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ABSTRACT

In this paper, we study efficient and authorized rewriting of trans-
actions already written to a blockchain. Mutable transactions will
make a fraction of all blockchain transactions, but will be a necessity
to meet the needs of privacy regulations, such as the General Data
Protection Regulation (GDPR). The state-of-the-art rewriting ap-
proaches have several shortcomings, such as being coarse-grained,
inability to expunge data, absence of revocation mechanisms, lack
of user anonymity, and inefficiency. We present ReTRACe, an effi-
cient framework for transaction-level blockchain rewrites, that is
fine-grained and supports revocation. ReTRACe is designed by com-
posing a novel revocable chameleon hash with ephemeral trapdoor
scheme, a novel revocable fast attribute based encryption scheme,
and a dynamic group signature scheme. We discuss ReTRACe, and
its constituent primitives in detail, along with their security analy-
ses, and present experimental results to demonstrate scalability.
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1 INTRODUCTION AND RELATED WORK

In access control techniques, revocation is a problem that is eas-
ily motivated from a practical standpoint. We present ReTRACe,
a system for performing access control including revocation for
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transaction rewrites in blockchains. A blockchain is an append-only
ledger to which entities can post messages in a decentralized man-
ner. A message could be a financial transaction, a smart contract,
or any data that needs to be shared among several users, but whose
provenance needs to be verified. At a high level, a block is a collec-
tion of multiple messages (also called transactions), and their hash
digests. Usually, once a message has been written to the blockchain,
the message is considered immutable and cannot be edited.

While blockchain edits or rewrites are not required in all appli-
cations, there is an important class of applications where editing
messages written onto a blockchain is essential. For instance, in
the European Union (EU), the general data protection regulation
(GDPR), Chapter 2, Article 17: Right to erasure and Article 19: Noti-
fication obligation regarding rectification or erasure of personal data
or restriction of processing, gives users or data subjects the right to
request that their personal data be erased/edited by the person or
entity collecting or publishing their data, per their request. The
U.S. state of California passed the California Consumer Privacy Act
(CCPA) in 2018 [19], which has codified similar privacy rights, as
described in Article 2. 999.308 (c) (2).

Blockchain technology has widespread applications in health-
care, regulatory compliance and audit, record management, Internet
of Things, and more [21]. It is easy to envisage examples where
a user’s sensitive data is part of the committed blockchain trans-
actions, and at a later point needs to be erased. For example, a
global consortium of banks is currently using a blockchain plat-
form (R3 [28]) to manage financial agreements, securities trading,
etc. These transaction records will include clients’ information and
could potentially contain personally identifiable information.

As per the individual’s “right to forget" (e.g., in GDPR), a user
can request a purge of their identification data from the blockchain,
(true even with encrypted data), and should be able to independently
verify the said purge. Also, when a blockchain is used for record
keeping and auditing the actions of a set of mutually untrusting
parties, there may be situations where a non-monetary record needs
to be expunged from the blockchain, e.g., offensive content, leaked
personal information/encryption keys, etc., and companies have
prototyped editable blockchains for addressing this [33]. The U.S.
Department of Homeland Security in a recent report on the use of
blockchains in government, has judged permissioned blockchains
to be useful for maintaining government records, supply chain
monitoring, and government approval chain processes [17], which
will encourage blockchain adoption. In all such applications, there
might arise need for correcting/updating transactions. Motivated
by this, we concentrate on a permissioned blockchain.

Recently, some solutions have been proposed to enable modifica-
tions on data posted to a blockchain [15]. One method is a hard fork,
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which involves diverging the blockchain at the point where a mes-
sage needs to be changed, creating a new forked blockchain, and
invalidating all subsequent blocks in the old blockchain. Another
technique is to modify a message m to m’, post m’ pointing to m
on the blockchain. In addition to being inefficient, these techniques
do not expunge the old message from the chain, and do not enable
fine-grained control over who can modify messages.

Ateniese et al. [2, 33] proposed a solution for blockchain edits
by rewriting entire blocks, using chameleon hash functions. Deuber
et al. [16] and Reparo [30] proposed mechanisms for block-level
rewrites where any user can propose a redaction or an edit of a
block, which is then voted upon by other users, and the edit is
accepted if it wins a majority vote. Coarse block-level solutions
result in needlessly rewriting an entire block, when only say, a
single transaction in a block needs to be expunged, nor do they
provide fine-grained transaction level control by helping us set
permissions about who can rewrite individual transactions. In this
paper, we focus on transaction-level rewriting. Our intent is to build
a system where a transaction can be updated, if needed, at which
point only the updated transaction will be visible on the blockchain.

1.1 Related Work

Recently, chameleon hash functions have been proposed to enable
blockchain rewrites. Chameleon hash functions [23] enable a user
to find collisions in the domain of a hash function, such that several
pre-images can be created that map to the same hash digest. The
process of finding a collision on a given message, termed adapting
the message, is done using a trapdoor associated with the digest.
For increased security and flexibility, Camenisch et al. [10] pro-
posed the idea of two trapdoors being associated with a digest, a
permanent long-term trapdoor, and an ephemeral trapdoor, which is
chosen per message; a message cannot be adapted without knowing
both trapdoors. Derler et al. [15] presented an application of [10]
to transaction-level blockchain rewrites, where the ephemeral trap-
door associated with a digest of a message posted on the blockchain
is encrypted using ciphertext-policy attribute-based encryption
(CPABE), and only users possessing enough attributes that satisfy
the policy can decrypt the ephemeral trapdoor and adapt a message.
The problem with the above schemes is that access to the ephemeral
trapdoor, once issued, cannot be revoked, i.e., once given out, the
ephemeral trapdoor is accessible to users in perpetuity. Ideally, we
would like to revoke users, such that upon revocation of a user u
who possesses the ephemeral trapdoor, the ephemeral trapdoor is
swiftly updated to a value unknown to u. We use chameleon hashes,
attribute-based encryption (ABE) and a dynamic group signature
scheme (GSS) to achieve our goal.

1.2 Challenges in the State-of-the-art

Motivated by the problem of performing transaction rewrites on
a blockchain, we seek to answer the following questions: Who
gets to erase or overwrite transactions/messages? What if a user
is allowed to update a given message only for a short period of
time? Once a message has been modified, should the identity of
the modifier be revealed, and if yes, to whom? These questions
need to be addressed to make editable transactions usable, which
is our goal in this paper. We focus on three important challenges:

1) Revoking access to ephemeral trapdoors: a revoked user cannot
update a message even if she has a local copy of the long-term and
ephemeral trapdoors. 2) Revoking attributes from users: a user who
no longer has access to an attribute secret key cannot update a
message and/or trapdoor. 3) Traceability: a user who anonymously
rewrote a particular message, but violated the rewriting policy can
be identified. For addressing the first two challenges, we need to
design new cryptographic primitives, since existing ones do not
provide the properties we require.

1.3 Our Contributions

Our contributions in this paper include:

1) Design of a new revocable chameleon hash with ephemeral trap-
door scheme, RCHET, which guarantees that a revoked user cannot
adapt a blockchain message or trapdoor.

2) Design of a new, efficient revocable ABE scheme, RFAME, to con-
trol access to the ephemeral trapdoor.

3) Design of a revocable and traceable blockchain rewriting frame-
work, ReTRACe, using our novel RCHET and RFAME schemes,
and a dynamic group signature scheme as building primitives. In
ReTRACe, authorized users can adapt messages, using the ephemeral
trapdoor of a message’s chameleon hash digest. Access to the
ephemeral trapdoor can be revoked instantly as needed. Authorized
users can anonymously post to and adapt messages on a blockchain,
but their identities can be unmasked by legitimate oversight au-
thorities if needed.

4) Implementation of RCHET, RFAME, and ReTRACe to demon-
strate scalability, and their security analyses.

We note that ReTRACe does not modify the way miners com-
municate with one another and how the blocks are mined in a
permissioned blockchain adapted with ReTRACe’s functionality
(except transaction verification). Both the ReTRACe messages and
non-ReTRACe messages can co-exist in the underlying permis-
sioned blockchain, i.e., after integrating ReTRACe into a permis-
sioned blockchain, the resultant chain can accept mutable (messages
with trapdoors controlled with ABE policies) as well as regular im-
mutable messages such as financial transactions and records of
payments between different entities.

Organization: In Section 2, we discuss the constituents of our sys-
tem model, and cover preliminaries and assumptions. In Section 3,
we give a short technical overview of ReTRACe. In Sections 4 and 5,
we introduce RCHET and RFAME, their definitions, security anal-
yses, and constructions. In Section 6 we briefly discuss dynamic
GSS schemes, and in Section 7, we give the definition, security
analysis, and construction of ReTRACe. In Section 8 we present our
experimental analysis, and Section 9 concludes the paper.

Since ReTRACe has several building blocks, we need to make care-
ful choices on what is included in the main paper and our full
version [26]. We present our new ideas, constructions, and experi-
ments in the main paper, and include formal definitions and proofs
of our constructions in the full version.

2 SYSTEM MODEL AND THREAT MODEL

ReTRACe is constructed using three primitives: 1) a revocable
chameleon hash scheme, RCHET, which provides a dynamic and
mutable ephemeral trapdoor required for updating a message posted
on the BC, 2) arevocable attribute-based encryption scheme, RFAME



used to control access to the ephemeral trapdoor, and 3) a dynamic
group signature scheme (DGSS), which helps legitimate users know-
ing the current ephemeral trapdoor, to sign message updates anony-
mously before posting them to the blockchain. Both, RFAME and
DGSS are associated with policies. In this section, we discuss the
parties involved in ReTRACe, and the policy structures that control
their ability to update messages.

Naming Conventions: In our discussions, we refer to the blockchain
as BC, we use message to mean a pre-image of the chameleon hash
function, which is posted on the BC as a transaction, and when we
say “trapdoor”, we mean the ephemeral trapdoor of the chameleon
hash, unless otherwise specified. A chameleon hash function’s out-
put has mutable and immutable parts, the immutable part contains
the digest of the hash function, the mutable part includes the trap-
door needed for creating a message collision, among other things.

2.1 Policies

ReTRACe has four kinds of policies, all represented as Boolean
predicates: 1) A trapdoor associated with the digest of a given
message is encrypted under an ABE policy, Yage. 2) The policy Ygs,
spells out certain DGSS groups from which users can anonymously
sign a message update, and post it on the BC. 3) For revoking access
to the trapdoor, we define a policy, Y4B Eadmin» that sets forth who
can create an updated ephemeral trapdoor, and encrypt it under
a new policy, Y/;\BE' 4) Finally, Y5 5admin gOoverns who can change
YGs, and thus exclude users of certain DGSS groups from producing
valid signatures.

For simplicity of exposition, we assume that the Y4 ggadmin and
YGsadmin Policies, once set, cannot be changed (which can be re-
laxed on an as-needed basis by setting up a higher level of control).
We stress that it is the Y4 ggadmin and YGsadmin policy clauses that
are immutable; our system allows for the set of people satisfying
them to be dynamic and ever-changing.

Unlike ABE schemes, DGSS do not have the concept of policies
built into them; we introduce this notion for ReTRACe. We define a
DGSS policy as a publicly-known Boolean predicate linked to a mes-
sage m that specifies which groups can produce valid signatures on
m, e.g., (m, Ygs = “Admin” AND "Payroll"), indicates users belong-
ing to groups “Admin” and “Payroll” can produce valid signatures
on m. In case of Boolean predicates with conjunctive clauses, the sig-
natures (o) and corresponding group public keys (gpk) are collected
into a set, &m, where £m = (0Admin> 8Pk Admin)> (O'Payroll’ gkaayroll)'
Any public verifier can check the validity of a set of signatures for
a message w.r.t. a given policy.

2.2 Parties

The parties involved in ReTRACe are categorized into:

1) Originator: The originator creates a message, its digest and trap-
door, and sets the four policies, YAg, YGS» YABEadmins 214 YGSadmin
that regulate future message updates.

2) Set of Authorized Users, AuthU: The set of users who can
create a collision on a message posted on the BC by the origina-
tor (AuthU could include the originator) as long as they possess
enough attributes that satisfy Yagg, and are a member of a DGSS
group satisfying Ygs.

3) Set of Authorized User Administrators, AuthUAdmins: This
is the set of users who can modify the trapdoor, as well as create a

collision on the message (AuthUAdmins could include the origina-
tor), as long as they possess enough attributes to satisfy Y4 ggadmin

and are a member of a DGSS group satisfying Y5 sadmin-

4) Attribute-issuing authority and Group Manager: The attribute-

issuing authority (AIA) for the ABE scheme, and the Group Manager
(GM) for the DGSS issue keys to their respective users. For presen-
tation clarity, we use a single AIA and GM, but in practice, more
can be used easily in ReTRACEe if design warrants.

2.3 Blockchain Operations

A ReTRACe transaction consists of a mutable part (plaintext mes-
sage, policies, trapdoor, ciphertexts, signatures, etc.) and an im-
mutable part (digest). When a ReTRACe transaction is included in
a block by the miners, only the immutable part of the ReTRACe
transaction is used in the Merkle tree of the given block instead of
the hash of the whole transaction. This makes it possible to update
a ReTRACe transaction in the future as long as the mutable part
of the updated transaction verifies with the immutable digest on
the BC. ReTRACEe is independent of the kind of underlying BC sys-
tem including the consensus mechanism, e.g., Proof of Work/Stake,
as long as the security requirements for ReTRACe defined in Sec-
tion 2.4 are met. For a user to be able to post any ReTRACe messages
in the BC, the user needs to be previously onboarded with a AIA
and GM in the given ReTRACe system.

To use ReTRACe with a given BC system, the hash verification
function of the BC needs to be modified to perform the ReTRACe
messages’ verification (miner verification, and public verification
of the ReTRACe messages). But ReTRACe does not leak sensitive
information to the miners hence the miners are not onboarded
by the AIA and GM. Adding or removing miners in the system
using ReTRACe works in the same as any other BC system; the
miners have a few extra steps when verifying updates to ReTRACe
transactions, but none of those steps involve the miners learning
privileged information about the messages posted on the BC.

Each block on a ReTRACe-modified BC could have mutable as
well as immutable transactions and the resultant hash of the block
will always be immutable as per the rules of traditional BCs. The
verification algorithm can verify mutable as well as immutable
transactions, thus ReTRACe can be implemented on a blockchain
which supports both, mutable and immutable transactions. Note
that once a transaction is written to the BC as immutable, it can-
not be modified, only transactions which were originally posted
as ReTRACe transactions with a trapdoor and access policy are
updatable. The AIA and GM are publicly available to all users to
sign up with, if any user needs to post mutable transactions on the
BC, user do not need to sign up with the ATA/GM if they do not
want to post immutable transactions.

2.4 Trust Assumptions and Threat Model

We make a few modest trust assumptions in ReTRACe. As in most
BC-enabled systems, we assume the consensus protocol being used
ensures honest operation by miners. We assume the AIA will hon-
estly generate attributes and secret keys; one could relax this as-
sumption by using multi-AIA techniques of Chase [11], where



components of users’ secret keys are generated by multiple AIAs.
Similarly for the DGSS scheme, we assume that the GM for a group
will issue signing keys properly, and trace users honestly. We could
dilute this assumption by using techniques of Bootle et al. [9], by
introducing a tracing manager, and separating the roles of group
and tracing managers. These relaxations could be applied on as
as-needed basis, we do not discuss them for narrative simplicity.
Threat Model and Security Goals: Our main goal is to protect
against adversaries that have no access to the long-term trapdoor
and/or current version of the ephemeral trapdoor for a given mes-
sage, m, posted on the BC, do not satisfy the policies associated
with m, yet who try to update m or its trapdoors. A second goal is
to protect the privacy of, and provide anonymity to, the individu-
als who post a message or update a message and/or its trapdoor
on the BC. The only way for an adversary to violate our goals is
to break the security of our cryptographic constructs. We do not
consider network attacks (e.g., eclipse attacks, traffic analysis, etc.)
in this paper, prior works [6] that focus on them can be used in
conjunction with ReTRACe.

2.5 Computational Assumptions

The security of ReTRACe is derived from time-tested, well-regarded
assumptions based on the Discrete Log problem, the Decision Linear
problem (DLIN), and the Decisional Diffie-Hellman (DDH) problem,
defined in [26]. We model ABE access control policies as Boolean
formulas with AND and OR gates, where each input is associated
with an attribute, and the Boolean formulas are represented as
monotone span programs, as is common in the literature.

3 ReTRACe TECHNICAL OVERVIEW

In this section, we give a high-level, brief technical overview of
ReTRACe. Without loss of generality, let us consider a single ATIA
and GM in the system. Let [1..n] represent a set of users, the AIA
issues sets of secret keys, SKy,...,SK,, and the GM issues sets
of signing keys, ski, . .., sky to the n users. Let mpkapg and gpk
denote the public keys of the ABE and DGSS schemes respectively.
Let us consider a user, u who creates a message, m, to be posted
on the BC. User u creates an adaptable (i.e., updatable) trapdoor
7, that enables future modifications of m (using our novel RCHET
scheme), creates a policy, Yapg, which defines a set of authorized
users, AuthU that are allowed to modify m. User u encrypts 7
with mpkapg (using our novel revocable ABE scheme, RFAME),
Empkage (7- YaBe) — X. For controlling who can update 7 in the
future, u picks an r «—sZq (where G and q = |G| are part of the
public parameters, and will be used in the cryptographic operations
of ReTRACe). User u then creates the Y4 ggadmin policy that defines
the set of authorized user administrator(s), AuthUAdmins who are
allowed to update 7, and computes Enpk e (7, YABEadmin) — Xr-
A user in AuthU updates m during a message adaptation, a user in
AuthUAdmins updates m, X and X, during a trapdoor update.
User u also sets the DGSS policies, Ygs, and Y5 gadmin that stip-
ulate only members of AuthU and AuthUAdmins are authorized
to produce valid anonymous signatures on an updated message
and updated trapdoor, respectively, before posting to the BC. Fi-
nally u posts tuple t = (m, X, Xy, Yinfo = (YABE, YGS)s Yadmin =
(YABEadmin»> YGSadmin))> along with a signature on ¢ to the BC. We

assume standard techniques such as nonces/timestamps to prevent
replay attacks are used.

Any user i € [1..n], s.t. i € AuthU whose secret key set SK; €
{SKi,...,SKp} satisfies YogE, can decrypt X, obtain 7, and update
m to m’ (using RCHET). Note that being able to satisfy Yogg only
allows i to decrypt the trapdoor, 7, and update m, but not update 7.
User i will produce a signature on m’ using sk; that satisfies Ygs,
and post m’ and the signature on the BC.

The digest of a given transaction only corresponds to the m
contained in it. The miner’s verification function in ReTRACe en-
sures that only members of AuthU can update m and X, and only
members of AuthUAdmins have permission to update m, X and
X,. The miner’s in ReTRACe do not need any extra or privileged
information other than what is already available as part of the pub-
lic parameters of ReTRACe, hence they do not need to sign up with
the AIA or GM in the system.

Revocation of users from AuthU is handled by either a mem-
ber of AuthUAdmins updating Yage to Y5, (RFAME), or by the
ATA/GM revoking individual users, in which case Yagg is unchanged.
Any user j € [1..n], s.t. j € AuthUAdmins whose secret key set
SK; € {SKji,...,SKy} satisfies Y4ppadmin, can decrypt X;, ob-
tain r, update 7 to 7’ (using RCHET), such that ” will only be de-
cryptable by non-revoked users (using RFAME for access control).
User j will compute Eppp, (7, -) = X', j will prove knowledge
of r to the miner thus proving it can satisfy Y4ggadmin, and is a
member of AuthUAdmins. User j then picks r’ «sZg, computes
Empkagz (7’5 ) = X{, to replace r. Then j will sign and post m’, X’
and X on the BC. The DGSS signature will be produced using j’s
signing keys, sk;, that satisfy YGsadmin-

We discuss the details and subtleties of ReTRACe in Section 7;
in what follows, we describe the building primitives.

4 REVOCABLE CHAMELEON HASH WITH
EPHEMERAL TRAPDOORS

We envisioned a revocable CHET scheme, where the long-term
trapdoor remains permanent, but access to the ephemeral trapdoor
can be revoked at will. Intuitively, for performing revocation, we
update the ephemeral trapdoor, and prevent the revoked user from
accessing the updated trapdoor.

We present our construction of an RCHET scheme in Figure 1.
The security of our RCHET construction is based on the discrete
log and DDH assumptions. At a high level, the idea is to hide the
long-term and ephemeral trapdoors in the exponent of public pa-
rameters and use non-interactive zero knowledge proofs of knowl-
edge (NIZKPoKs) to prove knowledge of them. In the construction,
IT is an IND-CCA2 public key encryption scheme, which is used to
encrypt randomness associated with the trapdoors. We overload
the verification function for both, signatures and zero-knowledge
proofs as verify, which will be clear from context.

4.1 RCHET Security Properties

The properties of indistinguishability, public and private collision
resistance were introduced by Camenisch et al. [10] for CHET
schemes. Derler et al. [15] retained the three properties, but strength-
ened their security definition by giving the adversary access to an
oracle for adapting messages in the private collision resistance



RCHET Algorithms
a) RCHET.systemSetup(14) — (pubpar): This algorithm generates the public parameters of the system:
1. (G, g,q) « GGen(11). GGen generates prime-order cyclic group G, g € G, g = |G|.
2. Pick H’s key, k € K, and crs « Gen(14), where % is the key-space of H. Set and return pubpar = (k, G, g, g, crs). We assume
pubpar is implicitly passed as input to all other algorithms.

b) RCHET.userKeySetup(lA) — (skep, pken): This algorithm generates the long-term trapdoor and a public key:
1. Pick x « ZZ’ h « g*, mp — NIZKPoK{x : h = g*}, generate keys (SK, PK) « H.KeyGen(lA).
2. Set pkep, = (PK, h, mpx) and skp, = (SK, x). Return (skep, pkep)-

c) RCHET.cHash(skcp, pkcp, m) — {(digest, rand, Tyubinfo, Iprivinfo), L }: Creates a chameleon hash for a message m:

1. Check verify(:rpk, h) z 1, if not, return L. Pick r, etd, d, § « Zfl.

2. Compute i’ — ¢4 D « g9 and A « ¢° Do m; « NIZKPoK{etd : ' = ¢®'} 7p «— NIZKPoK{d : D = g%}, mp «
NIZKPoK{5 : A = ¢%}.

3. Generate hash of message to be posted, a «— Hy(m) and create chameleon hash parameters: f « (r + g + %),p —h',be—p- -
Do 7p <= NIZKPoK{r : p = " }. Do C « ILEncrypt(PK,r), C" « ILEncrypt(PK, a).

4. Return digest = (b, h’, 7;,C,C’), rand = (B, p, 7p), Doubinfo = (A, mp, D, np), Lorivinfo = (8,d, etd).

d) RCHET.verifyTransaction(pk.p,, m, digest, rand, I,upinfo) — {0, 1}: This algorithm verifies the digest for a message m.
1. Check verify(m,y, h) z 1, verify(zp, p) 2 1, verify(ms, h') 2 1, verify(np, D) 2 1, and verify(ma, A) Y

? ra
2. Check b = hg_hA , where a « Hy(m). If check passes, return 1, else return 0.

e) RCHET.adaptMessage(skcp,, m, m’, digest, rand, Tyupinfos lprivinfo) — {rand’, L}: This algorithm updates a message m:
? ra
1. Decrypt a « II1.Decrypt(SK, C’), check a « Hy(m). Check b z hﬂD'.Z . If checks fail, return L.

? x 2 oxr opr 2 etd ? d ? 5 :
2.Checkh=¢*,p=g*",h" = ¢g°'% D = g%, and A = ¢g°. If checks fail, return L.
3. Decrypt r «— II.Decrypt(SK, C), if r = L, return L.

4. Compute a’ «— Hy(m’). Compute r’ « (rx+a'3td;al'etd+5 ).

5.Setp’ = B and do 7y NIZKPoK{r’ : p’ = R} Compute ' « (r' + %). Set and output rand” = (8’,p’, 7p).

f) RCHET.adaptTrapdoor(sk.p, m, m’, digest, rand, Loupinfos privinfo) — {(rand’, T’ I’

pubinfo’ ~ privinfo

), L}: This algorithm modifies the

trapdoor to an existing chameleon hash for a message m as follows:
? ra
1. Decrypt a « II.Decrypt(SK, C’), check a «— Hy(m). Check b 2 hi)}g . If checks fail, return L.

. Check h £ g5, p z g K Z g°t4. D Z g%, and A Z g% If checks fail, return L.

. Decrypt r « IL.Decrypt(SK,C), if r = L, return L. Compute a’ « Hy(m’).

.Pick d’, 8" « Z. Compute D" « g% N — g% dompy — NIZKPoK{d’ : D’ = g%}, mn — NIZKPoK{6" :A” = ¢%'}.
.Setr’ «— (%‘W),p' — . Compute f’ — (' + %) 7 NIZKPoK{r’ : p" = n'}.

. Prove knowledge of DDH tuple (g, g‘s,gd,gﬁd). Set and output rand” = (8’,p’, 1), = (A, mp, D', mpr), and 1"};
(67, d’, etd).

N U R W

I’ =
pubinfo rivinfo

Figure 1: Construction of Revocable Chameleon Hash with Ephemeral Trapdoors (RCHET)

game, while [10] only gave adversary access to a hash oracle. We
further strengthen the security properties by: 1) introducing the
notion of revocation collision resistance, which any RCHET scheme
must provide, and 2) giving the adversary access to oracles for both,
adapting messages and adapting trapdoors.

Informally, indistinguishability requires that an outsider, given a
random string, rand, cannot tell if rand was obtained by hashing
the original message, a message update or a trapdoor update. Public
collision resistance requires that a user who possesses neither the
long-term nor ephemeral trapdoor, cannot find collisions by himself.
Private collision resistance requires that even the holder of the long-
term trapdoor cannot find collisions, as long as the ephemeral

trapdoor is unknown to them. Revocation collision resistance requires
that a user that knows both, the long-term trapdoor and ephemeral
trapdoor, cannot find collisions after the ephemeral trapdoor has
been updated, as long as the new ephemeral trapdoor is unknown
to them. We formalize these security properties, and give the proof
of the following theorem in [26].

THEOREM 4.1. If the discrete log assumption and DDH assumption
hold in G, H is collision resistant, I1 is IND-CCAZ2 secure, and the
NIZKPoKs satisfy completeness, simulation soundness, extractabil-
ity and zero knowledge, then our revocable chameleon hash with
ephemeral trapdoors scheme, RCHET shown in Figure 1 is secure.



5 REVOCABLE ATTRIBUTE-BASED
ENCRYPTION

In this section, we describe our revocable ciphertext policy attribute-
based encryption (CPABE) scheme, RFAME, and discuss its effi-
ciency and security properties. Most of the benchmark schemes in
the ABE literature do not consider attribute revocation [20, 31, 32].
FAME [1] is a state-of-the-art efficient ABE scheme that performs
better in terms of qualitative and quantitative metrics, compared
to prior works, and provides full IND-CPA security, although it
does not discuss revocation. We use FAME as a starting point for
designing an efficient revocable CPABE scheme, RFAME.

Revocation model: In ABE, there are broadly speaking, two
possible kinds of revocation. One is policy-level revocation, where
revocation entails deleting a clause from an ABE policy, e.g., Y = “CS
students” and “EE staff” can be updated to a more restrictive policy,
Y’ = “CS students”. The other is the more fine-grained user-level
revocation which calls for revoking decryption rights of individual
users, e.g., if we do not wish to update Y, but revoke access of a
member of staff from EE. We consider user-level revocation in this
paper (although our scheme also supports modifiable policies, if
needed).

Most of the benchmark ABE schemes proposed in the litera-
ture [1, 20, 24, 32] do not support revocation. The ones that do
are either based on non-standard assumptions [7, 13, 27, 29], offer
only selective security [3, 8, 34], are application-specific [13, 34],
do only policy-level revocation [7, 29], do not support Type III pair-
ings [3, 7, 8, 13, 14, 27, 29, 34], need revocation lists which do not
scale well [3, 8, 13, 14, 29, 34], or perform inefficient revocation [12].
We design an efficient revocable ABE scheme, RFAME, to revoke
access to ephemeral trapdoors that provides our desired properties.

5.1 Construction

We give our construction of RFAME in Figure 2, whose security is
based on the DLIN assumption. We walk the reader through a few
initial steps of the decryption algorithm that will help in verifying
correctness in [26]. We now describe our intuitive ideas behind
RFAME and its efficiency.
Efficient Rekeying in RFAME: Let us consider an AIA of an or-
ganization that issues four kinds of attributes, “Admin”, “Payroll”,
“Benefits”, and “Accounts”. Let us assume there are y unique users
possessing each attribute—-a total of 4y users in the system, and that
there are three messages in the system encrypted under different
policies: i) Msg, is encrypted under Ypsg, = (“Admin” OR “Pay-
roll”); ii) Msg, is encrypted under Yysg, = (“Payroll” OR “Benefits”);
iii) Msgs is encrypted under Yjsg, = (“Benefits” OR “Accounts”).
Using current revocable CPABE schemes (e.g., [12]), if one user
possessing the Admin attribute terminates employment, their secret
key is revoked by the AIA, and the other y — 1 Admin users get
rekeyed. Msg; needs to be re-encrypted to prevent the revoked user
from decrypting it. Since Payroll is part of the Yysg, policy, all y
users holding Payroll get rekeyed, as Msg; got re-encrypted. Payroll
users getting rekeyed results in Msg, needing to be re-encrypted.
Consequently, users holding Benefits and Accounts attributes need
to be rekeyed, and Msg; needs to get re-encrypted. In total, we
need to perform three re-encryptions and rekey 4y — 1 users, for a
single user revocation. Our goal is to avoid such a domino effect.

At a high level, our idea is to associate each attribute, attr with
some unique randomness, r, and embed r into the secret keys of
all users who possess attr. When a user possessing attr needs to be
revoked, we update the randomness to r’ and reissue new secret
keys with r’ embedded in them only to the non-revoked users
holding attr, and re-encrypt all ciphertexts whose policies involve
attr. For facilitating this, the AIA can maintain a compact local table
identifying which users possess a given attribute—a small storage
cost in exchange for avoiding system-wide rekeying of users.

Furthermore, non-revoked users possessing attributes other than
attr can still use their current keys to decrypt re-encrypted cipher-
texts, which significantly reduces the number of users that need to
be rekeyed, and the ciphertexts that need to be re-encrypted. (note
that in [29], the authors propose a scheme that does not require
re-encryptions, for policy-level revocation, with the restriction that
a ciphertext can only be re-encrypted to a more restrictive policy.
Our work is significantly more flexible, in that we perform user-level
revocation, and do not impose any restrictions on policies).

Thus, RFAME handles revocation more efficiently; when a user
possessing Admin gets revoked, only the other y — 1 users in Admin
are rekeyed, and only Msg; needs to be re-encrypted to prevent
the revoked user from decrypting it. The price we pay for this is
that RFAME is a small-universe revocable CPABE scheme.

In summary, in the worst case, if x is the number of unique
attributes in a system, y the number of users per attribute, then
the overhead, using state-of-the-art revocation methods is O(x) re-
encryptions and O(xy) rekeyings. In RFAME, the overhead is ©(1)
re-encryptions and O(y) rekeyings. We first prove RFAME CPA-
secure, we later turn this into a CCA-secure scheme for ReTRACe.
We give the IND-CPA game for RFAME and the proof of the follow-
ing theorem in [26].

THEOREM 5.1. RFAME is fully IND-CPA secure under the DLIN
assumption on Type III pairings in the random oracle model.

6 DYNAMIC GROUP SIGNATURE SCHEMES

We use a group signature scheme for providing privacy and anonymity
to users posting messages on the BC, yet retaining the ability to
trace them if necessary. The group signature scheme can be easily
replaced with a regular signature scheme in ReTRACe if anonymity
is not required in the system. Group signature schemes are based
on three kinds of groups: static, semi-dynamic, and dynamic groups.
Static groups do not support user addition or revocation [4], semi-
dynamic groups support addition but not revocation [5], and dy-
namic groups allow addition and revocation [9]. We use a dynamic
group signature scheme (DGSS) in ReTRACe. We do not construct
a DGSS, as existing constructions [9, 25] provide the properties we
need. ReTRACe is independent of any specific construction.

7 THE ReTRACe FRAMEWORK

We now give the detailed construction of the ReTRACe framework
comprising of eight algorithms in Figure 3, Figure 4, Figure 6, and
Figure 5. In the algorithms, M denotes the monotone span program
representing an ABE policy, and p represents a mapping function
that maps rows of M onto attributes. We use BC.write to denote
a blockchain write operation. The Keygen, UserSetup, Sign, Verify,



RFAME Algorithms

a) RFAME.SetupABE(1*,U) — (mpkapg,mskapg): The algorithm first generates the group parameters (q,G,H, Gr,
e,g,h), picks ai,az,b1,ba,p1,p2 <—$Z’c}, di.ds,d3 <sZgq. It picks ay %sz(*], and computes h*v for each y € U. It sets
mpkage = (hHy = h%,Hy = h®. T = e(ghPrhatds 1) = o(g hyP2d2@2*ds p%  p™Ul) and sets mskapg =
(9, h,al,ag,bl,bz,pl,pg,gdl,gdz,gd3,ayl . ay‘U‘).

b) RFAME.KeyGenABE(mpkapg, mskagg, Y1, - - -
r1, 12 < Zq. Compute sko = (hblrl,hbm, hTitT2),
Forally € U and t € {1, 2}, pick oy, o’ —s Zg, and compute:

,Yju|) — SK: The algorithm generates the secret keys for all attributes y € U. Pick

biry byry ritry %y ay

sky,r = H(y1t) e+ - H(y2t)***y - H(y3t)“*ey - ga+ey . go+ey sk, 3 = (g% - g~ %)

’ L} bory Ity L ’ ds —o’ ” dip
sky = H(011t) @ - H(012t) @ - H(013t) . -gar;sky = (g™ - g~ 7 ), sk’ = g“Pt
Set and return SK = (sko, sky, 1, sky, 2, sky, 3, ski, skj, skg, sk”’)
¢) RFAME.Encrypt(mpkagg, msg, (M, p)) — C. Pick s1, 52 < Zg. Let p(i) denote a mapping to the attributes i € I that satisfy a given
policy. Compute:

Ctp(i = HY' - (%)% = p$1(@¥ @) and similarly ct ;) 5 = h*(% %), and set
cto = (cto,1 = Hlsl, cto,2 = HZSZ,Ctp(i)’l,Ctp(i)’z,ctoj = pS1752)
Assume M has n; rows and ny columns. Then, for each row, i € [1..n1] and [ = 1, 2, 3, compute:

n3

cty ) = H(p(D)I1)* - H(p(i)2)* - 1_[[7{(0]11)31 - H(0j12)%2]Mis; Setct’ = (T - T3 - msg)

Jj=1

Set and output C = (cto, ct; ; Vi € [1..n1],1 € {1, 2,3}, ct’)
d) RFAME.Decrypt(SK,C, (M, p)) — {msg, L}: Parse C as (cto,ct; ; Vi € [1..n1],] € {1,2,3},ct’). For each row ct; ; € M, pick
coefficients y; € {0, 1} such that }; y;(M); = [1,0,...,0].
iel

num = ct’ - e(l_[ ct{"l, sko,1) - e(l_[ ct{iz,sko,z) . e(l_[ ct{‘é, sko,3)
iel iel iel
den = 1_[ e(skf}"(i),l, ctp(in1) l_[ e(sk');"(l.)’z, ctp(iy,2) - e(sks - l_[ skf)i(i)’g, cto,3) - l_[ e(sk; - sky’, cto,r)
iel iel iel te{1,2}
€) RFAME.Revoke(mpkapg, mskagg, v) — (mpkapg’, mskapg’, SK’): Let a user holding attribute v € U be revoked by the AIA. This
algorithm is run by the AIA which generates new parameters for the non-revoked users of attribute group v, and updates its mpkapg
and mskagg. It picks f, « Z:‘], and computes RAv 1t updates mpkapg’ = (h, Hy,Hz, Ty, Tp, h%1, . . ., R*UI-1 hPv). The mskagg
remains the same except the @, gets replaced with f, . It then generates (a component of) the secret key for all non-revoked users

possessing attribute v as follows:

where t €

ry+ro

Bv

by byry ov
Skv,t — H(Vlt) ar+fv . W(th) ar+Pfv . (}'[(V3t) ar+Pfv . gaz+ﬂv . gflﬁ/fv ;Skv,3 — (g_ﬂv . g_C’v)
{1,2}, and all other variables are as defined in the SetupABE and KeyGenABE algorithms. Set SK’ =
(sko, sky, ¢, sky,3, ski, ské, ské, sk’’). SK’ is distributed only to the non-revoked users who possess attribute v.

Figure 2: Construction of Revocable Fast Attribute Based Encryption (RFAME)

AdaptMessage algorithms are fairly self-explanatory. We now de-
scribe some of the salient features of the CreateMessage, VerifyMiner,
and RevokeUser algorithms, which are more involved. We assume
a given implementation will use standard techniques like nonces
and timestamps to prevent against replay attacks.
ReTRACe.CreateMessage: This algorithm (Figure 4a), is run by the
originator who first runs RCHET to create a digest and trapdoors
for a message m. The originator sets Yagg, Ygs (for members of
AuthU), and Y4 gEadmin and YGsadmin (for members of AuthUAd-
mins). The ephemeral trapdoor is encrypted under Yagg to obtain
X. The originator then picks an r «s Z:‘] and encrypts it under

YABEadmin to obtain X,. This ensures that only members of Au-
thUAdmins can decrypt r, and modify Yagg and Ygs. The origina-
tor creates a tuple, msg, with X and policy information, signs msg
using her signing key(s) that satisfy Ygs, and creates a set of sig-
natures, &y, . , with each signature bundled with its corresponding
verification key. Finally, the originator signs Yj,¢, and sends the
signature, along with msg, &msg, &, to the miner.

ReTRACe.VerifyMiner: This algorithm (Figure 6) is run only by

miners to verify a message before posting it on the BC. If a message
is being adapted (¢ = L), the miner does not do NIZK verifications.
If a trapdoor is being adapted (¢ = 7)), the tuple submitted to the



ReTRACe.Keygen(11)
1: GSetup(1*) — pubpar
2:  GKGen(pubpar) — (outgm, stom),

where outgp = (mpk, infoy)
3:  Set gpk = (pubpar, mpk), stgpris GM’s state
4:  RFAME.SetupABE(1%, U) — (mpkapg, mskagg)
5: RCHET.cSetup(l’l) — param
6: RCHET.userKeySetup(param) — (sk¢p, pken)
7:  PubPar = (G, g, q, pkcp, mpkagg, gpk)
8: SecPar = (mskapg, StGM)

9: return (SecPar, PubPar, sk.j)

(a) ReTRACe: AIA/GM setup

ReTRACe.UserSetup(SecPar, PubPar)
1:  GetL, the list of all groups in DGSS

that current user needs to join, set GSK = &

2:  For each group in L, Run DGSS. Join get
gsk, GSK = GSK U gsk

3:  RFAME.KeyGenABE(mpkagg, mskagg, yi, - - - »
yju)) = SK

4: Retrieve sk.p

5: return key = (GSK, SK, sk¢p)

(b) ReTRACe: System setup for user
ReTRACe.Sign(GSK, m, Ygs)
1: PickKs.t., K € GSK, Ygs(K) =1
2: forgski €K, wherei €1---|GSK | do

3: DGSS.Sign(gski, i.info, m) — {0y, L}
4 &= (04, i.gpk)UE

5: return &

(c) ReTRACe: Signing a message
ReTRACe.Verify(PubPar, msg, &msg)

1: for (oy, l.gpk) € Emsg do
2: if DGSS.VerifySignature(l.gpk, l.info, msg,

o) z 0, return 0

3t for (o7, l.gpk) € & do

4: if DGSS. VerifySignature(l.gpk, I.info, Yj,f,,
o) z 0, return 0

5: if RCHET.verifyTransaction(pk.p, m, digest,

?
rand, I}xllbixlfvs) =1

6 : return 1.

(d) ReTRACe: Verifying a message

Figure 3: ReTRACe algorithms for system setup and sign-
ing/verifying messages

miner is an update to a pre-existing msg on the BC, and the w used

ReTRACe.CreateMessage(key, PubPar, m)
1:  RCHET.cHash(sk.p, pkep, m) —

(digest, rand, Toubinfos I‘privinfo)
2:  RFAME.Encrypt(mpkagg, I‘privmfo, (MTABE’
pYABE)) - X
3:  Create Ygs. Set Yo = (YaBe, YGs)
4: r<—$Z;,(u:gr, Mg — NIZKPoK{r : 0 = g"}
5:  RFAME.Encrypt(mpkagg, 7> My, pp.imins
PYABEadmin) = Xr
6: Create YGsadmin
7t SetYadmin = (YABEadmins YG Sadmins Xrs @, ”w)
8: ReTRACe.Sign(GSK, Yinfo» YGSadmin) — &xyy,
9: msg = (m, digest, rand, upinfor X, Yinfor
Yadmin, §me0)
10: ReTRACe.Sign(GSK, msg, Ygs) = &msg
11:  CallReTRACe.VerifyMiner(PubPar, msg, &mnsg, o)

12:  return (msg, Emsg)

(a) ReTRACe: Creating a message

ReTRACe.AdaptMessage(key, PubPar, m’, msg, Emsg)
1:  if ReTRACe.Verify(PubPar, msg, &mns4) z 0

return L
2:  RFAME.Decrypt(SK, X, (Myg¢> Pxage)) — Dprivinfo
3: RCHET.adaptMessage(sk.p, m, m’, digest, rand,

Iﬂpubinfoa Iﬂprivinfo) — rand’
a:  msg’ = (m’, digest, rand’, Dyupinfor X, Yinfor
Yadmin> £1;,)
5:  ReTRACe.Sign(GSK, msg’, Yos) = &Emsg
6: if ReTRACe.VerifyMiner(PubPar, msg’,
?
§msg” J—) =0
return L

7:  return (msg’, Emsgr)

(b) ReTRACe: Updating a message

Figure 4: ReTRACe algorithms for creating and updating a message

to verify the NIZK 1, is obtained from the current msg on the BC.
If a new message msg is being created (¢ = 7,,), then the w used to
verify the NIZK r,, is obtained from the msg tuple itself. In all cases,
the miner checks if all signatures in &p,54 pass verification w.r.t.
Ygs contained in the tuple msg, checks if all signatures in &y,
pass verification w.r.t. YGgadmin, and the digest of m is checked.
If all checks pass, the msg tuple, along with the list of signatures
on it is written to the BC. Note that if ReTRACe is deployed in a
BC that hosts both mutable and immutable transactions, then for
immutable transactions, the miner verification process is the same
as in current BC systems.

ReTRACe.RevokeUser: This algorithm (Figure 5a, Figure 5b) is called
by a member of AuthUAdmins either when they want to revoke
clauses from the ABE policy, YagE, or when the ephemeral trapdoor,




Ip

ReTRACe.RevokeUser(key, PubPar, m’, msg, §msg)

1:

12t

13 :

14

if ReTRACe. Verify(PubPar, msg, &msg) Zo
return L
RFAME.Decrypt(SK, Xr, (My, gp g,
PYABEadmin) 7
resZy, o = gr’.Set Tyt NIZKPoK{r’ : o’ = gr,}
RFAME.Encrypt(mpkagg, ', My, gpoq
PYABEadmin) — Xr/
Y min = (YABEadmins YGsadmins Xr/> @5 7ay)
RFAME.Decrypt(SK, X, (Myuge> Prape)) = Dprivinfo
RCHET.adaptTrapdoor(sk., m, m’, digest, rand,
Toubinfo> Lprivinfo) — (rand’, rl;ubinfo’ F;rivinfo)

RFAME.Encrypt(mpkagg, rérivinfo’ (MT//ABE’

Prig) = X
Y = (Cage- Yos)
ReTRACe.Sign(GSK, Yi,nfo’ TG sadmin) = §Yi/nfo
X,

’ ’ . ’ 4
msg’ = (m’, digest, rand’, l“pubmfo,

Yi/nfo’ Y;clrnin’ gri’nfo)
ReTRACe.Sign(GSK, msg’, Yos) = &Emsgr
Call VerifyMiner(PubPar, msg’, &psgrs 7ey)

return (msg’, &msg)

(a) ReTRACe: Revoke Case 1: Revoke users by updating policies

ReTRACe.RevokeUser(key, PubPar’, m’, msg, &msq)

1:

10 :

11

if ReTRACe. Verify(PubPar’, msg, £msg) Zo
return L
RFAME.Decrypt(SK, X,

) —>r

MY adinin
PYABEadmin
resZh, o' = g" Setm, — NIZKPoK{r': &' = g" }
RFAME.Encrypt(mpkape’s 7’s (MY, g5 gimins
PYaBEadmin) > Xr'
Y tmin = (YABEadmins YGSadmin» Xr7s @', 7er)
RFAME.Decrypt(SK, X, (My,gze> Prage)) = Tprivinfo
RCHET.adaptTrapdoor(sk.p, m, m’, digest,
r

’
rand, rpubinfo’ rprivinfa) — (rand’, rp privinfo)

ubinfo’

RFAME.Encrypt(mpkagg’, I‘I;rivi“fos (Myage»
PYage ) — X’

msg’ = (m/, digest, rand’, FI;

Y:;dmin’ §Yinf0)

ReTRACe.Sign(GSK, msg’, Ys) = &Emsg’

Call VerifyMiner(PubPar’, msg’, Emsgrs 7a)

4
X', Yinfos

ubinfo’

return (msg’, :fmsg')

(b) ReTRACe: Revoke Case 2: AIA revoking a single user

Figure 5: ReTRACe algorithms for revoking users

rivinfo> Needs to be re-encrypted in response to the AIA revoking

a user. Both cases are handled differently:

Case 1: Revoking a clause from Yagg: This algorithm (Figure 5a) is

run by an user v € AuthUAdmins who wants to modify an Yagg
associated with msg. The AIA/GM are not involved, and no algo-
rithm from RFAME is called. User v first decrypts the trapdoor,
Torivinfo> using her RFAME secret keys, v picks an /, and encrypts
r’ under YA gEadmin- This is to ensure that only non-revoked mem-
bers of AuthUAdmins can decrypt r’ and adapt the ephemeral
trapdoor in the future. Next, v adapts the ephemeral trapdoor. The
new message and trapdoor are encrypted under a new policy, Y,
which is a low cost operation and involves no re-keying operations.
We have not depicted the Ygs getting updated, for clarity of presen-
tation. There are four cases:

1) If Yo changes to a more inclusive Y; g,
need to be present in the Ygs as well.

2) If YA changes to a more restrictive Y/’ABE’
cannot decrypt the trapdoor and successfully adapt the message,
so Ygs does not need to change.

3) If Ygs changes to a more restrictive Yés, such that the users
satisfying Ygs were also part of Yagg, Yage needs to change too,
revoking the said users from the ABE scheme.

4) If Ygs changes to a more inclusive Yés, such that the users satis-
fying Y/, are not part of YapE, the new users cannot decrypt the
trapdoor and successfully adapt the message, so Yagg does not need
to change. User v then signs the new Yi,n £, using their signing keys

that satisfy YGgadmin; the signature set is denoted as &y o A new

the new user groups

the revoked users

msg’ is created and signed using a set of keys that satisfy Ygs, and
the resulting signature set is denoted by &psg . Finally, msg” and
&msg are given to the miner who verifies and posts them.

ReTRACe.VerifyMiner(PubPar, msg, &msg, 5)
1: for (o, 1.gpk) € &msy do

2: if DGSS.VerifySignature(l.gpk, I.info, msg, o7) 20
3: return 0

4:  for (oy, I.gpk) € &y, do
5: if DGSS. VerifySignature(l.gpk, I.info, Yinf, 07) Lo

return 0
6: if ¢ =y
7: if verify(w, m,,) # 1, return 0

8: if RCHET.verifyTransaction(pk.p, m, digest, rand,

?
Fpubinfo) =1
9: BC.write(msg, &msg, ) return 1

10: return0

Figure 6: ReTRACe: Miner verifying a message

Case 2: AIA revoking a user: This algorithm (Figure 5b) is run by a

user v € AuthUAdmins as soon as the AIA revokes a user holding
attribute y (which appears in either YABg or YAggadmin)- First, the
AIA updates its own public key from mpkapg to mpkagg’ (which
results in PubPar getting updated to PubPar’), and then issues new
signing keys, SK’, only to the non-revoked users holding attribute
y. User v then proceeds to adapt the ephemeral trapdoor, Iyyiyinfo,
to prevent the revoked user from being able to perform any future



message adaptations. User v then generates a new r’, encrypts it,
etc., the rest of the steps are similar to Case 1.

An originator of a message could possibly create malformed poli-
cies, e.g., policies containing bogus or non-existent attributes. We
assume the miner has knowledge of all the (public) attributes in
the universe and in this case would reject malformed policies. An
originator of a message, m, could create a bogus trapdoor, which
would not be discovered until someone attempts to update m. Note
that the miner cannot check if the encrypted trapdoor is correct
or not, since the miner likely will not be part of the AuthU, or
AuthUAdmins sets. Solutions to this problem include having the
originator do a verifiable encryption of the trapdoor, while submit-
ting m to the miner, or have the originator include an NIZK proof
along with the message. We leave the construction of a scheme that
incorporates these ideas as future work.
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Figure 7: Timings for RFAME vs. FAME [1] (80 users per attribute)

7.1 ReTRACe Security Properties

We now informally discuss the security properties of ReTRACe:
indistinguishability, public, private, and revocation collision resis-
tance. The first three properties were first introduced by Derler
et al. [15] for any policy-based chameleon hash scheme. We de-
fine revocation collision resistance, and strengthen the first three
properties, by giving the adversary the ability to adapt messages
and revoke messages. Indistinguishability requires that it should be
computationally infeasible for an adversary to distinguish whether
the randomness associated with a given message was generated as

a result of a CreateMessage, AdaptMessage or RevokeUser. Public
collision resistance requires that an adversary who knows neither
the long-term nor the ephemeral trapdoor cannot produce valid
collisions even after seeing past adaptations of messages and trap-
doors, even with access to some attributes, but not the complete
attribute set that can decrypt the ephemeral trapdoor.

Private collision resistance requires that an adversary that knows
the long-term trapdoor, but not ephemeral trapdoor of the RCHET
scheme, cannot produce valid collisions, even with knowledge of
past message and trapdoor adaptations. This property should hold
even if she has access to a subset of attributes, but not the complete
set of attributes, needed to decrypt the current trapdoor. Revocation
collision resistance requires that an adversary, who knows the long-
term and ephemeral trapdoors, and has valid attributes to decrypt
the ephemeral trapdoor, cannot produce valid collisions, if, either
the RFAME policy changed to exclude her, or the AIA revoked
a subset of her attributes necessary to decrypt the trapdoor. We
have proven the IND-CPA security of RFAME; we apply the Fujisaki-
Okamoto transform [18] to convert RFAME to an IND-CCA2 secure
scheme to accomplish the proof. The formalization of the security
properties and the proof of the following theorem are in [26].

THEOREM 7.1. If RCHET is secure, RFAME is fully IND-CCA2
secure, and DGSS is a secure dynamic group signature scheme then
ReTRACe is secure.

8 IMPLEMENTATION AND RESULTS

We implemented RFAME, RCHET, and ReTRACe in Python 3, and
used Charm [22] for cryptographic modules. All the experiments
were carried out on a machine with 64 GB RAM and an Intel(R)
Core(TM) i7-6700K CPU clocked at 4.00 GHz. We implemented
RCHET and RFAME to compare their performance against CHET
and FAME, respectively, to quantify the price of adding revoca-
tion. We do not compare RFAME quantitatively with other revo-
cable ABE schemes, since they do not provide the properties that
RFAME provides (see Section 5). Using RCHET and RFAME we
implement ReTRACe. Note that ReTRACEe is the first system that
provides transaction-level revocable blockchain rewrites, there is
no equivalent state-of-the-art scheme to compare with.

RFAME Results: We set our ABE policies to contain a total of 8,
16, 32 and 64 attributes, and all our policies have two equisized
conjunctive clauses separated by a single disjunction. In each run,
10, 20, 40, or 80 users signed up with the AIA for each attribute. The
computation time increases linearly with the number of users, so
for brevity, in Figure 7 we show results for RFAME and FAME for 80
users per attribute only. The setup times for RFAME are higher than
for FAME because of the extra operations involved in computing
the master public key (mpkapg) and master secret key (mskapg)
during setup; and the growth of the public key size in RFAME is
linear in the number of attributes (small-universe property).

In FAME, the size of one of the components of the ciphertext
increases linearly in the number of attributes satisfying the given
policy, whereas for RFAME there are two components whose size
increases linearly, accounting for the difference in their encryption
and decryption timings. For decryption, the number of pairing
operations in RFAME is 6 + 2x(number of attributes satisfying a
given policy), as compared to 6 pairing operations for FAME.



Table 1: Timing for the RFAME.Revoke (time in secs)

10 Users per attribute | 0.115
20 Users per attribute | 0.2

40 Users per attribute | 0.364
80 Users per attribute | 0.714

Table 1 shows the time taken when revoking one user from each
attribute group with 10, 20, 40, and 80 users each, which results
in the rekeying of the remaining users. The results are linear as
expected because in each case 9, 19, 39, and 79 users got new keys,
respectively. We expect this trend to continue as the number of
users per attribute increases.

As mentioned before in Section 5, previous schemes do not pro-

vide efficient revocation. To carry out a user revocation under previ-
ous schemes, the entire system would have to be rekeyed using the
Setup and Keygen functions, and all ciphertext re-encrypted regard-
less of whether the revoked user had access to the message or not.
Thus, the cost in rekeying the users would be significantly lower in
RFAME, especially if the revoked user is in a single attribute group.
RCHET Results: Table 2 compares the running times for CHET
and RCHET. In RCHET, when compared to CHET, we have added
one extra encryption and decryption, two NIZKPoK generation and
verifications, and three modular exponentiations to all functions,
except systemSetup and userKeySetup. Despite this, RCHET does
not display a significant increase in latency, at the same time, pro-
viding the ability to adapt the trapdoor of a message digest. The
time difference between RCHET and CHET algorithms is in the
order of milliseconds and this is a minimal trade-off for the added
functionality that RCHET provides.
ReTRACe Results: ReTRACe was implemented with the DGSS
policies being the same as the ABE policies, and containing 20 users
per attribute for 8 and 16 attributes. Except for the RFAME revoca-
tion component, whose running time is proportional to the number
of users, the rest of the cryptographic primitives, i.e., DGSS, RCHET,
and other RFAME algorithms, are independent of the number of
users in the system. The running time for operations in ReTRACe
would increase linearly with the number of users per attribute, as
is evident from the RFAME results.

Table 2: Comparison of RCHET vs. CHET [10] (time in secs)

Algorithm CHET RCHET
Setup 0.537 0.5369
Chash 0.0216 0.0234
Verify 0.000697 | 0.000967
Adapt Message | 0.0414 0.0415
Adapt Trapdoor | - 0.04305

Table 3 shows the timings of ReTRACe, with 20 users/attribute
and messages with policies containing 8 and 16 attributes respec-
tively. UserSetup and Keygen take significantly more time than the
other functions as expected; both these functions involve all users
in the system and are run only once at the beginning during sys-
tem and users’ setup. CreateMessage, Sign, Verify, and VerifyMiner
would be run more frequently, and all have sub-second timings. For
testing Case 1 of ReTRACe.RevokeUser, we eliminate one attribute
from Yagg, and in Case 2 we revoke one user from the AIA that

held an attribute in Yapg. Case 2 takes longer since it includes the
AIA’s operations for revoking a user from one attribute group and
rekeying of the rest of the users in the same group, whereas Case 1
just changes the message policy and updates the message trapdoor.

Table 3: ReTRACe running time, 20 users/attribute (secs)

ReTRACe Algorithms 8 Attr | 16 Attr
UserSetup and Keygen (for 20 users) | 2.997 | 4.694
CreateMessage 0.473 | 0.963
Sign 0.0904 | 0.180
Verify 0.114 | 0.232
VerifyMiner 0.225 | 0.460
AdaptMessage 0.0928 | 0.152
RevokeUser (Case 1) 0.545 | 1.015
RevokeUser (Case 2) (for 19 users) 0.676 | 1.049

Implementation in Ethereum: ReTRACe can be plugged into ex-
isting blockchains (e.g., Ethereum) by updating cryptographic oper-
ations with equivalent ones in ReTRACe. For instance, in Ethereum
the signature algorithm in the module “crypto/crypto.go” needs to
be modified to use ReTRACe.Sign; “trie/trie.go” to use the digest
of rewritable transactions at the leaves of the blocks’ Merkle trees;
ReTRACe.AdaptMessage and ReTRACe.RevokeUser need to be added
to the “ethclient” module and ReTRACe.VerifyMiner to the “miner/
miner.go” module. We are porting these modifications to Ethereum.

With ReTRACe-adapted Ethereum, an authorized user updates
a transaction using the chameleon hash and then submits it to
the transaction pool. In our design, the transactions will be up-
dated with a binary flag (‘0’ « new; ‘1’ « updated). A miner
that picks up an updated transaction verifies the transaction using
ReTRACe. Verify, updates the transaction in the block-the remain-
ing transactions are untouched- and propagates the block for con-
sensus. At each node storing the BC, the block with the updated
transaction replaces the old block post transaction-verification.

The cost of ReTRACe operations in Ethereum (in gas) would be
proportional to their computational cost shown in this section. The
exact cost of operations is dynamic, varying based on many factors
(number of pending transactions, minimum cost, etc.). At the base
computation level, ReTRACe scales linearly with increasing number
of attributes and users—highly desirable.

9 CONCLUSION

We present ReTRACe, a blockchain transaction rewriting frame-
work building on a novel revocable chameleon hash with ephemeral
trapdoor scheme and a novel revocable CP-ABE scheme. We discuss
ReTRACe’s contributions and functionalities that provide efficient
and authorized transaction rewrites in blockchains, in addition
to revocability and traceability of the users updating the transac-
tions(s). We have performed rigorous security and experimental
analyses to demonstrate ReTRACe’s scalability.
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