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Abstract

We design efficient distance approximation algorithms for several classes of well-
studied structured high-dimensional distributions. Specifically, we present algo-
rithms for the following problems (where drv is the total variation distance):

— Given sample access to two Bayesian networks P; and P, over known directed
acyclic graphs G; and G5 having n nodes and bounded in-degree, approximate
drv (P1, P2) to within additive error £ using poly(n,e~!) samples and time.

— Given sample access to two ferromagnetic Ising models P; and P, on n variables
with bounded width, approximate drv (P;, P2) to within additive error € using
poly(n,e~!) samples and time.

— Given sample access to two n-dimensional Gaussians P; and P», approximate
drv (P1, P2) to within additive error £ using poly(n,e~!) samples and time.

— Given access to observations from two causal models P and ) on n variables
that are defined over known causal graphs, approximate drv (P,, Q,) to within
additive error ¢ using poly(n,e~!) samples and time, where P, and Q, are the
interventional distributions obtained by the intervention do(A = a) on P and Q
respectively for a particular variable A.

The distance approximation algorithms immediately imply new folerant closeness
testers for the corresponding classes of distributions. Prior to our work, only non-
tolerant testers were known for both Bayes net distributions and Ising models, and
no testers with quantitative guarantees were known for interventional distributions.
To the best of our knowledge, efficient distance approximation algorithms for
Gaussian distributions were not present in the literature. Our algorithms are
designed using a conceptually simple but general framework that is applicable to a
variety of scenarios.

1 Introduction

Machine learning is primarily concerned with the design of techniques to enable the learning of a
generative model M given access to data D arising from another distribution, say P [ ]. While
P is typically an unknown distribution, the design of a new ML technique is often accompanied by
empirical and theoretical studies under certain assumptions on P. Let @) be the distribution generated
by M; then ideally, one would learn M such P and () are as close as possible. Given the widespread
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adoption of machine learning techniques in critical domains, there has been a surge in interest of the
design of techniques for rigorous verification of machine learning systems [ ]. The development
of such verification techniques would necessitate the development of algorithmic techniques for
rigorous approximation of the distance between two distributions P and Q).

Distance approximation is also closely related to the topic of distribution testing investigated in
the statistics and algorithms communities. Two important testing problems are identity testing
(or, goodness-of-fit testing) and closeness testing (or, two-sample testing). Given samples from an
unknown distribution P over a domain S, the problem of identity testing seeks to ask whether P
equals a specific reference distribution ). A sequence of works [ , ]
in the property testing literature has pinned down the finite sample complexity of this problem Itis
known that with O(|S|'/2¢~2) samples from P, one can, with probability at least 2/3, distinguish
whether P = Q or whether drvy (P, Q) > ¢; also, Q(|S|'/2¢72) samples are necessary for this
task. An important generalization of identity testing is closeness testing: given samples from two
unknown distributions P and Q over S, does P = Q? Here, O(|S|*/3c%/3 4 |S|'/2c~2) samples
are necessary and sufficient to distinguish P = @ from drv (P, Q) > ¢ with probability at least 2/3.
The corresponding algorithms for both identity and closeness testing run in time polynomial in |S]|
and e~ 1. However, in order to solve these testing problems in many real-life settings, there are two
issues that need to be surmounted.

— High dimensions: In typical applications, the data is described using a huge number of (possibly
redundant) features; thus, each item in the dataset is represented as a point in a high-dimensional
space. If S = X", then from the results quoted above, identity testing or closeness testing for
arbitrary probability distributions over S requires 2°(") many samples, which is clearly unrealistic.
Hence, we need to restrict the class of input distributions.

— Approximation: A high-dimensional distribution requires a large number of parameters to be
specified. So, for identity testing, it is unlikely that we can ever hypothesize a reference distri-
bution () such that it exactly equals the data distribution p. Similarly, for closeness testing, two
data distributions P and () are most likely not exactly equal. Hence, we would like to design
tolerant testers for identity and closeness that distinguish between the cases drv (P, Q) < &1 and
drv (P, Q) > €9 where e1 < 5 are user-supplied parameters.

We address both these issues by focusing on designing distance approximation algorithms for certain
classes of structured distributions over ", where X is an arbitrary finite set.

Definition 1.1. Let D1, Dy be two families of distributions over ¥". A distance approximation
algorithm for (D1, Ds) is a randomized algorithm A which takes as input ¢ € (0, 1), and sample
access to two unknown distributions P € D1, Q) € Ds. The algorithm A returns as output a value
v € [0,1] such that, with probability" at least 2/3:

y—e<drv(P,Q) <7 +e.
If Dy = Dy = D, then we refer to such an algorithm as a distance approximation algorithm for D.

Equivalence of distance approximation and tolerant testing: Designing distance approximation
algorithms is essentially equivalent to designing tolerant testing algorithms. Indeed, Parnas et
al. [ ] observed that existence of a distance approximation with sample/time complexity
F(g,n) for two families of distributions implies a tolerant testing algorithm with complexity
F (‘52;51 n) and conversely, existence of a tolerant testing algorithm with sample/time complex-
ity F'(e2 — e1,n) implies an algorithm for distance approximation with sample/time complexity
O(log(1/e)loglog(1/€))- F(2¢,n). Thus, henceforth we use “distance approximation” and “tolerant
testing” interchangeably.

In this work, we design the first computational and sample efficient distance approximation algorithms
(equivalently tolerant testing algorithms) for a variety of structured high-dimensional distributions:
Bayesian networks, Ising Models, multivariate Gaussians, and interventional distributions arising
from causal Bayesian networks. Our results advance the state-of-the-art in the following way:

1. Our algorithm for testing distributions over Bayes nets extends prior work [ , ]. In
particular, in [ ], Daskalakis and Pan presented an algorithm for non-tolerant closeness

"The success probability can be amplified to 1—§ by taking the median of O(log § ') independent repetitions
of the algorithm with success probability 2/3.



testing of two Bayes net distributions P and () over the same known graph #. We present tolerant
closeness testing algorithm for two Bayes net distributions P and @) over two different graphs
that asymptotically matches the sample and time complexity of their algorithm.

2. We design efficient tolerant testers for Ising models. Our first algorithm approximates the distance
between any two ferromagnetic Ising models. Our second algorithm approximates the distance
between any Ising model and the uniform distribution. Previously proposed testing algorithms for
Ising models by [ ] do not achieve non-trivial tolerance.

3. Given access to poly(n) samples from two multivariate Gaussians over R", it is a folklore that
one can approximate the distance between them. However, that algorithm is not computationally
efficient. We design the first efficient algorithm to approximate distance between two multivariate
Gaussians, to the best of our knowledge.

4. Given observations from two causal models P and () described by two Bayesian networks on
the same variable set, we give an efficient algorithm to approximate the distance between the
interventional distributions obtained by fixing a particular variable. Celebrated work of Tian and
Pearl [ , ] gave identifiability conditions. However efficient distance approximation
algorithms with finite sample guarantees were non-existent prior to our work.

All our algorithms are based on a common framework. To approximate the distance between P € D,
and @ € Dy, we first learn the model parameters for Pe Dy and Q € Dy that are guaranteed to
be close to P and (Q respectively. It remains to compute dTv(P , Q) This is a computationally hard
problem in general, but we use the fact that for Dy, D5 of interest, we can efficiently approximate
the mass functions for P and Q from their parameters. At this point, we invoke an estimator that
approximates dTV(P, Q) using samples from P and the approximate mass functions for P and Q

A salient strength of our framework is its conceptual simplicity. In fact we believe that the conceptual
simplicity allowed us to apply the framework to a variety of situations leading to algorithms that
are potentially amenable to practical implementations. As a first step, we restricted our focus to
the above mentioned classical models to capture probabilistic distribution. A natural extension of
this work would be to apply our techniques for rigorous verification and testing of neural network
models such as Generative Adversarial Networks (GANs) wherein a discriminator is inherently tasked
with performing closeness-testing for the given data distribution and distribution arising from the
generator [ 1.

2 Previous work

Prior work most related to our work is in the area of distribution testing. The topic of distribution
testing is rooted in statistical hypothesis testing and goes back to Pearson’s chi-squared test in
1900. In theoretical computers science, distribution testing research is relatively new and focuses on
designing hypothesis testers with optimal sample complexity. Goldreich and Ron [ ] investigated
uniformity testing (distinguishing whether an input distribution P is uniform over its support or e-far
from uniform in total variation distance) and designed a tester with sample complexity O(m/c*)
(where m is the size of the sample space). Paninski [ ] showed that ©(y/m/s?) samples are
necessary for uniformity testing, and gave an optimal tester when £ > m~'/%, Batu et al. [ 1
initiated the investigation of identity (goodness-of-fit) testing and closeness (two-sample) testing
and gave testers with sample complexity O(y/m /%) and O(m?/3poly(1/¢)) respectively. Optimal
bounds for these testing problems were obtained in Valiant and Valiant [ 1 (©(y/m/e?)) and
Chan et al. [ 1 (©(max(m?/3¢=*/3,\/me—?))) respectively. Tolerant versions of these
testing problems have very different sample complexity. In particular, Valiant and Valiant [ ,

] showed that tolerant uniformity, identity, and closeness testing with respect to the total
variation distance have a sample complexity of ©(m/logm). Since the seminal papers of Goldreich
and Ron and Batu et al., distribution testing grew into a very active research topic and a wide range of
properties of distributions have been studied under this paradigm. This research led to sample-optimal
testers for many distribution properties. We refer the reader to the surveys [ , ] and
references therein for more details and results on the topic.

#They also present non-tolerant testers for the case when the underlying graph is unknown.



When the sample space is a high-dimensional space (such as {0, 1}")), the testers designed for
general distributions require exponential number of samples (2°*(")) if the sample space is {0,1}"
for a constant €). Thus structural assumptions are to be made to design efficient (poly(n,1/¢))
and practical testers for many of the testing problems. The study of testing high-dimensional
distributions with structural restrictions was initiated only very recently. The work that is most
closely related to our work appears in [ , ] (these works also glve
good expositions to other prior work on this tOplC) These papers consider distributions coming
from graphical models including Ising models and Bayes nets. In Daskalakis et al. [ ], the
authors consider distributions that are drawn from an Ising model and show that identity testing and
independence testing (testing whether an unknown distribution is close to a product distribution)
can be done with poly(n, 1/¢) samples where n is the number nodes in the graph associated with
the Ising model. In Canonne et al. [ ] and Daskalakis et al. [ ], the authors consider
identity testing and closeness testing for distributions given by Bayes networks of bounded in-degree.
Specifically, they design algorithms with sample complexity O(23(@+1)/4p, /£2) that test closeness of
distributions over the same Bayes net with n nodes and in-degree d. They also show that ©(y/n/e?)
and ©(max(y/n/e?,n®*/c)) samples are necessary and sufficient for identity testing and closeness
testing respectively of pairs of product distributions (Bayes net with empty graph). Finally, in Acharya
etal.[ ], the authors investigate testing problems on causal Bayesian networks as defined by
Pearl [ ] and design efficient (poly(n, 1/¢)) testing algorithms for certain identity and closeness
testing problems for them. All these papers consider designing non-tolerant testers and leave open
the problem of designing efficient testers that are tolerant for high-dimensional distributions which is
the main focus in this paper.

Our main technical result builds on the work of Canonne and Rubinfeld [ ]. They consider a
dual access model for testing distributions. In this model, in addition to independent samples, the
testing algorithm has also access to an evaluation oracle that gives probability of any item in the
sample space. They establish that having access to the evaluation oracle leads to testing algorithms
with sample complexity independent of the size of the sample space. Indeed, in order to design
testing algorithms, they give an algorithm to additively estimate the total variation distance between
two unknown distributions in the dual access model. Our distance estimation algorithm is a direct
extension of this algorithm. Conditional sampling model has been another related model of interest
recently [ s s ].

Novelty of our work: We would like to emphasize that the core conceptual and novel contribution
of our work is the establishment of a connection between testing in the dual access model (and in the
conditional sampling model) to testing and distance approximation in the standard sampling model.
These two models have been investigated separately. Here we use the former results to derive several
new efficient tolerant testing algorithms in the standard model for high dimensional distributions, thus
extending the state-of-the-art in this area. In this regard, we extend [ ] to derive Algorithm 1,
which in our view is intended to be simple and flexible. We consider the simplicity of Algorithm 1 a
core strength of our work.

Comparison with [ ]: Technically, [ ] assumes a perfect access to the probability mass
functions of the two distributions. Instead we work with approximate access to p.m.f.s, the approxi-
mation being parameterized by 5 and . In our opinion, this generalization (in Appendix A) does
not follow trivially. The usage of approximation has allowed us to obtain results for several high
dimensional distributions that do not follow directly from [ ]. For example, let us consider
the Ising model. In this case, given samples from two ferromagnetic Ising models P and @), we
approximately learn the model parameters [ ] and estimate the partition functions [ ], to
evaluate the p.m.f.s approximately. The later result takes parameters of a ferromagnetic Ising model
as input and returns a (randomized) PTIME (1 =+ ~)-multiplicative approximation of its partition
function, and therefore we obtain a PTIME algorithm. In contrast, since the computation of the
partition function given a fully known ferromagnetic Ising model is known to be #P-complete [ ]
(see Theorem 15 of their paper) and as the algorithm given in [ ] does not allow for multiplicative
errors, directly applying it would lead to an algorithm with P#P complexity. The approximation
parameter 3 was used for designing a distance approximation algorithm for all four classes considered
in this paper.



3 Main Result

We first formalize the connection between learning and distance approximation, and then we give our
main algorithm for distance approximation. In the next section, we detail the implications for several
well-studied families of structured high-dimensional probability distributions.

Given a family of distributions D, a learning algorithm for D is an algorithm £ that on input e € (0, 1)
and sample access to a distribution P € D, returns the description of a distribution P such that with
probability at least 2/3, dpv (P, P) < e.

Our framework for distance approximation needs to (approximately) evaluate the mass function
P(x) :=Pry _s[X = z] for any z € ¥£". More precisely, we require EVAL approximators:

Definition 3.1. Let P be a distribution over a finite set U. A function Ep : U — [0,1] isa (8,7)-
EVAL approximator for P if there exists a distribution P over U such that

~ drv(P,P) < B
— Ve eU, (1-7) P() < Ep(x) < (1+7) P(z)

In our applications, we first use a learning algorithm to obtain parameters that describe P, and then
we compute (or approximate) P(x) efficiently in terms of these parameters.

Example 3.2. Suppose D is the family of product distributions on {0, 1}". That is, any P € D

can be described in terms of n parameters pq, ..., p, Where each p; is the probability of the ¢’th
coordinate being 1. It is folklore (see e.g. [ ]) that there is a learning algorithm which
gets O(ne=?) samples from P and returns the parameters py, . . ., p,, of a product distribution P

satisfying dpv (P, P) < e with probability 2/3. It is clear that given p1, .. ., f, we can compute
P(z) for any z € {0,1}" in linear time as: P(z) = [/, (z; - pi + (1 —2;) - (1 — p;)) . Thus,
there is an algorithm that takes as input sample access to any product distribution P, has sample and
time complexity O(ne~2), and returns a circuit implementing an (¢, 0)-EVAL approximator for P.
Moreover, any call to the circuit returns in O(n) time.

We establish the following link between EVAL approximators and distance approximation, achieved
using Algorithm 1. Its proof can be found in Appendix A.

Theorem 3.3. Suppose we have sample access to distributions P and @ over a finite set. Also,
suppose we have access to (g, e)-EVAL approximators for P and Q). Then, with probability at least
2/3, drv (P, Q) can be approximated to within O () additive error using O(c~2) samples from P
and O(e~2) calls to the two EVAL approximators.

Algorithm 1: Distance approximation between P and )

Input :Sample access to distribution P; oracle access to (g, £)-EVAL approximators Cp
and C¢ for P and () respectively.
Output : Approximate value of dtv (P, Q)
1fori=1,...,t=0(c"2)do
Draw a sample x from P;
a < Cp(z);
b+ CQ (ZL‘),
i+ laspy (1=2);

1 t
6 return ;> . ¢

wm s W N

Thus, in the context of Example 3.2, the above theorem immediately implies a distance approximation
algorithm for product distributions using O(ne~2) samples and time. Theorem 3.3 extends the work
of Canonne and Rubinfeld [ ] who considered the setting 8 = v = 0. We discussed the relation
to prior work in Section 2.

Testing, learning, and efficiency: 1t is natural to ask whether we can design substantially more
efficient distance approximation (or tolerant testing) algorithms than the ones that are possible via



learning as we do in this paper. We discuss this from the perspective of both sample complexity as
well as time complexity.

It is clear that the sample complexity of distance approximations is at most that of learning: from the
learnt distributions we can compute the distance using a brute-force algorithm (not computationally
efficient). On the other hand, current known results give evidence that typically it is not possible
to substantially improve the dependence on the dimension (n), at least for the following two edge
cases. Valiant and Valiant [ ] have shown that given samples from an unknown distribution
over [m], approximating its distance to the uniform distribution up to a constant additive error with
2/3 probability requires 2(m/logm) samples. In contrast, it is well known that we can learn an
unknown distribution within constant error with 2/3 success probability using only O(m) samples.
Similarly, in the case of high-dimensional distributions over {0, 1}", Canonne et al. [ ] have
shown that there exists two product distributions whose distance approximation up to a constant error
with 2/3 probability requires Q2(n/ log n) samples, whereas an unknown product distribution can be
learnt in constant error with 2/3 probability in O(n) samples. Thus typically sample complexities of
learning and distance approximation differ only by a logarithmic factor. However, if one is interested
in non-tolerant testing, substantial improvements are possible. In particular, for the above problems
there are algorithms with O(y/m) [ ) land O(v/n) [ , ] sample complexity
respectively.

From a time complexity perspective, even if we assume that the learning is perfect, computational
efficiency remains a challenge for distance estimation in many high-dimensional settings. Sahai and
Vadhan [ ] have shown that tolerant testing of distributions encoded by Boolean circuits is a
problem that is complete for the class SZK (problems admitting statistical zero knowledge interactive
proofs). The class SZK contains several hard computational problems including Graph Isomorphism.
Kiefer [ ] has shown that given two completely specified hidden Markov models, it is #P-hard
to additively approximate their distance. Bogdanov et al. [ ] have shown that given two
completely specified Markov Random Fields with hidden variables, it is impossible to approximate
their distance in randomized polynomial time unless NP = RP.

By coupling learning algorithms with the template for distance approximation given by Theorem 3.3,
we present a number of scenarios where sample and computational efficient distance approxima-
tion algorithms can be designed. We also describe a generic method to efficiently improve the
success probability of learning algorithms for the families of distributions admitting a fast distance
approximation algorithm, which is presented in Appendix F.

4 Applications

4.1 Bayesian Networks

A standard way to model structured high-dimensional distributions is through Bayesian networks. A
Bayesian network describes how a collection of random variables can be generated one-at-a-time
in a directed fashion, and they have been used to model beliefs in a wide variety of domains (see
[ , ] for many pointers to the literature). Formally, a probability distribution P over n
variables X1,..., X, € ¥ is said to be a Bayesian network on a directed acyclic graph G with
n nodes if® for every i € [n], X; is conditionally independent of Xnon-descendants(i) 1VEN Xparents(i)-
Equivalently, P admits the factorization:

n
P(z)= Pr [X =z]= HXPNI}J[X’i = x; | Vj € parents(i), X; = ;] forallz € ¥ (1)

For example, product distributions are Bayesian networks on the empty graph.

Invoking our framework of distance approximation via EVAL approximators on Bayesian networks,
we obtain the following:

Theorem 4.1. Suppose G1 and G2 are two DAGs on n vertices with in-degree at most d. Let Dy
and D3 be the family of Bayesian networks on G and G respectively. Then, there is a distance
approximation algorithm for (Dy, Do) that gets m = O(|S|*ne=2) samples and runs in O(mn)
time.

$We use the notation X to denote {X; : i € S} foraset S C [n].



Theorem 4.1 extends the works of Daskalakis et al. [ ] and Canonne et al. [ 1 who
designed efficient non-tolerant identity and closeness testers for Bayesian networks. Their arguments
appear to be inadequate to design tolerant testers. In addition, their results for general Bayesian
networks were restricted to the case when (G; = G,. Theorem 4.1 immediately gives efficient
tolerant identity and closeness testers for Bayesian networks even when G; # (G5. Canonne et
al. [ ] obtain better sample complexity but they make certain balancedness assumption on
each conditional probability distribution. Without such assumptions, the sample complexity of our
algorithm is optimal.

Theorem 4.1 relies on a new learning algorithm for Bayesian networks on a known DAG G that
may be of independent interest. It uses O(ne~2|%|%+1) samples where d is the maximum in-degree.
It returns another Bayesian network P on G, described in terms of the conditional probability
distributions X; | Zparents(s) for all @ € [n] and all settings of Zparenis(i) € ydeg(®)  The sample
complexity of the algorithm is nearly optimal. Such a learning algorithm was claimed in the appendix
of [ ], but the analysis there appears to be incomplete with no immediate fix [ 1.

4.2 Ising Models

Another widely studied model of high-dimensional distributions is the Ising model. It was originally
introduced in statistical physics as a way to study spin systems ([ ]) but has since emerged as a
versatile framework to study other systems with pairwise interactions, e.g., social networks ([ D,
learning in coordination games ([ 1), phylogeny trees in evolution ([ s s ]) and
image models for computer vision ([ ]). Formally, a distribution P over variables X1, ..., X, €
{—1, 1} is an Ising model if for all z € {—1,1}™

exp (Do ;zictm AijTixy + 0 o0
Pla) = ( #j€[n] FHig Tt €[n] ) @)

Zze{fl,l}" exXp (Zi#je[n] Aijziz; + 0 Zie[n] Zz)

where 6 € R is called the external field and A;; are called the interaction terms. An Ising model is
called ferromagnetic if all A;; > 0. The width of an Ising model as in (2) is max; } _; [A;;| + |0].

Invoking our framework on Ising models, we obtain:

Theorem 4.2. Let D be the family of ferromagnetic Ising models having width at most d. Then, there
is a distance approximation algorithm for D with sample complexity m = ¢©(Deg—4p8 log(%) and
runtime O(mn? + ~2n1"logn).

We use the parameter learning algorithm by Klivans and Meka [ ] that learns the parameters

0, A, ; of another Ising model P such that P(x) is a (1 + ) approximation of P(z) for every x. This
results holds for any Ising model, ferromagnetic or not. But in order to get an EVAL approximator, we
need to compute P(ac) from é, Ai]‘. In general, the partition function (i.e., the sum in the denominator
of Equation (2)) may be #P-hard to compute, but for ferromagnetic Ising models, Jerrum and
Sinclair [ ] gave a PTAS for this problem. Thus, we obtain an (e, €)-EVAL approximator for
ferromagnetic Ising models that runs in polynomial time, and then Theorem 4.2 follows from
Theorem 3.3.

Daskalakis et al. [ ] studied independence testing and identity testing for Ising models and
design non-tolerent testers. Their sample and time complexity have polynomial dependence on the
width instead of exponential (as in our case), but their algorithms seem to be inherently non-tolerant.
In contrast, our distance approximation algorithm leads to a tolerant closeness-testing algorithm
for ferromagnetic Ising models. Also, Theorem 4.2 offers a template for distance approximation
algorithms whenever the partition function can be approximated efficiently. In particular, Sinclair et
al [ ] showed a PTAS for computing the partition function of anti-ferromagnetic Ising models
in certain parameter regimes.

We also show that we can efficiently approximate the distance to uniformity for any Ising model.

Theorem 4.3. There is an algorithm which, given independent samples from an unknown Ising model
P over {—1,1}" with width at most d, takes m = O(e®@De=%n3log(n/e)) samples, O(mn?) time
and returns a value e such that |e — dry (P, U)| < e with probability at least 7/12, where U is the
uniform distribution over {—1,1}".



The proof of Theorem 4.3 proceeds by learning the parameters 0, A of an Ising model P that is a
multiplicative approximation fo P. As we mentioned earlier, computing the partition function is in
general hard. However, we can efficiently estimate the ratio P(x)/P(y) for any two 2,y € {—1,1}".
At this point, we invoke the uniformity tester by Narayanan [ ] that uses samples from the input
distribution as well as pairwise conditional samples (in the PCOND oracle model).

4.3 Multivariate Gaussians

Theorem 3.3 applies also when the sample space is not finite, e.g., the reals. Then, in the definition
of the (8, ~)-EVAL approximator Ep for a distribution P, we require a distribution P such that
drv (P, P) < B and Ep is a (1 = v)-approximation of the probability density function of P at any z.

The most prominent instance in which we can apply our framework in this setting is for the class
of multivariate gaussians, again another widely used model for high-dimensional distributions used
throughout the natural and social sciences (see, e.g., [ 1. There are two main reasons for
their ubiquity. Firstly, because of the central limit theorem, any physical quantity that is a population
average is approximately distributed as a gaussian. Secondly, the gaussian distribution has maximum
entropy among all real-valued distributions with a particular mean and covariance; therefore, a
gaussian model places the least restrictions beyond the first and second moments of the distribution.

For ;1 € R™ and positive definite ¥ € R™*"™, the distribution N (1, ¥ ) has the density function:
1 1 Ty—1

m‘ﬂp (_2(55_#) b (x—u)) 3)

Invoking our framework on multivariate gaussians, we obtain:

Theorem 4.4. Let D be the family of multivariate gaussian distributions, { N (u,Y) : p € R™" ¥ €
R™*™ ¥ > 0}. Then, there is a distance approximation algorithm for D with sample complexity
O(n%c72) and runtime O(n*e~2) (where w > 2 is the matrix multiplication constant).

N(p, X z) =

It is folklore (see [ ] for a proof) that for any P = N(u,Y), the empirical mean /i and
empirical covariance ¥ obtained from O (n?e~2) samples from P determines a gaussian P = N (1,Y)
satisfying drv (P, P) < e with probability at least 3/4. To get an EVAL approximator, we need

evaluations of N (ji, ¥; ) for any z as in (3). Since det (%) is computable in time O(n*), Theorem 4.4
follows from Theorem 3.3.

This result is interesting because there is no closed-form expression known for the total variation
distance between two gaussians of specified mean and covariance. Devroye et al. [ ] give
expressions for lower- and upper-bounding the total variation distance that are a constant mul-
tiplicative factor away from each other. On the other hand, our approach yields a polynomial
time randomized algorithm that, given pq, %1, uo, Yo, approximates the total variation distance
drv(N(p1,%1), N(p2,%2)) upto te additive error.

Corollary 4.5. For any two vectors i1, b2 € R™ and two positive-definite matrices ¥1,% o € R™*",
drv (N (1, %1), N(u1,%1)) can be estimated up to an additive € error in O(n3c~2) time.

Proof. We again invoke Algorithm 2. Since the parameters are already provided, we can readily
obtain (0, 0)-EVAL approximators for N(u1,%1) and N (u2,%2). For Algorithm 2, we also need
sample access to one of the two distributions. It is well known that if v ~ N(0,1) and ¥ = LLT,
then Lv+p ~ N(u,Y); the matrix L can be obtained in O(n?) time using a Cholesky decomposition.
Hence, each sample from N (y1, Y1) costs O(n?) time, so that the entire algorithm runs in O(n3e~2)
time. O

4.4 Interventional Distributions in Causal Models

A causal model for a system of random variables describes not only how the variables are correlated
but also how they would change if they were to be externally set to prescribed values. To formalize
this, we can use the language of causal Bayesian networks due to Pearl [ ]. A causal Bayesian
network is a Bayesian network with an extra modularity assumption: for each node ¢ in the network,
the dependence of X; on X, ents(s) 18 an autonomous mechanism that does not change even if other
parts of the network are changed.



Suppose P is a causal Bayesian network over variables X1, ..., X,, on a directed acyclic graph G with
nodes labeled {1,...,n}. The nodes in G are partitioned into two sets: observable V and hidden U.
A sample from the observational distribution P yields the values of variables Xy, = {X; :€ V'}. The
modularity assumption allows us to define the result of interventions on causal Bayesian networks.
An intervention is specified by a subset S C V and an assignment s € XI5, In the resulting
interventional distribution, the variables in S are fixed to s, while the variables X; for i ¢ S are
sampled in topological order as it would have been in the original Bayesian network, according to
the conditional probability distribution X; | X parents(i)» Where Xparents(s) consist of either variables
previously sampled in the topological order or variables in S set by the intervention. Finally, the
variables in U are marginalized out. The resulting distribution on Xy is denoted Ps.

The question of inferring the interventional distribution from samples is a fundamental one. We focus
on atomic interventions, i.e., where the intervention is on a single node A € V. In this case, Tian
and Pearl [ , ] exactly characterized the graphs G for which any causal Bayesian network
P on G and for any assignment a € 3 to X 4, the interventional distribution P, is identifiable from
the observational distribution P on Xy . For identification to be computationally effective, it is
also natural to require certain strong positivity condition on P. We show that we can efficiently
estimate the distances between interventional distributions of causal Bayesian networks whenever the
identifiability and strong positivity conditions are met. See Appendix E for necessary definitions.

Theorem 4.6 (Informal). Suppose P, Q are two unknown causal Bayesian networks on two known
graphs G1 and G5 on a common observable set V' containing a special node A and having bounded
in-degree and c-component size. Suppose G and G both satisfy the identifiability condition, and the
observational distributions P and Q) satisfy the strong positivity condition. Then there is an algorithm
which for any a € ¥ and parameter ¢ € (0,1) returns a value e such that |e — dpvy(P,, Qq)| < €
with probability at least 2/3 using poly (||, n,e~1) samples from the observational distributions P
and @) and running in time poly(|Z|,n,e~

We again use the framework of EVAL approximators to prove the theorem, but there is a complication:
we do not get samples from the distributions P, and @), but only from P and (). We build on a recent
work ([ 1) that shows how to efficiently learn and sample from interventional distributions of
atomic interventions using observational samples.

Theorem 4.6 solves a natural problem. Suppose a biologist wants to compare how a particular point
mutation affects the activity of other genes for Africans and for Europeans. Because of ethical reasons,
she cannot conduct randomized controlled trials by actively inducing the mutation, but she can draw
random samples from the two populations. It is reasonable to assume that the graph structure of the
regulatory network is the same for all individuals and that the causal graph over the genes of interest
is known (or can be learned through other methods). Also, suppose that the gene expression levels
can be discretized. She can then, in principle, use the algorithm proposed in Theorem 4.6 to test
whether the effect of the mutation is approximately the same for Africans and Europeans.

4.5 Tightness of Our Bounds

In this paper our focus was mainly establishing upper bounds. We note that the Q( ﬁ) lower bound
from [ ] mentioned earlier for tolerant testing of product distributions, implies the same lower
bound for tolerant testing of Bayes nets and atomic interventional distributions. For the Ising model,
currently we do not have a lower bound in general.



Broader Impact

This work presents basic algorithms for approximating distances between two high dimensional
distributions. While the results are theoretical in nature and do not present any immediate societal
consequences, the algorithms have potential to impact practice in the long term.
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A Distance Approximation Algorithm

In this section, we prove Theorem 3.3 which underlies all the other results in this work. In fact, we
show the following theorem that is more detailed.

Theorem A.1. Suppose we have sample access to distributions P and Q) over a finite set. Also,
suppose we can make calls to two circuits Cp and Cg which implement (3, ~y)-EVAL approximators
for P and Q) respectively. Let T' be the maximum running time for any call to Cp or Cq.

Then for any £,6 > 0, dvv (P, Q) can be approximated up to an additive error % + 38 + € with
probability at least 1 — 6, using O(¢=21og 6 1) samples from P and O(¢=21og 61 - T') runtime.

Note that the EVAL approximators in Theorem A.l must return rational numbers with bounded
denominators as they are implemented by circuits with bounded running time. The exact model of
computation for the circuits does not matter so much, so we omit its discussion.

We now turn to the proof of Theorem A.l. As mentioned in the Introduction,
if Cp and Cqo were (0,0)-EVAL approximators, the result already appears in [ 1.
The proof below analyzes how having nonzero (S and ~ affects the error bound.

Algorithm 2: Distance approximation

Input :Sample access to distribution P; oracle access to circuits Cp and Cg.
Output : Approximate value of drv (P, Q)
1fori=1,...,t=0(c"2%logd~ ') do
Draw a sample x from P;
a + Cp(z);
b+ Colx);
i+ laspy (1—2);

1N\t .
6 return ;> . ¢;

A W N

Proof. We invoke Algorithm 2. Notice that the algorithm only requires sample access to one of the
two distributions but to both of the EVAL approximators. Let P be the distribution S-close to P
which is approximated by the output of Cp; similarly define Q).

We have |drv (P, Q) — drv (P, Q)| < drv (P, P) + drv(Q, Q) < 23 from the triangle inequality.

2

Hence, it is sufficient to approximate drv (P, Q) additively up to ﬁ +0+e

drv(P,Q)

3 1P@) - Q)
= Y (P~ Q)

Q@) 5 e
= Z (1 - = ) P(x) (Since P(z) > 0)
Q(x

From the above, if we have complete access (both evaluation and sample) to P and Q, then we
can estimate the distance with O(E% log %) samples and evaluations. However as we have only
approximate evaluations of P and Q and samples from the original distribution P, we need some
additional arguments. Let Ep and E¢ be the functions implemented by the circuits Cp and Cq
respectively.
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9| >

drv (P, Q) = ZIP(»L)>Q(»L) (1 - (x;> P(a)

P(
= Z 1Ep(2)>Eq(x) (1 - gﬁgg) P(x)+

A
)(x Eo(x
Z [IP(1)>Q($) (1 - g( ;) - 1EP(:L’)>EQ(Z) <1 - Eigx;

B

We start with an upper bound for the absolute value of the error term B. We consider the partition
of sample space into Sp, S and S3, where S; = {z : 1P(x)>(g(a:) = lgp(@)>EBo@) ) S2 = {2 :

115(x)>Q(I) > 1Ep(r)>EQ(:r)} and S3 = {z : 1I5(x)>Q(:E) < 1Ep(x)>EQ(m)}-

Q(x) Eq(z)\ | 2
|B| = Z [1P(w)>Q(w) (1 "B ) lBp()>Eq) (1 — Fr(@) P(z)
Q(x) Eg(@)\| A
< [1p(m>>éz<z) (1 T B ) @@\ o P(x)
Qz)  Eq(a) ( éz@)) :
= 113‘ x 9 x A - ]‘ m x ]‘ a P(I)-l—
xgs:l (2)>Q(x) P(x) Ep(x) x%% )>Q(z) P(z)
Eo(x A
Z 1E'P(m )>Eq(x) <1 QEI’;) P(‘T)
xrES3
For z in S; with ]3(33) > Q( ), (1+v§ ngi < 5283 < Efrz) QEB so that ggz; — gigg

Q_VV gg; < 27 .For x in Sy, P(x) > Q(z) implies Ep(x) < Eg(x) and hence, (1 — 7)P(z) <

Ep(x )gEQ( )\ (1+7)Q(x) so that Q(x)/P(x) > {72. For z in Ss, Ep(x) > Eq(x) implies

® A Eo(x T
P(z) < Q(x), and hence, Eﬁgii > Ehziggwi > Lr” Therefore

2y - 2y - 2y
BI< Y ——P@)+ > ——P)+ > —P)
€S 1_7 wESzl—‘r’Y 1‘65’31—’—7

2y
X 1_’}/

Now consider the term A:

Eq()
A= 1ppw)>Bol) (1 -5

p(z)
EQ(CC) EQ('I) »
= XI: 1Ep(ac)>EQ(a:) (1 - EP(:L‘)> P(Jj) + XZ: 1EP(90)>EQ(93) (1 - EP(IL') (P(x) - P(.Z‘))
c
Eq(x > >
Note that: ]z 15 (a)> Fo (2) (1 - Eggg) (P(z) — P(a:))‘ < Y. |P(x) — P(x)] < B So,
ldov (P, Q) — C| < 2“’ + . We can rewrite C' as E, . p {1EP(I)>EQ($) (1 Eigg)] Since
L1Ep(2)>Eq(2) (1 — gggg) lies in [0, 1], by the Hoeffding bound, we can estimate the expectation

up to ¢ additive error with probability at least (1 — §) by averaging O( log 6) samples from P. [J
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Theorem A.1 can be extended to the case that P and (Q are distributions over R™ with infinite support.
We change Definition 3.1 so that Ep(x) is a (1 £ y)-approximation of f(x) where f(x) is the

probability density function for P. Then, Theorem A.1 and Algorithm 2 continue to hold as stated.
In the proof, we merely have to replace the summations with the appropriate integrals.

B Bayesian networks

First we apply our distance estimation algorithm for tolerant testing of high dimensional distributions
coming from bounded in-degree Bayesian networks. Bayesian networks defined below are popular
probabilistic graphical models for describing high-dimensional distributions succinctly.

Definition B.1. A Bayesian network P on a directed acyclic graph G over the vertex set [n] is a joint
distribution of the n random variables (X1, Xa, ..., X,,) over the sample space ¥" such that for
every i € [n] X; is conditionally independent of Xyon-descendants(i) 8Ven Xparenss(i), Where for S C [nl,
X is the joint distribution of (X; : i € S), and parents and non-descendants are defined from G.

P factorizes as follows:

P(z)= Pr[X =x]= HXPNI}:[Xi =ux; |Vj € parents(i), X; = x;]  forallz € ¥" (4)

i=1

Hence a Bayesian network can be completely described by a set of conditional distributions for every
variable X;, for every fixing of its parents X pagents(s)-

To construct an EVAL approximator for a Bayesian network, we first learn it using an efficient
algorithm. We show the following proper learning algorithm for Bayesian networks that uses
near-optimal sample complexity [ ].

Theorem B.2. There is an algorithm that given a parameter € > 0 and sample access to an unknown
Bayesian network distribution P on a known directed acyclic graph G of in-degree at most d, returns
a Bayesian network P on G such that dpy (P, P) < e with probability > 9/10. Letting 5. denote
the range of each variable X;, the algorithm takes m = O(|2|4nlog(|X|9 1 n)e=2) samples and
runs in O(mn) time.

This directly gives us a distance estimation algorithm for Bayesian networks.

Theorem 4.1. Suppose G1 and G5 are two DAGs on n vertices with in-degree at most d. Let Dq
and Dy be the family of Bayesian networks on G and G respectively. Then, there is a distance
approximation algorithm for (D1, Ds) that gets m = O(|%|%T ne~2) samples and runs in O(mn)
time.

Proof. Given samples from P; and P, we first learn them as }51 and ]52 using Theorem B.2 in
drvy distance /4. This step costs m = O(|S|*1nlog(|S|**1n)e~2) samples and O(|Z|+1mn)
time and succeeds with probability 4/5. Py and P, gives efficient (¢/4,0)-EVAL approximators
from Equation (4). It follows from Theorem A.1 that we can estimate drv (Py, P2) up to an € additive
error using O(e~2) additional samples from P; except for 1/5 probability. O

Regarding lower bounds, Canonne et al. [ ] have shown a lower bound of Q(n/logn)
samples for deciding for two product distributions P and @ over {0, 1}", whether drv (P, Q) < &g
versus drv (P, Q) > 2¢o with probability 2/3 for a constant £y. On the other hand, Daskalakis et
al. [ ] have shown that there exists an unknown Bayes net P over {0, 1}" whose underlying
graph is unknown but known to be a tree such that deciding dpv (P, U) = 0 versus dpv (P, U) > ¢
with 2/3 probability requires (ne~2) samples, where U is the uniform distribution over {0, 1}™.

B.1 Learning Bayesian networks

In this section, we prove a strengthened version of Theorem B.2 that holds for any desired error
probability 4.
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Theorem B.3. There is an algorithm that given parameters ,5 > 0 and sample access to an unknown
Bayesian network distribution P on a known directed acyclic graph G of in-degree at most d, returns
a Bayesian network Q on G such that drv (P, Q) < & with probability > (1 — §). Letting ¥ denote
the alphabet for each variable Xl, the algorithm takes m = O(|%|*nlog(|S|*n)e 2 log %)

samples and runs in O(mn log® $) time.

We actually prove a stronger bound on the distance between P and () in terms of the KL divergence.

The KL divergence between two distributions P and @ is defined as KL(P, Q) = >, P(i)In LiaC ; .

From Pinsker’s inequality, we have drv?(P, Q) < 2KL(P, Q). Thus a dpv learning result follows
from a KL learning result. We present Algorithm 3 for the binary alphabet case (X = {0,1}) and
reduce the general case to the binary case afterwards.

The add-1 empirical estimator takes z samples from a distribution over k items and assigns to item ¢
the probability (z; + 1)/(z + k) where z; is the number of occurrences of item ¢ in the samples. We
will use the following general result for learning a distribution in KL distance.

Theorem B.4 ([ 1. Let D be an unknown distribution over k items. Let D be the add-1
empirical distribution of z samples from D. Then fork > 2,z > 1, EIKL(D,D)] < (k—1)/(2+1).

We will use a KL local additivity result for Bayesian networks, a proof of which is given in [ ].
For a Bayesian network P, a vertex i, and a setting a value a of its parents, let II[4, a] denote the event
that parents of ¢ take value a, and let P(i | a) denote the distribution at vertex ¢ when its parents
takes value a.

Theorem B.5. Let P and Q) be two Bayesian networks over the same graph G. Then

- Z > P[fi,a]] - KL(P(i | a),Q(i | a))

Algorithm 3: Fixed-structure Bayesian network learning

Input :Samples from an unknown Bayesian network P over {0, 1}" on a known graph G
of in-degree < d, parameters m, ¢
Output : A Bayesian network ) over G
1 Get m samples from P;
2 for every vertex i do
for every fixing a of i’s parents do
Nj o < the number of samples where ¢’s parents are set to a;
if N; , > t then
Q(i | a) + the add-1 empirical distribution at node ¢ in the subset of samples
where ¢’s parents are set to a;
else
L Q(i | a) + uniformly random bit;

= Y T N

Lemma B.6. For m = 24n2%log(n2?) /e and t = 12log(n2?), Algorithm 3 satisfies KL(P, Q) <
5e with probability at least 3/4 over the randomness of sampling.

Proof. Call atuple (i,a) heavy if P[I[i,a]] > 57— and light otherwise. Let N; , denote the number
of samples where 7’s parents are a.

For every heavy (i, a), let F; , be the event “N; , > n2¢P[[[i,a]t/c" and G; o = A\ (,b) heavy F(5,b)-

(4:0)#(4,a)
Let F' = G; 4 A Fj . It is easy to see from Chernoff and union bounds that F' is true with 19/20

probability. Hence for the rest of the argument, we condition on this event. In this case, all heavy
items satisfy N; , > t.

Then for any random variable X, E[X | F;,] = E[X | F|Pr[G;,. | F;,
G;.o|Pr[Giq | Fi o). Hence, E[X | F] < % E[X | F; o). Similarly, E[X | F]

Now, we see that:

(X | Fia A

+E
S EIX].

//\L
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— For any heavy (i, a), by Theorem B 4,

12n27 - P[I[i, a]]

E[KL(P(Z | a)aQ(i | a)) | Fi,a] <

— Similarly, for any light (i, a) that satisfies N; , > t, it follows from Theorem B.4 that
E[KL(P(i | a),Q(i | a)) | Nia > t] < 15

— Items which do not satisfy N, , > ¢ must be light for which [KL(P(i | a),Q(i | a)) |
Nio<t]<pln2p+ (1 —p)In2(1 — p) < In2, where p = P[i = 1]al, since in that case
Q(i | a) is the uniformly random bit.

Using Theorem B.5, we get

20 € €
E[KL(P. Fl< — PII[i,al] - - —In2| <e.
KLP.QIFI <35 | 30 Plllial) oo pgmg+ D oyl2| <«
(i,a) heavy (i,a) light
The lemma follows from Markov’s inequality. O

Now we reduce the case when X is not binary to the binary case. We can encode each o € Y of
the Bayesian network as a log |X| size boolean string which gives us a Bayesian network of degree
(d+ 1) log|X| over nlog |X| variables. Then we apply Lemma B.6 to get a learning algorithm with
O(e) error in drv and 3/4 success probability. Subsequently we repeat O(log +) times and find out a
successful repetition using Theorem F.1.

C Ising Models

In this section, we give a distance approximation algorithm for the class of bounded-width ferromag-
netic Ising models. Recall from Section 4.2 that a probability distribution P from this class is over
the sample space {—1,1}" and that P(x), the probability of an item = € {—1, 1}", is proportional
to the numerator:

N(z) = exp ZAi,jCL‘iﬂCj + 921‘1‘ ;
— ;

where A; ;s and 0 are parameters of the model. The constant of proportionality, also called the
partition function of the Ising model is Z = ) N(x), which gives P(x) = N(x)/Z. The width of
the Ising model is defined as max; 3, |4; j| 4 0. In a ferromagnetic Ising model, each 4; ; > 0.

Given two such Ising models, we give an algorithm for additively estimating their total variation
distance. We first learn these two Ising models up to total variation distance ¢/8 using the follow-
ing learning algorithm given by Klivans and Meka [ ]. In fact, it gives a stronger (1 + )
multiplicative approximation guarantee for every probability value.

Theorem C.1 (Theorem 7.3 in [ 1). There is an algorithm which, given independent samples
from an unknown Ising model P with width at most d, returns parameters fl” and 0 such that the
Ising model P constructed with the latter parameters satisfies (1 — £)P(z) < P(x) < (1 +¢)P(x)
forall x € {—1,1}". This algorithm takes m = e©Dec=4n%log(n/de) samples, O(mn?) time and
succeeds with probability 1 — 4.

However learning the parameters of an Ising model is not enough to efficiently evaluate the probability
at arbitrary points. Naively computing the constant of proportionality Z would take 2" time. For
certain classes of Ising models polynomial time algorithms are known which approximates Z up
to a (1 + £) approximation factor. In particular we use the following approximation algorithm for

ferromagnetic! Ising models due to Jerrum and Sinclair [ ].

TAs pointed out by [ ], Jerrum and Sinclair’s result (and hence, our result) extends to the non-uniform
external field setting where there is a ; for each 7 instead of 6; = - - - = 6,, = 6, with the restriction that each
0; > 0.
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Theorem C.2. There is an algorithm which given the parameters of a ferromagnetic Ising model
distribution P, in O(e~2n'" logn) time returns a number Z such that with probability at least 9/10,

(1-e)Z < Z < (1+¢e)Z, where Z is the partition function of P.

Combining the previous two results with our general distance estimation algorithm, we can now
obtain our main result for Ising models which we restate below.

Theorem 4.2. Let D be the family of ferromagnetic Ising models having width at most d. Then, there
is a distance approximation algorithm for D with sample complexity m = ¢©(Deg—4p8 log(%) and
runtime O(mn? + = 2n1" logn).

Proof. We first use Theorem C.1 to get the parameters for a pair of Ising models P and Q which
are, with probability at least 9/10, pointwise (1 4 ¢/8) approximations to P and Q. If P or Q
has any negative pairwise interaction term, then we modify them to zero, thus making P and Q
ferromagnetic. We claim that since P and @) are ferromagnetic to start with, this can only improve
the approximation factor. The reason is that Klivans and Meka, in their proof of Theorem C.1, show
the more general result that for any log-polynomial distribution, i.e, any distribution P on {—1,1}"
where P(z) o exp(T'(z)) for a bounded-degree polynomial T, they can obtain a polynomial 7" with
the same degree that satisfies a bound on |7 — T, = 3, |T[a] — T[a]| where T[a] and T'[a]
are the coefficients of the monomial indexed by . It is clear that if T'[a] > 0, changing T[] to
max(0, 7'[c]) can only reduce || T — T'||;.

Abusing notation for simplicity, henceforth let P and Q be the distributions after this modification.
Let Np(x) and N (z) be the numerators for P and @ respectively. Then we apply Theorem C.2

to estimate, with probability 4 /5, the partition functions Zp and ZQ of P and Q respectively up to
a (1 & ¢/8) multiplicative factor. Therefore, Ep(z) = Np(z)/Zp and Eq(z) = Ny(z)/Zq are
(e/8,¢/4)-EVAL approximators for P and @ respectively, where the ¢ /8-close distributions are P

and Q. It follows from Theorem A.1 that conditioned on the above, we can estimate drv (P, Q) up
to an ¢ additive error with probability at least 9/10.

Remark C.3. Klivans and Meka [ ] have also given an algorithm for recovering the underly-
ing dependency graph of an n-dimensional ising model using O(exp(O(d)/n") log(;%)) samples
assuming its width at most d and min; j.a, ;20 |4; ;| = 1. Devroye et al. [ ] have given
a minimax-optimal algorithm that given the underlying graph, learns an Ising model in drv < €
using O(n?/&?) samples with 9/10 probability. These two results can be daisy-chained to improve
the sample complexity of learning an unknown ising model and hence of our distance approximation
algorithm. However, as noted in Section 6 of the later paper, this algorithm is not polynomial time
and hence we will not get a polynomial time algorithm for distance approximation.

C.1 Distance to uniformity

Next we give an algorithm for estimating the distance between an unknown Ising model and the
uniform distribution over {—1, 1}". We use the following recent result by Narayanan [ 1.

Theorem C.4 (Restated from [ 1. Let U and D be the uniform distribution and any other
distribution over [N] respectively, such that we can sample from D, as well as compute the ratio
D(i)/D(j) forany i # j € [N] up to (1 £ ¢) error for any 0 < £ < 1 in unit time. Then drv (D, U)
can be approximated up to an additive error using O(e~2) samples with 2/3 probability.

Theorem 4.3. There is an algorithm which, given independent samples from an unknown Ising model
P over {—1,1}" with width at most d, takes m = O(e®@De=%n3log(n/e)) samples, O(mn?) time
and returns a value e such that |e — dpv (P, U)| < € with probability at least 7/12, where U is the
uniform distribution over {—1,1}".

Proof. We first learn the parameters of the unknown ising model from samples using Theorem C.1.
As we noted earlier computing the partition function naively is intractable in general. However
computing N, /N, the ratio of the probabilities of two items z, y can be computed in O(n?) time up
to (1 & ) approximation from Theorem C.1. The result follows from Theorem C.4.
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D Multivariate Gaussians

In this section we give an algorithm for additively estimating the total variation distance between two
unknown multidimensional Gaussian distributions. For a mean vector ;€ R™ and a positive definite
covariance matrix ¥ € R™*", the Gaussian distribution N (1, ¥) has the pdf:

1

N 2iw) = 5 50 Taem)

exp (;(w —p) T (@ - u)) )

We use the following folklore result (see [ ] for a proof) for learning the two Gaussians.

Theorem D.1. Let P be an n-dimensional Gaussian distribution. Let i € R" and Y € R™" pe
the empirical mean and the empirical covariance defined by O(n?c~2) samples from P. Then, with

probability at least 9/10, the distribution P = N (ji, %) satisfies doy (P, P) < e.

We are now ready to prove Theorem 4.4 restated below.

Theorem 4.4. Let D be the family of multivariate gaussian distributions, {N (u, %) : p € R* ¥ €
R™ ™% = 0}. Then, there is a distance approximation algorithm for D with sample complexity
O(n2e72) and runtime O(n*c~2) (where w > 2 is the matrix multiplication constant).

Proof. We first apply Theorem D.1 to obtain P and Q such that each is within £ /4 distance from
P and @ respectively. Since we can evaluate the pdf of P and Q exactly, they serve as (¢/4,0)
EVAL -approximators for P and Q. Each determinant computation costs O(n*) time. Subsequently
from (the continuous analog of) Theorem A.1, using O(¢~2) samples from P and O(n“s~2) time,
we can estimate drvy (P, Q) up to an additive ¢ error with probability at least 4/5. O

Remark D.2. The above time analysis uses the unrealistic real RAM model in which real number
computations can be carried out exactly upto infinite precision. However, there are strongly polyno-
mial time algorithms for computing matrix determinant and inverse [ , ], so that even in
the more realistic word RAM model, the above algorithm runs in polynomial time.

E Causal Bayesian Networks under Atomic Interventions

We describe Pearl’s notion of causality from [ ]. Central to his formalism is the notion of an
intervention. Given a variable set V and a subset S C V, an intervention do(s) is the process of
fixing the set of variables in S to the values s. If the original distribution on V' is P, we denote the
interventional distribution as P, intuitively, the distribution induced on V' when an external force
sets the variables in S to s.

Another important component of Pearl’s formalism is that some variables may be hidden (latent).
The hidden variables can neither be observed nor be intervened upon. Let V' and U denote the subsets
corresponding to observable and hidden variables respectively. Given a directed acyclic graph H on
V UU and a subset S C (VUU), we use I (S) and Pay (.S) to denote the set of all parents and
observable parents respectively of S, excluding .S, in H. When the graph H is clear, we may omit
the subscript.

Definition E.1 (Causal Bayesian Network). A (semi-Markovian) causal Bayesian network (CBN)
on variables X1, . .., X, is a collection of interventional distributions defined by a tuple (V,U, G,
{Pr(X; | znw)) i € Viane € SO, Pr[Xy]}), where (i) G is a directed acyclic graph on
VUU = [n], (ii) Pr[X; | 2u(,)] is the conditional probability distribution of X; given that its
parents Xyy(;) take the values (), and (iii) Pr[Xy] is the distribution of the hidden variables

ACBN P = (V,UG, {Pr[X; | xry) : i € Viany) € SIMON Pr[Xy)) defines a unique
interventional distribution Py for every subset S C V (including S = 0) and assignment s € %151,
as follows. Forall z € X1

Pu(z) = >ulliev\s Prilzi | 2z - Pr[Xu =] ifz is consistent with s
° 0 otherwise.

20



Figure 1: An acyclic directed mixed graph (ADMG) where the bidirected edges are depicted as
dashed. The in-degree of the graph is 2. The c-components are {4, C} and {B, D, E'}.

We use P to denote the observational distribution (S = (). G is said to be the causal graph
corresponding to the CBN P.

It is standard in the causality literature [ ] to assume that each variable in U
is a source node with exactly two children from V, since there is a known algorithm [ , ]
which converts a general causal graph into such graphs. Given such a causal graph, we remove every
source node Z from G and put a bidirected edge between its two observable children X; and Xs.
We end up with an Acyclic Directed Mixed Graph (ADMG) graph G, having vertex set V' and having
edge set E— U E“" where E are the directed edges and E** are the bidirected edges. The in-degree
of GG is the maximum number of directed edges coming into any vertex in V. A c-component refers
to any maximal subset of V' which is interconnected by bidirected edges. Then V' gets partitioned
into c-components: S1, So, . ..,.S;. Figure 1 shows an example.

Throughout this section, we focus on atomic interventions, i.e. interventions on a single variable.
Let A € V correspond to this variable. Without loss of generality, suppose A € S;. Tian and Pearl
[ ] showed that in an ADMG G as above, P, can be completely determined from P for all
a € X iff the following condition holds.

Assumption E.2 (Identifiability wrt A). There does not exist a path of bidirected edges between A
and any child of A. Equivalently, no child of A belongs to S.

Recently algorithms and sample complexity bounds for learning and sampling from identifiable atomic

interventional distributions were given in [ ] under the following additional assumption. For

S CV,letPa®(S) = SUPa(S).

Assumption E.3 (a-strong positivity wrt A). Suppose A lies in the c-component Sy, and let Z =
a™(Sy). For every assignment z to Z, P(Z = z) > a.

We state the two main results of [ ], which given sampling access to the observational
distribution P of an unknown causal Bayesian network on a known ADMG return an (&, 0)-EVAL ap-
proximator and an approximate generator for P,. For the two results below, suppose the CBN P
satisfies identifiablity (Assumption E.2) and a-strong positivity (Assumption E.3) with respect to a
variable A € V' . Let d denote the maximum in-degree of the graph G and k denote the size of its
largest c-component.

Theorem E.4 (EVAL approximator and Sampler [ 1). For any intervention a to A and
parameter € € (0, 1), there is an algorithm that takes m = o] (li‘kgf log 5) samples from P, and

in O(mnlog? +) time, returns a distribution P, such that dyy (P,, P,) < & with probability at least
(1 — 6) and returns a circuit Ep 4 such that:

— Evaluation: Given an assignment x to the nodes, Ep o outputs P, (x) exactly in O(n) time.
— Generation: Obtaiing an independent sample from P, takes O(n) time.

We give a distance approximation algorithm for identifiable atomic interventional distributions using
the above result and Theorem A.1.

Theorem E.5 (Formal version of Theorem 4.6). Suppose P, Q are two unknown CBN’s on two
known ADMGs G and G on a common observable set V' both satisfying Assumption E.2 and
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Assumption E.3 wrt a special vertex A. Let d denote the maximum in-degree, and k denote the size of
the largest c-component of G1 and Ga.

Then there is an algorithm which for any a € X and parameter ¢ € (0,1), takes m =
~ ‘lekd

0 (B
that e — drv(Pa, Qo)| < € with probability at least 2/3.

n

log %) samples from P and Q, runs in time O(mn log? %) and returns a value e such

Proof. We first invoke Theorem E.4 to learn the two distributions as Pa and Qawith the distance
parameter €, which serve as (g, 0)-EVAL approximators for P, and @), respectively. Once learnt, no
further samples are needed from P, and Q,. P, can be sampled in O(n) time from Theorem E.4.
The result follows from Theorem A.1. O

F Improving Success of Learning Algorithms Using Distance Estimation

In this section we give a general algorithm for improving the success probability of learning certain
families of distributions. Specifically, let D be a family of distributions for which we have a learning
algorithm A in drv distance ¢ that succeeds with probability 3/4. Suppose there is also a distance
approximation algorithm B for D. The algorithm presented below, which uses .4 and 5, learns an
unknown distribution from D with probability at least (1 — §).

Algorithm 4: High probability distribution learning

Data: Samples from an unknown distribution P

Result: A distribution P such that dpy (P, P) < e with probability 1 — 4
1 for 0 <i < R=0O(log 1) do

P; < Run A on samples from P to get a learnt distribution;

count; « 0;

for every unordered pair 0 < i < 7 < Rdo
d;; < Estimate distance between F; and P; up to additive error € using B;
if dij < 3¢ then
count; < count; + 1;
L count; < count; + 1,

0 N it B W

9 ¥ = arg max; count;;
10 return P;;

Theorem F.1. Let D be a family of distributions. Suppose there is a learning algorithm A which
for any P € D takes m 4(g) samples from P and in time t 4(¢) outputs a distribution Py such that
drv (P, P1) < € with probability at least 3/4. Suppose there is a distance approximation algorithm
B for D that given any two completely specified distributions Py and Py estimates drv (Py, Pe) up to
an additive error € in tg(e, §) time with probability at least (1 — §). Then there is an algorithm that
uses A and B as subroutines, takes O(m 4(c/4) log §) samples from P, runs in O(t 4(¢/4) log § +

tp(e/4, W) log? %) time and returns a distribution P such that dpv (P, P) < e with

probability at least 1 — 4.

Proof. The boosting algorithm is given in Algorithm 4. We take R = 324 log % repetitions of A
to get the distributions P;s. From Chernoff’s bound at least 2R/3 distributions (successful) satisfy
drv(P;, P) < € with probability at least 1 —§ /2, which we condition on henceforth. These successful
distributions have pairwise distance at most 2e. Conditioned on the (123”) calls to BB succeeding, the
pairwise distances between the successful distributions are at most 3¢. Hence every successful ¢ has
its count value at least 2R/3 — 1. This means ¢*, which has the maximum count value (> 2R/3 — 1)
must intersect at least one successful i’ such that drv (P;«, P;r) < 3¢. By triangle inequality we get
dT\/(Pi* 5 P) < 4e.

It suffices for each call to 3 succeed with probability at least %. O

Assuming black-box access to A, O(m 4 log %) samples are needed in the worst case to learn with
1 — 0 probability, since otherwise all the o(log %) repetitions may fail. We can apply the above
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algorithm to improve the success probability of learning Bayesian networks on a given graph with
small indegree.
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