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ABSTRACT
In this paper we study the problem of estimating the size of the

union of sets 𝑆1, . . . , 𝑆𝑀 where each set 𝑆𝑖 ⊆ Ω (for some discrete

universeΩ) is implicitly presented and comes in a streaming fashion.

We define the notion of Delphic sets to capture class of streaming

problems where membership, sampling, and counting calls to the

sets are efficient. In particular, we show our notion of Delphic

sets capture three well known problems: Klee’s measure problem

(discrete version), test coverage estimation, and model counting of

DNF formulas.

The Klee’s measure problem corresponds to computation of

volume of multi-dimension axis aligned rectangles, i.e., every 𝑑-

dimension axis-aligned rectangle can be defined as [𝑎1, 𝑏1]×[𝑎2, 𝑏2]×
. . . × [𝑎𝑑 , 𝑏𝑑 ]. The problem of test coverage estimation focuses on

the computation of coverage measure for a given testing array

in the context of combinatorial testing, which is a fundamental

technique in the context of hardware and software testing. Finally,

given a DNF formula 𝜑 = 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 , the problem of model

counting seeks to compute the number of satisfying assignments

of 𝜑 .

The primary contribution of our work is a simple and efficient

sampling-based algorithm, called APS-Estimator, for estimating the

of union of sets in streaming setting. Our algorithm has the space

complexity of𝑂 (𝑅 log |Ω |) and update time is𝑂 (𝑅 log𝑅 · log(𝑀/𝛿) ·
log |Ω |) where, 𝑅 = 𝑂

(
log(𝑀/𝛿) · 𝜀2

)
. Consequently, our algo-

rithm provides the first algorithm with linear dependence on 𝑑 for

Klee’s measure problem in streaming setting for 𝑑 > 1, thereby

settling the open problem of Tirthpura and Woodruff (PODS-12).

Furthermore, a straightforward application of our algorithm

lends to an efficient algorithm for coverage estimation problem

in streaming setting. We then investigate whether the space com-

plexity for coverage estimation can be further improved, and in

this context, we present another streaming algorithm that uses

near-optimal 𝑂 (𝑡 log𝑛/𝜀2) space complexity but uses an update

algorithm that is in P
NP

, thereby showcasing an interesting time vs

space trade-off in the streaming setting. Finally, we demonstrate the

generality of our Delphic sets by obtaining a streaming algorithm

for model counting of DNF formulas.
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1 INTRODUCTION
Estimating the size of the union of sets is a fundamental problem

in Computer Science. The goal, usually, is to design an “efficient"

randomized algorithm that can output an (𝜀, 𝛿)-approximation of

the size of the union of sets. We say that a random variable 𝑍 is an

(𝜀, 𝛿) approximation of 𝑌 if Pr[|𝑍 − 𝑌 | ≤ 𝜀 |𝑌 |] ≥ 1 − 𝛿 .
In this paper, we focus on estimating the union of sets in a

streaming setting.We consider a family of sets whichwe callDelphic
Sets (see Definition 1.4), for which membership, sampling, and

counting queries can be implemented efficiently. To showcase the

generality of Delphic sets, we first present three problems arising

in diverse domains that can be captured by Delphic sets: Klee’s

measure problem, test coverage estimation, and model counting for

DNF. The three problems are defined as follows:

Klee’s Measure Problem
We define the discrete version of Klee’s Measure Problem (KMP) in

streaming setting.

Definition 1.1. A 𝑑-dimensional axis aligned rectangle r over an
universe 𝑈 = [Δ]𝑑 is defined as [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . . × [𝑎𝑑 , 𝑏𝑑 ].
Given a rectangle r, let Range(r) denote set of tuples {(𝑥1, . . . , 𝑥𝑑 )}
where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 is an integer. Note that every𝑑-dimensional
rectangle can be succinctly represented by the tuple (𝑎1, 𝑏1, · · ·𝑎𝑑 , 𝑏𝑑 ).
Given a stream R of size𝑀 such that R = ⟨r1, r2, · · · r𝑀 ⟩, where each
item r𝑖 is a d-dimensional rectangle, we are interested in computing a
(𝜀, 𝛿)-approximation of the volume of R, which is defined as follows:

Volume(R) = | ∪1≤𝑖≤𝑀 Range(r𝑖 ) |

Practical Motivation. Klee’s Measure Problem is a well-investigated

problem in computational geometry. Klee in 1977 introduced the

one-dimensional version of the problem over reals: given 𝑛 inter-

vals in R, compute the size of their union [32]. Klee presented

𝑂 (𝑛 log𝑛) time algorithm, which was later proved to be optimal by

Fredmen and Weide [24]. Since its introduction, this problem has

been studied extensively in computational geometry with the goal
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of designing efficient algorithms in the traditional RAM model. As

certain data objects in databases can be represented by axis parallel

multi-dimension rectangles, the KMP problem is significant in data

bases [10, 34, 44, 52, 58]. In addition to computer science areas,

algorithms for KMP have recently found applications in a varied

range of practical areas including in environmental chemistry [20]

and lunar archaeology [6].

The discrete version of KMP that we consider in this paper is

studied in the streaming community as range efficient F0 com-

putation [45, 55]. Other than its natural appeal, this problem is

interesting because several significant problems, including max-

dominance norm [21], counting triangles in graphs [3], and distinct

summation problem [19] can be reduced to computing F0 over

multi-dimensional discrete ranges.

Test Coverage Estimation Problem
Definition 1.2. For an 𝑛-bit binary string a = 𝑎1𝑎2 · · ·𝑎𝑛 ∈ {0, 1}𝑛 ,
the 𝑡-coverage, denoted by Cov𝑡 (a), is defined as

Cov𝑡 (a) =
{
(𝑇, y) | 𝑇 ⊂ [𝑛], |𝑇 | = 𝑡, y ∈ {0, 1}𝑡

and the restriction of 𝑎𝑖 to indices in 𝑇 gives y}

The input is a stream A of size 𝑀 such that A = ⟨a1, . . . , a𝑀 ⟩
where a𝑖 ∈ {0, 1}𝑛 , the 𝑡-coverage of A is

Cov𝑡 (A) = ∪1≤𝑖≤𝑀Cov𝑡 (a𝑖 ) .
The coverage estimation problem is: Given a streamA = a1, · · · , a𝑀 ,

compute an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)| for any given 𝑡 .

Practical Motivation. Over the past half-century, the widespread
adoption of software in diverse areas has necessitated the design

of highly configurable systems wherein the end-user can choose a

configuration of interest by setting the desired values to the config-

uration parameters. The space of configurations is often astronom-

ical, and perhaps can be best illustrated by the observation that the

possible number of configuration options of an embedded Linux for

microcontrollers is 7.7 × 10417 possible configurations [46]. Since
it is not feasible to examine the behavior of a System Under Test

(SUT) for all possible configurations, the combinatorial testing has

emerged as a dominant paradigm [33]. A configuration is specified

by assigning values to the configuration parameters
1
. Motivated

by the observation that often the errors in systems result due to

the interaction of a small number of parameters, the paradigm of

combinatorial testing focuses on covering as many 𝑡-combinations

of parameters. Note that when each of the parameters takes binary

values, the total number of possible 𝑡-combinations of parameters

over a test of size 𝑛 is

(𝑛
𝑡

)
2
𝑡
.

Given the critical importance of software testing, there has been

a long line of work in the design of test suite generators [9, 18,

35, 37, 42, 53, 54]. The earliest works focused on the design of the

smallest size of test suites such that all the

(𝑛
𝑡

)
2
𝑡
combinations are

covered. The optimal constructions still generate test suites of size

O(𝑡2𝑡 log𝑛), which is intractable for large enough 𝑡 . Consequently,

one is often interested in achieving as high a coverage as possible

1
While techniques developed in our work extends to scenarios wherein each of the

parameters take values in finite domains, for simplicity of exposition, we will focus on

the case where each of the parameters take a binary value.

within a given budget. Moreover, such generators are heuristic-

based and fail to provide any rigorous guarantees on the quality of

their generated test suites. In this context, it is critical to rigorously

estimate the coverage given a set of tests. Note that in the context

of binary parameters, a test can be specified as a binary string

a = 𝑎1𝑎2 . . . 𝑎𝑛 ∈ {0, 1}𝑛 . For practical systems,𝑛 is often very large,

and therefore, it is not practical to store all the tests. In addition,

it is useful to have estimation methods that deal with a growing

test suit. In particular, from a practical perspective, one envisions a

coverage estimator to be a monitor with as small resource overhead

as possible. These issues lend themselves to modeling coverage

estimation problem in a data streaming framework.

Model Counting for DNF
Definition 1.3. Consider a set 𝑋 of n Boolean variable. A literal
is a variable or its negation. A formula 𝜑 over 𝑋 is in DNF if it
is represented as disjunction over conjunction of literals. Each such
conjunction is called a term, therefore,𝜑 over𝑀 terms is represented as
𝑇1∨𝑇2∨. . .∨𝑇𝑀 . Let Sol(𝜑) represent the set of satisfying assignments
of 𝜑 . For a DNF formula 𝜑 = 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 , given the terms as
a stream ⟨𝑇1, . . . ,𝑇𝑀 ⟩, we are interested in computation of an (𝜀, 𝛿)-
approximation of |Sol(𝜑) |.

The problem of model counting for DNF, also referred to as DNF

counting, is also often denoted by #DNF.

Practical Motivation. #DNF is a fundamental problem in com-

puter sciencewith awide variety of applications. Dalvi and Suici [23]

showed that queries in probabilistic databases reduce to #DNF. An-

other important application of #DNF arises from the domain of

network unreliability: given a graph𝐺 = (𝑉 , 𝐸), wherein each edge

𝑒𝑖 fails with probability 𝑝𝑖 , we are interested in the computation

of the probability that 𝑠 and 𝑡 are disconnected. Karger’s semi-

nal work [29] reduces the computation of network unreliability to

#DNF wherein each term represents a min-cut. The past few years

have witnessed a surge in interest for designing efficient FPRAS

techniques for #DNF [39, 40].

1.1 Our Results
We first define the notion of Delphic sets (Definition 1.4). The cor-

responding problem in the streaming model (Problem 1.5) helps to

capture all the above three problems, and potentially many other

union-of-sets problems, under a general framework. Then (in The-

orem 1.6) we present an efficient algorithm for estimating the size

of the union of a stream of Delphic sets. We measure the efficiency

of our algorithm both in terms of worst case space complexity

and worst case per-item update time. Finally we show how our

algorithm for Delphic sets gives new efficient algorithms for all

the above three problems. The algorithm for KMP solves an open

problem from the literature.

Delphic Sets as a Unifying Model
Let Ω be a discrete universe. We define the notion of Delphic family

as follows:

Definition 1.4. A set 𝑆 ⊆ Ω belongs to Delphic family if the follow-
ing queries can be done in 𝑂 (log |Ω |) time.

(1) Know the size of the set 𝑆 ,



(2) Draw a uniform random sample from 𝑆 , and
(3) Given any 𝑥 check if 𝑥 ∈ 𝑆 .
Next, we define the following streaming problem;

Problem 1.5. Given a stream S = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑀 ⟩ wherein each
𝑆𝑖 belongs to Delphic family, and 0 < 𝜀, 𝛿 < 1 output an (𝜀, 𝛿)
approximation of |⋃𝑀

𝑖=1 𝑆𝑖 |.
Taking a departure from standard sketching based techniques, we

develop an adaptive sampling-based algorithm for Delphic union-

of-sets problem, as stated in the following theorem.

Theorem 1.6. There is a streaming algorithm APS-Estimator that
given any reals numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩
wherein each 𝑆𝑖 ⊆ Ω belongs to Delphic family, computes an (𝜀, 𝛿)-
approximation of |⋃𝑀

𝑖=1 𝑆𝑖 |. The algorithm has worst case space com-
plexity𝑂 (𝑅 log |Ω |) and update time is𝑂 (𝑅 log𝑅 ·log(𝑀/𝛿) ·log |Ω |)
where, 𝑅 = 𝑂

(
log(𝑀/𝛿) · 𝜀−2

)
.

Remark 1.7. Tirthapura andWoodruff [55] (PODS-12) employed the

notation 𝑂∗ (𝑓 ) as a place holder for 𝑂
(
𝑓 · (𝜀−1 · log( |Ω |𝑀

𝛿
))𝑂 (1)

)
.

Therefore, we can state the space and update time complexity of
APS-Estimator as 𝑂∗ (1) in Tirthapura and Woodruff’s notations.

Klee’s Measure Problem
We first observe that Klee’s measure problem can be formulated as

Delphic coverage by constructing set 𝑆𝑖 = Range(𝑟𝑖 ) corresponding
to each r𝑖 and observing that each such 𝑆𝑖 belongs to the Delphic

family. Therefore, the following Corollary follows fromTheorem 1.6

Corollary 1.8. There is a streaming algorithm that given any reals
numbers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ where each
r𝑖 is a d-dimensional rectangle over Ω = [Δ𝑑 ], computes an (𝜀, 𝛿)-
approximation of Volume(R). The algorithm has worst case space
𝑂

(
𝑑 (logΔ) · log(𝑀/𝛿) · 𝜀−2

)
and update time complexity

𝑂
(
𝑑 (logΔ) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

Remark 1.9. Corollary 1.8 provides the first efficient algorithm with
linear dependence on 𝑑 for Klee’s measure problem in a streaming
setting, thereby resolving the open problem from Tirthapura and
Woodruff [55]. In this context, it is worth remarking that Tirthapura
and Woodruff claimed an algorithm for KMP with space and update
time complexity 𝑂 (𝑑 (logΔ) · (log𝑀) · 𝜀−2 · log( 1

𝛿
)). However, they

have retracted their claim [57]. Their method only yields update time
complexity of poly((logΔ)𝑑 , 𝜀−1, log 1

𝛿
).

Multi-Dimensional Arithmetic Progression. We then focus

on generalization of Klee’s measure problem by generalizing the

notion of range [𝑎𝑖 , 𝑏𝑖 ] to arithmetic progressions, which was

studied previously by Pavan and Tirthapura [45] for 𝑑 = 1. Let

[𝑎, 𝑏, 𝑐] represent the arithmetic progression with common dif-

ference 𝑐 in the range [𝑎, 𝑏], i.e., 𝑎, 𝑎 + 𝑐, 𝑎 + 2𝑐, 𝑎 + 𝑗𝑐 , where 𝑗

is the largest integer such that 𝑎 + 𝑗𝑐 ≤ 𝑏. Consider a stream

R = [𝑟1, 𝑟2, . . . 𝑟𝑚] wherein each 𝑟𝑖 = [𝑎1, 𝑏1, 𝑐1] × · · · × [𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ].
each 𝑟𝑖 = [𝑎1, 𝑏1, 𝑐1] × · · · × [𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ]. We generalize Range(𝑟 )
to denote the set of tuple {(𝑥1, . . . 𝑥𝑑 )} where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and

𝑥𝑖 = 𝑎𝑖 + 𝑘 · 𝑐𝑖 for some positive integer k. Similarly, Volume(R) =
|⋃𝑚

𝑖=1 Range(𝑟𝑖 ) |. By observing that Range(𝑟𝑖 ) for 𝑑-dimensional

arithmetic progress belongs to Delphic family, we obtain the fol-

lowing streaming algorithm.

Corollary 1.10. There is a streaming algorithm that given any
positive reals numbers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ con-
sisting of 𝑑-dimensional arithmetic progressions, computes an (𝜀, 𝛿)-
approximation of Volume(R). The algorithm has worst case space
complexity𝑂

(
𝑑 (logΔ) · log(𝑀/𝛿) · 𝜀−2

)
and worst case update time

complexity 𝑂
(
𝑑 (logΔ) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

Observe that Klee’s measure problem is a special case of multi-

dimensional arithmetic progress wherein 𝑐𝑖 = 1. It is worth re-

marking that in comparison to prior work that focused on the

special case of arithmetic progress for d=1, the algorithm for multi-

dimensional ranges (i.e., Klee’s measure problem) can be simply

lifted to multi-dimensional arithmetic progression, and the space

and time complexity does not change.

Test Coverage Estimation
Next, we observe that Test Coverage Estimation problem can be also

formulated as Delphic coverage by constructing 𝑆𝑖 = Cov(a𝑖 ) for
each a𝑖 , and again observing that each such 𝑆𝑖 belongs to Delphic

family.

Corollary 1.11. There is a streaming algorithmAPS-Estimator that
given any reals numbers 𝜀, 𝛿 < 1, and a stream A = ⟨a1, · · · , a𝑀 ⟩,
where a𝑖 ∈ {0, 1}𝑛 , computes an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)|.
The algorithm has space complexity 𝑂

(
𝑡 (log𝑛) · log(𝑀/𝛿) · 𝜀−2

)
and worst case update time complexity

𝑂

(
𝑡 (log𝑛) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

We also investigate whether the space complexity can be further

improved in the context of test coverage estimation. We present

a hashing-based algorithm that trades off improvement in space

complexity with an increase in the overhead for time complexity

via relying on the usage of NP oracles.

Theorem 1.12. There is a streaming algorithmHashingEstimator
with an NP set as an oracle that given a stream A = ⟨a1, · · · , a𝑀 ⟩,
and real numbers 0 < 𝜀, 𝛿 < 1, where each a𝑖 ∈ {0, 1}𝑛 computes an
(𝜀, 𝛿)-approximation of |Cov𝑡 (A)|. The algorithm takes 𝑂 (𝑡 log𝑛 ·
𝜀−2 · log 1

𝛿
) space and poly(𝑛, 𝑡, 1/𝜀) update time. Thus, if P=NP,

algorithm will run in time poly(𝑛, 𝑡, 1/𝜀).
The space complexity of the above algorithm, in general, is tight

up to a 𝑂 (log𝑛) factor as for 𝑡 = 𝑛. The problem reduces the

problem of F0 computation in the traditional insertion-only data

streams for which a lower bound of Ω(𝑛+𝜀−2) is known [28] (notice
that in our case items are from {0, 1}𝑛). Therefore, the problem of

designing algorithms that achieve tight bounds from both space

and time complexity perspective remains open.

DNF Counting
We again observe that DNF counting can be formulated as Del-

phic coverage by constructing set 𝑆𝑖 = Sol(𝑇𝑖 ) corresponding to

each term 𝑇𝑖 , and observing that each 𝑆𝑖 belongs to Delphic family.

Therefore, the following corollary follows from Theorem 1.6.

Corollary 1.13. There is a streaming algorithm that given any posi-
tive reals numbers 𝜀, 𝛿 < 1, and a stream ⟨𝑇1,𝑇2, . . .𝑇𝑀 ⟩ of terms over
𝑛 variables, computes an (𝜀, 𝛿)-approximation of |Sol(𝜑 |) wherein
𝜑 = 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 . The algorithm takes 𝑂 (𝑛 · log(𝑀/𝛿) · 𝜀−2)
space and𝑂 (𝑛 · (log(𝑀/𝛿))2 log log(𝑀/𝛿) ·𝜀−2 log 𝜀−1) update time.



1.2 Techniques
Ourmain algorithm,APS-Estimator, is a simple and elegant sampling-

based algorithm. But to help in the presentation and analysis, we

will present it in two stages.

First, we present algorithm FPS-Estimator (FPS stands for fixed
probability sampling-based). The main idea is to sample each item

from ∪𝑖𝑆𝑖 independently with probability 𝑝 , a number that is pro-

portional to the reciprocal a parameter 𝐿. The algorithm has space

and update time complexity

𝑂

(
| ∪𝑖 𝑆𝑖 | ·

log(1/𝛿) + log𝑀
𝐿𝜀2

· (log |Ω |)
)
,

and guarantee that the output is an (𝜀, 𝛿)-approximation of | ∪𝑖 𝑆𝑖 | if
| ∪𝑖 𝑆𝑖 | is at least 𝐿. The estimator’s elegance lies in the simple proce-

dure that helps to ensure that each item from ∪𝑖𝑆𝑖 is independently
sampled with a fixed probability as the stream arrives.

In the second (and our main) algorithm APS-Estimator (APS
stands for adaptive probability sampling-based), the basic concept

is similar to that of FPS-Estimator, but the probability of sam-

pling is adaptively updated during the run of the algorithm. The

most crucial observation is that if we could have obtained a good

lower bound on the size of ∪𝑖𝑆𝑖 , then by using that number as 𝐿

in FPS-Estimator we would have obtained a (𝜀, 𝛿)-approximation

of | ∪𝑖 𝑆𝑖 |. Now since the space and update time complexity of

FPS-Estimator is inversely proportional to 𝐿, a better guarantee

on the lower bound of | ∪𝑖 𝑆𝑖 | would give an improved space and

update time complexity.

InAPS-Estimator as the stream arrives the lower bound for |∪𝑖𝑆𝑖 |
is continuously estimated. And accordingly, the probability for

sampling goes down as the algorithm proceeds. Using a simple

re-sampling procedure APS-Estimator ensure that each item from

∪𝑖𝑆𝑖 is independently sampled with the same probability 𝑝 , even

as the value of 𝑝 may go down as the stream arrives. This also

ensures that the | ∪𝑖 𝑆𝑖 |/𝐿 factor is shaved off from the sample

complexity (and in turn, the space and update time complexity) of

FPS-Estimator.
Note that for the sake of presenting a unified framework, we de-

rive time complexity solely based on the three properties of Delphic

sets, which allows us only black-box access to a random sample. The

time complexity analysis requires generation of samples without

repetition, which can be be performed more efficiently in specific

contexts of Cov(a𝑖 ),Range(𝑟𝑖 ), Sol(𝑇𝑖 ). We leave a refined analysis

of the time complexity for specific problems to the full version.

We view a key strength of our work is the simplicity of both the

algorithm, APS-Estimator, and its theoretical analysis. Our algo-

rithm’s simplicity makes it amenable to practical implementation,

while our analysis’s simplicity lends itself to easy verification and

adoption.

Organization. The rest of the paper is organized as follows: We

discuss related work in Section 2. We then discuss notations and

preliminaries in Section 3. The paper’s primary technical contri-

bution is presented in Section 4, which consists of four parts. Sec-

tion 4.1 provides the proof of the main technical theorem 1.6. We

then demonstrate Theorem 1.6 can be applied in different con-

texts, Klee’s Measure Problem (Section 4.2), coverage estimation

(Section 4.3), and DNF counting (Section 4.4) to obtain efficient

streaming algorithms. We finally conclude in Section 5.

2 RELATEDWORK
Starting with the seminar work of Alon, Matias, and Szegedy [2],

the streaming model of computation has emerged as an important

area of research in theoretical computer science. This model is well

suited to investigate algorithmic problems that arise from real life

situations dealing with large data. A central focus of investigation

has been on estimating the frequency moments F𝑘 of a stream

of data items. In particular, considerable work has been done in

designing algorithms for estimating the the 0
𝑡ℎ

frequency moment

(F0), the number of distinct elements in the stream, culminating in

the development of an algorithm with optimal space complexity

𝑂 (log |Ω | + 1

𝜀2
) and𝑂 (1) update time [28], where Ω is the universe.

In the case when items in the data stream succinctly represent a

set of elements of the universe, F0 estimation becomes estimation of

size of the union of sets. The union-of-sets problem has been studied

in approximate counting literature. The line of work that is closest

to ours is the work on DNF counting problem initiated by Karp and

Luby [30]. Since the work of Karp and Luby, substantial research has

gone into understanding various aspects of DNF counting problem

including designing hashing-based algorithms [13, 22, 31, 39–41].

We note that Karp-Luby algorithm can be adapted to counting

union of sets in the streaming setting to get an algorithm with

space and time complexity 𝑂 (𝑀 log |Ω |
𝜖2

log𝑀 log𝑛). In comparison,

we achieve only a logarithmic dependence on𝑀 .

Asmentioned in the introduction, Klee’s Measure Problem (KMP)

is a fundamental problem that is well investigated in computational

geometry with the focus of designing efficient algorithms in the tra-

ditional RAM model. Klee introduced the one-dimensional version

of the problem over reals and presented 𝑂 (𝑛 log𝑛) time algorithm

where 𝑛 is the number of line segments [32]. Fredmen and Weide

showed that this is optimal in time (under certain model) [24]. Since

then substantial work has gone into extending the algorithms to

multidimensional case [5, 8, 14, 16, 17, 26, 43] and also with space

complexity considerations [16, 56].

Discrete version of KMP over streaming model has been consid-

ered before. However the success has been limited [3, 45, 51, 55].

Pavan and Thirthapura considered the problem for one dimen-

sional ranges over the discrete domain {1, . . . , 𝑛} and gave an

algorithm with 𝑂 (𝜀−2 log𝑛 log 1/𝛿) space and 𝑂 (log𝑛/𝜀 log 1/𝛿)
update time [45]. Sharma, Busch, Vaidyanathan, Rai, and Trahan

considered the two-dimensional version but only gave a𝑂 (
√
log𝑈 )-

approximation for the general case where 𝑈 is the total number of

discrete points in the space [47]. Thirthapura and Woodruff [55]

considered the general 𝑑 dimensional problem. They presented an

algorithm, based of range efficient implementations of count sketch
algorithm [15] and recursive sketches [7, 27], which is efficient in

space complexity. However the update time of the algorithm has

exponential dependency on the dimension 𝑑 (see Remark 1.9). In a

concurrent work, Pavan r○ Vinodchandran r○ Bhattacharyya r○
Meel

2
also proposed another hashing-based technique with expo-

nential dependence on the dimension 𝑑 .

2
r○ refers to the randomized author ordering.



3 NOTATIONS AND PRELIMINARIES
We will denote by [𝑛] the set {1, 2, . . . , 𝑛} and by

( [𝑛]
𝑡

)
the set of

all subsets of [𝑛] of size 𝑡 . For any 𝑛 ∈ N and any 𝑝 ∈ [0, 1] we
will also use 𝐵(𝑛, 𝑝) to denote the binomial distribution over the

set of natural numbers {0, . . . , 𝑛} where probability of a number

0 ≤ 𝑚 ≤ 𝑛 is

(𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 .

At any point the input item is a length 𝑛 string. However, as

done in the case of traditional space bounded computations, for

counting space, we will not include the space required to represent

the input item. We will consider that input is available on a read-

only input tape and do not contribute to the space used by the

algorithm. In this paper we consider unit-cost model and assume

all basic operations including arithmetic operations on words can

be performed in unit time.

3.1 Concentration Inequalities
Our technical analysis employs the standard concentration inequal-

ities: Chernoff bound, Chebychev’s bound, and Paley-Zygmund

Inequality.

Theorem 3.1 (Chernoff Bound). Suppose 𝑣1, ..., 𝑣𝑛 are indepen-
dent random variables taking values in {0, 1}. Let 𝑉 =

∑𝑛
𝑖=1 𝑣𝑖 and

𝜇 = E[𝑉 ] then

Pr ( |𝑉 − 𝜇 | ≥ 𝛿𝜇) ≤ 2𝑒−
𝛿2𝜇

3

Theorem 3.2 (Chebychev’s Ineqality). Let 𝑍 be a random
variable with expected value 𝜇 and non-zero variance 𝜎2. Then for
any real number 𝑘 > 0,

Pr ( |𝑍 − 𝜇 | ≥ 𝑘𝜎) ≤ 1

𝑘2
.

Theorem 3.3 (Paley–Zygmund ineqality). If 𝑍 ≥ 0 is a ran-
dom variable with finite variance, and if 0 ≤ 𝜃 ≤ 1, then

Pr (𝑍 > 𝜃E[𝑍 ]) ≥ (1 − 𝜃 )2 E[𝑍 ]
2

E[𝑍 2]
.

3.2 Coupon Collector Problem
For the proof of Theorem 1.6 we will need the following theorem,

popularly known as the Coupon Collector Problem.

Theorem 3.4. Given access to uniform random samples from a set
𝑇 and a number 𝑟 ≤ |𝑇 |, let 𝑍𝑟 be a random variable that stand for
the number of independent uniform random samples from 𝑇 needed
before we get 𝑟 distinct samples from 𝑇 . Then

Pr [𝑍𝑟 > 𝛽𝑟 log 𝑟 ] ≤ 𝑟−𝛽+1 .

3.3 Pairwise Independent Hash functions
Let 𝑛,𝑚 ∈ N andH(𝑛,𝑚) ≜ {ℎ : {0, 1}𝑛 → {0, 1}𝑚} be a family of

hash functions mapping {0, 1}𝑛 to {0, 1}𝑚 . We use ℎ
𝑅←− H(𝑛,𝑚)

to denote the probability space obtained by choosing a function ℎ

uniformly at random fromH(𝑛,𝑚).
Definition 3.5. A family of hash functions H(𝑛,𝑚) is 2−wise
independent if ∀𝛼1, 𝛼2 ∈ {0, 1}𝑚 , distinct 𝑥1, 𝑥2, ∈ {0, 1}𝑛, ℎ

𝑅←−
H(𝑛,𝑚),

Pr[(ℎ(𝑥1) = 𝛼1) ∧ (ℎ(𝑥2) = 𝛼2)] =
1

2
2𝑚

(1)

Explicit families. In this work, one hash family of particular inter-

est is HTeop (𝑛,𝑚), which is known to be 2-wise independent [11].

The family is defined as follows: HTeop (𝑛,𝑚) ≜ {ℎ : {0, 1}𝑛 →
{0, 1}𝑚} is the family of functions of the form ℎ(𝑥) = 𝐴𝑥 + 𝑏 with

𝐴 ∈ F𝑚×𝑛
2

and 𝑏 ∈ F𝑚×1
2

where 𝐴 is a uniformly randomly chosen

Toeplitz matrix of size𝑚 × 𝑛 while 𝑏 is uniformly randomly matrix

of size𝑚 × 1. it is worth noticing that HTeop can be represented

with Θ(𝑛)-bits.
For every𝑚 ∈ {1, . . . 𝑛}, the𝑚𝑡ℎ

prefix-slice of ℎ, denoted ℎ𝑚 ,

is a map from {0, 1}𝑛 to {0, 1}𝑚 , where ℎ𝑚 (𝑦) is the first𝑚 bits of

ℎ(𝑦). Observe that when ℎ(𝑥) = 𝐴𝑥 +𝑏, ℎ𝑚 (𝑥) = 𝐴𝑚𝑥 +𝑏𝑚 , where

𝐴𝑚 denotes the submatrix formed by the first𝑚 rows of 𝐴 and 𝑏𝑚
is the first𝑚 entries of the vector 𝑏.

4 THE ALGORITHMS
4.1 Coverage of Delphic Sets
We restate the theorem that we prove in this section.

Theorem 1.6. There is a streaming algorithm APS-Estimator that
given any reals numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩
wherein each 𝑆𝑖 ⊆ Ω belongs to Delphic family, computes an (𝜀, 𝛿)-
approximation of |⋃𝑀

𝑖=1 𝑆𝑖 |. The algorithm has worst case space com-
plexity𝑂 (𝑅 log |Ω |) and update time is𝑂 (𝑅 log𝑅 ·log(𝑀/𝛿) ·log |Ω |)
where, 𝑅 = 𝑂

(
log(𝑀/𝛿) · 𝜀−2

)
.

As discussed in Section 1.2 we will prove Theorem 1.6 in two

stages. In the first stage we will present a simple sample based

algorithm (we call it FPS-Estimator - FPS stands for fixed prob-

ability sampling-based). In the next stage we improve upon the

FPS-Estimator algorithm and present the APS-Estimator algorithm
that is would prove Theorem 1.6.

4.1.1 Algorithm FPS-Estimator.
We prove the following theorem.

Theorem 4.1. There is a streaming algorithm FPS-Estimator that
given any reals numbers 𝜀, 𝛿 < 1, and a stream S = ⟨𝑆1, 𝑆2 · · · , 𝑆𝑀 ⟩
wherein each 𝑆𝑖 ⊆ Ω belongs to Delphic family, computes an (𝜀, 𝛿)-
approximation of |⋃𝑀

𝑖=1 𝑆𝑖 | assuming |⋃𝑀
𝑖=1 𝑆𝑖 | is at least 𝐿 (a pa-

rameter). With probability at least (1 − 𝛿/2) the algorithm has space
complexity 𝑂 (𝑅 · log |Ω |) and update time complexity 𝑂 (𝑅 log𝑅 ·
log(𝑀/𝛿) · log |Ω |) where

𝑅 = 𝑂

(
| ∪𝑖 𝑆𝑖 | ·

log(1/𝛿) + log𝑀
𝐿𝜀2

)
.

We present the algorithm below and establish its correctness.

Claim 4.2. Let 𝑅 be a set of 𝑁 elements and each element of 𝑅
is selected independently with probability 𝑝 . Let 𝑃 be the random
variable that counts the number of selected items. Then

Pr [(1 − 𝜀)𝑝𝑁 ≤ 𝑃 ≤ (1 + 𝜀)𝑝𝑁 ] ≥ 1 − 2𝑒−𝜀
2𝑝𝑁

Proof. Follows from simple application of the Chernoff Bound.

□

Claim 4.3. In Algorithm 1 every element of
⋃𝑀

𝑖=1 𝑆𝑖 is selected in X
independently with probability 𝑝 .



Algorithm 1 FPS-Estimator

1: 𝑝 ←
(
log(4/𝛿)+log𝑀

𝜀2𝐿

)
2: Initialize X ← ∅
3: for 𝑖 = 1 to𝑀 do
4: for all 𝑠 ∈ X do
5: if 𝑠 ∈ 𝑆𝑖 then
6: remove 𝑠 from X
7: Pick a number 𝑁𝑖 from the binomial distribution 𝐵( |𝑆𝑖 |, 𝑝)
8: Get 𝑁𝑖 random distinct samples from 𝑆𝑖 and add them to 𝑆 .

9: Output
|X |
𝑝

Proof. Before we start the prove of the Claim, it is important to

observe that in line 7-8 all we are doing is drawing each element of

𝑆𝑖 with probability 𝑝 . This is because drawing each element of 𝑆𝑖
with probability 𝑝 can be simulated by first identifying how many

distinct elements will be picked from 𝑆𝑖 (and this is done by drawing

a number 𝑁𝑖 from the binomial distribution 𝐵( |𝑆𝑖 |, 𝑝)) and then

drawing that many distinct elements from 𝑆𝑖 (by drawing uniform

samples from 𝑆𝑖 until we have 𝑁𝑖 distinct samples from 𝑆𝑖 .

Now let us prove the claim. For any 𝑗 , define 𝑆 𝑗 as

𝑆 𝑗 = 𝑆 𝑗\ ∪𝑗+1≤𝑖≤𝑀 𝑆𝑖 .

Consider any element 𝑥 ∈ ⋃𝑀
𝑖=1 𝑆𝑖 . We will argue that at the end

of the algorithm 𝑥 is in X with probability 𝑝 .

Notice that 𝑥 ∈ 𝑆 𝑗 for a unique 𝑗 . Without loss of generality

let us assume that 𝑥 ∈ 𝑆 𝑗 . Consider the outermost for loop in

Algorithm 1 when 𝑆 𝑗 is considered. Note that even if 𝑥 may be in

the set X in the for loop from line 4– 6, it would be removed from

X. Now, in the for loop in line 7– 8, 𝑥 would be included in the set

X with probability 𝑝 , and this selection is independent of any other

event. Finally note that once 𝑥 is selected or not selected its status

is never changed with respect to inclusion in X because 𝑥 is not in

∪𝑗+1≤𝑖≤𝑀𝑆𝑖 . □

Lemma 4.4. If |⋃𝑖 𝑆𝑖 | is at least 𝐿, then with probability ≥ (1 −
𝛿/2) the output of FPS-Estimator is between (1 − 𝜀) |⋃𝑖 𝑆𝑖 | and (1 +
𝜀) |⋃𝑖 𝑆𝑖 | and the maximum size of X during the whole run of the

algorithm is 𝑂
(
(1 + 𝜀) · ( |⋃𝑖 𝑆𝑖 |) ·

log(1/𝛿)+log𝑀
𝐿𝜀2

)
.

Proof. From Claim 4.2 and Claim 4.3, the probability that |X|
is between (1 − 𝜀)𝑝 |⋃𝑖 𝑆𝑖 | and (1 + 𝜀)𝑝 |

⋃
𝑖 𝑆𝑖 | is at least

(1 − 2𝑒−𝜀
2𝑝 |⋃𝑖 𝑆𝑖 |).

Since | ∪𝑖 𝑆𝑖 | is at least 𝐿 so

𝑒−𝜀
2𝑝 |⋃𝑖 𝑆𝑖 | ≤ 𝑒−(log(4/𝛿)+log𝑀) =

𝛿

4𝑀
.

So at the end with probability at least (1 − 𝛿
2𝑀
) |X| is between

(1 − 𝜀)𝑝 |⋃𝑖 𝑆𝑖 | and (1 + 𝜀)𝑝 |
⋃

𝑖 𝑆𝑖 |.
This proves that FPS-Estimator outputs an (𝜀, 𝛿)-approximation

of |⋃𝑖 𝑆𝑖 |.
But note that, the size of X can increase and decrease during

the run of the algorithm. So to prove that the size of X is less than

(1 + 𝜀)𝑝 |⋃𝑖 𝑆𝑖 | we will have to apply union bound. From Claim 4.2,

Claim 4.3 and following the argument given above, we have that at

any stage of the algorithm the size of X is less than (1 + 𝜀)𝑝 |⋃𝑖 𝑆𝑖 |
with probability at least (1 − 𝛿

2𝑀
). So using the union bound we

have our result.

□

Proof of Theorem 4.1. From Lemma 4.4 we know that the out-

put of the algorithm FPS-Estimator is an (𝜀, 𝛿)-approximation of

|⋃𝑀
𝑖=1 𝑆𝑖 |. All that is left to be shown is the upper bound on the

worst case space and update time complexity.

From Lemma 4.4 we know that with probability (1 − 𝛿/2) the
size of X is less than (1 + 𝜀)𝑝 |⋃𝑖 𝑆𝑖 |. Since we need 𝑂 (log |Ω |) to
store an element of Ω the space complexity of FPS-Estimator is
upper bounded by (1+ 𝜀)𝑝 · ( |⋃𝑖 𝑆𝑖 |) · (log |Ω |) which is as claimed

in the theorem.

Now let us consider the update time. Once again from Lemma 4.4

we know that with probability (1−𝛿/2) the size of X is never more

than (1 + 𝜀)𝑝 |⋃𝑖 𝑆𝑖 |. Since we assume the sets in the stream are

Delphic, so it takes only 𝑂 (log |Ω |) time to check the if condition
in line 5 of Algorithm 1. Thus we see that the time spend in line 5– 8

is

𝑂

(
𝑝 ·

(�����⋃
𝑖

𝑆𝑖

�����
)
· (log |Ω |)

)
.

Also due to the fact that the sets are Delphic we can obtain a random

sample in 𝑂 (log |Ω |) time. But to obtain 𝑁𝑖 distinct samples from

𝑆𝑖 , from Theorem 3.4 we see that, probability that we have to draw

more than 𝑂 (𝑁𝑖 · log𝑁𝑖 · log(2𝑀/𝛿)) number of uniform samples

from 𝑆𝑖 is at most 𝛿/2𝑀 . Thus, by union bound, with probability

(1 − 𝛿/2) for all 1 ≤ 𝑖 ≤ 𝑀 if we draw 𝑂 (𝑁𝑖 · log𝑁𝑖 · log(2𝑀/𝛿))
number of uniform samples from 𝑆𝑖 we get 𝑁𝑖 distinct samples

from 𝑆𝑖 . Thus in the for loop, the line 7– 8 can be executed in

𝑂 (𝑁𝑖 log𝑁𝑖 · log(𝑀/𝛿) · log |Ω |) time with probability at least (1−
𝛿/2). Since for all 𝑖 , 𝑁𝑖 is less than the maximum size of X during

the run of the algorithm so we have the bound on the update time

complexity. □

4.1.2 Algorithm APS-Estimator. We can now present the algo-

rithm APS-Estimator and prove its correctness and analyse its com-

plexity. This would prove Theorem 1.6.

Claim 4.5. For all 𝑘 , after the (partial) stream 𝑆1, · · · , 𝑆𝑘 has been
processed, by the algorithm APS-Estimator, for any 𝑥 ∈ ⋃𝑘

𝑖=1 𝑆𝑖 the
element 𝑥 is in X with probability 𝑝 .

Proof. The proof is very similar to that of Claim 4.3. For the

proof of Claim 4.5 we can perform induction on the number of

items seen in the stream. Let us assume that after 𝑗 items 𝑆1, · · · , 𝑆 𝑗
has been processed by the algorithm APS-Estimator, every item

of

⋃𝑗

𝑖=1
𝑆𝑖 is in the set X with probability 𝑝 . Now when the 𝑆 𝑗+1

comes in the stream the algorithm (in for loop in line 6– 8) will

throw away all the items in X that are in 𝑆 𝑗+1. So at that point

(after line 8) all the elements in

(⋃𝑗

𝑖=1
𝑆𝑖

)
\𝑆 𝑗+1 is in the set X with

probability 𝑝 .

In line 9, a number 𝑁 𝑗+1 is drawn from the binomial distribution

𝐵( |𝑆 𝑗+1 |, 𝑝). Note that drawing𝑁 𝑗+1 independent samples from 𝑆 𝑗+1
is exactly same as selecting each element of 𝑆 𝑗+1 independently
with probability 𝑝 . So if we had just added 𝑁 𝑗+1 elements of 𝑆 𝑗+1 to
the setX wewould be doing exactly same as in the case of Claim 4.3



Algorithm 2 APS-Estimator

1: Initialize 𝑇 ←
(
log(4/𝛿)+log𝑀

𝜀2

)
2: Initialize 𝑝 ← 𝑇

3: Initialize Thresh← 2(1 + 𝜀)𝑇
4: Initialize X ← ∅
5: for 𝑖 = 1 to𝑀 do
6: for all 𝑠 ∈ X do
7: if 𝑠 ∈ 𝑆𝑖 then
8: remove 𝑠 from X
9: Pick a number 𝑁𝑖 from the binomial distribution 𝐵( |𝑆𝑖 |, 𝑝)
10: if 𝑁𝑖 + |X| is more than 𝑇 then
11: Let 𝑡 ∈ N be the number such that 𝑁𝑖 + |X| ≤ 2

𝑡Thresh
12: 𝑝 = 𝑝/2𝑡
13: Throw away each element ofX with probability (1− 1

2
𝑡 )

14: for 𝑗 = 1 to 𝑁𝑖 do
15: Pick a random real number 𝜋 from [0, 1]
16: if 𝜋 ≤ 1/2𝑡 then
17: Draw a random sample 𝑦 from 𝑆𝑖 such that 𝑦 ∉ X
18: Add 𝑦 to X.
19: Output

|X |
𝑝

and hence all elements of

⋃𝑗+1
𝑖=1

𝑆𝑖 would be in X independently

with probability 𝑝 .

The only thing that can be different is if the condition of the if
loop (in line 10) is satisfied. In that case the 𝑝 is updated to 𝑝/2𝑟 (in
line 12) and since each element of the setX is independently thrown

away with probability (1 − 1/2𝑟 ), probability that an element is in

X is decreased by a factor of 2
𝑟
. And after line 13, every element

of

(⋃𝑗

𝑖=1
𝑆𝑖

)
\𝑆 𝑗+1 is in the set X with probability 𝑝 (which is the

new updated 𝑝). The for loop in line 14– 18 can be thought of as

picking 𝑁 𝑗+1 samples from 𝑆 𝑗+1 and then throwing each of those

samples with probability (1 − 1/2𝑟 ). So each item of 𝑆 𝑗+1 is also
selected in X independently with the new updated probability 𝑝 .

So after processing the set 𝑆 𝑗+1 we once again have the fact that

every element of

⋃𝑗+1
𝑖=1

𝑆𝑖 in in X with probability 𝑝 . □

Proof of Theorem 1.6. Firstly, it is easy to see that the set X
cannot ever cross Thresh, and so the space complexity is upper

bounded by𝑂 (Thresh · (log |Ω |)). The update time of the algorithm

also is bounded by 𝑂 (Thresh log(Thresh) · log(2𝑀/𝛿) · (log |Ω |))
(using the same argument as in Theorem 4.1). So the worst case

space and update time complexity of APS-Estimator is as stated
in the statement of Theorem 1.6. To complete the proof of Theo-

rem 1.6 all we need to show is the correctness of the algorithm

APS-Estimator.
Note that as the algorithm proceeds 𝑝 starts from𝑇 and decreases

to some value (say𝑇 /2𝑘 ). Note that the final set of the samples in the

setX is exactly what would have happened if we ran FPS-Estimator
with 𝐿 = 2

𝑘
. Thus from Lemma 4.4 we have that if |⋃𝑖 𝑆𝑖 | ≥ 2

𝑘

then with probability ≥ (1 − 𝛿/2) the algorithm APS-Estimator (as
in algorithm FPS-Estimator) outputs an estimate that is between

(1 − 𝜀) | ∪𝑖 𝑆𝑖 | and (1 + 𝜀) | ∪𝑖 𝑆𝑖 |.

The output of the APS-Estimator is out of the desired bounds if

|⋃𝑀
𝑖=1 𝑆𝑖 | < 2

𝑘
, where the final value of 𝑝 is 𝑇 /2𝑘 . Let us assume

that |⋃𝑀
𝑖=1 𝑆𝑖 | is ≥ 2

𝑟
and < 2

𝑟+1
. So there must be a time when

the 𝑝 value went from ≤ 𝑇 /2𝑟 to ≥ 𝑇 /2𝑟+1. Let that time frame

be when the algorithm was processing item 𝑆 𝑗 Now the reason

algorithm updated 𝑝 at that time is because X +𝑁 𝑗 must have gone

bigger than Thresh.
By Lemma 4.4 if we ran the algorithm FPS-Estimator with the

parameter 𝐿 set to 2𝑟 thenwith probability ≥ (1−𝛿/2) themaximum

size of X during the whole run of the algorithm is

𝑂

(
(1 + 𝜀)

|⋃𝑀
𝑖=1 𝑆𝑖 |
2
𝑟 𝜀2

· (log(4/𝛿) + log𝑀)
)
.

And since we have assumed |⋃𝑀
𝑖=1 𝑆𝑖 | is less than 2

𝑟+1
, so with

probability ≥ (1 − 𝛿/2) the maximum size of X during the whole

run of the algorithm is less than 𝑂

(
2(1+𝜀)
𝜀2
· (log(4/𝛿) + log𝑀)

)
which is Thresh.

So this event that is |⋃𝑖 𝑆𝑖 | < 2
𝑘
while 𝑝 is updated to𝑇 /2𝑘 can

happen with probability at most 𝛿/2. This proves that the algorithm
APS-Estimator outputs an (𝜀, 𝛿)-approximation of |⋃𝑀

𝑖=1 𝑆𝑖 |. □

4.2 Klee’s Measure Problem
We return to Klee’s measure problem in streaming setting and show

that a straightforward application of Theorem 1.6 leads to the first

space and update time efficient algorithm. As a first step, we show

that the set Range(r) of a rectangle r is Delphic.

Lemma 4.6. For each rectangle 𝑟 , Range(𝑟 ) belongs to Delphic fam-
ily.

Proof. Note that Range(r) ⊆ [Δ]𝑑

(1) For a given r, the size of the set is simply

∏𝑑
𝑖=1 (𝑏𝑖 − 𝑎𝑖 ) can

be computed in 𝑂 (𝑑) time.

(2) To draw a uniform random sample (𝑥1, . . . 𝑥𝑑 ), 𝑥𝑖 is sam-

pled uniformly at random from [𝑎𝑖 , 𝑏𝑖 ], which can be accom-

plished in 𝑂 (𝑑 logΔ)
(3) Given 𝑥 = (𝑥1, . . . 𝑥𝑑 ), we can check if 𝑥 ∈ Range(r) by

checking if for all 𝑖 , 𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖 ], which can be accomplished

in 𝑂 (𝑑)
□

Now, upon observing that each 𝑟𝑖 implicitly representsRange(𝑟𝑖 ),
the following corollary immediately follows from Theorem 1.6.

Corollary 1.8. There is a streaming algorithm that given any reals
numbers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ where each
r𝑖 is a d-dimensional rectangle over Ω = [Δ𝑑 ], computes an (𝜀, 𝛿)-
approximation of Volume(R). The algorithm has worst case space
𝑂

(
𝑑 (logΔ) · log(𝑀/𝛿) · 𝜀−2

)
and update time complexity

𝑂
(
𝑑 (logΔ) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

The notion of range [𝑎𝑖 , 𝑏𝑖 ] can be generalized to arithmetic pro-

gressions, which was studied previously by Pavan and Tirthpura for

𝑑 = 1. Our sampling model allows us to derive streaming algorithms

for a more general model comprising of 𝑑-dimensional arithmetic

progressions: Let [𝑎, 𝑏, 𝑐] represent the arithmetic progression with

common difference 𝑐 in the range [𝑎, 𝑏], i.e., 𝑎, 𝑎 + 𝑐, 𝑎 + 2𝑐, 𝑎 + 𝑗𝑐 ,



where 𝑗 is the largest integer such that 𝑎+ 𝑗𝑑 ≤ 𝑏. Consider a stream

R = ⟨r1, r2, . . . r𝑚⟩ wherein each r𝑖 = [𝑎1, 𝑏1, 𝑐1] × · · ·× [𝑎𝑑 , 𝑏𝑑 , 𝑐𝑑 ].
We generalize Range(r) to denote the set of tuple {(𝑥1, . . . 𝑥𝑑 )}
where 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and 𝑥𝑖 = 𝑎𝑖 + 𝑘 · 𝑐𝑖 for some positive integer k.

Similarly, Volume(R) = |⋃𝑚
𝑖=1 Range(r𝑖 ) |. To apply Theorem 1.6,

we first show that Range(r) of a 𝑑-dimensional arithmetic progres-

sions is Delphic.

Lemma 4.7. For each 𝑑-dimensional arithmetic progressions r, the
set Range(r) belongs to Delphic family.

Proof. Note that Range(r) ⊆ [Δ]𝑑

(1) For a given r, the size of the set is simply

∏𝑑
𝑖=1

(
⌊𝑏𝑖−𝑎𝑖𝑐𝑖

⌋ + 1
)
,

which can be computed in 𝑂 (𝑑) time.

(2) To draw a uniform sample (𝑥1, . . . 𝑥𝑑 ), 𝑥𝑖 is sampled uni-

formly at random from [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ]. Note that to sample from

[𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ], we first draw a number 𝑘 uniformly at random

from (⌊𝑏𝑖−𝑎𝑖𝑐𝑖
⌋ + 1), and then return 𝑎𝑖 + 𝑘 · 𝑐𝑖

(3) Given 𝑥 = (𝑥1, . . . 𝑥𝑑 ), we can check if 𝑥 ∈ Range(r) by
checking if for all 𝑖 , 𝑥𝑖 ∈ 𝑎𝑖 + 𝑘 · 𝑐𝑖 for some positive integer

k and 𝑥𝑖 ≤ 𝑏𝑖 , which can be accomplished in 𝑂 (𝑑) time.

□

We can now invoke Theorem 1.6 to obtain the following result.

Corollary 1.10. There is a streaming algorithm that given any
positive reals numbers 𝜀, 𝛿 < 1, and a stream R = ⟨r1, r2, · · · r𝑀 ⟩ con-
sisting of 𝑑-dimensional arithmetic progressions, computes an (𝜀, 𝛿)-
approximation of Volume(R). The algorithm has worst case space
complexity𝑂

(
𝑑 (logΔ) · log(𝑀/𝛿) · 𝜀−2

)
and worst case update time

complexity 𝑂
(
𝑑 (logΔ) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

4.3 Test Coverage Estimation
We now focus on test coverage estimation problem and provide the

proof for Corollary. We begin with the following lemma.

Lemma 4.8. For each a𝑖 , Cov(a𝑖 ) belogns to Delphic family

Proof. Note that Cov(a𝑖 ) ⊆ {0, 1}𝑡 log𝑛+𝑡 .
(1) |Cov(a𝑖 | =

(𝑛
𝑡

)
(2) Drawing a uniform sample is simply drawing a log

2
(
(𝑛
𝑡

)
)-bit

strings uniformly at random, which can be accomplished in

𝑂
(
log(

(𝑛
𝑡

)
)
)
.

(3) Finally, to check if 𝑥 = (𝑇,𝑦) ∈ Cov(a𝑖 ), we simply compute

the restriction of 𝑎𝑖 over𝑇 and perform a string equivalence

check.

□

Upon observing that each a𝑖 implicitly represents Cov(a𝑖 ), the
following corollary immediately follows from Theorem 1.6

Corollary 1.11. There is a streaming algorithmAPS-Estimator that
given any reals numbers 𝜀, 𝛿 < 1, and a stream A = ⟨a1, · · · , a𝑀 ⟩,
where a𝑖 ∈ {0, 1}𝑛 , computes an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)|.
The algorithm has space complexity 𝑂

(
𝑡 (log𝑛) · log(𝑀/𝛿) · 𝜀−2

)
and worst case update time complexity

𝑂

(
𝑡 (log𝑛) · (log(𝑀/𝛿))2 log log(𝑀/𝛿) · 𝜀−2 log 𝜀−1

)
.

A natural question one wonders is whether the space complexity

of the above algorithm is tight. The following observation illustrates

that the space complexity can be improved but at the cost of update

time.

Observation 4.9. There is a streaming algorithm that given a stream
A = ⟨a1, · · · , a𝑀 ⟩, computes an (𝜀, 𝛿)-approximation of |Cov𝑡 (A)|.
The algorithm takes 𝑂 (𝑡 log𝑛 + 𝜀−2) log 1

𝛿
) space and 𝑂 (𝑛𝑡 ) update

time.

Proof. For the item a𝑖 , produce a steam with

(𝑛
𝑡

)
elements

b ∈ {0, 1}𝑡 that are covered by a𝑖 and use the algorithm due to Kane,

Nelson, andWoodruff [28] to compute the 𝐹0 of the resulting stream.

The reduction takes 𝑂 (𝑡 log𝑛) space and 𝑂 (𝑛𝑡 ) time. The F0 com-

putation on the resulting stream takes 𝑂 ((𝑡 log𝑛 + 𝜀−2) log 1/𝛿))
and 𝑂 (1) processing time per item. □

One wonders whether we can expliot the trade off between space

and time complexity to arrive at an algorithm that has better space

complexity than Corollary 1.11 and time complexity that is better

than Observation 4.9. To this end, we present a hashing-based

strategy that can replace the time complexity of𝑂 (𝑛𝑡 ) with linearly

many calls to NP oracle.

Before, we state the result, we take a detour and formally intro-

duce the notion of pairwise independent hash functions.

Hashing-based Coverage Estimation
We begin with an alternate view of Cov𝑡 (𝑎). We can view a as a

string 𝑎1𝑎2 · · ·𝑎𝑛 ∈ {0, 1}𝑛 . Then,
Cov𝑡 (a) = {⟨𝑖1, 𝑖2, · · · , 𝑖𝑡 ;𝑏1, 𝑏2, · · · , 𝑏𝑡 ⟩ | 𝑖1 < 𝑖2 < · · · < 𝑖𝑡

and 𝑎𝑖 𝑗 = 𝑏 𝑗∀1 ≤ 𝑗 ≤ 𝑡}.
Therefore, each element ofCov𝑡 (a) can be seen as a binary string of
length (𝑡 +1) log𝑛 and we will focus on the universe {0, 1} (𝑡+1) log𝑛 .

We will now prove the following theorem that improves upon

the space complexity of Corollary 1.11 when allowed access to an

NP oracle.

Theorem 1.12. There is a streaming algorithmHashingEstimator
with an NP set as an oracle that given a stream A = ⟨a1, · · · , a𝑀 ⟩,
and real numbers 0 < 𝜀, 𝛿 < 1, where each a𝑖 ∈ {0, 1}𝑛 computes an
(𝜀, 𝛿)-approximation of |Cov𝑡 (A)|. The algorithm takes 𝑂 (𝑡 log𝑛 ·
𝜀−2 · log 1

𝛿
) space and poly(𝑛, 𝑡, 1/𝜀) update time. Thus, if P=NP,

algorithm will run in time poly(𝑛, 𝑡, 1/𝜀).

Algorithm 3 can be viewed as an adaptation of Gibbons and

Tirthapura’s algorithm for 𝐹0 estimation wherein every element of

the stream 𝑎 represents the associated set Cov𝑡 (𝑎). The algorithm
first selects a 𝑇 = O(log(1/𝛿)) pairwise independent hash func-

tions. We then maintain two arrays of size 𝑇 : array of sketches X
and an associated array of levels (represented as integers) 𝑚. In

particular, corresponding to every hash function 𝐻 [𝑖], we main-

tain an associated level 𝑚[𝑖] and the corresponding X[𝑖]. The
core underlying idea is that at every point, X[𝑖] consists of the
all 𝑦 ∈ {0, 1} (𝑡+1) log𝑛 covered by the stream so far such that for

each𝑦, we have𝐻 [𝑖]𝑚 [𝑖 ] (𝑦) = 0
𝑚 [𝑖 ]

. Furthermore, to avoid storing

exponentiallymany elements, we ensure thatX[𝑖] < thresh. To this
end, we first check whether | (𝐻 [𝑖]−1

𝑚 [𝑖 ] (0
𝑚 [𝑖 ] ) ∩ Cov𝑡 (𝑎)) ∪ X[𝑖] |

is less than thresh, and in such a case, we increment the value of



𝑚[𝑖] until the check in line 9 succeeds. Note that whenever we

increment the value of𝑚[𝑖] in line 13, we also refine the set ofX[𝑖]
to ensure that for all the elements 𝑦 ∈ X[𝑖], it is indeed the case

that 𝐻 [𝑖]𝑚 [𝑖 ] (𝑦) = 0
𝑚 [𝑖 ]

.

Algorithm 3 HashingEstimator

1: thresh← 1 + 9.84(1 + 1

𝜀2
)

2: T← 35 log(1/𝛿)
3: 𝑚[1 : 𝑇 ] ← 0; X[1 : 𝑇 ] ← 0

4: 𝐻 ← ChooseHashFunctions(𝑇 )
5: while !EndStream do
6: a← 𝑖𝑛𝑝𝑢𝑡 ()
7: for 𝑖 ∈ {0, 1, . . . ,𝑇 } do
8: while true do
9: if | (𝐻 [𝑖]−1

𝑚 [𝑖 ] (0
𝑚 [𝑖 ] ) ∩ Cov𝑡 (a)) ∪ X[𝑖] | < thresh

then
10: X[𝑖] = X[𝑖] ∪ {𝐻 [𝑖]−1

𝑚 [𝑖 ] (0
𝑚 [𝑖 ] ) ∩ Cov𝑡 (a)}

11: break;

12: else
13: 𝑚[𝑖]+ = 1

14: X[𝑖] = X[𝑖] ∩ 𝐻 [𝑖]−1
𝑚 [𝑖 ] (0

𝑚 [𝑖 ] )

15: return Median

({
size(X[𝑖]) × 2𝑚 [𝑖 ]

}
𝑖

)

Lemma 4.10. Let 𝑐 = Median

({
size(X[𝑖]) × 2𝑚 [𝑖 ]

}
𝑖

)
. Then

Pr

[
Cov𝑡 (A)
1 + 𝜀 ≤ 𝑐 ≤ Cov𝑡 (A)(1 + 𝜀)

]
≥ 1 − 𝛿

While allowing larger constants in the expression of thresh
would allow us to use the arguments of Gibbons and Tirthapura [25],

we provide an alternate proof building on Chakraborty, Meel, and

Vardi [13] and Meel r○ Akshay [38] that allows us to obtain better

constants. We believe the proof is of independent interest as it ex-

ploits the nested properties of the sets𝐻 [𝑖]−1
𝑚 [𝑖 ] (0

𝑚 [𝑖 ] ), which have

shown to provide significant performance improvements in the

context of model counting [13]. The proof is deferred to Appendix.

Now, the key question remains is of the time complexity. In

essence, we are interested in the time complexity of the check

in line 9. Observe that for all 𝑦 ∈ {0, 1} (𝑡+1) log𝑛 , the check 𝑦 ∈
Cov𝑡 (𝑎) can be performed in O((𝑡 + 1) log𝑛) time. The following

proposition follows from Lemma 3.7 of Bellare, Goldreich, and

Petrank [4].

Lemma 4.11. Given a hash function ℎ ∈ HTeop (𝑛,𝑚) and X, there
is a polynomial time algorithm A and 𝑁𝑃 sets 𝑀1, 𝑀2 such that
A𝑀1,𝑀2 (ℎ, 𝑎,𝑚, 𝑝,X) outputs 0 if | (ℎ−1 (0𝑚)∩Cov𝑡 (𝑎))∪X| ≥ 𝑝 and
ℎ−1 (0𝑚)∩Cov𝑡 (𝑎) otherwise. The algorithmmakes O(𝑝 (𝑡 +1) log𝑛)
calls to NP oracle and uses O(𝑝 (𝑡 + 1) log𝑛) space.

Proof. The proof follows similar structure to Lemma 3.7 of [4].

𝑀1 = {(𝑎, ℎ,𝑚, 𝑝) | ∃𝑦1, . . . 𝑦𝑝 such that 𝑦1, . . . 𝑦𝑝 are distinct and

∀𝑖 ∈ [𝑝] : 𝑦𝑖 ∈ Cov𝑡 (𝑎) ∧ ℎ(𝑦𝑖 ) = 0
𝑚 ∧ 𝑦𝑖 ∉ X}

𝑀2 = {(𝑎, ℎ,𝑚, 𝑝 ′, 𝑖 ′, 𝑗 ′) | ∃𝑦1 ≺ 𝑦2 . . . ≺ 𝑦𝑝′ such that

𝑦1 · 𝑦𝑝′ are distinct and ∀𝑖 ∈ [𝑝 ′] : 𝑦𝑖 ∈ Cov𝑡 (𝑎)∧
ℎ(𝑦𝑖 = 0

𝑚 ∧ (𝑖 ′ ≤ 𝑝 ′) ∧ ( 𝑗 ′ ≤ |𝑦𝑖′ | and 𝑗 ′-th bit of 𝑦𝑖′ is 0 }

Note that ≺ denotes a total ordering on {0, 1} (𝑡+1) log𝑛 . The algo-
rithmA first invokes𝑀1 to output 0 if | (ℎ−1 (0𝑚)∩Cov𝑡 (𝑎)∪X| < 𝑝 .

Otherwise, A queries 𝑀2 to determine all the 𝑦 ∈ (ℎ−1 (0𝑚) ∩
Cov𝑡 (𝑎)) ∪ X bit by bit. □

Observe that Lemma 4.10 and 4.11 imply the desired theorem.

It is worth remarking that the usage of SAT oracle does not neces-

sarily imply that the algorithmHashingEstimatorwould not be able
handle practical instances. The past three decades have witnessed a

sustained development of algorithmic techniques that allowmodern

SAT solvers to handle problems involving millions of variables [36].

Furthermore, the queries to SAT oracle inHashingEstimator can be

expressed as conjunction of CNF and XOR constraints, also known

as CNF-XOR formulas. Owing to the critical importance of CNF-

XOR formulas in the context of hashing-based techniques for model

counting [12, 13, 50], there has been a renewed focus on the design

of efficient techniques for CNF-XOR formulas [48, 49]. We leave

design of practical tools for future work.

4.4 Model Counting of DNF
Consider a DNF formula 𝜑 = 𝑇1 ∨ 𝑇2 . . . ∨ 𝑇𝑀 wherein each 𝑇𝑖 is

a term defined a set of 𝑛 Boolean variables.. We denote the set of

all satisfying assignments of 𝜑 by Sol(𝜑). Given 𝜑 , the problem of

model counting seeks to compute |Sol(𝜑) |. We focus on the problem

of model counting for DNF formulas in streaming setting, i.e., where

the terms 𝑇𝑖 arrive one by one over a stream. We first begin with

the following lemma.

Lemma 4.12. For each 𝑇𝑖 , Sol(𝑇𝑖 ) belongs to Delphic family.

Proof. Note that Sol(𝑇𝑖 ) ∈ {0, 1}𝑛 . Let |𝑇𝑖 | denote the size of
the term 𝑇𝑖

• Sol(𝑇𝑖 ) = 2
𝑛−|𝑇𝑖 |

, which can computed in 𝑂 (𝑛) time.

• Drawing a uniform sample from Sol(𝑇𝑖 ) is simply draw 𝑛 −
|𝑇𝑖 | bits uniformly at random, which can be accomplished in

𝑂 (𝑛) time.

• Finally, check 𝑥 ∈ Sol(𝑇𝑖 ) can be accomplished in𝑂 (𝑛) time.

□

Since each 𝑇𝑖 implicitly represents Sol(𝑇𝑖 ), the following corol-
lary follows from Theorem 1.6.

Corollary 1.13. There is a streaming algorithm that given any posi-
tive reals numbers 𝜀, 𝛿 < 1, and a stream ⟨𝑇1,𝑇2, . . .𝑇𝑀 ⟩ of terms over
𝑛 variables, computes an (𝜀, 𝛿)-approximation of |Sol(𝜑 |) wherein
𝜑 = 𝑇1 ∨𝑇2 ∨ . . . ∨𝑇𝑀 . The algorithm takes 𝑂 (𝑛 · log(𝑀/𝛿) · 𝜀−2)
space and𝑂 (𝑛 · (log(𝑀/𝛿))2 log log(𝑀/𝛿) ·𝜀−2 log 𝜀−1) update time.



5 CONCLUSION AND FUTURE OUTLOOK
To summarize, our investigations led us to design a surprisingly

simple yet efficient scheme for computation of size of union of

sets belonging to Delphic family. We then show that the notion of

Delphic sets can capture three fundamental problems in streaming

setting: Klee’s measure problem, coverage estimation problem, and

DNF counting. For each of these problems, we provide efficient

streaming algorithms.

Crucially, we believe the simplicity of our scheme should make it

amenable to practical implementation and adoption. From technical

perspective, we sketch out three directions of interest:

Generalization of Delphic Sets In this work, we limited our fo-

cus to three problems to showcase the generalizability of

the notion of Delphic sets. As a future work, an interesting

direction of work would be to study other streaming prob-

lems that reduce to Delphic sets. To this end, one line of

work would be to relax the requirement of 𝑂 (log |Ω |) time

to 𝑂 (log |Ω |)𝑂 (1) for membership, counting, and sampling

queries.

Higher Moments the computation of union of sets corresponds

to F0 (0-th frequency moment) estimation. In this context, a

natural question would be whether we can generalize our

sampling-based strategy for F𝑘 , i.e., k-th frequency moment

estimation.

Beyond Insertion-Only Streams The framework presented in

this paper handles insertion only streams. The past two

decades have witnessed a long line of work on richer turn-

stile models that allow deletion. Therefore, an interesting

direction of future work would be to explore sampling-based

framework for turnstile model.

Complexity independent of M The space and time complexity

of APS-Estimator has logarithmic dependence on𝑀 , which

is in line with the 𝑂∗ (1) notation introduced by Tirthapura

and Woodruff [55]. However, observe that we can cast the

distinct element problem as a special case of union of Del-

phic sets wherein every set is simply a singleton. In case

of distinct element problem, the algorithms without depen-

dence on𝑀 are known. Therefore, an interesting direction

for future work would be to investigate whether sampling-

based framework can lead to algorithms whose space and

update time complexity are independent of𝑀 .
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APPENDIX
We provide a Proof of Lemma 4.10. We first restate the lemma below.

Lemma 4.10. Let 𝑐 = Median

({
size(X[𝑖]) × 2𝑚 [𝑖 ]

}
𝑖

)
. Then

Pr

[
Cov𝑡 (A)
1 + 𝜀 ≤ 𝑐 ≤ Cov𝑡 (A)(1 + 𝜀)

]
≥ 1 − 𝛿

Proof. While allowing larger constants in the expression of

thresh would allow us to use the arguments of Gibbons and Tirtha-

pura [25], we provide an alternate proof building on Chakraborty,

Meel, and Vardi [13] and Meel r○Akshay [38] that allows us to ob-

tain better constants. We believe the proof is of independent inter-

est as it exploits the nested properties of the sets 𝐻 [𝑖]−1
𝑚 [𝑖 ] (0

𝑚 [𝑖 ] ),
which have shown to provide significant performance improve-

ments in the context of model counting [1].

Let 𝑌 = {𝑦1, 𝑦2, . . . 𝑦𝐹0 } be 𝐹0 distinct elements covered by the

input stream. For a fixed 𝑖 ∈ [|𝐻 |], let us use Bad𝑖 to denote the

event size(S[𝑖]) × 2𝑚 [𝑖 ] does not lie in the interval

𝐼Good =

[
|Cov𝑡 (A)|

1 + 𝜀 , |Cov𝑡 (A)|(1 + 𝜀)
]
.

Let Cnt⟨𝑖, 𝑗 ⟩ denote |𝑌 ∩ 𝐻 [𝑖]−1
𝑗
(0𝑚 [𝑖 ] ) |. For 𝑗 ∈ {1, . . . , 𝑛},

let 𝑇𝑖, 𝑗 denote the event that

(
Cnt⟨𝑖, 𝑗 ⟩ ≤ thresh − 1

)
, and let 𝐿𝑖, 𝑗

and𝑈𝑖, 𝑗 denote the events

(
Cnt⟨𝑖, 𝑗 ⟩ <

|Cov𝑡 (A) |
(1+𝜀)2𝑗

)
and

(
Cnt⟨𝑖, 𝑗 ⟩ >

|Cov𝑡 (A) |
2
𝑗 (1 + 𝜀

1+𝜀 )
)
, respectively.

Now, for Bad𝑖 to happen, either 𝐿𝑖, 𝑗 or 𝑈𝑖, 𝑗 must happen along-

side the event 𝑇𝑖, 𝑗 ∩𝑇𝑖, 𝑗−1. Thus, we obtain

Pr [Bad𝑖 ] ≤ Pr


⋃

𝑗 ∈{1,...𝑛}

(
𝑇𝑖, 𝑗−1 ∩𝑇𝑖, 𝑗 ∩ (𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 )

) (2)

Note that we only get an upper bound (and not an equality) above

because the interval 𝐼Good considered has upper bound |Cov𝑡 (A)|(1+
𝜀), while𝑈𝑖 and thresh are defined using the factor (1+ 𝜀

1+𝜀 ) ≤ 1+𝜀.
Our next goal is to simplify this upper bound. Let𝑚∗ be the small-

est 𝑗 such that
|Cov𝑡 (A) |

2
𝑗 (1 + 𝜀) ≤ thresh − 1. Now, by substituting

the chosen value of thresh and simplifying, we obtain

𝑚∗ =

⌊
log

2
|Cov𝑡 (A)| − log2

(
4.92 · 𝜌 ·

(
1 + 1

𝜀

)
2

)⌋
(3)

We make use of the following simple but crucial observation:

∀𝑗 ∈ {1, . . . , 𝑛},𝑇𝑗 =⇒ 𝑇𝑗+1 (4)

Following [38], we can now state the claim that we can upper

bound Bad𝑖 by considering only five events, namely,𝑇𝑖,𝑚∗−3𝐿𝑖,𝑚∗−2,
𝐿𝑖,𝑚∗−1, 𝐿𝑖,𝑚∗ and𝑈𝑖,𝑚∗ .

Claim 5.1. Pr[Bad𝑖 ] ≤ Pr[𝑇𝑖,𝑚∗−3] + Pr[𝐿𝑖,𝑚∗−2] + Pr[𝐿𝑖,𝑚∗−1] +
Pr[𝐿𝑖,𝑚∗ ∪𝑈𝑖,𝑚∗ ]

Proof. Let 𝜇 𝑗 =
|Cov𝑡 (A) |

2
𝑗 . Wemake three observations, labeled

O1, O2 and O3 below, which follow from the definitions of 𝑚∗,
thresh and 𝜇 𝑗 , and from the monotonicity of Cnt⟨𝑖, 𝑗 ⟩ with respect

to 𝑗 for a fixed 𝑖 .

O1: ∀𝑗 ≤ 𝑚∗ − 3, it is guaranteed that |Cov𝑡 (A) |
2
𝑗 (1+𝜀) ≥ thresh. From

this it follows that (a) 𝑇𝑖, 𝑗 ∩𝑈𝑖, 𝑗 = ∅ and (b) 𝑇𝑖, 𝑗 ∩ 𝐿𝑖, 𝑗 = 𝑇𝑖, 𝑗 .

https://doi.org/10.1016/0196-6774(89)90038-2
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Therefore, ⋃
𝑗 ∈{1,...𝑚∗−3}

(
𝑇𝑖, 𝑗−1 ∩𝑇𝑖, 𝑗 ∩ (𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 )

)
⊆

⋃
𝑗 ∈{1,...𝑚∗−3}

(
𝑇𝑖, 𝑗−1 ∩𝑇𝑗

)
⊆

⋃
𝑗 ∈{1,...𝑚∗−3}

𝑇𝑖, 𝑗 ⊆ 𝑇𝑖,𝑚∗−3

where the last containment follows from Equation 4 . Hence,

Pr


⋃

𝑗 ∈{1,...𝑚∗−3}

(
𝑇𝑖, 𝑗−1 ∩𝑇𝑖, 𝑗 ∩ (𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 )

) ≤ Pr[𝑇𝑖,𝑚∗−3] .

O2: For 𝑗 ∈ {𝑚∗ − 2,𝑚∗ − 1}, it similarly follows that thresh ≤
|Cov𝑡 (A) |

2
𝑗 (1+ 𝜀

1+𝜀 ) , we have𝑇𝑖, 𝑗∩𝑈𝑖, 𝑗 = ∅. Since,𝑇𝑖, 𝑗∩𝐿𝑖, 𝑗 ⊆
𝐿𝑖, 𝑗 , we have

Pr


⋃

𝑗 ∈{𝑚∗−2,𝑚∗−1}

(
𝑇𝑖, 𝑗−1 ∩𝑇𝑖, 𝑗 ∩ (𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 )

)
≤ Pr

[
𝐿𝑖,𝑚∗−2

]
+ Pr

[
𝐿𝑖,𝑚∗−1

]
.

O3: For 𝑗 ≥ 𝑚∗, it can be shown in the same vein that thresh ≥
|Cov𝑡 (A) |

2
𝑗 (1+ 𝜀

1+𝜀 ), which implies that𝑇𝑖, 𝑗 ⊆ 𝑈𝑖, 𝑗 . Now, from

Equation 4, it follows that for all 𝑗 ,𝑇𝑖, 𝑗 ⊆ 𝑇𝑖, 𝑗−1. This implies

that

Pr[
⋃

𝑗 ∈{𝑚∗,... |𝑆 | }
𝑇𝑖, 𝑗−1 ∩𝑇𝑖, 𝑗 ∩ (𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 )]

≤ Pr[𝑇𝑖,𝑚∗ ∪ (𝑇𝑖,𝑚∗−1 ∩𝑇𝑖,𝑚∗ ∩ (𝐿𝑖,𝑚∗ ∪𝑈𝑖,𝑚∗ ))]

≤ Pr[𝑇𝑖,𝑚∗ ∪ 𝐿𝑖,𝑚∗ ∪𝑈𝑖,𝑚∗ ]
≤ Pr[𝐿𝑖,𝑚∗ ∪𝑈𝑖,𝑚∗ ]

Using O1, O2 and O3, we get

Pr[Bad𝑖 ] ≤ Pr[𝑇𝑖,𝑚∗−3]+Pr[𝐿𝑖,𝑚∗−2]+Pr[𝐿𝑖,𝑚∗−1]+Pr[𝐿𝑖,𝑚∗∪𝑈𝑖,𝑚∗ ] .
□

Claim 5.2. The following bounds hold:
(1) Pr[𝐿𝑖,𝑚∗ ∪𝑈𝑖,𝑚∗ ] ≤ 1

4.92

(2) Pr[𝐿𝑖,𝑚∗−1] ≤ 1

10.84

(3) Pr[𝐿𝑖,𝑚∗−2] ≤ 1

20.68

(4) Pr[𝑇𝑖,𝑚∗−3] ≤ 1

62.5

Proof. Note that Pr[𝑇𝑖, 𝑗 ] = Pr[Cnt⟨𝑖, 𝑗 ⟩ ≤ thresh] and Pr[𝐿𝑖, 𝑗 ] =
Pr

[
Cnt⟨𝑖, 𝑗 ⟩ ≤ (1 + 𝜀)−1𝜇 𝑗

]
. Furthermore,

Pr[𝐿𝑖, 𝑗 ∪𝑈𝑖, 𝑗 ] = Pr

[
Cnt⟨𝑖, 𝑗 ⟩ − 𝜇 𝑗 | ≥ 𝜀

1+𝜀 𝜇 𝑗
]
To obtain bounds, we

substitute values of𝑚∗, thresh, 𝜇 𝑗 , and we apply Chebyshev and

Payley-Zygmund inequalities. □

Noting that 𝑐 = Median

({
size(S[𝑖]) × 2𝑚 [𝑖 ]

}
𝑖

)
, we use the

Chernoff bounds to obtain the desired bound. □

6 UNKNOWN𝑀

Algorithm 4 APS-Estimator-Unknown-𝑀

1: Initialize 𝐵 ←
(
log(4/𝛿)

𝜀2
log( |Ω |)

)
2: Initialize 𝑝 ← 1

3: Initialize X ← ∅
4: for 𝑖 = 1 to𝑀 do
5: for all (𝑠, ∗) ∈ X do
6: if 𝑠 ∈ 𝑆𝑖 then
7: remove (𝑠, ∗) from X
8: Set 𝑟 = ⌊|X|/𝐵⌋
9: Set 𝑝 = 1/2𝑟
10: Pick a number 𝑁𝑖 from the binomial distribution 𝐵( |𝑆𝑖 |, 𝑝)
11: while 𝑝 > 1/2 ⌊ ( |X |+𝑁𝑖 )/𝐵⌋

and 𝑝 ≥ 1/|Ω | do
12: 𝑁𝑖 = 𝐵(𝑁𝑖 , 1/2) and 𝑝 = 𝑝/2
13: if 𝑝 > 1/|Ω | then
14: for k = 1 to 𝑁𝑖 do
15: Draw a sample 𝑦 from 𝑆𝑖 and add (𝑦, 𝑝) to X
16: Output

∑
(𝑠,𝑝𝑠 ) ∈X

1

𝑝𝑠

Observation 6.1. For any 1 ≤ 𝑗 ≤ 𝑀 , when the set 𝑆 𝑗 appears
in the stream (that is, when the for loop in Line 4 and Line 15 the
following two operations are being done:

• Firstly, in the for loop in Lines 5 to 7 all elements in X ∩ 𝑆 𝑗 is
removed from X.
• Secondly, between lines and every item in 𝑆 𝑗 is picked with
some probability 𝑝 , where the value of the probability is set in
lines 9 to 12.
• The value of 𝑝 is set (in lines 9 to 12) in such after the end of
the for loop between Line 4 and Line 15 the following can be
observed:
At any point and for any 1 ≤ 𝑖 ≤ log( |Ω |),����{(𝑠, 𝑝𝑠 ) |𝑝𝑠 ≤ 1

2
𝑖

}���� ≤ 𝑖 ¤𝐵

After the whole stream has been processed every element 𝑦 in

∪𝑀
𝑖=1

𝑆𝑖 is picked in X with some probability 𝑝𝑦 and if the element

𝑦 is picked with probability 𝑝𝑦 , then (𝑦, 𝑝𝑦) is stored in X. So,

E[
∑

(𝑠,𝑝𝑠 ) ∈X

1

𝑝𝑠
] = | ∪𝑀𝑖=1 𝑆𝑖 |.

To prove that the final output is between (1 − 𝜖) | ∪𝑀
𝑖=1

𝑆𝑖 | and
(1 + 𝜖) | ∪𝑀

𝑖=1
𝑆𝑖 | we have to show that every element in ∪𝑀

𝑖=1
𝑆𝑖 is

picked in X with some probability is picked with probability at

least 1/| ∪𝑀
𝑖=1

𝑆𝑖 |.

Claim 6.2. For any 𝑦 ∈ ∪𝑗
𝑖=1

𝑆𝑖 let 𝑆 𝑗 be the last set in the steam
where 𝑦 appears. Let 𝑝𝑦 be the probability with which all the items
of 𝑆 𝑗 is picked in the algorithms. Then

Pr

[
𝑝𝑦 <

1

| ∪𝑗
𝑖=1

𝑆𝑖 |

]
≤ 𝛿

|Ω | .



Proof. Let us prove by contradiction. Say every element in in

the set 𝑆 𝑗 has been picked with probability 𝑝𝑦 < 1

|∪𝑗
𝑖=1

𝑆𝑖 |
. From

Lines 9 to 12 we known that if we had picked each element on

𝑆 𝑗 with probability 2𝑝𝑦 then the size of the resulting X would be

> 𝐵 log(1/2𝑝𝑦) which is more that 𝐵 log( |∪
𝑗

𝑖=1
𝑆𝑖 |

2
).

By Observation 6.1 we know that for any 𝑝 = 2
𝑖
the number

of elements in X that is picked with probability ≤ 𝑝 is 𝐵 log(1/𝑝).
In other words, the number of elements in X that is picked with

probability ≥ 4

|∪𝑗
𝑖=1

𝑆𝑖 |
is at most 𝐵 log( |∪

𝑗

𝑖=1
𝑆𝑖 |

4
).

This implies that had every element of 𝑆 𝑗 was picked with prob-

ability 2𝑝𝑦 = 2

|∪𝑗
𝑖=1

𝑆𝑖 |
then the number of the number of elements

in X that is picked with probability < 4

|∪𝑗
𝑖=1

𝑆𝑖 |
is more than 𝐵. And

probability that this happens is at most 𝑂 (1/|Ω |). □

Theorem 6.3. With probability 1 − 𝛿 the output is between (1 −
𝜖) | ∪𝑀

𝑖=1
𝑆𝑖 | and (1 + 𝜖) | ∪𝑀𝑖=1 𝑆𝑖 |. And the space and update time

complexity is 𝑂
(
log

3 ( |Ω |) log(1/𝛿)
𝜖2

)
.
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