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ABSTRACT
In this paper, we study efficient and authorized rewriting of trans-

actions already written to a blockchain. Mutable transactions will

make a fraction of all blockchain transactions, but will be a necessity

to meet the needs of privacy regulations, such as the General Data

Protection Regulation (GDPR). The state-of-the-art rewriting ap-

proaches have several shortcomings, such as being coarse-grained,

inability to expunge data, absence of revocation mechanisms, lack

of user anonymity, and inefficiency. We present ReTRACe, an effi-

cient framework for transaction-level blockchain rewrites, that is

fine-grained and supports revocation. ReTRACe is designed by com-

posing a novel revocable chameleon hash with ephemeral trapdoor

scheme, a novel revocable fast attribute based encryption scheme,

and a dynamic group signature scheme. We discuss ReTRACe, and
its constituent primitives in detail, along with their security analy-

ses, and present experimental results to demonstrate scalability.
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1 INTRODUCTION AND RELATED WORK
In access control techniques, revocation is a problem that is eas-

ily motivated from a practical standpoint. We present ReTRACe,
a system for performing access control including revocation for
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transaction rewrites in blockchains. A blockchain is an append-only

ledger to which entities can post messages in a decentralized man-

ner. A message could be a financial transaction, a smart contract,

or any data that needs to be shared among several users, but whose

provenance needs to be verified. At a high level, a block is a collec-

tion of multiple messages (also called transactions), and their hash

digests. Usually, once a message has been written to the blockchain,

the message is considered immutable and cannot be edited.

While blockchain edits or rewrites are not required in all appli-

cations, there is an important class of applications where editing

messages written onto a blockchain is essential. For instance, in

the European Union (EU), the general data protection regulation

(GDPR), Chapter 2, Article 17: Right to erasure and Article 19: Noti-
fication obligation regarding rectification or erasure of personal data
or restriction of processing, gives users or data subjects the right to
request that their personal data be erased/edited by the person or

entity collecting or publishing their data, per their request. The

U.S. state of California passed the California Consumer Privacy Act

(CCPA) in 2018 [19], which has codified similar privacy rights, as

described in Article 2. 999.308 (c) (2).

Blockchain technology has widespread applications in health-

care, regulatory compliance and audit, recordmanagement, Internet

of Things, and more [21]. It is easy to envisage examples where

a user’s sensitive data is part of the committed blockchain trans-

actions, and at a later point needs to be erased. For example, a

global consortium of banks is currently using a blockchain plat-

form (R3 [28]) to manage financial agreements, securities trading,

etc. These transaction records will include clients’ information and

could potentially contain personally identifiable information.

As per the individual’s “right to forget" (e.g., in GDPR), a user

can request a purge of their identification data from the blockchain,

(true evenwith encrypted data), and should be able to independently

verify the said purge. Also, when a blockchain is used for record

keeping and auditing the actions of a set of mutually untrusting

parties, there may be situations where a non-monetary record needs

to be expunged from the blockchain, e.g., offensive content, leaked

personal information/encryption keys, etc., and companies have

prototyped editable blockchains for addressing this [33]. The U.S.

Department of Homeland Security in a recent report on the use of

blockchains in government, has judged permissioned blockchains

to be useful for maintaining government records, supply chain

monitoring, and government approval chain processes [17], which

will encourage blockchain adoption. In all such applications, there

might arise need for correcting/updating transactions. Motivated
by this, we concentrate on a permissioned blockchain.

Recently, some solutions have been proposed to enable modifica-

tions on data posted to a blockchain [15]. One method is a hard fork,
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which involves diverging the blockchain at the point where a mes-

sage needs to be changed, creating a new forked blockchain, and

invalidating all subsequent blocks in the old blockchain. Another

technique is to modify a messagem tom′, postm′ pointing tom
on the blockchain. In addition to being inefficient, these techniques

do not expunge the old message from the chain, and do not enable

fine-grained control over who can modify messages.

Ateniese et al. [2, 33] proposed a solution for blockchain edits

by rewriting entire blocks, using chameleon hash functions. Deuber
et al. [16] and Reparo [30] proposed mechanisms for block-level

rewrites where any user can propose a redaction or an edit of a

block, which is then voted upon by other users, and the edit is

accepted if it wins a majority vote. Coarse block-level solutions

result in needlessly rewriting an entire block, when only say, a

single transaction in a block needs to be expunged, nor do they

provide fine-grained transaction level control by helping us set

permissions about who can rewrite individual transactions. In this

paper, we focus on transaction-level rewriting. Our intent is to build
a system where a transaction can be updated, if needed, at which

point only the updated transaction will be visible on the blockchain.

1.1 Related Work
Recently, chameleon hash functions have been proposed to enable

blockchain rewrites. Chameleon hash functions [23] enable a user

to find collisions in the domain of a hash function, such that several

pre-images can be created that map to the same hash digest. The

process of finding a collision on a given message, termed adapting
the message, is done using a trapdoor associated with the digest.

For increased security and flexibility, Camenisch et al. [10] pro-
posed the idea of two trapdoors being associated with a digest, a

permanent long-term trapdoor, and an ephemeral trapdoor, which is

chosen per message; a message cannot be adapted without knowing

both trapdoors. Derler et al. [15] presented an application of [10]

to transaction-level blockchain rewrites, where the ephemeral trap-

door associated with a digest of a message posted on the blockchain

is encrypted using ciphertext-policy attribute-based encryption

(CPABE), and only users possessing enough attributes that satisfy

the policy can decrypt the ephemeral trapdoor and adapt a message.

The problemwith the above schemes is that access to the ephemeral

trapdoor, once issued, cannot be revoked, i.e., once given out, the

ephemeral trapdoor is accessible to users in perpetuity. Ideally, we

would like to revoke users, such that upon revocation of a user u
who possesses the ephemeral trapdoor, the ephemeral trapdoor is

swiftly updated to a value unknown tou. We use chameleon hashes,

attribute-based encryption (ABE) and a dynamic group signature

scheme (GSS) to achieve our goal.

1.2 Challenges in the State-of-the-art
Motivated by the problem of performing transaction rewrites on

a blockchain, we seek to answer the following questions: Who

gets to erase or overwrite transactions/messages? What if a user

is allowed to update a given message only for a short period of

time? Once a message has been modified, should the identity of

the modifier be revealed, and if yes, to whom? These questions

need to be addressed to make editable transactions usable, which

is our goal in this paper. We focus on three important challenges:

1) Revoking access to ephemeral trapdoors: a revoked user cannot

update a message even if she has a local copy of the long-term and

ephemeral trapdoors. 2) Revoking attributes from users: a user who
no longer has access to an attribute secret key cannot update a

message and/or trapdoor. 3) Traceability: a user who anonymously

rewrote a particular message, but violated the rewriting policy can

be identified. For addressing the first two challenges, we need to

design new cryptographic primitives, since existing ones do not

provide the properties we require.

1.3 Our Contributions
Our contributions in this paper include:

1) Design of a new revocable chameleon hash with ephemeral trap-
door scheme, RCHET, which guarantees that a revoked user cannot

adapt a blockchain message or trapdoor.

2) Design of a new, efficient revocable ABE scheme, RFAME, to con-

trol access to the ephemeral trapdoor.

3) Design of a revocable and traceable blockchain rewriting frame-
work, ReTRACe, using our novel RCHET and RFAME schemes,

and a dynamic group signature scheme as building primitives. In

ReTRACe, authorized users can adaptmessages, using the ephemeral

trapdoor of a message’s chameleon hash digest. Access to the

ephemeral trapdoor can be revoked instantly as needed. Authorized

users can anonymously post to and adapt messages on a blockchain,

but their identities can be unmasked by legitimate oversight au-

thorities if needed.

4) Implementation of RCHET, RFAME, and ReTRACe to demon-

strate scalability, and their security analyses.

We note that ReTRACe does not modify the way miners com-

municate with one another and how the blocks are mined in a

permissioned blockchain adapted with ReTRACe’s functionality
(except transaction verification). Both the ReTRACe messages and

non-ReTRACe messages can co-exist in the underlying permis-

sioned blockchain, i.e., after integrating ReTRACe into a permis-

sioned blockchain, the resultant chain can acceptmutable (messages

with trapdoors controlled with ABE policies) as well as regular im-

mutable messages such as financial transactions and records of

payments between different entities.

Organization: In Section 2, we discuss the constituents of our sys-

tem model, and cover preliminaries and assumptions. In Section 3,

we give a short technical overview of ReTRACe. In Sections 4 and 5,

we introduce RCHET and RFAME, their definitions, security anal-

yses, and constructions. In Section 6 we briefly discuss dynamic

GSS schemes, and in Section 7, we give the definition, security

analysis, and construction of ReTRACe. In Section 8 we present our

experimental analysis, and Section 9 concludes the paper.

Since ReTRACe has several building blocks, we need to make care-

ful choices on what is included in the main paper and our full

version [26]. We present our new ideas, constructions, and experi-

ments in the main paper, and include formal definitions and proofs

of our constructions in the full version.

2 SYSTEM MODEL AND THREAT MODEL
ReTRACe is constructed using three primitives: 1) a revocable

chameleon hash scheme, RCHET, which provides a dynamic and

mutable ephemeral trapdoor required for updating amessage posted

on theBC, 2) a revocable attribute-based encryption scheme,RFAME



used to control access to the ephemeral trapdoor, and 3) a dynamic

group signature scheme (DGSS), which helps legitimate users know-

ing the current ephemeral trapdoor, to sign message updates anony-

mously before posting them to the blockchain. Both, RFAME and

DGSS are associated with policies. In this section, we discuss the

parties involved in ReTRACe, and the policy structures that control

their ability to update messages.

NamingConventions: In our discussions, we refer to the blockchain
as BC, we use message to mean a pre-image of the chameleon hash

function, which is posted on the BC as a transaction, and when we

say “trapdoor”, we mean the ephemeral trapdoor of the chameleon

hash, unless otherwise specified. A chameleon hash function’s out-

put has mutable and immutable parts, the immutable part contains

the digest of the hash function, the mutable part includes the trap-

door needed for creating a message collision, among other things.

2.1 Policies
ReTRACe has four kinds of policies, all represented as Boolean

predicates: 1) A trapdoor associated with the digest of a given

message is encrypted under an ABE policy, ϒABE. 2) The policy ϒGS,
spells out certain DGSS groups from which users can anonymously

sign a message update, and post it on the BC. 3) For revoking access
to the trapdoor, we define a policy, ϒABEadmin

, that sets forth who

can create an updated ephemeral trapdoor, and encrypt it under

a new policy, ϒ′ABE. 4) Finally, ϒGSadmin
governs who can change

ϒGS, and thus exclude users of certain DGSS groups from producing

valid signatures.

For simplicity of exposition, we assume that the ϒABEadmin
and

ϒGSadmin
policies, once set, cannot be changed (which can be re-

laxed on an as-needed basis by setting up a higher level of control).

We stress that it is the ϒABEadmin
and ϒGSadmin

policy clauses that
are immutable; our system allows for the set of people satisfying
them to be dynamic and ever-changing.

Unlike ABE schemes, DGSS do not have the concept of policies

built into them; we introduce this notion for ReTRACe. We define a

DGSS policy as a publicly-known Boolean predicate linked to a mes-

sagem that specifies which groups can produce valid signatures on

m, e.g., (m, ϒGS = “Admin” AND "Payroll"), indicates users belong-

ing to groups “Admin” and “Payroll” can produce valid signatures

onm. In case of Boolean predicates with conjunctive clauses, the sig-

natures (σ ) and corresponding group public keys (gpk) are collected
into a set, ξm , where ξm = (σAdmin

, gpk
Admin

), (σ
Payroll

, gpk
Payroll

).

Any public verifier can check the validity of a set of signatures for

a message w.r.t. a given policy.

2.2 Parties
The parties involved in ReTRACe are categorized into:

1) Originator: The originator creates a message, its digest and trap-

door, and sets the four policies, ϒABE, ϒGS, ϒABEadmin
, and ϒGSadmin

that regulate future message updates.

2) Set of Authorized Users, AuthU: The set of users who can

create a collision on a message posted on the BC by the origina-

tor (AuthU could include the originator) as long as they possess

enough attributes that satisfy ϒABE, and are a member of a DGSS

group satisfying ϒGS.

3) Set ofAuthorizedUserAdministrators, AuthUAdmins: This
is the set of users who can modify the trapdoor, as well as create a

collision on the message (AuthUAdmins could include the origina-
tor), as long as they possess enough attributes to satisfy ϒABEadmin

and are a member of a DGSS group satisfying ϒGSadmin
.

4)Attribute-issuing authority andGroupManager: The attribute-
issuing authority (AIA) for the ABE scheme, and the GroupManager

(GM) for the DGSS issue keys to their respective users. For presen-

tation clarity, we use a single AIA and GM, but in practice, more

can be used easily in ReTRACe if design warrants.

2.3 Blockchain Operations
A ReTRACe transaction consists of a mutable part (plaintext mes-

sage, policies, trapdoor, ciphertexts, signatures, etc.) and an im-

mutable part (digest). When a ReTRACe transaction is included in

a block by the miners, only the immutable part of the ReTRACe
transaction is used in the Merkle tree of the given block instead of

the hash of the whole transaction. This makes it possible to update

a ReTRACe transaction in the future as long as the mutable part

of the updated transaction verifies with the immutable digest on

the BC. ReTRACe is independent of the kind of underlying BC sys-

tem including the consensus mechanism, e.g., Proof of Work/Stake,

as long as the security requirements for ReTRACe defined in Sec-

tion 2.4 are met. For a user to be able to post any ReTRACemessages

in the BC, the user needs to be previously onboarded with a AIA

and GM in the given ReTRACe system.

To use ReTRACe with a given BC system, the hash verification

function of the BC needs to be modified to perform the ReTRACe
messages’ verification (miner verification, and public verification

of the ReTRACe messages). But ReTRACe does not leak sensitive

information to the miners hence the miners are not onboarded

by the AIA and GM. Adding or removing miners in the system

using ReTRACe works in the same as any other BC system; the

miners have a few extra steps when verifying updates to ReTRACe
transactions, but none of those steps involve the miners learning

privileged information about the messages posted on the BC.
Each block on a ReTRACe-modified BC could have mutable as

well as immutable transactions and the resultant hash of the block

will always be immutable as per the rules of traditional BCs. The
verification algorithm can verify mutable as well as immutable

transactions, thus ReTRACe can be implemented on a blockchain

which supports both, mutable and immutable transactions. Note

that once a transaction is written to the BC as immutable, it can-

not be modified, only transactions which were originally posted

as ReTRACe transactions with a trapdoor and access policy are

updatable. The AIA and GM are publicly available to all users to

sign up with, if any user needs to post mutable transactions on the

BC, user do not need to sign up with the AIA/GM if they do not

want to post immutable transactions.

2.4 Trust Assumptions and Threat Model
We make a few modest trust assumptions in ReTRACe. As in most

BC-enabled systems, we assume the consensus protocol being used

ensures honest operation by miners. We assume the AIA will hon-

estly generate attributes and secret keys; one could relax this as-

sumption by using multi-AIA techniques of Chase [11], where



components of users’ secret keys are generated by multiple AIAs.

Similarly for the DGSS scheme, we assume that the GM for a group

will issue signing keys properly, and trace users honestly. We could

dilute this assumption by using techniques of Bootle et al. [9], by
introducing a tracing manager, and separating the roles of group

and tracing managers. These relaxations could be applied on as

as-needed basis, we do not discuss them for narrative simplicity.

Threat Model and Security Goals: Our main goal is to protect

against adversaries that have no access to the long-term trapdoor

and/or current version of the ephemeral trapdoor for a given mes-

sage,m, posted on the BC, do not satisfy the policies associated

withm, yet who try to updatem or its trapdoors. A second goal is

to protect the privacy of, and provide anonymity to, the individu-

als who post a message or update a message and/or its trapdoor

on the BC. The only way for an adversary to violate our goals is

to break the security of our cryptographic constructs. We do not

consider network attacks (e.g., eclipse attacks, traffic analysis, etc.)

in this paper, prior works [6] that focus on them can be used in

conjunction with ReTRACe.

2.5 Computational Assumptions
The security of ReTRACe is derived from time-tested, well-regarded

assumptions based on the Discrete Log problem, the Decision Linear

problem (DLIN), and the Decisional Diffie-Hellman (DDH) problem,

defined in [26]. We model ABE access control policies as Boolean

formulas with AND and OR gates, where each input is associated

with an attribute, and the Boolean formulas are represented as

monotone span programs, as is common in the literature.

3 ReTRACe TECHNICAL OVERVIEW
In this section, we give a high-level, brief technical overview of

ReTRACe. Without loss of generality, let us consider a single AIA

and GM in the system. Let [1..n] represent a set of users, the AIA
issues sets of secret keys, SK1, . . . ,SKn , and the GM issues sets

of signing keys, sk1, . . . , skn to the n users. Let mpkABE and gpk
denote the public keys of the ABE and DGSS schemes respectively.

Let us consider a user, u who creates a message,m, to be posted

on the BC. User u creates an adaptable (i.e., updatable) trapdoor
τ , that enables future modifications ofm (using our novel RCHET
scheme), creates a policy, ϒABE, which defines a set of authorized

users, AuthU that are allowed to modify m. User u encrypts τ
with mpkABE (using our novel revocable ABE scheme, RFAME),
E
mpkABE

(τ , ϒABE) → X . For controlling who can update τ in the

future, u picks an r ←$Zq (where G and q = |G| are part of the
public parameters, and will be used in the cryptographic operations

of ReTRACe). User u then creates the ϒABEadmin
policy that defines

the set of authorized user administrator(s),AuthUAdminswho are
allowed to update τ , and computes E

mpkABE
(r , ϒABEadmin

) → Xr .
A user in AuthU updatesm during a message adaptation, a user in

AuthUAdmins updatesm, X and Xr during a trapdoor update.

User u also sets the DGSS policies, ϒGS, and ϒGSadmin
that stip-

ulate only members of AuthU and AuthUAdmins are authorized
to produce valid anonymous signatures on an updated message

and updated trapdoor, respectively, before posting to the BC. Fi-
nally u posts tuple t = (m,X ,Xr , ϒinfo = (ϒABE, ϒGS), ϒadmin

=

(ϒABEadmin
, ϒGSadmin

)), along with a signature on t to the BC. We

assume standard techniques such as nonces/timestamps to prevent

replay attacks are used.

Any user i ∈ [1..n], s.t. i ∈ AuthU whose secret key set SKi ∈
{SK1, . . . ,SKn } satisfies ϒABE, can decrypt X , obtain τ , and update
m tom′ (using RCHET). Note that being able to satisfy ϒABE only

allows i to decrypt the trapdoor, τ , and updatem, but not update τ .
User i will produce a signature onm′ using ski that satisfies ϒGS,
and postm′ and the signature on the BC.

The digest of a given transaction only corresponds to the m
contained in it. The miner’s verification function in ReTRACe en-
sures that only members of AuthU can updatem and X , and only

members of AuthUAdmins have permission to updatem,X and

Xr . The miner’s in ReTRACe do not need any extra or privileged

information other than what is already available as part of the pub-

lic parameters of ReTRACe, hence they do not need to sign up with

the AIA or GM in the system.

Revocation of users from AuthU is handled by either a mem-

ber of AuthUAdmins updating ϒABE to ϒ′ABE (RFAME), or by the

AIA/GM revoking individual users, inwhich case ϒABE is unchanged.
Any user j ∈ [1..n], s.t. j ∈ AuthUAdmins whose secret key set

SKj ∈ {SK1, . . . ,SKn } satisfies ϒABEadmin
, can decrypt Xr , ob-

tain r , update τ to τ ′ (using RCHET), such that τ ′ will only be de-

cryptable by non-revoked users (using RFAME for access control).

User j will compute E
mpkABE

(τ ′, ·) → X ′, j will prove knowledge
of r to the miner thus proving it can satisfy ϒABEadmin

, and is a

member of AuthUAdmins. User j then picks r ′←$Zq , computes

E
mpkABE

(r ′, ·) → X ′r , to replace r . Then j will sign and postm′, X ′

and X ′r on the BC. The DGSS signature will be produced using j’s
signing keys, skj , that satisfy ϒGSadmin

.

We discuss the details and subtleties of ReTRACe in Section 7;

in what follows, we describe the building primitives.

4 REVOCABLE CHAMELEON HASHWITH
EPHEMERAL TRAPDOORS

We envisioned a revocable CHET scheme, where the long-term

trapdoor remains permanent, but access to the ephemeral trapdoor

can be revoked at will. Intuitively, for performing revocation, we

update the ephemeral trapdoor, and prevent the revoked user from

accessing the updated trapdoor.

We present our construction of an RCHET scheme in Figure 1.

The security of our RCHET construction is based on the discrete

log and DDH assumptions. At a high level, the idea is to hide the

long-term and ephemeral trapdoors in the exponent of public pa-

rameters and use non-interactive zero knowledge proofs of knowl-

edge (NIZKPoKs) to prove knowledge of them. In the construction,

Π is an IND-CCA2 public key encryption scheme, which is used to

encrypt randomness associated with the trapdoors. We overload

the verification function for both, signatures and zero-knowledge

proofs as verify, which will be clear from context.

4.1 RCHET Security Properties
The properties of indistinguishability, public and private collision

resistance were introduced by Camenisch et al. [10] for CHET
schemes. Derler et al. [15] retained the three properties, but strength-
ened their security definition by giving the adversary access to an

oracle for adapting messages in the private collision resistance



RCHET Algorithms
a) RCHET.systemSetup(1λ) → (pubpar): This algorithm generates the public parameters of the system:

1. (G,д,q) ← GGen(1λ). GGen generates prime-order cyclic group G, д ∈ G, q = |G|.

2. Pick H ’s key, k ∈ K , and crs ← Gen(1λ), where K is the key-space of H . Set and return pubpar = (k,G,д,q, crs). We assume

pubpar is implicitly passed as input to all other algorithms.

b) RCHET.userKeySetup(1λ) → (skch ,pkch ): This algorithm generates the long-term trapdoor and a public key:

1. Pick x ← Z∗q , h ← дx , πpk ← NIZKPoK{x : h = дx }, generate keys (SK , PK) ← Π.KeyGen(1λ).
2. Set pkch = (PK ,h,πpk ) and skch = (SK ,x). Return (skch ,pkch ).

c) RCHET.cHash(skch ,pkch ,m) → {(digest, rand, Γpubinfo, Γprivinfo),⊥}: Creates a chameleon hash for a messagem:

1. Check verify(πpk ,h)
?

= 1, if not, return ⊥. Pick r , etd,d,δ ← Z∗q .

2. Compute h′ ← дetd,D ← дd , and ∆ ← дδ . Do πt ← NIZKPoK{etd : h′ = дetd},πD ← NIZKPoK{d : D = дd },π∆ ←

NIZKPoK{δ : ∆ = дδ }.

3. Generate hash of message to be posted, a ← Hk (m) and create chameleon hash parameters: β ← (r + δ
x +

d
x ),p ← hr ,b ← p · h′a .

Do πp ← NIZKPoK{r : p = hr }. Do C ← Π.Encrypt(PK , r ), C ′ ← Π.Encrypt(PK ,a).
4. Return digest = (b,h′,πt ,C,C ′), rand = (β ,p,πp ), Γpubinfo = (∆,π∆,D,πD ), Γprivinfo = (δ ,d, etd).

d) RCHET.verifyTransaction(pkch ,m, digest, rand, Γpubinfo) → {0, 1}: This algorithm verifies the digest for a messagem.

1. Check verify(πpk ,h)
?

= 1, verify(πp ,p)
?

= 1, verify(πt ,h′)
?

= 1, verify(πD ,D)
?

= 1, and verify(π∆,∆)
?

= 1.

2. Check b
?

= hβ ·h′a
D ·∆ , where a ← Hk (m). If check passes, return 1, else return 0.

e) RCHET.adaptMessage(skch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → {rand′,⊥}: This algorithm updates a messagem:

1. Decrypt a ← Π.Decrypt(SK ,C ′), check a
?

← Hk (m). Check b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

2. Check h
?

= дx , p
?

= дxr , h′
?

= дetd , D
?

= дd , and ∆
?

= дδ . If checks fail, return ⊥.
3. Decrypt r ← Π.Decrypt(SK ,C), if r = ⊥, return ⊥.
4. Compute a′ ← Hk (m

′). Compute r ′ ← ( rx+a ·etd−a
′ ·etd+δ

x ).

5. Set p′ = hr
′

and do πp′ ← NIZKPoK{r ′ : p′ = hr
′

}. Compute β ′ ← (r ′ + d
x ). Set and output rand′ = (β ′,p′,πp′).

f) RCHET.adaptTrapdoor(skch ,m,m
′, digest, rand, Γ

pubinfo
, Γ

privinfo
) → {(rand′, Γ′

pubinfo
, Γ′

privinfo
),⊥}: This algorithm modifies the

trapdoor to an existing chameleon hash for a messagem as follows:

1. Decrypt a ← Π.Decrypt(SK ,C ′), check a
?

← Hk (m). Check b
?

= hβ ·h′a
D ·∆ . If checks fail, return ⊥.

2. Check h
?

= дx , p
?

= дxr , h′
?

= дetd , D
?

= дd , and ∆
?

= дδ . If checks fail, return ⊥.
3. Decrypt r ← Π.Decrypt(SK ,C), if r = ⊥, return ⊥. Compute a′ ← Hk (m

′).

4. Pick d ′,δ ′ ← Z∗q . Compute D ′ ← дd
′

,∆′ ← дδ
′

, do πD′ ← NIZKPoK{d ′ : D ′ = дd
′

}, π∆′ ← NIZKPoK{δ ′ :∆′ = дδ
′

}.

5. Set r ′ ← ( rx+a ·etd−a
′ ·etd+δ ′

x ),p′ ← hr
′

. Compute β ′ ← (r ′ + d ′
x ), πp′ ← NIZKPoK{r ′ : p′ = hr

′

}.

6. Prove knowledge of DDH tuple (д,дδ ,дd ,дδd ). Set and output rand′ = (β ′,p′,πp′), Γ′
pubinfo

= (∆′,π∆′ ,D
′,πD′), and Γ′

privinfo
=

(δ ′,d ′, etd).

Figure 1: Construction of Revocable Chameleon Hash with Ephemeral Trapdoors (RCHET)

game, while [10] only gave adversary access to a hash oracle. We

further strengthen the security properties by: 1) introducing the

notion of revocation collision resistance, which any RCHET scheme

must provide, and 2) giving the adversary access to oracles for both,
adapting messages and adapting trapdoors.

Informally, indistinguishability requires that an outsider, given a

random string, rand, cannot tell if rand was obtained by hashing

the original message, a message update or a trapdoor update. Public
collision resistance requires that a user who possesses neither the
long-term nor ephemeral trapdoor, cannot find collisions by himself.

Private collision resistance requires that even the holder of the long-

term trapdoor cannot find collisions, as long as the ephemeral

trapdoor is unknown to them. Revocation collision resistance requires
that a user that knows both, the long-term trapdoor and ephemeral

trapdoor, cannot find collisions after the ephemeral trapdoor has

been updated, as long as the new ephemeral trapdoor is unknown

to them. We formalize these security properties, and give the proof

of the following theorem in [26].

Theorem 4.1. If the discrete log assumption and DDH assumption
hold in G, H is collision resistant, Π is IND-CCA2 secure, and the
NIZKPoKs satisfy completeness, simulation soundness, extractabil-
ity and zero knowledge, then our revocable chameleon hash with
ephemeral trapdoors scheme, RCHET shown in Figure 1 is secure.



5 REVOCABLE ATTRIBUTE-BASED
ENCRYPTION

In this section, we describe our revocable ciphertext policy attribute-

based encryption (CPABE) scheme, RFAME, and discuss its effi-

ciency and security properties. Most of the benchmark schemes in

the ABE literature do not consider attribute revocation [20, 31, 32].

FAME [1] is a state-of-the-art efficient ABE scheme that performs

better in terms of qualitative and quantitative metrics, compared

to prior works, and provides full IND-CPA security, although it

does not discuss revocation. We use FAME as a starting point for

designing an efficient revocable CPABE scheme, RFAME.
Revocation model: In ABE, there are broadly speaking, two

possible kinds of revocation. One is policy-level revocation, where
revocation entails deleting a clause from anABE policy, e.g., ϒ = “CS
students” and “EE staff” can be updated to a more restrictive policy,

ϒ′ = “CS students”. The other is the more fine-grained user-level
revocation which calls for revoking decryption rights of individual

users, e.g., if we do not wish to update ϒ, but revoke access of a
member of staff from EE. We consider user-level revocation in this

paper (although our scheme also supports modifiable policies, if

needed).

Most of the benchmark ABE schemes proposed in the litera-

ture [1, 20, 24, 32] do not support revocation. The ones that do

are either based on non-standard assumptions [7, 13, 27, 29], offer

only selective security [3, 8, 34], are application-specific [13, 34],

do only policy-level revocation [7, 29], do not support Type III pair-

ings [3, 7, 8, 13, 14, 27, 29, 34], need revocation lists which do not

scale well [3, 8, 13, 14, 29, 34], or perform inefficient revocation [12].

We design an efficient revocable ABE scheme, RFAME, to revoke

access to ephemeral trapdoors that provides our desired properties.

5.1 Construction
We give our construction of RFAME in Figure 2, whose security is

based on the DLIN assumption. We walk the reader through a few

initial steps of the decryption algorithm that will help in verifying

correctness in [26]. We now describe our intuitive ideas behind

RFAME and its efficiency.

Efficient Rekeying in RFAME: Let us consider an AIA of an or-

ganization that issues four kinds of attributes, “Admin”, “Payroll”,

“Benefits”, and “Accounts”. Let us assume there are y unique users

possessing each attribute–a total of 4y users in the system, and that

there are three messages in the system encrypted under different

policies: i) Msg
1
is encrypted under ϒMsg

1

= (“Admin” OR “Pay-

roll”); ii)Msg
2
is encrypted under ϒMsg

2

= (“Payroll” OR “Benefits”);

iii) Msg
3
is encrypted under ϒMsg

3

= (“Benefits” OR “Accounts”).

Using current revocable CPABE schemes (e.g., [12]), if one user

possessing the Admin attribute terminates employment, their secret

key is revoked by the AIA, and the other y − 1 Admin users get

rekeyed.Msg
1
needs to be re-encrypted to prevent the revoked user

from decrypting it. Since Payroll is part of the ϒMsg
1

policy, all y
users holding Payroll get rekeyed, asMsg

1
got re-encrypted. Payroll

users getting rekeyed results inMsg
2
needing to be re-encrypted.

Consequently, users holding Benefits and Accounts attributes need
to be rekeyed, and Msg

3
needs to get re-encrypted. In total, we

need to perform three re-encryptions and rekey 4y − 1 users, for a
single user revocation. Our goal is to avoid such a domino effect.

At a high level, our idea is to associate each attribute, attr with
some unique randomness, r , and embed r into the secret keys of

all users who possess attr. When a user possessing attr needs to be

revoked, we update the randomness to r ′ and reissue new secret

keys with r ′ embedded in them only to the non-revoked users

holding attr, and re-encrypt all ciphertexts whose policies involve

attr. For facilitating this, the AIA can maintain a compact local table

identifying which users possess a given attribute—a small storage

cost in exchange for avoiding system-wide rekeying of users.

Furthermore, non-revoked users possessing attributes other than

attr can still use their current keys to decrypt re-encrypted cipher-

texts, which significantly reduces the number of users that need to

be rekeyed, and the ciphertexts that need to be re-encrypted. (note

that in [29], the authors propose a scheme that does not require

re-encryptions, for policy-level revocation, with the restriction that

a ciphertext can only be re-encrypted to a more restrictive policy.
Our work is significantly more flexible, in that we perform user-level
revocation, and do not impose any restrictions on policies).

Thus, RFAME handles revocation more efficiently; when a user

possessing Admin gets revoked, only the other y − 1 users in Admin
are rekeyed, and only Msg

1
needs to be re-encrypted to prevent

the revoked user from decrypting it. The price we pay for this is

that RFAME is a small-universe revocable CPABE scheme.

In summary, in the worst case, if x is the number of unique

attributes in a system, y the number of users per attribute, then

the overhead, using state-of-the-art revocation methods is O(x) re-
encryptions and O(xy) rekeyings. In RFAME, the overhead is Θ(1)
re-encryptions and Θ(y) rekeyings. We first prove RFAME CPA-

secure, we later turn this into a CCA-secure scheme for ReTRACe.
We give the IND-CPA game for RFAME and the proof of the follow-

ing theorem in [26].

Theorem 5.1. RFAME is fully IND-CPA secure under the DLIN
assumption on Type III pairings in the random oracle model.

6 DYNAMIC GROUP SIGNATURE SCHEMES
Weuse a group signature scheme for providing privacy and anonymity

to users posting messages on the BC, yet retaining the ability to

trace them if necessary. The group signature scheme can be easily

replaced with a regular signature scheme in ReTRACe if anonymity

is not required in the system. Group signature schemes are based

on three kinds of groups: static, semi-dynamic, and dynamic groups.

Static groups do not support user addition or revocation [4], semi-

dynamic groups support addition but not revocation [5], and dy-

namic groups allow addition and revocation [9]. We use a dynamic

group signature scheme (DGSS) in ReTRACe. We do not construct

a DGSS, as existing constructions [9, 25] provide the properties we

need. ReTRACe is independent of any specific construction.

7 THE ReTRACe FRAMEWORK
We now give the detailed construction of the ReTRACe framework

comprising of eight algorithms in Figure 3, Figure 4, Figure 6, and

Figure 5. In the algorithms,M denotes the monotone span program

representing an ABE policy, and ρ represents a mapping function

that maps rows of M onto attributes. We use BC.write to denote

a blockchain write operation. The Keygen,UserSetup, Sign,Verify,



RFAME Algorithms
a) RFAME.SetupABE(1λ ,U ) → (mpkABE,mskABE): The algorithm first generates the group parameters (q,G,H, GT ,
e,д,h), picks a1,a2,b1,b2,p1,p2 ←$Z∗q , d1,d2,d3 ←$Zq . It picks αy ←$Z∗q , and computes hαy for each y ∈ U . It sets

mpkABE = (h,H1 = ha1 ,H2 = ha2 ,T1 = e(д,h)p1d1a1+d3 ,T2 = e(д,h)p2d2a2+d3 ,hαy1 , . . . ,h
αy |U | ), and sets mskABE =

(д,h,a1,a2,b1,b2,p1,p2,д
d1 ,дd2 ,дd3 ,αy1 . . . αy |U | ).

b) RFAME.KeyGenABE(mpkABE,mskABE,y1, . . . ,y |U |) → SK : The algorithm generates the secret keys for all attributes y ∈ U . Pick

r1, r2 ←$Zq . Compute sk0 = (hb1r1 ,hb2r2 ,hr1+r2 ).
For all y ∈ U and t ∈ {1, 2}, pick σy ,σ

′←$Zq , and compute:

sky,t = H(y1t)
b
1
r
1

at +αy · H(y2t)
b
2
r
2

at +αy · H(y3t)
r
1
+r

2

at +αy · д
σy

at +αy · д
αy

at +αy ; sky,3 = (д−αy · д−σy )

sk′t = H(011t)
b
1
r
1

at · H(012t)
b
2
r
2

at · H(013t)
r
1
+r

2

at · д
σ ′
at ; sk′

3
= (дd3 · д−σ

′

), sk′′ = дdtpt

Set and return SK = (sk0, sky,1, sky,2, sky,3, sk′1, sk
′
2
, sk′

3
, sk′′)

c) RFAME.Encrypt(mpkABE,msд, (M, ρ)) → C . Pick s1, s2 ←$Zq . Let ρ(i) denote a mapping to the attributes i ∈ I that satisfy a given

policy. Compute:

ctρ(i),1 = H s1
1
· (hαρ (i ) )s1 = hs1(a1+αρ (i )) and similarly ctρ(i),2 = h

s2(a2+αρ (i )), and set

ct0 = (ct0,1 = H s1
1
, ct0,2 = H s2

2
, ctρ(i),1, ctρ(i),2, ct0,3 = h

s1+s2 )

Assume M has n1 rows and n2 columns. Then, for each row, i ∈ [1..n1] and l = 1, 2, 3, compute:

cti,l = H(ρ(i)l1)
s1 · H(ρ(i)l2)s2 ·

n2∏
j=1
[H(0jl1)s1 · H(0jl2)s2 ](M)i, j ; Set ct′ = (T s1

1
·T s2

2
·msд)

Set and outputC = (ct0, cti,l ∀ i ∈ [1..n1], l ∈ {1, 2, 3}, ct′)
d) RFAME.Decrypt(SK ,C, (M, ρ)) → {msд,⊥}: Parse C as (ct0, cti,l ∀ i ∈ [1..n1], l ∈ {1, 2, 3}, ct′). For each row cti,l ∈ M, pick

coefficients γi ∈ {0, 1} such that

∑
i ∈I

γi (M)i = [1, 0, . . . , 0].

num = ct′ · e(
∏
i ∈I

ctγii,1, sk0,1) · e(
∏
i ∈I

ctγii,2, sk0,2) · e(
∏
i ∈I

ctγii,3, sk0,3)

den =
∏
i ∈I

e(skγiρ(i),1, ctρ(i),1) ·
∏
i ∈I

e(skγiρ(i),2, ctρ(i),2) · e(sk
′
3
·
∏
i ∈I

skγiρ(i),3, ct0,3) ·
∏

t ∈{1,2}

e(sk′t · sk
′′
t , ct0,t )

e) RFAME.Revoke(mpkABE,mskABE,ν ) → (mpkABE
′,mskABE

′, SK ′): Let a user holding attribute ν ∈ U be revoked by the AIA. This
algorithm is run by the AIA which generates new parameters for the non-revoked users of attribute group ν , and updates its mpkABE

and mskABE. It picks βν ← Z
∗
q , and computes hβν . It updates mpkABE

′ = (h,H1,H2,T1,T2,h
αy

1 , . . . ,h
αy |U |−1 ,hβν ). The mskABE

remains the same except the αν gets replaced with βν . It then generates (a component of) the secret key for all non-revoked users

possessing attribute ν as follows:

skν,t = H(ν1t)
b
1
r
1

at +βν · H(ν2t)
b
2
r
2

at +βν · H(ν3t)
r
1
+r

2

at +βν · д
σν

at +βν · д
βν

at +βν ; skν,3 = (д−βν · д−σν )
where t ∈ {1, 2}, and all other variables are as defined in the SetupABE and KeyGenABE algorithms. Set SK ′ =
(sk0, skν,t , skν,3, sk′

1
, sk′

2
, sk′

3
, sk′′). SK ′ is distributed only to the non-revoked users who possess attribute ν .

Figure 2: Construction of Revocable Fast Attribute Based Encryption (RFAME)

AdaptMessage algorithms are fairly self-explanatory. We now de-

scribe some of the salient features of theCreateMessage,VerifyMiner,
and RevokeUser algorithms, which are more involved. We assume

a given implementation will use standard techniques like nonces

and timestamps to prevent against replay attacks.

ReTRACe.CreateMessage: This algorithm (Figure 4a), is run by the

originator who first runs RCHET to create a digest and trapdoors

for a message m. The originator sets ϒABE, ϒGS (for members of

AuthU), and ϒABEadmin
and ϒGSadmin

(for members of AuthUAd-
mins). The ephemeral trapdoor is encrypted under ϒABE to obtain

X . The originator then picks an r ←$Z∗q and encrypts it under

ϒABEadmin
to obtain Xr . This ensures that only members of Au-

thUAdmins can decrypt r , and modify ϒABE and ϒGS. The origina-
tor creates a tuple,msд, with X and policy information, signsmsд
using her signing key(s) that satisfy ϒGS, and creates a set of sig-

natures, ξϒ
info

, with each signature bundled with its corresponding

verification key. Finally, the originator signs ϒ
info

and sends the

signature, along withmsд, ξmsд , ξϒ
info

to the miner.

ReTRACe.VerifyMiner: This algorithm (Figure 6) is run only by

miners to verify a message before posting it on the BC. If a message

is being adapted (ς = ⊥), the miner does not do NIZK verifications.

If a trapdoor is being adapted (ς = πω ), the tuple submitted to the



ReTRACe.Keygen(1λ)

1 : GSetup(1λ ) → pubpar

2 : GKGen(pubpar) → (outGM , stGM ),

whereoutGM = (mpk, info0)

3 : Set gpk = (pubpar, mpk), stGM is GM’s state

4 : RFAME.SetupABE(1λ, U ) → (mpkABE, mskABE)

5 : RCHET.cSetup(1λ ) → param

6 : RCHET.userKeySetup(param) → (skch, pkch )

7 : PubPar = (G, д, q, pkch, mpkABE, gpk)

8 : SecPar = (mskABE, stGM )

9 : return (SecPar, PubPar, skch )

(a) ReTRACe: AIA/GM setup

ReTRACe.UserSetup(SecPar,PubPar)

1 : GetL, the list of all groups in DGSS

that current user needs to join, set GSK = ∅
2 : For each group in L, RunDGSS.Join get

gsk, GSK = GSK ∪ gsk

3 : RFAME.KeyGenABE(mpkABE, mskABE, y1, . . . ,

y |U |) → SK

4 : Retrieve skch
5 : return key = (GSK, SK, skch )

(b) ReTRACe: System setup for user

ReTRACe.Sign(GSK,m, ϒGS)

1 : Pick K s .t ., K ⊆ GSK, ϒGS(K) = 1

2 : for gski ∈ K, where i ∈ 1 · · · | GSK | do

3 : DGSS.Sign(gski , i .info,m) → {σi , ⊥}

4 : ξ = (σi , i .gpk) ∪ ξ

5 : return ξ

(c) ReTRACe: Signing a message

ReTRACe.Verify(PubPar,msд, ξmsд)

1 : for (σl , l .gpk) ∈ ξmsд do

2 : if DGSS.VerifySignature(l .gpk, l .info,msд,

σl )
?

= 0, return 0

3 : for (σl , l .gpk) ∈ ξϒ
info

do

4 : if DGSS.VerifySignature(l .gpk, l .info, ϒ
info

,

σl )
?

= 0, return 0

5 : if RCHET.verifyTransaction(pkch,m, digest,

rand, Γ
pubinfo

)
?

= 1

6 : return 1.

(d) ReTRACe: Verifying a message

Figure 3: ReTRACe algorithms for system setup and sign-
ing/verifying messages

miner is an update to a pre-existingmsд on the BC, and the ω used

ReTRACe.CreateMessage(key,PubPar,m)

1 : RCHET.cHash(skch, pkch,m) →

(digest, rand, Γ
pubinfo

, Γ
privinfo

)

2 : RFAME.Encrypt(mpkABE, Γprivinfo, (MϒABE,

ρϒABE )) → X

3 : Create ϒGS . Set ϒinfo = (ϒABE, ϒGS)

4 : r ←$Z∗q, ω = д
r , πω ← NIZKPoK{r : ω = дr }

5 : RFAME.Encrypt(mpkABE, r, (MϒABEadmin
,

ρϒABEadmin
)) → Xr

6 : Create ϒGSadmin

7 : Setϒ
admin

= (ϒABEadmin
, ϒGSadmin

, Xr , ω, πω )

8 : ReTRACe.Sign(GSK, ϒ
info

, ϒGSadmin
) → ξϒ

info

9 : msд = (m, digest, rand, Γ
pubinfo

, X , ϒ
info

,

ϒ
admin

, ξϒ
info
)

10 : ReTRACe.Sign(GSK,msд, ϒGS) → ξmsд

11 : CallReTRACe.VerifyMiner(PubPar,msд, ξmsд, πω )

12 : return (msд, ξmsд )

(a) ReTRACe: Creating a message

ReTRACe.AdaptMessage(key,PubPar,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar,msд, ξmsд )
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE )) → Γ
privinfo

3 : RCHET.adaptMessage(skch,m,m′, digest, rand,

Γ
pubinfo

, Γ
privinfo

) → rand′

4 : msд′ = (m′, digest, rand′, Γ
pubinfo

, X , ϒ
info

,

ϒ
admin

, ξϒ
info
)

5 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

6 : if ReTRACe.VerifyMiner(PubPar,msд′,

ξmsд′, ⊥)
?

= 0

return ⊥

7 : return (msд′, ξmsд′ )

(b) ReTRACe: Updating a message

Figure 4: ReTRACe algorithms for creating and updating a message

to verify the NIZK πω is obtained from the currentmsд on the BC.
If a new messagemsд is being created (ς = πω ), then the ω used to

verify the NIZK πω is obtained from themsд tuple itself. In all cases,

the miner checks if all signatures in ξmsд pass verification w.r.t.

ϒGS contained in the tuple msд, checks if all signatures in ξϒ
info

pass verification w.r.t. ϒGSadmin
, and the digest of m is checked.

If all checks pass, themsд tuple, along with the list of signatures

on it is written to the BC. Note that if ReTRACe is deployed in a

BC that hosts both mutable and immutable transactions, then for

immutable transactions, the miner verification process is the same

as in current BC systems.

ReTRACe.RevokeUser: This algorithm (Figure 5a, Figure 5b) is called

by a member of AuthUAdmins either when they want to revoke

clauses from the ABE policy, ϒABE, or when the ephemeral trapdoor,



ReTRACe.RevokeUser(key,PubPar,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar,msд, ξmsд )
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, Xr , (MϒABEadmin
,

ρϒABEadmin
)) → r

3 : r ′ ←$Z∗q, ω
′ = дr

′
.Set πω′ ← NIZKPoK{r ′ : ω′ = дr

′
}

4 : RFAME.Encrypt(mpkABE, r ′, (MϒABEadmin
,

ρϒABEadmin
)) → Xr ′

5 : ϒ′
admin

= (ϒABEadmin
, ϒGSadmin

, Xr ′, ω′, πω′ )

6 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE )) → Γ
privinfo

7 : RCHET.adaptTrapdoor(skch,m,m′, digest, rand,

Γ
pubinfo

, Γ
privinfo

) → (rand′, Γ′
pubinfo

, Γ′
privinfo

)

8 : RFAME.Encrypt(mpkABE, Γ
′
privinfo

, (Mϒ′ABE
,

ρϒ′ABE )) → X ′

9 : ϒ′
info
= (ϒ′ABE, ϒGS)

10 : ReTRACe.Sign(GSK, ϒ′
info

, ϒGSadmin
) → ξϒ′

info

11 : msд′ = (m′, digest, rand′, Γ′
pubinfo

, X ′,

ϒ′
info

, ϒ′
admin

, ξϒ′
info

)

12 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

13 : CallVerifyMiner(PubPar,msд′, ξmsд′, πω′ )

14 : return (msд′, ξmsд′ )

(a) ReTRACe: Revoke Case 1: Revoke users by updating policies

ReTRACe.RevokeUser(key,PubPar′,m′,msд, ξmsд)

1 : if ReTRACe.Verify(PubPar′,msд, ξmsд )
?

= 0

return ⊥

2 : RFAME.Decrypt(SK, Xr , (MϒABEadmin
,

ρϒABEadmin
)) → r

3 : r ′ ←$Z∗q, ω
′ = дr

′
.Set πω′ ← NIZKPoK{r ′ : ω′ = дr

′
}

4 : RFAME.Encrypt(mpkABE
′, r ′, (MϒABEadmin

,

ρϒABEadmin
)) → Xr ′

5 : ϒ′
admin

= (ϒABEadmin
, ϒGSadmin

, Xr ′, ω′, πω′ )

6 : RFAME.Decrypt(SK, X , (MϒABE, ρϒABE )) → Γ
privinfo

7 : RCHET.adaptTrapdoor(skch,m,m′, digest,

rand, Γ
pubinfo

, Γ
privinfo

) → (rand′, Γ′
pubinfo

, Γ′
privinfo

)

8 : RFAME.Encrypt(mpkABE
′, Γ′

privinfo
, (MϒABE,

ρϒABE )) → X ′

9 : msд′ = (m′, digest, rand′, Γ′
pubinfo

, X ′, ϒ
info

,

ϒ′
admin

, ξϒ
info
)

10 : ReTRACe.Sign(GSK,msд′, ϒGS) → ξmsд′

11 : CallVerifyMiner(PubPar′,msд′, ξmsд′, πω′ )

return (msд′, ξmsд′ )

(b) ReTRACe: Revoke Case 2: AIA revoking a single user

Figure 5: ReTRACe algorithms for revoking users

Γ
privinfo

, needs to be re-encrypted in response to the AIA revoking

a user. Both cases are handled differently:

Case 1: Revoking a clause from ϒABE: This algorithm (Figure 5a) is

run by an user v ∈ AuthUAdmins who wants to modify an ϒABE
associated withmsд. The AIA/GM are not involved, and no algo-

rithm from RFAME is called. User v first decrypts the trapdoor,

Γ
privinfo

, using her RFAME secret keys, v picks an r ′, and encrypts

r ′ under ϒABEadmin
. This is to ensure that only non-revoked mem-

bers of AuthUAdmins can decrypt r ′ and adapt the ephemeral

trapdoor in the future. Next, v adapts the ephemeral trapdoor. The

new message and trapdoor are encrypted under a new policy, ϒ′ABE,
which is a low cost operation and involves no re-keying operations.

We have not depicted the ϒGS getting updated, for clarity of presen-
tation. There are four cases:

1) If ϒABE changes to a more inclusive ϒ′ABE, the new user groups

need to be present in the ϒGS as well.
2) If ϒABE changes to a more restrictive ϒ′ABE, the revoked users

cannot decrypt the trapdoor and successfully adapt the message,

so ϒGS does not need to change.

3) If ϒGS changes to a more restrictive ϒ′GS, such that the users

satisfying ϒGS were also part of ϒABE, ϒABE needs to change too,

revoking the said users from the ABE scheme.

4) If ϒGS changes to a more inclusive ϒ′GS, such that the users satis-

fying ϒ′GS are not part of ϒABE, the new users cannot decrypt the

trapdoor and successfully adapt the message, so ϒABE does not need
to change. User v then signs the new ϒ′

info
using their signing keys

that satisfy ϒGSadmin
; the signature set is denoted as ξϒ′

info

. A new

msд′ is created and signed using a set of keys that satisfy ϒGS, and
the resulting signature set is denoted by ξmsд′ . Finally,msд′ and
ξmsд′ are given to the miner who verifies and posts them.

ReTRACe.VerifyMiner(PubPar,msд, ξmsд , ς)

1 : for (σl , l .gpk) ∈ ξmsд do

2 : if DGSS.VerifySignature(l .gpk, l .info,msд, σl )
?

= 0

3 : return 0

4 : for (σl , l .gpk) ∈ ξϒ
info

do

5 : if DGSS.VerifySignature(l .gpk, l .info, ϒ
info

, σl )
?

= 0

return 0

6 : if ς = πω
7 : if verify(ω, πω ) , 1, return 0

8 : if RCHET.verifyTransaction(pkch,m, digest, rand,

Γ
pubinfo

)
?

= 1

9 : BC.write(msд, ξmsд, ) return 1

10 : return 0

Figure 6: ReTRACe: Miner verifying a message

Case 2: AIA revoking a user : This algorithm (Figure 5b) is run by a

userv ∈ AuthUAdmins as soon as the AIA revokes a user holding

attribute y (which appears in either ϒABE or ϒABEadmin
). First, the

AIA updates its own public key from mpkABE to mpkABE
′
(which

results in PubPar getting updated to PubPar′), and then issues new

signing keys, SK ′, only to the non-revoked users holding attribute

y. User v then proceeds to adapt the ephemeral trapdoor, Γ
privinfo

,

to prevent the revoked user from being able to perform any future



message adaptations. User v then generates a new r ′, encrypts it,
etc., the rest of the steps are similar to Case 1.

An originator of a message could possibly create malformed poli-

cies, e.g., policies containing bogus or non-existent attributes. We

assume the miner has knowledge of all the (public) attributes in

the universe and in this case would reject malformed policies. An

originator of a message,m, could create a bogus trapdoor, which

would not be discovered until someone attempts to updatem. Note

that the miner cannot check if the encrypted trapdoor is correct

or not, since the miner likely will not be part of the AuthU, or
AuthUAdmins sets. Solutions to this problem include having the

originator do a verifiable encryption of the trapdoor, while submit-

tingm to the miner, or have the originator include an NIZK proof

along with the message. We leave the construction of a scheme that

incorporates these ideas as future work.

(a) Key generation and Setup

(b) Encryption and Decryption

Figure 7: Timings for RFAME vs. FAME [1] (80 users per attribute)

7.1 ReTRACe Security Properties
We now informally discuss the security properties of ReTRACe:
indistinguishability, public, private, and revocation collision resis-

tance. The first three properties were first introduced by Derler

et al. [15] for any policy-based chameleon hash scheme. We de-

fine revocation collision resistance, and strengthen the first three

properties, by giving the adversary the ability to adapt messages

and revoke messages. Indistinguishability requires that it should be

computationally infeasible for an adversary to distinguish whether

the randomness associated with a given message was generated as

a result of a CreateMessage, AdaptMessage or RevokeUser. Public
collision resistance requires that an adversary who knows neither

the long-term nor the ephemeral trapdoor cannot produce valid

collisions even after seeing past adaptations of messages and trap-

doors, even with access to some attributes, but not the complete

attribute set that can decrypt the ephemeral trapdoor.

Private collision resistance requires that an adversary that knows

the long-term trapdoor, but not ephemeral trapdoor of the RCHET
scheme, cannot produce valid collisions, even with knowledge of

past message and trapdoor adaptations. This property should hold

even if she has access to a subset of attributes, but not the complete

set of attributes, needed to decrypt the current trapdoor. Revocation

collision resistance requires that an adversary, who knows the long-

term and ephemeral trapdoors, and has valid attributes to decrypt

the ephemeral trapdoor, cannot produce valid collisions, if, either

the RFAME policy changed to exclude her, or the AIA revoked

a subset of her attributes necessary to decrypt the trapdoor. We

have proven the IND-CPA security ofRFAME; we apply the Fujisaki-
Okamoto transform [18] to convert RFAME to an IND-CCA2 secure

scheme to accomplish the proof. The formalization of the security

properties and the proof of the following theorem are in [26].

Theorem 7.1. If RCHET is secure, RFAME is fully IND-CCA2
secure, and DGSS is a secure dynamic group signature scheme then
ReTRACe is secure.

8 IMPLEMENTATION AND RESULTS
We implemented RFAME, RCHET, and ReTRACe in Python 3, and

used Charm [22] for cryptographic modules. All the experiments

were carried out on a machine with 64 GB RAM and an Intel(R)

Core(TM) i7-6700K CPU clocked at 4.00 GHz. We implemented

RCHET and RFAME to compare their performance against CHET

and FAME, respectively, to quantify the price of adding revoca-

tion. We do not compare RFAME quantitatively with other revo-

cable ABE schemes, since they do not provide the properties that

RFAME provides (see Section 5). Using RCHET and RFAME we

implement ReTRACe. Note that ReTRACe is the first system that

provides transaction-level revocable blockchain rewrites, there is

no equivalent state-of-the-art scheme to compare with.

RFAME Results:We set our ABE policies to contain a total of 8,

16, 32 and 64 attributes, and all our policies have two equisized

conjunctive clauses separated by a single disjunction. In each run,

10, 20, 40, or 80 users signed up with the AIA for each attribute. The

computation time increases linearly with the number of users, so

for brevity, in Figure 7 we show results for RFAME and FAME for 80

users per attribute only. The setup times for RFAME are higher than
for FAME because of the extra operations involved in computing

the master public key (mpkABE) and master secret key (mskABE)

during setup; and the growth of the public key size in RFAME is

linear in the number of attributes (small-universe property).

In FAME, the size of one of the components of the ciphertext

increases linearly in the number of attributes satisfying the given

policy, whereas for RFAME there are two components whose size

increases linearly, accounting for the difference in their encryption

and decryption timings. For decryption, the number of pairing

operations in RFAME is 6 + 2×(number of attributes satisfying a

given policy), as compared to 6 pairing operations for FAME.



Table 1: Timing for the RFAME.Revoke (time in secs)

10 Users per attribute 0.115

20 Users per attribute 0.2

40 Users per attribute 0.364

80 Users per attribute 0.714

Table 1 shows the time taken when revoking one user from each

attribute group with 10, 20, 40, and 80 users each, which results

in the rekeying of the remaining users. The results are linear as

expected because in each case 9, 19, 39, and 79 users got new keys,

respectively. We expect this trend to continue as the number of

users per attribute increases.

As mentioned before in Section 5, previous schemes do not pro-

vide efficient revocation. To carry out a user revocation under previ-

ous schemes, the entire system would have to be rekeyed using the

Setup and Keygen functions, and all ciphertext re-encrypted regard-

less of whether the revoked user had access to the message or not.

Thus, the cost in rekeying the users would be significantly lower in

RFAME, especially if the revoked user is in a single attribute group.

RCHET Results: Table 2 compares the running times for CHET

and RCHET. In RCHET, when compared to CHET, we have added

one extra encryption and decryption, twoNIZKPoK generation and

verifications, and three modular exponentiations to all functions,

except systemSetup and userKeySetup. Despite this, RCHET does

not display a significant increase in latency, at the same time, pro-

viding the ability to adapt the trapdoor of a message digest. The

time difference between RCHET and CHET algorithms is in the

order of milliseconds and this is a minimal trade-off for the added

functionality that RCHET provides.

ReTRACe Results: ReTRACe was implemented with the DGSS

policies being the same as the ABE policies, and containing 20 users

per attribute for 8 and 16 attributes. Except for the RFAME revoca-

tion component, whose running time is proportional to the number

of users, the rest of the cryptographic primitives, i.e.,DGSS,RCHET,
and other RFAME algorithms, are independent of the number of

users in the system. The running time for operations in ReTRACe
would increase linearly with the number of users per attribute, as

is evident from the RFAME results.

Table 2: Comparison of RCHET vs. CHET [10] (time in secs)

Algorithm CHET RCHET
Setup 0.537 0.5369

Chash 0.0216 0.0234

Verify 0.000697 0.000967

Adapt Message 0.0414 0.0415

Adapt Trapdoor - 0.04305

Table 3 shows the timings of ReTRACe, with 20 users/attribute

and messages with policies containing 8 and 16 attributes respec-

tively. UserSetup and Keygen take significantly more time than the

other functions as expected; both these functions involve all users

in the system and are run only once at the beginning during sys-

tem and users’ setup.CreateMessage, Sign,Verify, andVerifyMiner
would be run more frequently, and all have sub-second timings. For

testing Case 1 of ReTRACe.RevokeUser, we eliminate one attribute

from ϒABE, and in Case 2 we revoke one user from the AIA that

held an attribute in ϒABE. Case 2 takes longer since it includes the
AIA’s operations for revoking a user from one attribute group and

rekeying of the rest of the users in the same group, whereas Case 1

just changes the message policy and updates the message trapdoor.

Table 3: ReTRACe running time, 20 users/attribute (secs)

ReTRACe Algorithms 8 Attr 16 Attr

UserSetup and Keygen (for 20 users) 2.997 4.694

CreateMessage 0.473 0.963

Sign 0.0904 0.180

Verify 0.114 0.232

VerifyMiner 0.225 0.460

AdaptMessage 0.0928 0.152

RevokeUser (Case 1) 0.545 1.015

RevokeUser (Case 2) (for 19 users) 0.676 1.049

Implementation in Ethereum: ReTRACe can be plugged into ex-

isting blockchains (e.g., Ethereum) by updating cryptographic oper-

ations with equivalent ones in ReTRACe. For instance, in Ethereum

the signature algorithm in the module “crypto/crypto.go” needs to

be modified to use ReTRACe.Sign; “trie/trie.go” to use the digest
of rewritable transactions at the leaves of the blocks’ Merkle trees;

ReTRACe.AdaptMessage andReTRACe.RevokeUser need to be added
to the “ethclient” module and ReTRACe.VerifyMiner to the “miner/

miner.go” module. We are porting these modifications to Ethereum.

With ReTRACe-adapted Ethereum, an authorized user updates

a transaction using the chameleon hash and then submits it to

the transaction pool. In our design, the transactions will be up-

dated with a binary flag (‘0’ ← new; ‘1’ ← updated). A miner

that picks up an updated transaction verifies the transaction using

ReTRACe.Verify, updates the transaction in the block–the remain-

ing transactions are untouched– and propagates the block for con-

sensus. At each node storing the BC, the block with the updated

transaction replaces the old block post transaction-verification.

The cost of ReTRACe operations in Ethereum (in gas) would be

proportional to their computational cost shown in this section. The

exact cost of operations is dynamic, varying based on many factors

(number of pending transactions, minimum cost, etc.). At the base

computation level, ReTRACe scales linearly with increasing number

of attributes and users—highly desirable.

9 CONCLUSION
We present ReTRACe, a blockchain transaction rewriting frame-

work building on a novel revocable chameleon hash with ephemeral

trapdoor scheme and a novel revocable CP-ABE scheme. We discuss

ReTRACe’s contributions and functionalities that provide efficient

and authorized transaction rewrites in blockchains, in addition

to revocability and traceability of the users updating the transac-

tions(s). We have performed rigorous security and experimental

analyses to demonstrate ReTRACe’s scalability.
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