
© 2020 Nick Alger

SIAM J. SCI. COMPUT. © 2020 Nick Alger
Vol. 42, No. 5, pp. A3516--A3539

TENSOR TRAIN CONSTRUCTION FROM TENSOR ACTIONS,
WITH APPLICATION TO COMPRESSION OF LARGE HIGH

ORDER DERIVATIVE TENSORS\ast

NICK ALGER\dagger , PENG CHEN\dagger , AND OMAR GHATTAS\dagger

Abstract. We present a method for converting tensors into the tensor train format based on ac-
tions of the tensor as a vector-valued multilinear function. Existing methods for constructing tensor
trains require access to ``array entries"" of the tensor and are therefore inefficient or computationally
prohibitive if the tensor is accessible only through its action, especially for high order tensors. Our
method permits efficient tensor train compression of large high order derivative tensors for nonlinear
mappings that are implicitly defined through the solution of a system of equations. Array entries
of these derivative tensors are not directly accessible, but actions of these tensors can be computed
efficiently via a procedure that we discuss. Such tensors are often amenable to tensor train compres-
sion in theory, but until now no efficient algorithm existed to convert them into tensor train format.
We demonstrate our method by compressing a Hilbert tensor of size 41\times 42\times 43\times 44\times 45, and by
forming high order (up to fifth order derivatives/sixth order tensors) Taylor series surrogates of the
noise-whitened parameter-to-output map for a stochastic partial differential equation with boundary
output.

Key words. tensor, tensor train, tensor action, randomized linear algebra, higher order deriv-
ative, uncertainty quantification

AMS subject classifications. 15A69, 35Q62, 35R30, 65C30, 65C60, 65F99, 68W20

DOI. 10.1137/20M131936X

1. Introduction. To understand this paper, the reader should be familiar with
tensors and tensor decompositions [22, 31], tensor trains [21, 39, 42], and randomized
linear algebra [23]. Existing tensor train construction methods, including TT-SVD
[39], TT-cross [40], Tucker-2/PVD [15], modified ALS [25], and other related methods
[3, 16], view a dth order tensor as a multidimensional array,

T \in \BbbR N1\times N2\times \cdot \cdot \cdot \times Nd ,

and construct a tensor train representation of T via processes that involve accessing
many array entries of T . This is inefficient in applications where the tensor is only
accessible through its action as a vector-valued multilinear function.

Definition 1 (tensor action). Let T be a dth order tensor. An action of T is a
contraction of T with d - 1 vectors.

Tensor actions generalize the concept of the action of a matrix on a vector via
matrix-vector multiplication. A matrix action takes one vector as input and returns

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section February
18, 2020; accepted for publication (in revised form) August 4, 2020; published electronically October
27, 2020.

https://doi.org/10.1137/20M131936X
Funding: This research was partially funded by the Department of Energy, Office of Science,

Office of Advanced Scientific Computing Research, Mathematical Multifaceted Integrated Capabil-
ity Centers (MMICCS) program under award DE-SC0019303, the Simons Foundation under award
560651, the Air Force Office of Scientific Research, Computational Mathematics program under award
FA9550-17-1-0190, and the National Science Foundation, Division of Advanced Cyberinfrastructure
under award ACI-1550593.

\dagger Oden Institute for Computational Engineering and Sciences, The University of Texas as Austin,
Austin, TX 78712 USA (nalger225@gmail.com, peng@ices.utexas.edu, omar@ices.utexas.edu).

A3516

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/20M131936X
mailto:nalger225@gmail.com
mailto:peng@ices.utexas.edu
mailto:omar@ices.utexas.edu

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3517

one vector as output. A tensor action takes d - 1 vectors as input and returns one
vector as output.

To illustrate by example, suppose that T \in \BbbR N1\times N2\times N3 . Then an action of T is
an evaluation of one of the following three functions:

A1 : \BbbR N2 \times \BbbR N3 \rightarrow \BbbR N1 ,

A2 : \BbbR N1 \times \BbbR N3 \rightarrow \BbbR N2 ,

A3 : \BbbR N1 \times \BbbR N2 \rightarrow \BbbR N3 ,

which are defined by

A1(v, w)i :=

N2\sum
j=1

N3\sum
k=1

Ti,j,kvjwk, i = 1, . . . , N1,

A2(u,w)j :=

N1\sum
i=1

N3\sum
k=1

Ti,j,kuiwk, j = 1, . . . , N2,

A3(u, v)k :=

N1\sum
i=1

N2\sum
j=1

Ti,j,kuivj , k = 1, . . . , N3.

For a dth order tensor, there are d functions Ai defined analogously. When we say
that a tensor T is only accessible via its actions, we mean that we have algorithms
or black-box computer codes that can evaluate the functions Ai on arbitrary input
vectors, but we do not have any other information about the entries of T . Tensors
that are only accessible through their action arise as tensors representing higher order
derivatives of inverse and optimal control problem objective functions with respect to
parameters. More generally, such tensors arise as tensor networks with a tree topology
where at least one of the nodes in the network is a matrix inverse.

If a tensor is only available via actions, it is possible to compress it into tensor
train format using existing algorithms such as TT-cross, but this process wastes infor-
mation. Continuing the example where T is a 3-tensor, when the existing algorithm
wishes to access tensor entry Ti,j,k, one computes the fiber A1(ej , ek) \in \BbbR N1 via a
tensor action, then extracts Ti,j,k = A1(ej , ek)i as the ith entry of the fiber. Here and
throughout the paper, we write

em :=
\bigl[
0 . . . 0 1 0 . . . 0

\bigr] T
to denote a vector of the appropriate length (length N2 and N3 here) with mth entry
equal to one and all other entries equal to zero. The fiber A1(ej , ek) can be stored
and used later when other tensor entries in the fiber are needed (entries Ti,j,k with the
same i and j, but different k). However, existing tensor train compression methods
access tensor entries in a scattered pattern: only a small number of entries in a given
fiber are used. A large number of fibers must be computed, each of which requires a
tensor action, and most of the entries in the computed fibers are ignored.

We present an efficient method to construct tensor train representations of tensors
that are accessible only through their action. Our method (section 2) is based on a
randomized algorithm, which has been used in [10, 26] for tensor train decomposition.
While [10, 26] require the ability to perform array operations with the tensor, our
method uses only the tensor action. Our key innovation is a method for implicitly
computing the action of the remainder of a partially constructed tensor train, even

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3518 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

though we do not have access to the remainder directly. This allows us to use a
``peeling process"" to compute successive cores in the tensor train: we use a randomized
range finder to compute the first core in the tensor train, then we use information
from the first core and a randomized range finder to compute the second core, then
we use information from the first and second cores and a randomized range finder to
compute the third core, and so on. This ``peeling process"" continues until we have
computed all cores in the tensor train. We were inspired by [33], in which randomized
linear algebra and a peeling process are used to construct hierarchical matrices using
only matrix-vector products. With our method, constructing the tensor train requires

(1) O(\lceil r/N\rceil dr2)

tensor actions, plus O(dNr2) memory for storage and O(dNr3) operations for linear
algebra overhead. Here r is the tensor train rank (the maximum rank of the cores in
the tensor train), N = max(N1, . . . , Nd), and \lceil x\rceil is the smallest integer larger than x.
The tensor actions are trivially parallelizable within each stage of the method. Once
the tensor train has been constructed, the tensor may be manipulated efficiently using
fast methods for tensor trains. In the case where r < N , we have \lceil r/N\rceil = 1, so the
required number of tensor actions reduces to O(dr2). Tensor train compression is
most effective when the tensor is large (large N and large d) and the tensor train rank
is small (small r), so r < N is a common use case. For tensors that arise in connection
with integral or differential equations, N is typically the number of degrees of freedom
in a discretization of a continuous function and is therefore on the order of thousands,
millions, or more, while r may be on the order of ten to one hundred.

Our work was motivated by a desire to form high order (derivative order k > 2)
Taylor series surrogate models of a quantity of interest \scrF \in \BbbR Nq that depends on a
parameter m \in \BbbR Nm implicitly through the solution of a large system of nonlinear
equations. Typically, computing a single entry of the quantity of interest, (\scrF (m))i,
requires essentially the same amount of work as computing the entire vector \scrF (m),
because one must solve the same system of nonlinear equations in either case. Anal-
ogously, computing an individual entry of the (k + 1)th order tensor

(2)
dk\scrF
dmk

\in \BbbR Nm \times \cdot \cdot \cdot \times \BbbR Nm \times \BbbR Nq

requires essentially the same work as computing the vector output of a tensor action.
Tensor compression algorithms that operate by accessing scattered tensor entries (such
as TT-cross) are therefore inefficient here. We show how to compute tensor actions for
these higher order derivative tensors in section 3. These high order derivative tensors
are often amenable to tensor train compression in principle, but until now no efficient
algorithm existed for converting them into tensor train format. Quantized tensor
train methods [37, 41, 38] can be highly effective for building surrogate models of the
input to output map for the solution of a linear system [20, 28, 29, 30], but require
access to tensor array entries, and therefore cannot be used to efficiently approximate
higher order derivative tensors that arise when the system is nonlinear.

We demonstrate our method numerically in section 4.1 First, we compress a
Hilbert tensor of size 41 \times 42 \times 43 \times 44 \times 45. We show that our method constructs
nearly optimal tensor train approximations for this Hilbert tensor compared to TT-
SVD and TT-cross. Second, we compress high order derivatives (up to fifth order

1Code for the methods and numerical results in this paper is available at https://github.com/
NickAlger/TensorTrainHigherDerivatives.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://github.com/NickAlger/TensorTrainHigherDerivatives
https://github.com/NickAlger/TensorTrainHigherDerivatives

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3519

derivatives or sixth order tensors) of the noise-whitened parameter-to-output map for
a stochastic partial differential equation (PDE) with boundary output. We show that
high order derivatives can be compressed into tensor train format with a low tensor
train rank, and that the number of tensor actions needed to compress the high order
derivative tensors is independent of the mesh used to discretize the problem. As the
mesh is refined (Nm \rightarrow \infty), the required number of tensor actions remains roughly
the same. We use these compressed derivative tensors to build Taylor series surrogate
models for the noise-whitened parameter-to-output map, and find that including high
order terms in the Taylor series yields more accurate surrogate models.

1.1. Isomorphism between arrays and multilinear functions. Tensor con-
traction establishes an isomorphism between multidimensional arrays and multilinear
functions. Given a multilinear function,

T : \BbbR N1 \times \BbbR N2 \times \cdot \cdot \cdot \BbbR Nd \rightarrow \BbbR ,

we may form an array representation of the function by applying the function to all
possible combinations of standard unit basis vectors em. Given an array,

T \in \BbbR N1 \times \BbbR N2 \times \cdot \cdot \cdot \BbbR Nd ,

we may define a corresponding multilinear function that acts on vectors by contracting
those vectors against the modes of the array. This associates each multilinear function
with a unique array, and each array with a unique multilinear function. We use the
word tensor to refer to both multilinear functions and multidimensional arrays. When
a tensor is viewed as a multilinear function, we use parentheses to denote function
arguments, as in T (u, v, w). When a tensor is viewed as an array, we use subscripts
to denote array entries, as in Ti,j,k.

We illustrate by continuing the example from the previous section where T is a
3-tensor. We have

T (u, v, w) =

N1\sum
i=1

N2\sum
j=1

N3\sum
k=1

Ti,j,kuivjwk

for vectors u, v, w, and

Ti,j,k := T (ei, ej , ek)

for indices i, j, k.
The action of a multilinear function on vectors equals the contraction of the

associated array with those vectors. We use the the ``\cdot "" symbol to denote incomplete
contraction by currying. That is,

T (u, v, \cdot)

denotes the Riesz representation of the linear functional w \mapsto \rightarrow T (u, v, w) with respect
to the Euclidean inner product. If x = T (u, v, \cdot), then

xk =

N1\sum
i=1

N2\sum
j=1

Ti,j,kuivj , k = 1, . . . , N3.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3520 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

Using this notation, actions of T in the above example may be written as

A1(v, w) =T (\cdot , v, w),
A2(u,w) =T (u, \cdot , w),
A3(u, v) =T (u, v, \cdot).

1.2. Tensor train from the multilinear function perspective. From the
conventional array perspective, the cores of a tensor train representation of T are 2-
and 3-dimensional arrays,

C1 \in \BbbR N1\times r1 ,

Ck+1 \in \BbbR rk\times Nk+1\times rk+1 , k = 1, 2, . . . , d - 2,

Cd \in \BbbR rd - 1\times Nd ,

such that

Ti1,i2,...,id =

r1\sum
i1=1

r2\sum
j2=1

\cdot \cdot \cdot
rd - 1\sum

jd - 1=1

(C1)i1,j1 (C2)j1,i2,j2 . . . (Cd - 1)jd - 2,id - 1,jd - 1
(Cd)jd - 1,id

.

From the multilinear function perspective, this is a factorization of T into the com-
position of functions,

T (x1, x2, . . . , xd) = Cd(Cd - 1(. . . C2(C1(x1, \cdot), x2, \cdot) . . . , xd - 1, \cdot), xd),

where the output from the last mode of each core is used as an input for the first
mode of the next core.

2. Method. We construct the cores of the tensor train one at a time. Without
loss of generality we assume d \geq 5. If d < 5, one may proceed as described for cores
1 through d - 1, then skip to the method for computing the last core for core d.

The basic idea of the method is as follows. At each step (other than the first), we
start with a factorization of T into a partially constructed tensor train, Tk, composed
with an unknown multilinear remainder function, Rk. We construct vectors that,
when input into Tk, yield the standard unit basis vectors, ej , as output (recall e1 =
(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), and so on). This allows us to apply Rk to arbitrary
vectors through an indirect process that involves computing actions of T . By using
a randomized range finding procedure that involves applying Rk to random vectors,
we construct the next core in the tensor train. This process repeats until all cores are
computed.

2.1. Multilinear randomized range finder. In the randomized singular value
decomposition (randomized SVD) [23], one constructs a basis for the range of a matrix
by applying the matrix to random input vectors, then orthogonalizing the resulting
output vectors. Here we use a multilinear generalization of this idea to construct a ba-
sis for the numerical range of a vector valued multilinear function. Similar multilinear
randomized range finders have been used in [10, 26].

Let F be a vector-valued multilinear function that takes n vectors as input and
returns one vector as output. Let r be the dimension of the numerical range of F (or
the desired dimension of an approximation to this range). First, we compute

y(i) = F (\omega
(i)
1 , \omega

(i)
2 , . . . , \omega (i)

n), i = 1, . . . , r + p,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3521

where \omega
(i)
1 , \omega

(i)
2 , . . . , \omega

(i)
n are random vectors of the appropriate sizes with independent

normally distributed entries, and p is a small oversampling parameter (we use p = 5).
Then we form an orthonormal basis for the span of the y(i) by computing the thin
singular value decomposition (SVD) of the matrix that has yi as its columns. That
is, \bigl[

y(1) . . . y(r+p)
\bigr]
= U\Sigma V T .

Finally, we set Ur to be the matrix consisting of the first r columns of U . The span
of these r columns approximates the range of F .

2.2. First core. Define F1 to be the following vector valued multilinear map:

(3) F1(x2, . . . , xd) := T (\cdot , x2, . . . , xd).

We use the randomized range finding procedure from section 2.1 to compute an or-
thonormal basis, Ur, for the range of F1. Then we set C1 := Ur.

2.3. Second core. If the span of the columns of C1 accurately captures the
range of F1, then T factors into the composition

(4) T (x1, x2, . . . , xd) = R1 (T1(x1), x2, . . . , xd) ,

where

T1(x1) := CT
1 x1,

and the ``remainder"" R1 : \BbbR r1 \times \BbbR N2 \times \cdot \cdot \cdot \times \BbbR Nd \rightarrow \BbbR is an unknown multilinear
function. To construct the next core, we seek an orthonormal basis for the range of
the multilinear function F2 defined as

(5) F2(x3, . . . , xd) := R1(\cdot , \cdot , x3, . . . , xd),

where the output is vectorized.
Let

(6) \eta j := (C1):,j

be the jth column of C1 (we use the colon subscript ``:"" to denote all array entries in
a given axis). By orthogonality of C1, we have CT

1 \eta j = ej , which implies

(7) T1(\eta j) = ej .

Combining (7) with (4), we have

R1(ej , \cdot , x3, . . . , xd) = T (\eta j , \cdot , x3, . . . , xd).

Stacking these vectors yields

(8) R1(\cdot , \cdot , x3, . . . , xd) =

\left[
T (\eta 1, \cdot , x3, . . . , xd)
T (\eta 2, \cdot , x3, . . . , xd)

. . .
T (\eta r1 , \cdot , x3, . . . , xd)

\right] .

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3522 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

We may therefore construct an orthonormal basis, Ur, for the range of F2 by using
the randomized range finding procedure described in section 2.1. Whenever the ran-
domized range finding procedure requires evaluating the function F2, we do so by
forming the right-hand side of (8). This, in turn, is done by computing r1 actions of
T . The second core, C2, is the r1\times N2\times r2 third order tensor formed by reshaping the
(r1N2)\times r2 matrix Ur. This process for constructing the second core is summarized
in Algorithm 1.

Algorithm 1 Construction of the second core.

Require: Core C1.
Ensure: Core C2.
1: Form the vectors \eta 1, \eta 2, . . . , \eta r1 according to (6).
2: Compute an orthonormal basis, Ur \in \BbbR (r1N2)\times r2 , for the range of F2 using the

randomized range finder in section 2.1, in which (8) is used to evaluate F2 as
needed within the randomized range finding procedure.

3: Set C2 to be the r1 \times N2 \times r2 reshaped version of Ur.

2.4. Third core. Having computed the first and second cores, the tensor train
now factors into the composition

(9) T (x1, x2, x3, x4, . . . , xd) = R2 (T2(x1, x2), x3, x4, . . . , xd) ,

where

T2(x1, x2) := C2

\bigl(
CT

1 x1, x2, \cdot
\bigr)
,

and R2 : \BbbR r2 \times \BbbR N3 \times \cdot \cdot \cdot \times \BbbR Nd \rightarrow \BbbR is an unknown multilinear remainder. Here
C2

\bigl(
CT

1 x1, x2, \cdot
\bigr)
denotes the contraction of C2 with CT

1 x1 in the first mode and x2
in the second mode.

We must now construct an orthonormal basis for the function F3 defined as

(10) F3(x4, . . . , xd) := R2 (\cdot , \cdot , x4, . . . , xd) ,

where we view the vectorization of the first two modes of R2 as the output and the
remaining modes as the inputs. We seek to find a small number, \tau , of vectors \{ \xi i\} \tau i=1

and \{ \eta i,j\} \tau i=1
r2
j=1 so that

(11)

\tau \sum
i=1

T2(\xi i, \eta i,j) = ej , j = 1, . . . , r2,

because then (9) implies

R2 (ej , \cdot , x4, . . . , xd) =
\tau \sum

i=1

T (\xi i, \eta i,j , \cdot , x4, . . . , xd),

which implies

(12) R2 (\cdot , \cdot , x4, . . . , xd) =
\tau \sum

i=1

\left[
T (\xi i, \eta i,1, \cdot , x4, . . . , xd)
T (\xi i, \eta i,2, \cdot , x4, . . . , xd)

...
T (\xi i, \eta i,r2 , \cdot , x4, . . . , xd)

\right] .

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3523

Given \xi i, \eta i,j satisfying (11), we compute an (r2N3)\times r3 orthonormal basis, Ur,
for the range of F3 using the randomized range finder from section 2.1. Then we set C3

to be the r2\times N3\times r3 reshaping of Ur into a 3-tensor. Whenever the randomized range
finder requires evaluating F3, we perform the evaluation by computing the right-hand
side of (12) for j = 1, . . . , r2 by computing \tau r2 actions of T .

We now describe how to find \xi i, \eta i,j satisfying (11). We choose

(13) \xi i := (C1):,i

as the ith column of C1. Other choices are possible. We choose (13) since (a) the
randomized range finding procedure is likely to be more accurate for vectors in the
span of the first columns of C1 and less accurate for vectors in the span of the later
columns, and (b) with the core C1 already computed, the following cores need only
be accurate for vectors x1 in the column space of C1.

Given these \xi i vectors, we may now solve a least squares problem to construct
acceptable \eta i,j . Let Mi, i = 1, . . . , \tau , be the N2 \times r2 matrices

(14) Mi := T2(\xi i, \cdot)

formed by contracting the existing partially constructed tensor train with the vectors
\xi i. We may write (11) as the linear system equation

(15)
\bigl[
MT

1 MT
2 . . . MT

\tau

\bigr]
\left[
\eta 1,j
\eta 2,j
...
\eta \tau ,j

\right] = ej , j = 1, . . . , r2.

We choose \tau sufficiently large so that (15) is underdetermined and therefore generically
solvable. Then for j = 1, . . . , r2, we find a least squares solution to (15) by QR
factorization. This linear system has \tau r2N2 variables satisfying r22 equations, and
is therefore underdetermined if \tau \geq \lceil r2/N2\rceil . We recommend \tau = \lceil r2/N2\rceil + 1 and
use this in our numerical results. In the case when r2 < N2, this reduces to \tau = 2.
Choosing \tau = \lceil r2/N2\rceil + 1 instead of \tau = \lceil r2/N2\rceil improves performance of the
method considerably in our numerical examples, while choosing larger \tau does not.
This process for constructing the third core is summarized in Algorithm 2.

A caveat here is that we cannot choose \tau larger than r1 because there are only r1
fibers \xi i to choose from C1. If \tau > r1 is required, the algorithm should backtrack and
increase r1. Backtracking may be avoided by setting a minimum rank for all cores.
In our numerical results, we have ri < Ni and \tau = \lceil ri/Ni\rceil +1 = 2 for all cores, so we
ensure that backtracking never occurs by setting a minimum rank of ri = 2 for all of
the cores.

2.5. Fourth through (\bfitd - 1)th cores. The process for constructing the fourth
through (d - 1)th cores is similar to the process for constructing the third core. But
now there are more modes that must be saturated with specially chosen vectors.

Suppose that we have already computed cores C1, C2, . . . , Ck for some k in the
range 3 \leq k \leq d - 2, and let Tk : \BbbR N1\times N2\times \cdot \cdot \cdot \times Nk \rightarrow \BbbR rk be defined recursively as

Tl(x1, . . . , xk - 1, xk) :=

\Biggl\{
CT

1 x1, l = 1,

Cl(Tl - 1(x1, . . . , xk - 1), xk, \cdot), l = 2, . . . , k,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3524 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

Algorithm 2 Construction of the third core.

Require: Cores C1, C2.
Ensure: Core C3.
1: Form the vectors \xi 1, \xi 2, . . . , \xi \tau according to (13).
2: Form the matrices M1,M2, . . . ,M\tau according to (14).
3: Find least-squares solutions to (15) for j = 1, . . . , r2 to get \{ \eta i,j\} \tau i=1

r2
j=1.

4: Compute an orthonormal basis, Ur \in \BbbR (r2N3)\times r3 , for the range of F3 using the
randomized range finder in section 2.1, in which (12) is used to evaluate F3 as
needed within the randomized range finding procedure.

5: Set C3 to be the r2 \times N3 \times r3 reshaped version of Ur.

where Cl(Tl - 1(x1, . . . , xk - 1), xk, \cdot) denotes contraction of Cl with Tl - 1(x1, . . . , xk - 1)
in the first mode and xk in the second mode. We have the factorization

(16) T (x1, . . . , xk, xk+1, . . . , xd) = Rk (Tk(x1, . . . , xk), xk+1, . . . , xd) ,

where Rk : \BbbR rk \times \BbbR Nk+1 \times \cdot \cdot \cdot \times \BbbR d \rightarrow \BbbR is an unknown multilinear function.
Given vectors \psi 1, \psi 2, . . . , \psi k - 2, \{ \xi i\} \tau i=1, and \{ \eta i,j\} \tau i=1

rk
j=1 satisfying

(17)

\tau \sum
i=1

Tk (\psi 1, . . . , \psi k - 2, \xi i, \eta i,j) = ej ,

we have

(18) Rk (\cdot , \cdot , xk+2, . . . , xd) =

\tau \sum
i=1

\left[
T (\psi 1, . . . , \psi k - 2, \xi i, \eta i,1, \cdot , xk+2, . . . , xd)
T (\psi 1, . . . , \psi k - 2, \xi i, \eta i,2, \cdot , xk+2, . . . , xd)

...
T (\psi 1, . . . , \psi k - 2, \xi i, \eta i,rk , \cdot , xk+2, . . . , xd)

\right]
by the same argument as the analogous result we presented for the third core. We
construct an orthonormal basis, Ur, for the range of Fk+1 defined as

(19) Fk+1(xk+2, . . . , xd) := Rk(\cdot , \cdot , xk+2, . . . , xd)

using the randomized range finder from section 2.1. Within the randomized range
finder we use identity (18) to evaluate Fk+1 as needed. We set Ck+1 to be the
rk \times Nk+1 \times rk+1 reshaping of Ur.

For the vectors \psi 1, \psi 2, . . . , \psi k - 2, we choose \psi j to be the ``first fibers"" of the
corresponding cores Cj , which represent the ``highest energy"" in each subspace formed
by Cj , i.e.,

(20) \psi l :=

\Biggl\{
(C1):,1 , l = 1,

(Cl)1,:,1 , l = 2, . . . , k - 2.

For the vectors \{ \xi i\} \tau i=1 and \{ \eta i,j\} \tau i=1
rk
j=1 satisfying (17), we use the same process as

that for the third core, i.e., we specify

(21) \xi i := (Ck - 1)1,:,i , i = 1, . . . , \tau ,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3525

and form the Nk \times rk matrices

(22) Mi := Tk (\psi 1, . . . , \psi k - 2, \xi i, \cdot) ,

and then use a QR factorization to find the least-squares solutions of the linear systems

(23)
\bigl[
MT

1 MT
2 . . . MT

\tau

\bigr]
\left[
\eta 1,j
\eta 2,j
...
\eta \tau ,j

\right] = ej

for j = 1, . . . , rk. As in the case of the third core, we must have \tau \geq \lceil rk/Nk\rceil for
this system to be solvable; in our numerical experiments we observe good results
with \tau = \lceil rk/Nk\rceil + 1. This process for computing the kth through (d - 1)th cores
is summarized in Algorithm 3. We use graphical tensor notation to illustrate this
process in Figure 1.

Since we cannot choose \tau larger than rk - 1, if \tau > rk - 1 is required, then the
algorithm should backtrack and increase rk - 1. In our numerical results, backtracking
is avoided by setting a minimum rank of ri = 2 for all of the cores.

Algorithm 3 Construction of one of the fourth through (d - 1)th cores.

Require: Cores C1, C2, . . . , Ck, 3 \leq k \leq d - 2.
Ensure: Core Ck+1.
1: Form the vectors \psi 1, \psi 2, . . . , \psi k - 2 according to (20).
2: Form the vectors \xi 1, \xi 2, . . . , \xi \tau according to (21).
3: Form the matrices M1,M2, . . . ,M\tau according to (22).
4: Find least-squares solutions to (23) for j = 1, . . . , rk to get \{ \eta i,j\} \tau i=1

rk
j=1.

5: Compute an orthonormal basis, Ur \in \BbbR (rkNk+1)\times rk+1 , for the range of Fk+1 using
the randomized range finder in section 2.1, in which (18) is used to evaluate Fk+1

as needed within the randomized range finding procedure.
6: Set Ck+1 to be the rk \times Nk+1 \times rk+1 reshaped version of Ur.

2.6. Last core. For the last core, we have

T (x1, . . . , xd - 1, \cdot) = Rd - 1 (Td - 1(x1, . . . , xd - 1), \cdot) .

We specify the vectors \psi 1, . . . , \psi d - 3, \{ \xi i\} \tau i=1, and find vectors \{ \eta i,j\} \tau i=1
rd - 1

j=1 such that

\tau \sum
i=1

Td - 1(\psi 1, . . . , \psi d - 3, \xi i, \eta i,j) = ej , j = 1, . . . , rd - 1,

using the same process as described in section 2.5 for previous cores. Then we directly
form the last core, Cd \in \BbbR rd - 1\times Nd , as follows:

(24) Cd :=

\left[
Rd - 1 (e1, \cdot)T

Rd - 1 (e2, \cdot)T
...

Rd - 1

\bigl(
erd - 1

, \cdot
\bigr) T

\right] =

\tau \sum
i=1

\left[
T (\psi 1, . . . , \psi d - 3, \xi i, \eta i,1, \cdot)T
T (\psi 1, . . . , \psi d - 3, \xi i, \eta i,2, \cdot)T

...
T (\psi 1, . . . , \psi d - 3, \xi i, \eta i,rd - 1

, \cdot)T

\right] .
There is no orthogonalization for the last core. This process for constructing the last
core is summarized in Algorithm 4.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3526 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

T

x8

x7

x6

x5

x4

x3

x2

x1

= C1 C2 C3 R3

x1 x2 x3 x4

x5

x6

x7

x8

(a) Intermediate factorization of T after three cores have been computed.

C1 C2 C3

\psi 1 \xi 1 \eta j

= ej

(b) We solve for \eta j so that this equality holds.

T

x8

x7

x6

x5\eta j

\xi 1

\psi 1

= ej R3

x5

x6

x7

x8

(c) Implicit application of R3 via application of T to specially chosen vectors.

Fig. 1. Illustration of an intermediate step in the peeling process in the case where \tau = 1
(typically \tau > 1, and the left hand sides of (b) and (c) are sums of tensors of the form shown here).
Given an intermediate tensor train factorization, (a), we find certain vectors so that equality holds
in (b); then we apply the unknown right factor to vectors implicitly by applying T to certain vectors,
(c).

2.7. Adaptive range finding. The randomized range finding procedure may
be performed in a sequential manner so that the rank of a core, rk, is found while the
orthogonal basis for that core is constructed. Starting with a small r (say, r = 2),
compute y(i), i = 1, . . . , r + p and Ur, and compute the error estimate

(25) \scrE := max
i=1,...,r+p

\bigm\| \bigm\| \bigm\| y(i) - UrU
T
r y

(i)
\bigm\| \bigm\| \bigm\|
2
.

If \scrE is less than a predetermined tolerance, set rk = r and stop the range finding
procedure, and reshape Ur to construct the current core. If \scrE is greater than the
tolerance, increase r (say, r \leftarrow r + 1), compute more vectors y(i), recompute Ur, and
repeat the process. Error estimator (25) generalizes the a posteriori error estimator
in section 4.3 of [23] to tensors. For the numerical results presented in section 4, we
fix the rank r beforehand and report results based on other more robust and accurate
(but more expensive) methods for computing error.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3527

Algorithm 4 Construction of the last core.

Require: Cores C1, C2, . . . , Cd - 1.
Ensure: Core Cd.
1: Form the vectors \psi 1, \psi 2, . . . , \psi d - 3 according to (20).
2: Form the vectors \xi 1, \xi 2, . . . , \xi \tau according to (21).
3: Form the matrices M1,M2, . . . ,M\tau according to (22).
4: Compute least-squares solutions to (23) for j = 1, . . . , rd - 1 to get \{ \eta i,j\} \tau i=1

rd - 1

j=1 .

5: Construct Cd by evaluating the right-hand side of (24).

3. Computing the action of high order derivative tensors. In this section
we present efficient methods for computing the action of high order derivative tensors
for a quantity of interest

(26) \scrF (m,u(m)) \in \BbbR Nq ,

which depends on a parameter m \in \BbbR Nm implicitly through the solution (state vari-
able) u \in \BbbR Nu of a nonlinear state equation

(27) \scrG (m,u) = 0.

Computation of the entries of the derivative tensor

(28)
dk\scrF
dmk

\in \BbbR Nm \times \cdot \cdot \cdot \times \BbbR Nm \times \BbbR Nq

for large Nm and k is prohibitive. We show how to compute the action of S := dk\scrF
dmk

as a multilinear function. In section 3.1, we show how to compute the action of the
derivative tensor when the output mode is free, that is,

S(p1, . . . , pk, \cdot) =
dk\scrF
dmk

p1 . . . pk.

In section 3.2, we show how to compute the action of the derivative tensor when a
derivative mode is free, that is,

S(\cdot , p2, . . . , pk, q) := qT
\biggl(
dk\scrF
dmk

p2 p3 . . . pk

\biggr)
.

Typically one can evaluate directional partial derivatives of \scrF and \scrG with respect
tom and u with automatic differentiation, but one cannot easily evaluate total deriva-
tives of \scrF with respect to m, because that would require automatically differentiating
through the solution procedure for the state equation (e.g., differentiating through an
iterative Newton--Krylov solver). The basic idea of this section, therefore, is to con-
vert the problem of computing total derivatives into a problem of computing partial
derivatives and solving linear systems. We show how one can evaluate the action of
S via procedures that involve solving a sequence of linear systems of the forms

(29) 0 =
\partial \scrG
\partial u

w + b and 0 =

\biggl(
\partial \scrG
\partial u

\biggr) T

w + b,

where constructing the right-hand sides b only requires evaluating directional partial
derivatives of \scrF and \scrG , and quantities that have already been computed. For more

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3528 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

on automatic differentiation, we recommend [36]. A related implementation of com-
putational methods for PDE-constrained high order derivative actions in the finite
element package FEniCS [34] can be found in [35].

3.1. High order derivative actions with the output mode free. To com-
pute the action of S when the output mode is free, we will repeatedly differentiate
\scrF using the chain rule for total derivatives. This will allow us to express high order
total derivatives of \scrF in terms of partial derivatives of \scrF and total derivatives of
u. Repeatedly differentiating the state equation, 0 = \scrG , in the same manner yields
equations that may be solved to determine the required total derivatives of u.

Zeroth derivative. To compute \scrF (m,u(m)), we solve \scrG (m,u) = 0 for u, then
compute \scrF (m,u).

First derivative. The chain rule for total derivatives yields

(30)
d\scrF
dm

pa =
\partial \scrF
\partial m

pa +
\partial \scrF
\partial u

du

dm
pa =

\partial \scrF
\partial m

pa +
\partial \scrF
\partial u

u\{ a\} ,

where pa is the direction in which the derivative is taken, and

u\{ a\} :=
du

dm
pa

is unknown. Differentiating both sides of the state equation, 0 = \scrG , yields

d

dm
(0) pa =

d

dm
(\scrG) pa

or

(31) 0 =
\partial \scrG
\partial m

pa +
\partial \scrG
\partial u

u\{ a\} ,

which is a new equation that may be solved for u\{ a\} . To compute d\scrF
dm pa we solve

(31) for u\{ a\} , then evaluate the right-hand side of (30).
Second derivative. Let

\scrF \{ a\} :=
d\scrF
dm

pa.

Using the chain rule for total derivatives again, we have

(32)
d2\scrF
dm2

pa pb =
d\scrF \{ a\}

dm
pb =

\partial \scrF \{ a\}

\partial m
pb +

\partial \scrF \{ a\}

\partial u
u\{ b\} +

\partial \scrF \{ a\}

\partial u\{ a\}
u\{ a,b\} ,

where

u\{ b\} :=
du

dm
pb and u\{ a,b\} :=

d2u

dm2
pa pb

are unknown. We may determine u\{ b\} by solving a linear system of the form (31),
except with pb replacing pa. To determine the equation that u\{ a,b\} satisfies, we
differentiate (31) in direction pb. Let

\scrG \{ a\} :=
d\scrG
dm

pa,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3529

so that (31) may be written as 0 = \scrG \{ a\} . We have

d

dm
(0) pb =

d

dm

\Bigl(
\scrG \{ a\}

\Bigr)
pb

or

(33) 0 =
\partial \scrG \{ a\}

\partial m
pb +

\partial \scrG \{ a\}

\partial u
u\{ b\} +

\partial \scrG \{ a\}

\partial u\{ a\}
u\{ a,b\} ,

which may be solved for u\{ a,b\} . Once u\{ a\} and u\{ a,b\} have been determined, we

compute d2\scrF
dm2 pa pb by evaluating the right-hand side of (32).

High order derivatives. We may repeatedly differentiate \scrF and \scrG to construct
derivatives of any order. Define

\scrF \alpha :=
dk\scrF
dmk

p\alpha 1
p\alpha 2

. . . p\alpha k
,

\scrG \alpha :=
dk\scrG
dmk

p\alpha 1
p\alpha 2

. . . p\alpha k
,

u\alpha :=
dku

dmk
p\alpha 1

p\alpha 2
. . . p\alpha k

,

where \alpha is a multi-index of k derivative directions (e.g., \alpha = \{ a, b, b\} , k = 3). If\widetilde \alpha := \{ \alpha 1, \alpha 2, . . . , \alpha k - 1\} is a multi-index of k - 1 derivative directions created by
removing one derivative direction from \alpha , then we may generate \scrF \alpha by differentiating
\scrF \widetilde \alpha using the chain rule of total derivatives. This yields

\scrF \alpha =
d\scrF \widetilde \alpha
dm

p\alpha k
=
\partial \scrF \widetilde \alpha
\partial m

p\alpha k
+
\sum
u\beta

\partial \scrF \widetilde \alpha
\partial u\beta

du\beta

dm
p\alpha k

=
\partial \scrF \widetilde \alpha
\partial m

p\alpha k
+
\sum
u\beta

\partial \scrF \widetilde \alpha
\partial u\beta

u\beta \cup \{ \alpha k\} ,(34)

where the sums are taken over all variables u\beta that \scrF \widetilde \alpha depends on. If we already
have a computer code that computes \scrF \widetilde \alpha , then we may use automatic differentiation
to create a computer code that computes \scrF \alpha by using automatic differentiation for
each partial derivative in the sum in (34). The code for computing any derivative
\scrF \alpha may be built by repeated application of this process, by differentiating \scrF to get
\scrF \{ \alpha 1\} , differentiating again to get \scrF \{ \alpha 1,\alpha 2\} , differentiating again to get \scrF \{ \alpha 1,\alpha 2,\alpha 3\} ,
and so on.

A straightforward inductive argument2 shows that \scrF \alpha depends only on u\beta for all
multiset subsets \beta \subseteq \alpha . For example, if \alpha = \{ a, b, b\} , then \scrF \alpha depends on u = u\{ \} ,
u\{ a\} , u\{ b\} , u\{ a,b\} , u\{ b,b\} , and u\{ a,b,b\} . Thus (34) may be written as

(35) \scrF \alpha =
\partial \scrF \widetilde \alpha
\partial m

p\alpha k
+
\sum
\beta \subseteq \widetilde \alpha

\partial \scrF \widetilde \alpha
\partial u\beta

u\beta \cup \{ \alpha k\} ,

where the sum is explicitly written over all multiset subsets \beta \subset \widetilde \alpha .
We may form \scrG \alpha from \scrG \widetilde \alpha in the same manner as

(36) \scrG \alpha =
\partial \scrG \widetilde \alpha
\partial m

p\alpha k
+
\sum
\beta \subseteq \widetilde \alpha

\partial \scrG \widetilde \alpha
\partial u\beta

u\beta \cup \{ \alpha k\} .

2For the base case verify that \scrF depends on u, and for the inductive step use (34).

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3530 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

\{ a, a, a\}

\{ a, a\}

\{ a\}

\{ \}

(a) Symmetric

\{ a, b, b\}

\{ a, b\} \{ b, b\}

\{ a\} \{ b\}

\{ \}

(b) Partially symmetric

\{ a, b, c\}

\{ a, b\} \{ a, c\} \{ b, c\}

\{ a\} \{ b\} \{ c\}

\{ \}

(c) Nonsymmetric

Fig. 2. High order quantities of interest, \scrF \alpha , high order state variables, u\alpha , and high order
state equations, 0 = \scrG \alpha , are indexed by multi-indices, \alpha , consisting of derivative directions. These
multi-indices form a lattice ordered by multiset inclusion. A variable u\alpha depends on the variables
u\beta for all \beta that precede \alpha . We compute high order derivatives by working up the lattice, computing
u\alpha at each node by solving 0 = \scrG \alpha . The more symmetric the multi-index \alpha , the fewer the variables
that must be computed. The equations associated with all nodes in a given level of the lattice may
be solved in parallel.

Another straightforward argument by induction3 shows that there is only one term in
the sum on the right-hand side of (36) that contains u\alpha , which takes the form \partial \scrG

\partial uu
\alpha .

Thus the equation 0 = \scrG \alpha , for any | \alpha | \geq 1, may be written in the form

(37) 0 =
\partial \scrG
\partial u

u\alpha + b\alpha ,

where b\alpha depends on u\beta for all strict multiset subsets \beta \subset \alpha , that is, all multiset
subsets of \alpha , excluding \alpha itself. We may construct b\alpha by repeatedly automatically
differentiating \scrG via (36), then excluding the term that contains u\alpha in the result.

To determine u\alpha , we need to solve (37), which requires u\beta for all strict multiset
subsets \beta \subset \alpha . The dependency structure for the variables u\alpha and equations 0 = \scrG \alpha
therefore forms a bounded lattice consisting of the multiset subsets of \alpha , partially
ordered by multiset inclusion (see Figure 2). Thus we may compute u\alpha by solving the
equations 0 = \scrG \beta for the variables u\beta for all multiset subsets \beta \subseteq \alpha , in an order such
that each variable u\beta is solved for after all of the variables corresponding to multiset
subsets of \beta have been solved for (e.g., in the order determined by topologically sorting
the lattice). This is shown in Algorithm 5. Once these variables are computed, we
may compute the desired result,

(38) S(p\alpha 1 , . . . , p\alpha k
, \cdot) = \scrF \alpha ,

by evaluating the code for \scrF \alpha that we generated by repeated automatic differentiation.

3.2. High order derivative actions with a derivative mode free. We may
use a similar strategy to compute derivative tensor actions where one of the derivative
modes is free. To that end, we define the Lagrangian

\scrL (m,u, \lambda) := qT\scrF (u) + \lambda T\scrG (m,u),

where \lambda \in \BbbR Nu is the adjoint variable for enforcing the state equation constraint,
and q \in \BbbR Nq is an arbitrary direction in which we measure the quantity of interest.

3The base case is shown in (31), and the inductive step follows from the chain rule of total
derivatives.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3531

Algorithm 5 Computation of \scrF \alpha = dk\scrF
dmk p\alpha 1

. . . p\alpha k
.

1: procedure compute \scrF derivative(\alpha)
2: compute u derivatives(\alpha)
3: Construct \scrF \alpha

4: procedure compute u derivatives(\alpha)
5: if u\alpha has already been computed then
6: Do nothing
7: else if \alpha = \{ \} then
8: Solve 0 = \scrG (m,u) for u
9: else

10: for all multiset subsets \beta \subset \alpha with | \beta | = | \alpha | - 1 do
11: compute u derivatives(\beta)

12: Construct b\alpha

13: Solve (37) for u\alpha

From the theory of Lagrange multipliers, we have the following formula for the first
derivative:

(39) qT
\biggl(
d\scrF
dm

\biggr)
=
\partial \scrL
\partial m

= \lambda T
\biggl(
\partial \scrG
\partial m

\biggr)
,

where \partial \scrL
\partial m is evaluated at the state u, which solves the state equation

(40) 0 =
\partial \scrL
\partial \lambda

= \scrG (m,u),

and at the adjoint \lambda , which solves the adjoint equation

(41) 0 =
\partial \scrL
\partial u

= qT
\partial \scrF
\partial u

+ \lambda T
\biggl(
\partial \scrG
\partial u

\biggr)
.

This process of computing qT
\bigl(
d\scrF
dm

\bigr)
has the same structure as the process for comput-

ing \scrF : we solve a linear system, then evaluate a vector-valued function that depends
on the result. Here \partial \scrL

\partial m takes the place of \scrF , the combined vector (u, \lambda) takes the
place of u, and the combined state and adjoint system (40) and (41) takes the place
of the state equation. We may therefore compute the desired high order derivatives

qT
\biggl(
dk\scrF
dmk

p2 p3 . . . pk

\biggr)
by differentiating (39), (40), and (41) and solving linear systems repeatedly, as was
done in section 3.1, except with the replacements

\scrF - \rightarrow \partial \scrL
\partial m

, u - \rightarrow

\left[u
\lambda

\right] , 0 = \scrG (m,u) - \rightarrow

\left[0
0

\right] =

\left[\partial \scrL
\partial \lambda (m,u)

\partial \scrL
\partial u (m,u, \lambda)

\right] .
The resulting high order forward equations,

0 =
dk

dmk

\biggl(
\partial \scrL
\partial \lambda

\biggr)
p\alpha 1

. . . p\alpha k - 1
,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3532 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

are the same as the high order forward equations (37). The resulting high order
adjoint equations,

0 =
dk

dmk

\biggl(
\partial \scrL
\partial u

\biggr)
p\alpha 1 . . . p\alpha k - 1

,

take the form

0 =

\biggl(
\partial \scrG
\partial u

\biggr) T

\lambda \alpha + c\alpha ,

where \lambda \alpha := dk\lambda
dmk p\alpha 1

. . . p\alpha k - 1
, and c\alpha depends on u\beta for all multiset subsets \beta \subseteq \alpha

and depends on \lambda \gamma for all strict multiset subsets \gamma \subset \alpha .

3.3. Cost to compress derivative tensors. The method we presented in sec-
tion 2 requires O(\lceil r/N\rceil dr2) tensor actions to construct a tensor train. But what is
the cost of each of these tensor actions? As per the discussion in sections 3.1 and 3.2,
each high order derivative tensor action requires solving many linear systems of the
forms shown in (29). The number of linear systems that must be solved depends on
how symmetric the action of the derivative tensor is. When all the derivative direc-
tions are the same, O(d) linear systems must be solved. When all of the derivative
directions are distinct, O(2d) linear systems must be solved. When some directions
are the same and some are distinct, an intermediate number of linear systems must be
solved. For our method, all derivative directions are distinct, so the number of linear
systems that must be solved to construct the tensor train scales as O(2d\lceil r/N\rceil dr2).

Despite the exponential scaling 2d for a dth order derivative, our method possesses
many desirable properties for compressing derivative tensors:

\bullet The O(2d) linear solves computing a tensor action are trivially parallelizable
to O(d), because the high order variables within each layer of the multiset
lattice (e.g., Figure 2) do not depend on each other and can therefore be
solved for in parallel.

\bullet All of the linear systems that must be solved when constructing the tensor
train have the same coefficient matrix; they differ only in the right-hand side
vectors. We therefore construct solvers or preconditioners once, and reuse
them for all of the linear systems that must be solved. Constructing solvers
or preconditioners is often the most expensive step for solving linear systems.

\bullet Up to, say, fifth or sixth derivatives (tensor orders d = 6 or d = 7), the cost is
tractible despite the exponential scaling. This is a substantial improvement
over existing methods (e.g., Tucker-based methods), which typically become
intractible beyond two or three derivatives.

It is possible to increase the symmetry of the tensor actions within the tensor
train construction process, and therefore make the method substantially cheaper, by
using the same vector \psi := \psi 1 = \psi 2 = \cdot \cdot \cdot = \psi d - 3, and using the same random vector

\omega
(i)
1 = \omega

(i)
2 = \cdot \cdot \cdot = \omega

(i)
d - 1 for all the derivative modes. These modifications would

reduce the number of linear solves per tensor action to O(d), but they may also make
the method less robust. We do not use them in our numerical results. At present it
is unclear which vector \psi should be chosen. The performance and robustness of the
method seem sensitive to the choice of the vectors \psi l.

4. Numerical results. In section 4.1, we compress the Hilbert tensor (a stan-
dard test case for tensor compression methods). Tensor entries of the Hilbert tensor

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3533

2 4 6 8 10 12 14 16 18
Tensor train rank, r

10 12

10 10

10 8

10 6

10 4

10 2

100

||T T||
||T||

Hilbert tensor: approximation error vs. rank
TT-cross
TT-RSVD (our method)
TT-SVD (optimal)

Fig. 3. Hilbert tensor. Comparison of compression results for the Hilbert tensor using TT-
cross, our method (TT-RSVD), and the conventional dense SVD-based algorithm (TT-SVD).

are easily computable, so we use this test case to compare the accuracy of our method
to that of conventional tensor train compression methods.

In section 4.2, we compress high order derivative tensors of a quantity of interest
that depends on a parameter field implicitly through the solution of a partial differ-
ential equation. These derivative tensors are huge for fine meshes, and are available
only through their action on vectors; they cannot be compressed into tensor train
format efficiently using existing methods. The number of tensor actions for approxi-
mating the kth derivative tensor using our method is O

\bigl(
(k + 1)r2

\bigr)
. For TT-cross, the

number of tensor actions would be O
\bigl(
N(k + 1)r2

\bigr)
. We do not compare our method

to TT-cross for the derivative tensors in section 4.2 because the factor of N makes
TT-cross prohibitively expensive. For example, one of the tensors we will compress is
a fourth derivative tensor with r = 30 and a 40\times 40 mesh (part of the Taylor series in
Figure 4). This requires approximately 104 tensor actions for our method and would
require approximately 107 tensor actions for TT-cross.

4.1. Hilbert tensor. Here we compress the 41\times 42\times 43\times 44\times 45 Hilbert tensor,
T , with entries

T [i1, i2, i3, i4, i5] =
1

i1 + i2 + i3 + i4 + i5
.

In Figure 3, we compare our method with the conventional dense SVD-based method
for constructing tensor trains, and with TT-cross [40]. For TT-cross, we use the
dmrg\.cross() function in the TT-Toolbox software package4 [44]. We compute tensor

train approximations, \widetilde T , of T for a sequence of ranks r. The same rank r is used
for all cores. Then we reconstitute full tensors from the tensor train approximations
and compute the relative errors | | T - \widetilde T | | /| | T | | , where | | \cdot | | is the Frobenius norm
(square root of the sum of squares of all tensor entries). We plot the relative error

4Version 2.2.2, downloaded from https://github.com/oseledets/TT-Toolbox.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://github.com/oseledets/TT-Toolbox

© 2020 Nick Alger

A3534 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

against the rank r. Both TT-cross and our method (TT-RSVD) achieve compression
results that are close to the conventional dense SVD-based method (TT-SVD), which
is theoretically optimal if one ignores rounding error due to numerical precision. Our
method performs slightly better than TT-cross.

4.2. High order derivatives of PDE-dependent quantity of interest.
Here we use our method to build Taylor series surrogate models for the noise-whitened
parameter-to-output map for a nonlinear stochastic PDE with boundary output. We
define the state equation, 0 = \scrG (m,u), to be the following inhomogeneous nonlinear
reaction-diffusion equation with Neumann boundary conditions:\Biggl\{

 - \nabla \cdot em\nabla u+ u3 = \rho in \Omega ,

\nu \cdot em\nabla u = 0 on \partial \Omega .

The parameter, m \sim N(0, C), is a Gaussian random field with mean zero and covari-
ance

C = (- \Delta + I)
 - 2
,

where \Delta is the Laplacian defined in \Omega with Neumann boundary conditions along \partial \Omega ,
and I is the identity operator. The domain is the unit square \Omega = [0, 1]2, \nu is the
normal to the boundary, and the source term \rho : \Omega \rightarrow \BbbR is given by

\rho (c) = exp

\Biggl(
\| c - (0.5, 0.5)\| 2

2 (0.2)
2

\Biggr)
,

where we use c \in \Omega to denote a spatial point in \Omega , to distinguish from x as the vector
for the tensor used throughout this paper. We choose the quantity of interest, \scrF , to
be the trace of u along the boundary as

qT\scrF (u) :=
\int
\partial \Omega

u q ds.

We assume x \sim N(0, I) is a spatial white noise, or a Gaussian distribution with mean
zero and covariance I, so that

p := C1/2x = (- \Delta + I)
 - 1
x

has a Gaussian distribution with mean zero and covariance C. The problem is dis-
cretized with P 1 finite elements on a mesh of triangles arranged in a regular grid.

We use our method to approximate the noise-whitened kth derivative tensor T ,
defined as

T (x1, . . . , xk, q) := S(p1, . . . , pk, q) = qT
\biggl(
dk\scrF
dmk

p1 . . . pk

\biggr)
,

with a rank-r tensor train, \widetilde T . Note that for a kth order derivative, the tensor order is
d = k+1. By performing this tensor train compression for several of these derivative
tensors, we approximate the noise-whitened parameter-to-output map,

f(x) := \scrF
\Bigl(
u
\Bigl(
C1/2x

\Bigr) \Bigr)
,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3535

Table 1
Mesh scalability. Rank r required to compress derivative tensors to relative error tolerance

\sigma 1(T - \widetilde T)/\sigma 1(T) < \epsilon , where \epsilon = 10 - 2 or \epsilon = 10 - 3, for a variety of mesh sizes and derivative orders.
Meshes are triangles arranged in a regular rectilinear grid, ranging from 10\times 10 to 80\times 80. Derivative
orders range from the first derivative (the Jacobian, a second order tensor) to fifth derivative (a sixth
order tensor). For derivative orders k = 2 through k = 5, r is the tensor-train rank required using
our method. For k = 1 (Jacobian), r is the matrix rank required using randomized SVD.

\epsilon = 10 - 2 \epsilon = 10 - 3

Mesh k = 1 2 3 4 5 k = 1 2 3 4 5
10\times 10 9 8 8 8 11 19 19 20 23 28
20\times 20 8 9 9 10 11 23 22 24 28 35
30\times 30 8 8 9 10 10 22 24 25 29 32
40\times 40 9 9 9 8 11 23 25 27 29 34
50\times 50 7 9 9 11 11 26 23 29 28 34
60\times 60 8 8 10 9 11 24 25 27 30 35
70\times 70 9 9 8 8 12 27 23 27 30 35
80\times 80 9 9 8 11 11 26 25 27 32 38

with a truncated Taylor series

(42) fk(x) = f(0) +
df

dx
(0)x+

1

2

d2f

dx2
(0)x2 + \cdot \cdot \cdot + 1

k!

dkf

dxk
(0)xk.

We write \widetilde fk to denote the truncated Taylor series fk, with the derivative tensors in
fk replaced by their tensor train approximations.

Surrogate models based on truncation of Taylor series up to the linear term are
common in Bayesian inversion, stochastic optimization, and model reduction, where
they can be used directly as approximations of \scrF (m), or used in Markov chain Monte
Carlo proposals for Bayesian inversion as variance reduction devices [4, 5, 8, 9, 17, 27,
43, 45, 47]. Their advantage is that once constructed, no more PDEs need to be solved
during the sampling or optimization process. Methods that truncate the Taylor series
after the quadratic term have been investigated in [1, 11, 12, 13, 14]. In these papers,
the second derivative (a third order tensor) is not compressed and stored; rather the
action of this tensor is used in other ways. In [6, 7], high order derivatives for the
parameter-to-solution map for the log-normal linear Darcy problem are compressed
into tensor train format, and Taylor series are constructed. Their algorithm depends
specifically on the linear Darcy problem with the solution map as the quantity of
interest. With the methods in this paper, we now have a general-purpose algorithm
for compressing and storing high order derivative tensors for nonlinear problems with
arbitrary quantity of interest.

In Table 1, we report the rank required to achieve the relative error

\sigma 1

\Bigl(
T - \widetilde T\Bigr)
\sigma 1 (T)

< \epsilon ,

where \epsilon = 10 - 2 or \epsilon = 10 - 3, and

(43) \sigma 1(T) := max
\| x\| =1

\| T (x, . . . , x, \cdot)\| .

We use \sigma 1 to measure the error because the form of the argument being maximized in
(43) mimics the way the tensor is used within the Taylor series, (42). Computing \sigma 1
is NP-hard [24], so we estimate \sigma 1 by applying a shifted symmetric high order power

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

A3536 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

Order 0

Order 1

Order 2

Order 3

Order 4

10 3 10 2 10 1 100 101

Normalized error

Order 5

Taylor series error histograms

Hi
st

og
ra

m
 c

ou
nt

(a)

Order Error
mean

Error
standard
deviation

0 1.0 1.4
1 0.55 0.98
2 0.24 0.54
3 0.078 0.21
4 0.019 0.069
5 0.014 0.075

(b)

Fig. 4. Taylor series error. (a) Error histograms for the normalized error \| f(x) - \widetilde fk(x)\| /\BbbE (\| f - f(0)\|), for 1000 random samples x \sim N(0, I), for Taylor series' of order 0 through
5, using a 40\times 40 mesh. Rank 30 is used for all derivative tensors. The high order derivative tensors
(second through fifth derivatives) are approximated with our method. The Jacobian (first derivative)
is approximated with randomized SVD. (b) The means and standard deviations of these normalized
error distributions.

method [32] to the function x \mapsto \rightarrow T (x, . . . , x, T (x, . . . , x, \cdot)), with five random initial
guesses.

We show results for derivative orders k = 1 through k = 5 (tensor orders d = 2
through d = 6) and meshes ranging from 10\times 10 to 80\times 80. For k = 2 through k = 5,
the reported rank r is the tensor-train rank required using our method. For k = 1, r
is the matrix rank required using randomized SVD. Our results show that the tensor
train approximation is mesh-scalable for this problem. As the mesh is refined, the
required tensor train rank remains roughly constant.

In Figure 4 we show histograms for the normalized error

\| f(x) - \widetilde fk(x)\|
\BbbE (\| f - f(0)\|)

for 1000 random samples x \sim N(0, I) (i.e., the normalized error in the Taylor approx-
imation of the noise-whitened parameter-to-output map, for samples drawn from the
noise-whitened parameter distribution). We show Taylor series of order 0 through 5.
Rank 30 approximation is used for all derivative tensors. We use a 40\times 40 mesh. The
high order derivative tensors (second through fifth derivative tensors) are approxi-
mated with our method, while the Jacobian (first derivative) is approximated with
randomized SVD. Constructing the fifth order Taylor series takes approximately 25
minutes on a laptop (HP model 17-CA1031DX).

Including high order derivatives increases the approximation accuracy. As the
order of the Taylor series increases, the error in the approximation decreases. Also, as
the order of the Taylor series increases, the normalized error distribution concentrates
near 10 - 3, which is roughly the error due to the rank-30 tensor train approximations
of the derivative tensors.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3537

5. Conclusion. We developed a new randomized algorithm for tensor train de-
composition of tensors whose entries cannot be directly accessed or are very expensive
to compute. Our method requires only the tensor's action on given vectors and uses
a ``peeling process"" to successively compute the tensor train cores. This process re-
quires O(\lceil r/N\rceil dr2) tensor actions for a dth order tensor with maximum rank r of
the cores. We demonstrated the accuracy of this method compared to the conven-
tional TT-SVD and TT-cross methods for a Hilbert tensor. Moreover, we applied
this method to construct tensor train decompositions of PDE-constrained high order
derivative tensors, for which we derived an efficient scheme to compute the action of
arbitrary order derivative tensors. Our method now enables one to use Taylor series
truncated to high order terms for uncertainty quantification [6, 7], Bayesian inversion
[12, 14], stochastic optimization [1, 13], and model reduction [2, 11]. Furthermore,
other fields offer promising potential applications of the tensor action-based tensor
train decomposition, such as neural networks [18, 46] and model constrained high
dimensional sampling and integration [19].

Acknowledgments. We thank Alen Alexandrian, J.J. Alger, Josh Chen, Tan
Bui-Thanh, Andrew Potter, Keyi Wu, and Qiwei Zhan for helpful discussions.

REFERENCES

[1] A. Alexanderian, N. Petra, G. Stadler, and O. Ghattas, Mean-variance risk-averse
optimal control of systems governed by PDEs with random parameter fields using qua-
dratic approximations, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1166--1192,
https://doi.org/10.1137/16M106306X.

[2] C. Bach, D. Ceglia, L. Song, and F. Duddeck, Randomized low-rank approximation methods
for projection-based model order reduction of large nonlinear dynamical problems, Internat.
J. Numer. Methods Engrg., 118 (2019), pp. 209--241.

[3] J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in hierarchical
Tucker format, Linear Algebra Appl., 438 (2013), pp. 639--657.

[4] O. Bashir, K. Willcox, O. Ghattas, B. van Bloemen Waanders, and J. Hill, Hessian-
based model reduction for large-scale systems with initial condition inputs, Internat. J.
Numer. Methods Engrg., 73 (2008), pp. 844--868.

[5] D. Bigoni, O. Zahm, A. Spantini, and Y. Marzouk, Greedy Inference with Structure-
Exploiting Lazy Maps, preprint, https://arxiv.org/abs/1906.00031, 2019.

[6] F. Bonizzoni and F. Nobile, Perturbation analysis for the Darcy problem with log-normal
permeability, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 223--244, https://doi.org/
10.1137/130949415.

[7] F. Bonizzoni, F. Nobile, and D. Kressner, Tensor Train Approximation of Moment Equa-
tions for the Log-normal Darcy Problem, Tech. rep., Mathicse Technical Report, Lausanne,
Switzerland, 2014.

[8] T. Bui-Thanh and O. Ghattas, A scaled stochastic Newton algorithm for Markov chain Monte
Carlo simulations, unpublished, 2012.

[9] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler, A computational framework for
infinite-dimensional Bayesian inverse problems Part I: The linearized case, with appli-
cation to global seismic inversion, SIAM J. Sci. Comput., 35 (2013), pp. A2494--A2523,
https://doi.org/10.1137/12089586X.

[10] M. Che and Y. Wei, Randomized algorithms for the approximations of Tucker and the tensor
train decompositions, Adv. Comput. Math., 45 (2019), pp. 395--428.

[11] P. Chen and O. Ghattas, Hessian-based sampling for high-dimensional model reduction, Int.
J. Uncertain. Quantif., 9 (2019), pp. 103--121.

[12] P. Chen, U. Villa, and O. Ghattas, Hessian-based adaptive sparse quadrature for infinite-
dimensional Bayesian inverse problems, Comput. Methods Appl. Mech. Engrg., 327 (2017),
pp. 147--172.

[13] P. Chen, U. Villa, and O. Ghattas, Taylor approximation and variance reduction for PDE-
constrained optimal control under uncertainty, J. Comput. Phys., 385 (2019), pp. 163--186.

[14] P. Chen, K. Wu, J. Chen, T. O'Leary-Roseberry, and O. Ghattas, Projected Stein Vari-
ational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions, in

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/16M106306X
https://arxiv.org/abs/1906.00031
https://doi.org/10.1137/130949415
https://doi.org/10.1137/130949415
https://doi.org/10.1137/12089586X

© 2020 Nick Alger

A3538 NICK ALGER, PENG CHEN, AND OMAR GHATTAS

Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019.
[15] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic, et al., Tensor

networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor
decompositions, Found. Trends Mach. Learn., 9 (2016), pp. 249--429.

[16] E. Corona, A. Rahimian, and D. Zorin, A tensor-train accelerated solver for integral equa-
tions in complex geometries, J. Comput. Phys., 334 (2017), pp. 145--169.

[17] T. Cui, K. Law, and Y. Marzouk, Dimension-independent likelihood-informed MCMC, J.
Comput. Phys., 304 (2016), pp. 109--137.

[18] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, TIE: Energy-efficient tensor train-
based inference engine for deep neural network, in Proceedings of the 46th International
Symposium on Computer Architecture, 2019, pp. 264--278.

[19] S. Dolgov, K. Anaya-Izquierdo, C. Fox, and R. Scheichl, Approximation and sampling of
multivariate probability distributions in the tensor train decomposition, Stat. Comput., 30
(2020), pp. 603--625.

[20] S. V. Dolgov, B. N. Khoromskij, and I. V. Oseledets, Fast solution of parabolic problems
in the tensor train/quantized tensor train format with initial application to the Fokker--
Planck equation, SIAM J. Sci. Comput., 34 (2012), pp. A3016--A3038, https://doi.org/10.
1137/120864210.

[21] P. Gel{\ss}, The Tensor-Train Format and Its Applications: Modeling and Analysis of Chemical
Reaction Networks, Catalytic Processes, Fluid Flows, and Brownian Dynamics, Ph.D.
thesis, Fachbereich Mathematik und Informatikder Freien Universit\"at Berlin, Germany,
2017.

[22] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitt., 36 (2013), pp. 53--78.

[23] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev. 53
(2011), pp. 217--288, https://doi.org/10.1137/090771806.

[24] C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), pp. 1--39.
[25] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor op-

timization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683--A713,
https://doi.org/10.1137/100818893.

[26] B. Huber, R. Schneider, and S. Wolf, A randomized tensor train singular value decompo-
sition, in Compressed Sensing and Its Applications, Springer, Cham, 2017, pp. 261--290.

[27] T. Isaac, N. Petra, G. Stadler, and O. Ghattas, Scalable and efficient algorithms for
the propagation of uncertainty from data through inference to prediction for large-scale
problems, with application to flow of the Antarctic ice sheet, J. Comput. Phys., 296 (2015),
pp. 348--368.

[28] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the chemical master
equation using quantized tensor trains, PLoS Comput. Biol., 10 (2014), e1003359.

[29] V. Kazeev, O. Reichmann, and C. Schwab, Low-rank tensor structure of linear diffusion
operators in the TT and QTT formats, Linear Algebra Appl., 438 (2013), pp. 4204--4221.

[30] B. N. Khoromskij, O(dlogN)-quantics approximation of N-d tensors in high-dimensional nu-
merical modeling, Constr. Approx., 34 (2011), pp. 257--280.

[31] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455--500, https://doi.org/10.1137/07070111X.

[32] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM
J. Matrix Anal. Appl., 32 (2011), pp. 1095--1124, https://doi.org/10.1137/100801482.

[33] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix--vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071--4087.

[34] A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Differential Equations by the
Finite Element Method: The FEniCS Book, Lect. Notes Comput. Sci. Eng. 84, Springer,
Cham, 2012.

[35] J. R. Maddison, D. N. Goldberg, and B. D. Goddard, Automated calculation of higher order
partial differential equation constrained derivative information, SIAM J. Sci. Comput., 41
(2019), pp. C417--C445, https://doi.org/10.1137/18M1209465.

[36] U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic
Differentiation, SIAM, Philadelphia, 2012, https://doi.org/10.1137/1.9781611972078.

[37] I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Dokl.
Math., 80 (2009), pp. 653--654.

[38] I. V. Oseledets, Approximation of 2d \times 2d matrices using tensor decomposition, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2130--2145, https://doi.org/10.1137/090757861.

[39] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295--2317,

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/120864210
https://doi.org/10.1137/120864210
https://doi.org/10.1137/090771806
https://doi.org/10.1137/100818893
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/100801482
https://doi.org/10.1137/18M1209465
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.1137/090757861

© 2020 Nick Alger

TENSOR TRAIN FROM TENSOR ACTIONS A3539

https://doi.org/10.1137/090752286.
[40] I. V. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays,

Linear Algebra Appl., 432 (2010), pp. 70--88.
[41] I. V. Oseledets, E. Tyrtyshnikov, and N. Zamarashkin, Tensor-train ranks for matrices

and their inverses, Comput. Methods Appl. Math., 11 (2011), pp. 394--403.
[42] D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac, Matrix product state represen-

tations, Quantum Inf. Comput., 7 (2007), pp. 401--430.
[43] N. Petra, J. Martin, G. Stadler, and O. Ghattas, A computational framework for infinite-

dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with applica-
tion to ice sheet inverse problems, SIAM J. Sci. Comput., 36 (2014), pp. A1525--A1555,
https://doi.org/10.1137/130934805.

[44] D. Savostyanov and I. Oseledets, Fast adaptive interpolation of multi-dimensional arrays
in tensor train format, in The 2011 International Workshop on Multidimensional (nD)
Systems, IEEE, 2011, pp. 1--8.

[45] A. Spantini, A. Solonen, T. Cui, J. Martin, L. Tenorio, and Y. Marzouk, Optimal low-
rank approximations of Bayesian linear inverse problems, SIAM J. Sci. Comput., 37 (2015),
pp. A2451--A2487, https://doi.org/10.1137/140977308.

[46] Y. Yang, D. Krompass, and V. Tresp, Tensor-train recurrent neural networks for video
classification, in Proceedings of the 34th International Conference on Machine Learning,
Volume 70, JMLR, 2017, pp. 3891--3900.

[47] H. Zhu, S. Li, S. Fomel, G. Stadler, and O. Ghattas, A Bayesian approach to estimate
uncertainty for full waveform inversion with a priori information from depth migration,
Geophysics, 81 (2016), pp. R307--R323.

D
ow

nl
oa

de
d

08
/2

3/
21

 to
 9

9.
47

.1
82

.9
7.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/090752286
https://doi.org/10.1137/130934805
https://doi.org/10.1137/140977308

	Introduction
	Isomorphism between arrays and multilinear functions
	Tensor train from the multilinear function perspective

	Method
	Multilinear randomized range finder
	First core
	Second core
	Third core
	Fourth through (d-1)th cores
	Last core
	Adaptive range finding

	Computing the action of high order derivative tensors
	High order derivative actions with the output mode free
	High order derivative actions with a derivative mode free
	Cost to compress derivative tensors

	Numerical results
	Hilbert tensor
	High order derivatives of PDE-dependent quantity of interest

	Conclusion
	References

