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ABSTRACT The class Dehalococcoidia within the Chloroflexi phylum comprises the
obligate organohalide-respiring genera Dehalococcoides, Dehalogenimonas, and “Can-
didatus Dehalobium.” Knowledge of the unique ecophysiology and biochemistry
of Dehalococcoidia has been largely derived from studies with enrichment cultures
and isolates from sites impacted with chlorinated pollutants; however, culture-
independent surveys found Dehalococcoidia sequences in marine, freshwater, and
terrestrial biomes considered to be pristine (i.e., not impacted with organohalogens
of anthropogenic origin). The broad environmental distribution of Dehalococcoidia,
as well as other organohalide-respiring bacteria, supports the concept of active halo-
gen cycling and the natural formation of organohalogens in various ecosystems. De-
chlorination reduces recalcitrance and renders organics susceptible to metabolic oxi-
dation by diverse microbial taxa. During reductive dechlorination, hydrogenotrophic
organohalide-respiring bacteria, in particular Dehalococcoidia, can consume hydro-
gen to low consumption threshold concentrations (�0.3 nM) and enable syntrophic
oxidation processes. These functional attributes and the broad distribution imply
that Dehalococcoidia play relevant roles in carbon cycling in anoxic ecosystems.

KEYWORDS Dehalococcoidia, carbon cycling, hydrogen thresholds, organohalide
respiration, syntrophy, thermodynamics

The phylum Chloroflexi is a deeply branching, highly heterogeneous bacterial lineage
that currently comprises eight classes (Dehalococcoidia, Anaerolineae, Caldilineae,

Ktedonobacteria, Thermomicrobia, Ardenticatenia, Thermoflexia, and Chloroflexia) with
a diversity of phenotypes and lifestyles (1–3). This heterogeneity is also apparent in
phylogenetic and comparative genome analyses, and the suggestion was made that
the phylum Chloroflexi sensu stricto should only consist of the classes Chloroflexia and
Thermomicrobia, while other members should be reclassified (4). In an effort to stan-
dardize bacterial taxonomy based on genome phylogeny, the reclassification of the
Chloroflexi phylum (“Chloroflexota”) into eight classes (i.e., Anaerolineae, Chloroflexia,
Dehalococcoidia, Ktedonobacteria, UBA2235, UBA4733, UBA5177, and UBA6077) was
proposed (5).

Based on the SILVA database (release 138) (6) and the Ribosomal Database Project
(RDP; release 11, update 5) (7), 8.5 and 3.1% of Chloroflexi 16S rRNA gene sequences,
respectively, affiliate with the Dehalococcoidia class (Table 1). Currently, the Dehalococ-
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coidia include two formally published genera, Dehalococcoides and Dehalogenimonas,
and the candidate genus “Dehalobium,” all of which comprise obligate organohalide-
respiring species (Fig. 1). All Dehalococcoidia in cultivation, including the Dehalococ-
coides and Dehalogenimonas isolates, can only derive energy from cleaving carbon-
chlorine bonds (8, 9) although some may also use organobromine compounds as
electron acceptors (10). While Dehalococcoides are strictly hydrogenotrophic (i.e., re-
quire hydrogen [H2] as an electron donor), at least some Dehalogenimonas species also
utilize formate as an electron donor (9). Efforts in characterizing Dehalococcoides and
Dehalogenimonas were largely driven by the interest in exploiting the dechlorination
capabilities of these specialized bacteria for remediation of sites impacted with anthro-
pogenic, chloroorganic pollutants such as chlorinated solvents (e.g., chlorinated
ethenes). Examples of the utility of Dehalococcoides and Dehalogenimonas for environ-
mental cleanup can be found in the recent comprehensive research update on
organohalide-respiring bacteria and their applications (11).

TABLE 1 Numbers of 16S rRNA gene sequences representing Chloroflexi, including class Dehalococcoidia and unclassified Chloroflexi, and
total bacteria in the Silva and RDP databasesa

16S rRNA gene sequence database

No. (%) of Chloroflexi sequences
No. of total
bacterial sequencesDehalococcoidia Non-Dehalococcoidia Unclassified

RDP v11.5 1,411 (3.1) 30,328 (67.2) 13,419 (29.7) 3,196,041
RDP v11.5 isolates 48 (17.2) 213 (76.3) 18 (6.5) 515,987
RDP v11.5 uncultured 1,363 (3.0) 30,115 (67.1) 13,401 (29.9) 2,680,054
Silva SSU v138 16,297 (8.5) 176,547 (91.5) 30 (0.0) 8,394,436
Silva Ref SSU v138 2,654 (9.3) 25,837 (90.7) 5 (0.0) 1,916,743
Silva Ref NR SSU v138 1,601 (17.7) 7,444 (82.3) 4 (0.0) 381,662
aIncluded are sequences representing the existing taxonomy of the Chloroflexi phylum (i.e., Dehalococcoidia and non-Dehalococcoidia Chloroflexi sequences) and
sequences that cannot be classified into the lower-rank taxonomy of the Chloroflexi phylum (i.e., unclassified Chloroflexi). Within the classified Chloroflexi, sequences
belong to the Dehalococcoidia or any of the other seven non-Dehalococcoidia classes (i.e., Anaerolineae, Caldilineae, Ktedonobacteria, Thermomicrobia, Ardenticatenia,
Thermoflexia, and Chloroflexia).

0.01

FIG 1 Phylogenetic tree of representative isolated and not-yet-cultured bacteria affiliated with the Chloroflexi
phylum based on complete 16S rRNA gene sequences. Sequences were retrieved from the RDP database and
imported into the Geneious software (Biomatters, Auckland, New Zealand) for alignment with MAFFT. The tree was
constructed with Tree Builder using the default settings in Geneious. The scale bar indicates 0.01 nucleotide
substitution per site.
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DISTRIBUTION OF DEHALOCOCCOIDIA IN NATURE

Enrichment and isolation of Dehalococcoidia are challenging tasks. Information
about the distribution of Dehalococcoidia in the environment relies on PCR-based
surveys using specific primer sets and 16S rRNA gene amplicon, shotgun metagenome,
and single-cell genome sequencing (see Table S1 in the supplemental material). An
investigation of 116 uncontaminated terrestrial soil samples using a targeted PCR
approach demonstrated that Dehalococcoides-like bacteria were present in the majority
(�88%) of samples analyzed (12). A similar approach was used to study lake sediment
samples from distinct locations (n � 20) across a geographic sulfur gradient, where 16S
rRNA gene sequences of putative organohalide-respiring Dehalococcoidia were found
in 67 out of 68 samples examined (13). Shotgun metagenome and 16S rRNA gene
amplicon sequencing identified a diversity of Dehalococcoidia in samples collected
from various environments, including marine subsurface sediments (14–21). For exam-
ple, bacterial 16S rRNA gene sequences affiliated with the Chloroflexi phylum domi-
nated in shallow sediment 9.5 to 364 meters below the seafloor (mbsf) and became rare
in deeper sediment (1,372 mbsf) (17). Closer scrutiny of the shallow marine sediment
sequences retrieved from the DNA Data Bank of Japan (DDBJ accession number
DRA001030) using the SILVAngs pipeline (6) revealed that more than 95% of all
Chloroflexi sequences classify within the Dehalococcoidia class. Members of the Deha-
lococcoidia formed a dominant group in sediment samples from the eastern Juan de
Fuca Ridge flank, a well-studied hydrothermal environment (22). Another metagenomic
study reported abundant Dehalococcoidia sequences (up to 14.2% of all reads) in a
methane (CH4) hydrate-bearing sediment sample from the Ulleung Basin in the East Sea
of Korea (23). Dehalogenimonas sequences were present in 60 m depth in a perennially
stratified Arctic lake with saline (2.9 to 3.2%), anoxic bottom waters (24). Phylogeneti-
cally diverse Dehalococcoidia sequences were found at different depths in anoxic
waters of the remote meromictic Lake Pavin, with 11 out of 65 nearly complete 16S
rRNA gene sequences showing 80 to 98% nucleotide identity with Dehalococcoides or
Dehalogenimonas (25). Dehalogenimonas 16S rRNA gene sequences were also detected
in the photic layer (0 to 25 m) and the near-bottom zone (1,465 to 1,515 m) of Lake
Baikal, the world’s deepest and most voluminous lake (20). No deep-sea sediment
Dehalococcoidia have yet been cultured and isolated; however, single cell sequencing
generated several incomplete Dehalococcoidia genomes (26–30). Reductive dehaloge-
nase (RDase) genes, which encode the key enzymes for organohalide respiration, have
been detected in various marine subsurface sediments (e.g., Juan de Fuca Ridge Flank,
Nankai Trough Forearc Basin) (31, 32) but have not (yet) been found on published
single-cell Dehalococcoidia genomes, suggesting that deep-sea sediment Dehalococ-
coidia may have the potential to utilize energy metabolisms other than organohalide
respiration (26–30).

ROLES OF DEHALOCOCCOIDIA IN CONTAMINATED AND PRISTINE
ENVIRONMENTS

The need for cost-effective remediation of sites impacted with chlorinated contam-
inants was a driver leading to the discovery of Dehalococcoidia capable of utilizing
chlorinated organic compounds as respiratory electron acceptors (33, 34). The organo-
halide respiration process revolutionized bioremediation at sites impacted with chlo-
rinated pollutants (35, 36), and detailed characterization work transformed our under-
standing of the physiology, biochemistry, and evolution of organohalide-respiring
Dehalococcoidia (11). What is generally not acknowledged is that most organochlorines
are not only xenobiotics (i.e., anthropogenic chemicals) but also have natural origins.
Natural organohalogens commonly occur in many undisturbed (i.e., pristine) environ-
ments. More than 5,000 naturally occurring organohalogens have been reported to
date, the majority of which are organochlorines (11, 37–39) that Dehalococcoidia
potentially can utilize as electron acceptors (40). Chlorinated organics are produced
in biotic and abiotic processes in various aquatic and terrestrial environments. The
diversity of naturally occurring organochlorines may explain the astounding diversity of
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genes with predicted RDase function in Dehalococcoidia genomes. As of March 2020,
the NCBI Identical Protein Groups database lists 842 distinct Dehalococcoides and 219
distinct Dehalogenimonas putative RDase proteins, but the substrate specificity (i.e., the
range of chlorinated electron acceptors used) has only been assigned to a small subset.
Of note, Dehalococcoidia possess RDase genes and also dehalogenate truly anthropo-
genic chemicals with no evidence of natural formation, such as polychlorinated biphe-
nyls (PCBs) (41). A possible explanation is that RDases with broad substrate range
dechlorinate anthropogenic PCBs. Intriguing is the possibility of evolutionary processes
that allow RDase genes of Dehalococcoidia to adapt to chlorinated xenobiotics in fairly
short time periods (i.e., the production of PCBs commenced in the 1930s). In support of
this hypothesis, the dynamic rearrangement and mobilization of RDase genes in
Dehalococcoides and Dehalogenimonas genomes have been observed (42–45).

In pristine environments, Dehalococcoidia may perform reductive dehalogenation
by utilizing natural organochlorines as electron acceptors. The removal of chlorine
atoms transforms recalcitrant organochlorines into compounds that can then be
metabolized and mineralized by other microorganisms. Although nature produces a
plethora of organochlorines, these compounds do not accumulate and evade detec-
tion, presumably because microorganisms, such as Dehalococcoidia, reduce recalci-
trance by breaking carbon–chlorine bonds. The absence of widespread elevated
concentrations of natural organochlorines supports the notion that nature evolved a
balanced system of organochlorine production and consumption. Because the mass of
organochlorines in pristine environments is generally low, the natural formation
of organochlorines often goes unnoticed; however, the flux of carbon through
halogenation-dehalogenation cycles can be substantial. Extensive carbon turnover
through halogenation-dehalogenation cycles has been demonstrated in a few natural
(46–48) and engineered ecosystems (49), but accurate and comprehensive flux mea-
surements that could help estimate the total amounts of chlorinated electron acceptors
turned over in various environmental systems are largely lacking. Of note, the culti-
vated Dehalococcoidia can only grow via organohalide respiration without any other
demonstrated growth-supporting energy metabolism. Therefore, the distribution of
Dehalococcoidia in various environmental systems supports the hypothesis that natural
halogen cycling (i.e., the natural formation and consumption of halogenated electron
acceptors) occurs broadly. The following examples illustrate relevant ecological roles
organohalide-respiring Dehalococcoidia can fulfill in pristine environments.

DEHALOCOCCOIDIA ENABLE SYNTROPHIC PROCESSES INCLUDING THE
ANAEROBIC OXIDATION OF METHANE

Reductive dechlorination is an electron-consuming process, and H2 fulfills the
electron donor demand of many organohalide-respiring bacteria, including the Deha-
lococcoidia. Under standard conditions (i.e., solutes at 1 M concentration and gases at
1 atmosphere partial pressure) at pH 7, reductive dechlorination is associated with
Gibb’s free energy changes (ΔG°=) in the range of �127 to �193 kJ/mol of H2 (50, 51).
These ΔG°= values indicate more energy is gained in the organohalide respiration
process than in sulfate reduction (�38 kJ/mol of H2), ferric iron reduction (�44.6 kJ/mol
of H2 with amorphous hydrous ferric oxide), CO2 reduction to CH4 (i.e., methanogen-
esis, �33.9 kJ/mol of H2), or CO2 reduction to acetate (i.e., reductive acetogenesis,
�26.1 kJ/mol of H2) and is in the range of nitrate reduction to nitrite (�158.1 kJ/mol of
H2) (Table 2).

In contrast to these electron-accepting, formally H2-consuming processes, the an-
aerobic oxidation of methane (AOM) is an electron-donating, formally H2-forming
process with unfavorable energetics under standard conditions (equation 1).

CH4 � 3H2O → HCO3
� � 4H2 � H� �Go ' � �135.4 kJ ⁄ mol CH4 (1)

The energetics of AOM become favorable (i.e., negative ΔG values) when the H2 (i.e.,
reducing equivalents) generated during CH4 oxidation is consumed in an associated
electron-accepting, H2-consuming process.
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To calculate H2 consumption threshold concentrations and Gibbs free energy
changes associated with different redox reactions, equations 2 to 6 were used, where
R is the ideal gas constant (8.314 J � K�1 � mol�1), T is the temperature (298 K), ΔG°=
is the free-energy change at pH 7 under standard conditions, ΔG= is the free-energy
change at pH 7 under nonstandard concentration conditions, “a” refers to the activity
(i.e., the effective concentration) of the different chemicals in the reaction, and EA refers
to the electron acceptor. The letters a, b, c and d are stoichiometric coefficients for
reactants EA, H2, C and D, respectively.

�G ' � �Go '�RTln��aHCO3
���aH2 �4
aCH4

� (2)

aH2
� � �aCH4�

�aHCO3
��exp��G '��Go'

RT ��1⁄4 (3)

aEA � bH2 → cC � dD (4)

�G ' � �Go '�RTIn� �aC�c�aD�d
�aH2�b�aEA�a� (5)

aH2
� ��aC�c�aD�d

�aEA�a *
1

exp��G '��Go'

RT ��
1⁄b

(6)

To allow energy conservation in anaerobic microorganisms, it has been argued that
the Gibbs free energy change (i.e., ΔG) of the reaction must be more negative than
�10 � 1 kJ/mol (53, 54). Based on this assumption, any H2 concentration exceeding
29.7 �M (3,888 Pa) would render AOM unfavorable (i.e., ΔG= � �10 � 1 kJ/mol) and
would not allow microorganisms capable of AOM to harvest energy from the
process. The breaking point H2 concentration of 29.7 �M is based on presumed
environmentally relevant concentrations of reactants and products (i.e.,
[CH4] � 2.14 atm, [HCO3

–] � 20.2 mM) and a ΔG= of �10 kJ/mol, and was calculated
according to equations 2 and 3 (52). These calculations assumed that a values
approximate the concentration of HCO3

– and partial pressure of CH4. Partial pres-
sures were entered directly into the calculations as indicated in Table 2, and the
equilibrium aqueous phase concentrations of CH4 and H2 were calculated using the
respective Henry’s constant.

In anoxic environments, the H2 partial pressure is the primary thermodynamic

TABLE 2 Gibbs free energy changes under standard conditions (i.e., 298.15 K [25°C], pH 7.0), concentrations of solutes at 1 M and partial
pressures of gases at 1 atmosphere) for AOM and different H2-consuming redox reactionsa

No. Redox reaction

Gibbs free energy change (�G°=)
in kJ/mol of:

Redox
potential
E°= (V)b

Theoretical H2

consumption
threshold
concn (nM)c

Experimentally
determined H2

threshold
concn (nM)dH2 Electron acceptor Electrons

1 CH4(g) � 3H2O ¡ HCO3
– � 4H2(g) � H� 33.9 135.4 16.9 –0.18 NA NA

2 2HCO3
– � 4H2(g) � H�¡ acetate– � 4H2O –26.1 –52.1 �13.0 0.13 863.0 �100

3 HCO3
– � 4H2(g) � H� ¡ CH4(g) � 3H2O –33.9 �135.4 –16.9 0.18 162.3 12.4–13.6

4 SO4
2– � 4H2(g) � 2H� ¡ H2S(aq) � 4H2O –38.0 –151.9 –19.0 0.20 15.4 1–15

5 2Fe(OH)3(s) � 4H� � H2(g) ¡ 2Fe2�(aq) � 6H2O –44.6 –22.3 –22.3 0.23 6.06 � 10–10 0.1–0.8
6 NO3

– � H2(g) ¡ NO2
– � H2O –158.1 –158.1 –79.0 0.82 5.39 � 10–22 0.026–0.036

7 PCE(aq) � H2(g)¡ TCE(aq) � H� � Cl– –173.3 –173.3 –86.7 0.90 7.19 � 10–25 �0.3
aAlso indicated are H2 consumption threshold concentrations associated with H2-consuming redox reactions. The ΔG°= values for all reactions except reductive
dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) were calculated using Geochemists WorkBench (GWB14). The ΔG°= value for reductive
dechlorination was calculated according to values obtained from Dolfing and Janssen (51). NA, not applicable; (g), gas phase; (aq), aqueous phase; (s), solid.

bRedox potentials and Gibbs free energy changes were calculated according to ΔG°= � –nFΔE°= is the number of moles of electrons transferred in the reaction, and F
is the Faraday’s constant (96.5 kJ/V). Redox reactions are numbered in the first column of the table as follows: 1, AOM; 2, H2/CO2 reductive acetogenesis; 3,
methanogenesis; 4, sulfate reduction; 5, ferric iron reduction; 6, nitrate reduction; and 7, organohalide respiration.

cThe theoretical H2 consumption threshold concentrations were calculated based on equation 6 using a ΔG= � �10 kJ/mol H2 and assumed standard conditions for
all other reactants (1 M for solutes and 1 atm for gases).
dShown are experimentally determined H2 threshold concentrations reported in the literature (51, 52, 55, 58, 59, 66, 81, 82). The measured data are substantially
higher than the theoretical values because the available analytical instrumentation cannot measure H2 reliably below 50 ppb (	0.04 nM).
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control determining the extents and rates of syntrophic oxidation processes and carbon
turnover (52). AOM has been observed in anoxic marine sediments and is mediated by
a syntrophic partnership between anaerobic methanotrophic archaea (ANME) and
sulfate-reducing bacteria (55, 56). The candidates for syntrophic partners of ANME have
been extended to ferric iron-reducing microorganisms (57, 58), and various mecha-
nisms, including interspecies H2 transfer and direct interspecies electron transfer, may
enable these syntrophic partnerships (59–61). An interesting observation was the
partner population-independent AOM in nitrate-reducing cultures comprising “Candi-
datus Methanoperedens nitroreducens” and in nitrite-reducing cultures comprising the
NC10 bacterium “Candidatus Methylomirabilis oxyfera” (62). Since both organisms are
not available in pure culture, possible syntrophic partnerships with nitrate/nitrite-
reducing populations cannot be ruled out, and it remains to be seen if single organisms
can carry out AOM (63, 64). In interspecies H2 transfer, hydrogenotrophic partner
populations (e.g., sulfate-, ferric iron-, and nitrate-reducing microorganisms) consume
the H2 produced from the oxidation of CH4 to low H2 partial pressures and create
conditions with favorable thermodynamics for AOM to proceed (59, 65) (Table 3). On
grounds of thermodynamics, reductive dehalogenation in partnership with AOM yields
greater free energy changes compared to sulfate reduction (Table 3) (51, 55, 66). The
theoretical H2 consumption threshold concentration for sulfate reduction under rele-
vant in situ concentrations of reactants and products (i.e., ΔG= values) is about 15.4 nM
(	2 Pa) (see Fig. 2 for details). By comparison, reductive dechlorination, nitrate reduc-
tion, and ferric iron reduction under environmentally relevant concentrations can
theoretically maintain much lower H2 consumption threshold concentrations of
7.19 � 10�25, 5.39 � 10�22, and 6.06 � 10�10 nM, respectively, indicating these pro-
cesses would be far better partners for enabling syntrophic processes (Table 2).
Organohalide-respiring Dehalococcoidia could serve as a relevant H2 sink and maintain
H2 concentrations far below the 29.7 �M value needed to enable AOM (67) (Fig. 2). The
syntrophic partnership between organohalide-respiring Dehalococcoidia and ANME
could be a relevant function of Dehalococcoidia in various anoxic environmental
systems with CH4 and a sustained formation of organohalogens. In support of this
hypothesis, a recent study demonstrated the coexistence of Dehalococcoides and ANME
in a permanently ice-covered Antarctic lake (21), suggesting a possible linkage between
organohalide respiration and AOM in situ. To summarize, organohalide-respiring De-
halococcoidia would be ideal syntrophic partners for energetically challenging, syn-
trophic processes, such as AOM (Table 3), and are likely relevant drivers of carbon
turnover and nutrient cycling in environments where other electron acceptors are
absent and active production of organochlorines occurs.

TABLE 3 Gibbs free energy changes (ΔG) associated with anaerobic CH4 oxidation coupled to the reduction of different electron
acceptors under standard conditions (ΔG°= values) and environmentally relevant concentrations of reactants and products (ΔG= values)a

Redox reaction

�G°=, kJ/mol of: �G=, kJ/mol of:

CH4 EA Electrons CH4 EA Electrons

CH4(g) � SO4
2– � H� ¡ HCO3

– � H2S(aq) � H2O –16.5 –16.5 –2.06 –5.0 –5.0 �0.63
CH4(g) � 8Fe(OH)3(s) � 15H� ¡ HCO3

– � 8Fe2� � 21H2O 46.2 5.78 5.78 –144.1 –18.0 –18.0
CH4(g) � 4 2-CP(aq) � 3H2O ¡ HCO3

– � 4 phenol(aq) � 5H� � 4Cl– –476.3 –119.1 �59.5 –486.2 –121.6 –60.8
CH4(g) � 4 MCB(aq) � 3H2O ¡ HCO3

– � 4 benzene(aq) � 5H� � 4Cl– –477.9 –119.5 –59.7 –499.3 –124.8 –62.4
CH4(g) � 4NO3

– ¡ HCO3
– � 4NO2

– � H2O � H� –510.7 –127.7 –63.8 –501.4 –125.4 –62.7
CH4(g) � 4 PCE(aq) � 3H2O ¡ HCO3

– � 4TCE(aq) � 5H� � 4Cl– –557.9 –139.5 –69.7 –574.0 –143.5 –71.8
CH4(g) � 4 TCE(aq)� 3H2O ¡ HCO3

– � 4 cDCE(aq) � 5H� � 4Cl– –539.9 –135.0 –67.5 –568.8 –142.2 –71.1
CH4(g) � 4 1,2-DCA(aq) � 2H2O ¡ HCO3

– � 4 ethene(aq) � 9H� � 8Cl– �853.5 –213.4 �106.7 –839.5 �209.9 �104.9
aThe ΔG°= values for all reactions except reductive dechlorination of tetrachloroethene (PCE) to trichloroethene (TCE) were calculated using Geochemists WorkBench
(GWB14). The ΔG°= for reductive dechlorination was calculated according to Dolfing and Janssen (51). The ΔG= values were calculated according to equation 5 (see the
text) with CH4 substituting for H2 and using the concentration values listed below. Abbreviations: PCE, tetrachloroethene; TCE, trichloroethene; cDCE, cis-1,2-dichloroethene;
1,2-DCA, 1,2-dichloroethane; MCB, monochlorobenzene; 2-CP, 2-chlorophenol; EA, electron acceptor; (g), gas phase; (aq), aqueous phase; (s), solid. The following
concentrations were used for calculating ΔG= values: HCO3

–, 2.020� 10�2 M; CH4, 3.000� 10�5 M; SO4
2–, 5.200� 10�3 M; H2S, 8.000� 10�4 M; Fe2�, 3.000� 10�5 M; NO3

–,
1.850� 10�4 M; NO2

–, 1.160� 10�5 M; PCE, 3.190� 10�7 M; TCE, 7.290� 10�7 M; Cl–, 1.690� 10�2 M; acetate, 1.000� 10�4 M; cDCE, 4.570� 10�7 M; DCA, 4.730� 10�7

M; ethene, 1.340� 10�3 M; 2-CP, 5.072� 10�7 M; phenol, 2.178� 10�6 M; MCB, 5.313� 10�7 M; benzene, 7.105� 10�7 M.
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DEHALOCOCCOIDIA BIOMASS FUELS MICROBIOMES IN HIGHLY OLIGOTROPHIC
ENVIRONMENTS

Organohalide-respiring Dehalococcoidia use H2 at very low concentrations and are
active in anoxic environments where organochlorines form naturally. Dehalococcoidia
generate approximately four times more biomass per mole of H2 oxidized than
methanogens (50). When hydrolysis and fermentation reactions sustain elevated H2

concentrations, hydrogenotrophic methanogenesis and organohalide respiration can
cooccur, as long as chlorinated electron acceptors are available. In highly oligotrophic
environments (e.g., the energy-deprived deep subsurface) the formation of H2 is
thermodynamically controlled, and hydrogenotrophic organohalide-respiring Dehalo-
coccoidia can outcompete other H2-consuming microorganisms (e.g., methanogens
and sulfate reducers) for electron donor. In environments where energy sources limit
microbial metabolism and growth (e.g., the deep subsurface), Dehalococcoidia necro-
mass could be a relevant source of nutrients and energy, suggesting that Dehalococ-
coidia play relevant functions in carbon and energy cycling and support microbiomes
in energy-depleted, oligotrophic ecosystems. This process likely extends to environ-
ments without measurable pools of chlorinated organics because balanced chlorina-
tion and dechlorination reactions maintain low steady-state organochlorine concentra-
tions but provide sufficient flux to sustain Dehalococcoidia populations.

DEHALOCOCCOIDIA MEDIATE RECALCITRANCE OF ORGANIC COMPOUNDS AND
AN ENVIRONMENTAL SYSTEM’S CHLORINE STORAGE CAPACITY

Natural chlorination is a widespread phenomenon in many environmental systems
(40) and enhances the recalcitrance of organic compounds. Chlorination also influences
the environmental phase partitioning and transport of organic compounds and in-
creases the chlorine retention time, which impacts ecosystem processes, as docu-

FIG 2 Visualization of ΔG= values calculated per mol of electron acceptor consumed for different redox
reactions versus the H2 concentration. Depicted are the redox reactions 3 to 7 listed in Table 2. The ΔG=
values were calculated according to equation 6 except for AOM, which was calculated according to
equation 3 (see the text). The minimum Gibbs free energy yield allowing an anaerobic microbe to
conserve energy falls in the range of �10 � 1 kJ/mol for each reaction (horizontal, dashed black line). At
Gibbs free energy changes greater (i.e., more positive) than �10 � 1 kJ/mol, microorganisms cannot
conserve energy and cease metabolic activity (53). The concentrations of chemical species representative
of environments favoring sulfate reduction, ferric iron reduction, nitrate reduction, and organohalide
respiration were retrieved from published data (53, 79) and the Substance Priority List database
(www.atsdr.cdc.gov/spl/resources/index.html). The following concentrations were used for calculating
ΔG= at different H2 concentrations: HCO3

–, 2.020 � 10�2 M; CH4, 3.000 � 10�5 M; SO4
2–, 5.200 � 10�3 M;

H2S, 8.000 � 10�4 M; Fe2�, 3.000 � 10�5 M; NO3
–, 1.850 � 10�4 M; NO2

–, 1.160 � 10�5 M; PCE,
3.190 � 10�7 M; TCE, 7.290 � 10�7 M; Cl–, 1.690 � 10�2 M; acetate, 1.000 � 10�4 M; cDCE, 4.570 � 10�7

M. The headspace partial pressures of CH4 and H2 were converted to aqueous concentration units (M)
using Henry’s law constants of 1.4 � 10�5 for CH4 and of 7.8 � 10�6 for H2 (80, 82). The dashed vertical
lines indicate the theoretical H2 consumption threshold concentrations for each reaction. The abbrevi-
ations CH4, SO4

2–, Fe3�, NO3
–, and R-Cl indicate different redox processes utilizing H2 as the electron

donor, including methanogenesis (reaction 3 in Table 2), sulfate reduction (reaction 4), iron reduction
(reaction 5), nitrate reduction to nitrite (reaction 6), and reductive dechlorination (reaction 7),
respectively.
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mented in forest soils and marine sediments (46, 47, 68). The cleavage of carbon-
chlorine bonds by abiotic and biotic processes releases inorganic chloride and
transforms recalcitrant carbon into bioavailable and biodegradable organic carbon that
various microbial taxa can metabolize (47). Thus, organohalide-respiring Dehalococ-
coidia play key roles by removing recalcitrance and rendering the remaining nonhalo-
genated organics (or with a lower degree of chlorination) more susceptible to microbial
metabolism. Inorganic chloride is water-soluble and prone to leaching, especially in
well-drained soils experiencing elevated rainfall. Chloride is an essential plant micro-
nutrient and extensive chloride loss can affect plant productivity. Thus, the fine-tuned
interplay between chlorination and dechlorination reactions impacts soil microbiomes,
as well as macroflora, with potentially far-reaching consequences for plant productivity
and carbon and nutrient cycling. Such cross-kingdom interactions involving halogen
cycling are poorly understood and organohalide-respiring bacteria may play a crucial
role in balancing this system.

DEHALOCOCCOIDIA ATTENUATE SIGNALING MOLECULES AND CHEMICAL
DETERRENTS

Antibiotics selectively kill or inhibit competing (micro)organisms or have signaling
function, and this weapon versus signal debate has received considerable attention
(69–73). Antibiotics at low, subinhibitory concentrations may serve signaling purposes
and can impact bacterial virulence, biofilm formation, quorum sensing, gene expres-
sion, and gene transfer (73). Many natural (e.g., vancomycin) and anthropogenic (e.g.,
triclosan) antibiotics are chlorinated organic compounds (74). An increasing number of
halogenated natural products have been identified and characterized as chemical
repellents, feeding deterrents and signaling molecules, including chlorinated steroid
glycosides from the German cockroach (Blattella germanica), brominated organic com-
pounds (e.g., bromoindoles, bromophenols, and bromopyrroles) from various marine
sponges (e.g., Aplysina aerophoba, Agelas wiedenmayeri, and Agelas conifera), and
brominated diterpenes from the marine red alga Laurencia saitoi (37, 39, 75–77).
Dehalococcoidiamay interact with organohalogen-producing organisms and play a role
in recycling halogenated antibiotics and signaling molecules. For instance, the bacterial
community associated with Aplysina aerophoba, a marine sponge that produces or-
ganobromine compounds, has been demonstrated to dehalogenate halogenated phe-
nolic compounds, and a 16S rRNA gene sequence closely related to Dehalococcoidia
was recovered from the sponge-associated microbiota (76, 77). Thus, Dehalococcoidia
may play crucial ecological roles in disarming chemical defense systems and have
functions as signal-attenuating agents by dehalogenating halogenated signaling mol-
ecules and antibiotics.

KNOWLEDGE GAPS
Innovative strategies for cultivating not-yet-cultured Dehalococcoidia. Diverse

uncultured Dehalococcoidia have been identified in various sequencing studies (i.e.,
shotgun metagenomic sequencing, amplicon sequencing, single-cell sequencing) (see
Table S1 in the supplemental material). Single-cell sequencing has expanded the
Dehalococcoidia pangenome, but the approach is plagued by cell selection biases and
incomplete genome information (28). Cultivation from single cells has not been suc-
cessful, preventing detailed physiological and biochemical studies of Dehalococcoidia
captured by single-cell sorting approaches (26, 27, 78). The hope is that the increasing
information obtained from metagenome and single-cell genome sequencing will guide
innovative cultivation and enrichment strategies to obtain cultures for detailed phys-
iological and biochemical studies.

Quantifying the roles of Dehalococcoidia in syntrophy and carbon cycling.
Hydrogenotrophic organohalide-respiring Dehalococcoidia consume H2 to low con-
sumption threshold concentrations and are ideal partners in syntrophic processes, such
as AOM, that are thermodynamically controlled by the prevailing H2 partial pressure.
The concentrations (i.e., pools) of organochlorines in pristine environments are typically
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low; however, very little is known about the in situ rates of halogenation and dehalo-
genation reactions. Thus, the fluxes between nonhalogenated and halogenated pools
of organic material may be large and the impact of hydrogenotrophic organohalide-
respiring bacteria for carbon cycling may be far greater than is currently acknowledged.
Therefore, concerted efforts are needed to measure fluxes of organohalogens in
pristine environments, so that the role of organohalide-respiring bacteria for syntrophic
processes can be more clearly understood and delineated. To advance the under-
standing of the dynamics of Dehalococcoidia populations in different microbiomes,
time-resolved absolute quantitative information should be obtained. Should further
research corroborate that Dehalococcoidia are crucial partner populations for syn-
trophic processes such as AOM, or key specialist degraders of halogenated signaling
molecules, the resilience of Dehalococcoidia to changing environmental conditions
(e.g., pH, warming temperatures, decreased or increased soil moisture content, and
land-use change) must be explored, so that ecosystem-level responses can be
predicted.

Biotechnological applications. If the anticipated progress in cultivation can be
realized and a broader suite of cultures and isolates from diverse environments
becomes available, the roles of Dehalococcoidia in carbon and nutrient cycling in
natural, pristine and organohalogen degradation in contaminated environments can be
elucidated. Such efforts will likely lead to the discovery of dechlorinators with novel
RDase genes, which can advance monitoring regimes and treatment of sites impacted
with anthropogenic chlorinated contaminants. Organohalide-respiring Dehalococcoidia
harbor a sizeable genetic diversity of RDase genes, but comparably few substrates have
been identified, suggesting that Dehalococcoidia can utilize a much broader range of
organohalogens as electron acceptors than is currently appreciated. Largely lacking is
kinetic information about RDases (i.e., the affinity to chlorinated electron acceptors [Km
values] and the turnover rates), which would be necessary to gauge the contributions
of Dehalococcoidia for transforming halogenated micropollutants (e.g., pesticides,
pharmaceuticals like chloroquine and hydroxychloroquine). Bioaugmentation with
Dehalococcoides-containing consortia has promoted in situ contaminant removal at a
large number of sites (11); however, bioremediation is still an empirical practice
and comprehensive knowledge of the diversity and ecophysiology of organohalide-
respiring Dehalococcoidia can advance the approach to a science with predictable
outcomes.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.03 MB.
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