zero, we have: find ii¥ € V such that

Yn, n=1,...,N.

which has the same form as the incremental forward Helmholtz equation (36), so that by (56) we have

~ 14+2B8yin
uﬁ:wun, n=1,...,N.
2

Similarly, by setting the variation of Ly, with respect to i, to zero, we have: find V% € V such that
AL, V3 ¢, T) = —(9uu Q WL, Gi) — (0 Al v; £, T), ) VeV,
which has the same form as the incremental adjoint Helmholtz equation (37), so that by (56) and (58) we have

~ 14+ 28y Ain ~
vﬁ:wvn, n=1,...,N.
2

Then, by setting the variation of Ly, with respect to v to zero, we obtain: find u* € V such that
AW, 738, 7)== 2Bv (3 AU, ¥;¢,7) — 8 F(7: ¢, T),CE)
— (B¢ Ally, V3, T), ) — (9 Al 73 2, T), ¥y)
— (O AU, V58, T)Yn — 0 F(V; 2, DY, ¥y) Vi€ V.

Finally, by setting the variation of Lt, with respect to u to zero, we obtain: find v* € V such that

A, v 8, 7) == (8 Q (), &) — 2Bv (3 All, v; ¢, T),CE)

— (Buu Q U™, &) — (I AT, V33 £, T), Yn)
— (0 AL, Vi3 £, T) + 0 AL, Vi E, T Y, Yy) V€V,

12
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Note that the design variable t is not involved in the orthonormality condition of the eigenfunctions, so there is no need to
compute Ay, in the Lagrangian. With all the other Lagrange multipliers available, we can compute the 7-gradient as

Ve r,(T) =3 L(u, v, @)y, @)y, G)hys (Un)N_y,

. . (63)
w v @D (U, O et (WON_1, D).

4.4. The approximate Newton algorithm

Once the t-gradient is computed for the different approximations, and the r-Hessian action is computed for the de-
terministic approximation, we can solve the optimization problem by an approximate Newton algorithm with backtracking
line search to guarantee monotonic convergence, where the t-Hessian is computed or approximated by the 7-Hessian of the
deterministic approximation, and the resulting linear system is solved by inexact preconditioned conjugate gradient method
with Steihaug’s stopping criteria.

Algorithm 2 Line search inexact approximate Newton-pCG algorithm.

Input: the maximum numbers of approximate Newton, CG, and line search iterations Ngu, Ncg, Nis, and the convergence tolerance &g, for the approxi-
mate Newton.
Output: solution of the optimization problem 7*.
1. Initialize a design variable 7o, set ngs, ncg, s = 0, set the tolerance €g, = 2&4p, set the tolerance for CG convergence to &g = e?g.
while ng, < Ngp and €4 < ggn do

2. Solve the Newton linear system: find the update direction 87 € Z by solving

V77 (Tngy) 8T ==z Ja(Tay,) (64)

using a CG method with preconditioner ﬂpV%P(t), terminated by Steihaug’s criteria, namely, when ngg > N¢g, OF €cg > &cg, OF (V%]g:(l’nqn) 81,8T) <0
(i.e., when a direction of negative curvature is encountered).

while Ja(Tng, +08T) > Ja(Tng,) + cactdT and njs < Njs do
3. Set  =2"" and compute Jq(Tn,, + @8T). Set ns < nys + 1.
end while

4, Break the while loop if njg > Njs.

5. Set Tny,+1 = Tng, + 8T, Ngn < Ngn + 1, Ncg, s = 0, compute €gn, and update the tolerance for CG convergence at &cg = min{s?g, IV Ja(Tne) 11/
IV Ja(zo)I1}-

end while

6. Set ¥ = 1y,

The method is summarized in Algorithm 2. In (64) of Algorithm 2, J, represents the approximation of the objective
functional J &~ J4, with the deterministic approximation J; = ]| £ the sample average approximation Jq = Jsaa, and the
Taylor approximation J, = Jr,. For the sample average approximation and Taylor approximation, the t-Hessian of J, is
approximated by the 7-Hessian of the deterministic approximation V% Ji given by (45), while the gradients are computed
as in Sections 4.1, 4.2, and 4.3 for the deterministic, SAA, and Taylor approximations, respectively. For the termination
condition in step ng, + 1 of the approximate Newton iteration, we can use a quantity related to the norm of the gradient
[1Vz Ja(Tng,)I| and/or (Vg Ja(Tng,), 8T). cac is a small constant for Armijo-Goldstein conditions, e.g., cac = 10~4.

In each of the approximate Newton iteration, we have to compute once the t-gradient V. J,, perform nc; t-Hessian
actions, i.e., the actions of V2 J; in given CG directions while solving (64), which requires solution of a pair of incremental
forward/adjoint Helmholtz equations (43) and (44) for each Hessian action, as well as nj; backtracking line search iterations,
which requires nj; evaluations of J,. For relatively small uncertainty, i.e., small signal-to-noise level, we expect that the
Hessian V2] ¢ isa good approximation of V2], and the total number of Newton iterations ngn is independent of the
dimension of the discretized design variable field. Moreover, the number of preconditioned CG iterations ncg is also expected
to be independent of the design variable dimension when the 7-Hessian of the approximation for IE[Q ]+ By Var[Q] is low-
rank. Therefore, the inexact approximate Newton-pCG algorithm is expected to be scalable with respect to the dimension
of the design variable t, in the sense that the number of Helmholtz solves will be independent of the design variable
dimension. This will be demonstrated numerically in Section 5.3.

5. Numerical experiments

In this section, we present several numerical experiments to: (1) demonstrate the effectiveness of the optimization strat-
egy in a deterministic setting, (2) compare the difference between various approximation methods for the optimization
under uncertainty, (3) illustrate the scalability of the Taylor approximation and the approximate Newton-pCG algorithm
with respect to the dimension of the discretized random variable and design variable fields, respectively, (4) show that
the proposed optimization strategy can achieve cloaking for incident waves with multiple directions and multiple frequen-
cies under uncertainty, and finally (5) elucidate the applicability of the proposed optimization strategy to more complex
geometries beyond disks.
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Fig. 2. Top: wave scattering from an impenetrable obstacle; left: scattered wave field; right: total wave field. Middle: wave scattering with the optimized
cloak; left: scattered wave field; right: total wave field. Bottom, left: the optimal design variable field t* obtained by the deterministic optimization; right:
the incident wave field, i.e., total wave field in homogeneous medium. The real part of all wave fields is shown. (For interpretation of the colors in the
figures, the reader is referred to the web version of this article.)

5.1. Cloaking in a deterministic setting

In this experiment, we aim to demonstrate the effectiveness of the optimization strategy in designing a cloak that makes
the obstacle invisible to acoustic waves. In what follows, we use normalized units for all quantities. The configuration of
the design problem is displayed in Fig. 1, where the obstacle is a disk of radius r1 = 1, which is surrounded by the cloaking
region with radius r, = 3, and immersed in a host square medium of size [—6, 6]> with PML boundaries of length 1 on
all sides. The incident wave is a plane wave propagating from the left side to the right side, given by u"® = efkoxb with
direction b = (1,0) and wavenumber kg = w/co with frequency w = 27 and sound speed co = 1. For this experiment we
do not consider uncertainty in the optimal design and fix the random variable at its mean ¢ = ¢ = 0 in (10). This approach
is equivalent to the deterministic approximation presented in Section 3.1. For the regularization of the design variable, we
set Bp = 1072 in the objective functional (39). A finite element method is used to solve the scattering problem, with mesh
of triangles with 172,803 vertices, leading to 345,606, 34,217, and 57,462 degrees of freedom for the discrete state variable
(using piecewise linear elements), the discrete random variable (piecewise linear elements), and the discrete design variable
(piecewise constant elements), respectively.

We initialize the design variable T =0 in (10) and run the approximate Newton algorithm as presented in Algorithm 2
to minimize the objective functional (39) with respect to the design variable 7, with Ng, = 10, N¢g = 10, Njs = 10, and
Eqn = 10~2. The algorithm converged in 6 iterations. The results are shown in Fig. 2 with the real part of the scattered
and total wave fields shown in the top two images, in which the reflection of the incident wave from the impenetrable
obstacle without the cloak is evident. In the middle two images, the scattered and total wave fields are displayed with
the cloak at the optimal design. From the middle-left image, we can see a clear reduction of the scattered wave in the
observation region—which is essentially invisible outside the cloak region. Inside the cloak region, the scattered wave field
is significantly altered from that without the cloak. From the middle-right images of the total wave field, we can observe an
effective cloaking of the obstacle, i.e., the total field coincides with the incident field outside the design region as shown in
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Fig. 3. Random samples of ¢ ~ N'(£,C) with £ =0, and ¥ = 10,8 =50 for C= (—y A +81)~2.

Fig. 4. Optimal design variable field t* obtained by using deterministic (left), quadratic (middle), and sample average (right) approximations of the objective
functional.

the bottom-right image. All wave fields are scaled to the range [—1.5,1.5] for the sake of visual comparison. The optimal
design variable t* is shown in the bottom-left image, from which we can see a sub-wavelength structure within the
cloak, which effectively eliminates the scattered wave in the background medium rendering it undetectable to an external
observer. It is worth noting some similarity in the cloaking structure between this approach, which permits continuously
varying material properties are possible, and the cloaks constructed from distributions of discrete scatterers reported in
references [75,11,59].

5.2. Cloaking under uncertainty

In this experiment, we compare the optimal cloaking performance under uncertainty by the three approximation meth-
ods presented in Section 3. This uncertainty, due to manufacturing errors or variability in material properties, is modeled
as an additive Gaussian random field N(Z,C) with the covariance operator C = (—y A + 81)"2. We take y =10 and 8§ =50
such that the noise-to-signal ratio of the random variable is about 20% of the design variable. Two samples of the random
(field) variable are shown in Fig. 3.

The optimal design variables obtained by using different approximations of the objective functional are shown in Fig. 4.
We use 50 eigenvalues in the trace estimate (30) for the quadratic approximation, which achieves about 99% accuracy
(shown in the next section). One hundred samples are used for the sample average approximation, which requires similar
computational cost as the quadratic approximation. Slight differences can be noticed even though they share the same
topological structure.

We next draw 10 random samples of the random variable ¢, and solve the scattering problem for each optimal de-
sign field. The mean and standard deviation of the scattered fields for the 10 random samples are shown in Fig. 5. We
can observe that the sample average approximation leads to a more biased scattered field (as seen from its large mean),
while the deterministic approximation gives rise to large variation of the scattered field (as seen from its large standard
deviation).

To assess the accuracy of the Taylor approximation, we compute the mean squared errors (MSE) of the design objective
Q and its residual using the linear and quadratic (T) Taylor approximations, as well as the quantity g = (Q — Q(¢))? in
the evaluation of the variance. The results are obtained at a random design, and the optimal design with deterministic,
quadratic Taylor, and sample average approximations, and are shown in Table 1 and 2. These results indicate that the
quadratic approximation is much more accurate than the linear approximation, both achieving errors smaller than 1%. We
further remark that if higher accuracy is required, we can use the quadratic approximation as a control variate to reduce
the variance in a sample average approximation, as introduced in [30].
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Fig. 5. Mean (top) and standard deviation (bottom) of the scattered wave field at the optimal design 7* obtained by using deterministic (left), quadratic
(middle), and sample average (right) approximations of the objective functional.

Table 1

Sample average approximation 0O of the design objective Q and mean
squared errors (MSE) for 0,Q—T1Q, and Q — T>Q, based on 10 random
samples for a random design T andom, the deterministic optimal design Tgeter,
and the optimal design under uncertainty using the quadratic tquaq and the
sample average 7s,; approximations.

Design 0 MSE(Q) MSE(Q —T1Q) MSE(Q —T»Q)
Trandom 1.19E+01 8.34E—02 4.50E—-03 4.89E—-05
Tdeter 1.39E+00 5.47E-02 5.47E—02 1.48E—04

Tquad 8.28E—-01 2.37E—-02 1.62E—02 3.56E—-05

Tsaa 2.00E+00 8.40E—03 2.30E—-02 5.66E—05
Table 2

Sample average approximation § of ¢ = (Q — Q(¢))? and mean squared
errors (MSE) for g, ¢ — T1q, and q — Toq based on 10 random samples
for a random design T;andom, the deterministic optimal design Tgeter, and
the optimal design under uncertainty using the quadratic Tquaq and the
sample average 7s;; approximations.

Design ¢ MSE(q) MSE(q — T1q)  MSE(q — T2q)
Trandom  142E+02  4.83E+01  2.29E+00 3.24E—02
Tqeter 248E+00  749E—01  7.49E—01 3.92E—03
Tquad 922E—01 107E—01  9.04E—02 2.53E—04
Tsaa 4.08E+00 1.46E—01 2.48E—-01 1.06E—-03

5.3. Scalability of the approximation and optimization methods

The random variable and the design variable are spatially distributed functions, whose dimensions can be very high
after discretization. It is therefore crucial that the approximation and optimization are scalable with respect to both random
and design variables. To illustrate the scalability of the approximation and optimization methods, we use a sequence of
refined meshes as reported in Table 3, which correspond to a sequence of increased dimensions for the random and design
variables.

As shown in Fig. 6, the scalability with respect to the complexity of the quadratic approximation is implied by the
similar decay pattern of the absolute eigenvalues of the generalized eigenvalue problem (28) across the refined meshes,
which determines the accuracy of the trace estimate. Moreover, the accuracy of the quadratic approximation measured by
the mean squared errors is reported in Table 4 and 5, which remains about 1% with increasing dimensions, and indicates
that the accuracy of the quadratic approximation is also scalable.
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Table 3

Degrees of freedom (DOF) for finite element discretization of the state
variable u and random variable ¢ with piecewise linear elements
(P1), and design variable t with piecewise constant elements (P0), at
a sequence of (uniformly refined) meshes, denoted by mesh1, mesh2,
mesh3, mesh4, mesh5.

DOF mesh1 mesh2 mesh3 mesh4 mesh5

u(P1) 22,110 86,788 345606 1,373,814 5,488,216
¢(P1) 2,347 8,795 34,217 134,796 535,321
T(P0O) 4454 17,114 67,462 267,640 1,066,761

at random design at optimal design with deterministic approximation
—— dim = 2,347 10°4 —— dim = 2,347
o —— dim = 8,795 —— dim = 8,795
10774 —— dim = 34,217 10711 —— dim = 34,217
—a— dim = 134,796 —a— dim = 134,796
—< dim = 535,321 1024 —< dim = 535,321
10723 = 1073,
= =
10744
1073 10-54
10—6<
0 20 40 60 80 100 0 20 40 60 80 100
N N
at optimal design with quadratic approximation at optimal design with saa approximation
—— dim = 2,347 —— dim = 2,347
—>— dim = 8,795 —>— dim = 8,795
10714 —— dim = 34,217 10-14 —— dim = 34,217
—a— dim = 134,796 —a— dim = 134,796
—< dim = 535,321 —< dim = 535,321
-2
_10 B 10-24
= =
=< =
1073<
10—3<
10—4<
10—4<
0 20 40 60 80 100 0 20 40 60 80 100
N N

Fig. 6. Decay of the absolute generalized eigenvalues of the covariance preconditioned Hessian in (28) at different designs. A design at a realization of space
white noise (top-left); the optimal design obtained with deterministic (top-right), quadratic (bottom-left), and sample average approximations (bottom-

right).

Table 4

Sample average approximation Q of the design objective Q and mean squared
errors (MSE) for Q, Q — T1Q, and Q — T, Q, based on 10 random samples for
different parameter dimensions.

Dimension 0 MSE(Q) MSE(Q —T1Q) MSE(Q —T2Q)
2,347 6.49E—01 128E—02  8.92E—03 1.01E—04
8,795 766E—01  166E—02  1.07E—02 1.54E—04
34,217 828E—01 237E—02  162E—02 3.56E—05

As for the scalability of the approximate Newton optimization algorithm, we plot the decay of the objective functional
against the number of optimization iterations in Fig. 7. Fast and relatively mesh-independent decay of the objective func-
tional can be observed for the deterministic approximation, which is understandable since the Hessian approximation in
Section 4.1 is in fact exact in this case, so that the method is a proper Newton method. For the quadratic approximation,
convergence is only weakly dependent on the discretization (with sufficient mesh resolution); thus the use of the determin-
istic Hessian in place of the true Hessian still results in a relatively scalable number of optimization iterations. In contrast,
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Table 5

Sample average approximation § of ¢ =(Q — Q (£))? and mean squares er-
rors (MSE) 4, g —T1q, and q — T,q, based on 10 random samples for different
parameter dimensions.

Dimension ¢ MSE(G) MSE(q — T1q)  MSE(q — T2q)
2,347 5.49E—-01 3.42E—-02 3.28E—-02 5.61E—-04
8,795 7.54E—01 9.00E—-02 7.39E—-02 1.64E—03
34,217 9.22E-01 1.07E-01 9.04E—-02 2.53E-04
at optimal design with deterministic approximation at optimal design with quadratic approximation
1]
10 —— dim = 4,454 10' —— dim = 4,454
—— dim =17,114 —— dim =17,114
—4— dim = 67,462 —4— dim = 67,462
= —&— dim = 267,640 = —a— dim = 267,640
g 10° 4 —<— dim = 1,066,761 g —<— dim = 1,066,761
p =
1) o
e C
2 2
[ ()
2 2
-+ +
|9} |9}
210714 2
Q Ke)
o o
10724 10
0 2 4 6 8 10 0 2 4 6 8 10
# approximate Newton iterations # approximate Newton iterations

at optimal design with saa approximation

—— dim = 4,454
—— dim=17,114
e+ dm=67462

—&— dim = 267,640

101 4

—< dim = 1,066,761

objective functional

100 4

T T T

2 4 6 8 10
# approximate Newton iterations

Fig. 7. Decay of the objective functional with the number of approximate Newton optimization steps for deterministic approximation (top-left), quadratic
approximation (top-right), and sample average approximation (bottom).

the use of the deterministic Hessian for the sample average approximation does not yield a scalable method in this case, as
shown by the dependence of the iterations on mesh size and the resulting problem dimension.

5.4. Multiple directions and multiple frequencies

In this numerical experiment, we access the ability of the optimal cloak to hide the obstacle from the incident wave
from multiple attack angles and multiple frequencies. In the test, for the incident wave e**? we choose four attack angles,
b=(1,0),(0,1),(0,—1),(—1,0), and four frequencies k = ko/2, 2ko/3, 5ko/6, ko, and set three test trials. In the first trial,
we use four directions at one frequency k = kp; in the second trial, we use four frequencies at one direction b = (1, 0); in
the third trial, we use four directions at four frequencies b = (1, 0), (0, 1), (0, —1), (—1,0) and k =ko/2, 2ko/3, 5ko/6, ko.

The optimal design under uncertainty using the quadratic approximation for the three different settings is shown in
Fig. 8, from which we can observe distinct patterns. The real parts of the total wave without and with the cloak are shown
in Fig. 9-11. We observe that the cloak can achieve effective cloaking for different directions with the same frequency, and
can effectively reduce the scattering for different frequencies. This is expected as the characteristic length of the cloak has
to accommodate all different wavelengths.
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Fig. 8. Optimal designs under uncertainty using quadratic approximation. One direction and one frequency (top-left), which is the same as in Fig. 4, four
directions and one frequency (top-right), one direction and four frequencies (bottom-left), and four directions and four frequencies (bottom-right).

Fig. 9. The real part of the total wave fields without (top) and with (bottom) the cloak designed under uncertainty for the case of four directions and one
frequency.

5.5. Toward more complex geometry

Finally, we demonstrate the applicability of the proposed optimization method for an obstacle with more complex ge-
ometry (notionally a stealth aircraft) as shown in Fig. 12. The design variable field is discretized by a spatially-adapted
mesh with 451,376 vertices and 898,136 elements, which results in DOF of 902,752 for the discrete state variable field with
piecewise linear elements in the entire domain, 101,535 for the discrete uncertain variable field with piecewise linear ele-
ments in the thin cloaking layer (shown in yellow), and 196,238 for the discrete optimization variable field with piecewise
constant elements in the thin cloaking layer. We restrict ourselves to solution of the deterministic optimal cloak problem,
in order to demonstrate the feasibility of computing the Hessian—which is a critical ingredient for the approximate Newton
method—for such a large problem. Fig. 13 shows the large reduction in the scattered wave field achieved after 200 iterations
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Fig. 10. The real part of the total wave fields without (top) and with (bottom) the cloak designed under uncertainty for the case of one direction and four
frequencies.

Fig. 11. The real part of the total wave fields without (top) and with (bottom) the cloak designed under uncertainty for the case of four directions and four
frequencies.

of the optimization method. The reduction in the scattered field is striking, considering the thinness of the cloak region and
sharp corners.

6. Conclusions

In this paper, we have developed a simulation-based optimal design strategy for acoustic cloaks in the presence of ma-
terial property uncertainty. To the best of our knowledge this is the first work that takes into account uncertainty in a
systematic way for optimal design of an acoustic cloak that is robust to material variability and manufacturing error. Both
the design variables and the uncertain parameters are modeled by infinite-dimensional spatially-varying fields, which be-
come high-dimensional upon faithful discretization of the optimal design problem. To tackle the curse of dimensionality in
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Fig. 13. The real part of the scattered wave fields without (top) and with (bottom) the cloak.

the approximation of the uncertain parameter field, we employed a scalable approximation method of the mean-variance
objective based on a Taylor expansion and a randomized SVD algorithm. To solve the resulting high-dimensional optimiza-
tion problem, we developed an approximate Newton method in which the Hessian of the deterministic approximation of
the objective functional is used to provide an effective approximation of the Hessian of the Taylor approximation of the
objective functional, motivated by the moderate uncertainty due to material variability.

We demonstrated that the optimal design effectively eliminates the scattered wave field from waves incident on simple
circular scatterers, not only for a single direction and single frequency, but also for multiple-direction and multiple-frequency
waves. We also demonstrated that the deterministic optimization problem, on which the approximate Hessian for the opti-
mization under uncertainty problem is based, can be tractably computed for an obstacle with complex geometry. Moreover,
we showed that the optimal design under uncertainty performs better (lower variance in the scattered wave field) in the
case of random material properties than a deterministic design does.

The proposed methodology is essentially scalable with respect to increasing dimensions of design variables and uncertain
parameters as numerically evidenced by: the small and dimension-independent number of forward Helmholtz solves needed
to evaluate the Taylor-approximated objective function; the weak dependence of the optimization iterations on the problem
dimension; and the dimension-independent accuracy of the quadratic Taylor approximation.

Future research directions include (1) adding manufacturability constraints on the design variable field stemming from
additive manufacturing processes; (2) considering more complex three-dimensional problems with more general objectives
beyond cloaking; (3) developing and applying higher order Taylor approximations (beyond quadratic) [5] for the objective
functional for cases where large uncertainties arise; and (4) employing the Taylor approximations as control variates in a
variance reduction framework [30].
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