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Abstract: There is broad belief that preparing all students in preK-12 for a future in STEM 
involves integrating computing and CT tools and practices. Through creating and examining 
rich learning environments that integrate “STEM+C”, researchers are defining what CT means 
in STEM disciplinary settings. This interactive session brings together a diverse spectrum of 
leading STEM researchers to share how they operationalize CT, what integrated CT and STEM 
learning looks like in their curriculum, and how this learning is measured. It will serve as a rich 
opportunity for discussion to help advance the state of the field of STEM+C integration. 
 

Motivation & Objectives 
Few argue with the need for integrating computing and computational thinking (CT) as a tool to drive innovation 
in STEM. The learning sciences community also acknowledges that K-12 STEM learning must become more 
authentic in the 21st century through the integration of coding and CT. Efforts for “STEM+C” learning in the US 
received a fillip with CT listed as a disciplinary practice in the Next Generation Science Standards (NGSS; NGSS 
Lead States, 2013) and modeling emphasized in the NGSS and Common Core Mathematics Standards as a means 
to critically interrogate phenomena and understand simplifying assumptions. Although past efforts provide 
exemplars for the productive integration of math and science with computing (diSessa, 2001; Papert, 1980), 
developing integrated STEM+C curricula and measuring such learning is seen as challenging, in part because the 
broader community does not have a unified definition of CT (Grover & Pea, 2013). There is thus a need to better 



understand how to achieve productive integration and learning of STEM and CT, how to best involve STEM 
teachers, and how to assess learning in such integrated contexts.  

The current landscape of STEM & computing/CT education affords ideal opportunities to convene 
leading researchers in the field to critically discuss current approaches for integrating STEM & CT. This 
symposium brings together researchers with a diverse set of approaches tackling this challenge head-on, from a 
variety of perspectives and pedagogical strategies at all levels of PK-12. In particular, symposium presenters will 
provide curricular details, examples, and insights into 1) how they operationalize CT, what CT definitions and 
frameworks guide their work, and how the integration of disciplinary STEM ideas with CT is engendered in their 
research and curricular approaches; and 2) the methods and measures they use to evaluate changes in students’ 
STEM & CT learning. Themes include: computational modeling in science and math (Grover et al.; Dickes, Farris 
& Sengupta; Metcalf et al.); co-design with teachers to modify STEM curricula to integrate CT (Irgens et al., 
Yadav et al., Dominguez et al) and designing teacher PD (Lee et al.); CT and systems thinking to understand 
complex phenomena (Covitt et al., Damelin et al.); and design activities that integrate CT & STEM (Puttick et 
al.). The symposium serves to showcase similarities in CT operationalization and assessment, curricular 
approaches (such as modeling), and methods for design and implementation (e.g., co-design with teachers) while 
also highlighting the diversity of perspectives that comprise a growing landscape of PK-12 STEM+C integration. 
 
Session Format 
To promote active and productive discussion, the symposium will be conducted as an interactive poster session. 
Following brief teaser introductions on each project, attendees will be invited to view presenters’ posters. This 
will provide attendees ample opportunities to examine and discuss curricular and methodological decisions made 
by the presenters, and how they may be adapted for attendees' own designs in a way that traditional talk do not 
allow. The symposium will close with an open discussion, in which the discussant will engage presenters and 
attendees in discussion around the main themes and any areas of interest that emerge during the session. 

Designing for Synergistic Learning of Science and CT in C2STEM 
Shuchi Grover and Gautam Biswas 
Introducing computational modeling into STEM classrooms provides opportunities for learning of STEM domain 
as well as CT concepts and practices. Programming a computational model of a physical phenomenon involves 
identifying appropriate underlying mathematical or computational rules that govern the behavior of relevant 
entities, making comparisons of the generated representations and explanations with observations of the target 
phenomenon, making sense of data, and iteratively debugging and refining models to generate accurate 
explanations of the scientific phenomenon to be modelled. These activities map to CT concepts and practices 
identified by Grover & Pea (2013) like abstraction, decomposition, testing, debugging, and refining of 
computational models, as well as data and modeling practices as outlined in Weintrop et al. (2016). 

Our research focuses on designing and developing Collaborative, Computational STEM (C2STEM) a 
learning environment that aims to promote authentic STEM learning as outlined in the NGSS (2013). Students 
develop, refine, and interrogate computational models of real-world phenomena using a domain specific modeling 
language (DSML) in a block-based programming environment (Snap!/NetsBlox) to promote synergistic learning 
of science and CT. C2STEM curricular modules, designed with inputs from STEM classroom teachers on the 
project team, comprise instructional/inquiry tasks, modeling building and simulation modules, as well as 
embedded formative and summative assessments to support and measure learning of science and CT concepts in 
middle and high school. A preparation for future learning assessment measures students’ abilities to generalize 
and apply CT concepts and practices across problem solving tasks and domains. 

The summative assessment (adapted from prior studies) consists of multiple-choice (MC) and short 
response items to measure students’ conceptual knowledge in physics and CT (separately). The designed 
embedded formative “check-ins” include modeling and MC items to measure students’ integrated proficiencies 
in science and CT. The C2STEM environment has been empirically studied in middle and high school classrooms. 
For high school, we developed, tested, and refined curriculum and assessments for study of Kinematics in physics, 
and for middle school, we developed and examined a marine biology unit where students studied the effect of 
environmental changes on coral health. Findings across classroom studies show that students working with 
C2STEM developed a better understanding of concepts and practices of physics and CT than students who learned 
through a traditional curriculum. C2STEM also helped positively impact students’ understanding of the purpose 
of modeling and how scientists reason using computational models. 

Heterogeneity and Practice: Programming as Expressive Media for K12 STEM 
Amanda C. Dickes*, Amy V. Farris*, Pratim Sengupta* (*Equal contribution) 



Dominant arguments for teaching programming include preparing a skilled workforce, investing in learners’ 
economic mobility, and broadening entree to the STEM pipeline. While important, these drivers often result in 
K12 curricula and initiatives that place a greater emphasis on learning the isolated technicalities of computing, 
rather than on providing teachers and students opportunities to reflect in and on their own computing practices 
(Lye & Koh, 2014; Grover & Pea, 2013). Our response counters technical rationality (Schön, 1987) by illustrating 
how coding and CT can become a literacy for heterogeneous forms of experience, broadening and deepening 
what it means to code in the K12 STEM classroom and expanding learner and practitioner agency in the 
production of STEM knowledge (Sengupta, Dickes & Farris, in press).  

Our poster will present results from a two-year, design-based microgenetic study in which elementary 
students used ViMAP, an agent-based programming and modeling platform (Sengupta et al., 2015), to 
complement existing science and math curricula through lessons co-designed and taught by the classroom teacher. 
Our analysis traces this integration and demonstrates how the heterogeneous nature of computing provided 
opportunities for the teacher to use computer programming as a context for her students to model natural 
phenomena. In particular, we will show how the classroom teacher framed programming as a modeling activity, 
and how working with code as a medium of “doing" math and science shaped the development of representational 
fluencies and modeling epistemologies, which in turn shaped her pedagogical work. We will also demonstrate 
how the students developed distinct and varied conceptions about what "counts" as a model among their code, 
the agents’ enactments of that code, their material investigations, and their verbal explanations of what their 
programs mean. For both the teacher and the students, computational abstractions were deeply connected to 
measurements of the physical world, and mathematical, physical, and embodied forms of representations.  

Across the academic year, the teacher’s and the students’ computing work helped to position them as the 
epistemic authority to interpret the phenomena they were modeling, the data collected from those phenomena, 
and the scientific and computational models themselves. Our work makes significant contributions to the praxis 
of CT and modeling in the K12 STEM classroom by demonstrating that heterogeneous forms for sense-making 
create contexts in which teachers’ and students’ representational and epistemic work is transformative in terms of 
the development of their epistemologies about the relationships among reality, scientific representation, and 
programming as ways of making sense of and explaining the world.  
 
Moving from Literal to Principle-Based Computational Reasoning: A Learning 
Progression for Integrating Computational Thinking with Earth and Environmental 
Sciences Instruction  
Beth A. Covitt, Kristin L. Gunckel, Alan Berkowitz, and John C. Moore 
To support development of a public prepared to participate in discussions that draw on Earth and Environmental 
Systems (EES) computational models, and consistent with NGSS (2013), we argue that CT necessary for public 
participation should be better integrated into K-12 science. While a growing body of work has defined frameworks 
for K-12 CT (e.g., Weintrop et al., 2016), this task has not been undertaken in EES. Furthermore, little research 
has examined students’ ways of understanding computational models (e.g., Wilensky & Reisman, 2006). Our 
project aims to (1) integrate ideas from CT, systems thinking, and EES sciences to articulate a learning progression 
(LP) framework for CT in K-12 EES sciences, (2) develop and test instructional approaches for integration, and 
(3) provide evidence of student learning as a result of instruction designed with reference to the LP. 

We will present our (1) LP framework with validity evidence from item response theory analyses for 
increasingly sophisticated ways students make sense of EES computational modeling, (2) instructional approach 
that utilizes connected experiences with multiple models moving from concrete toward abstract, and (3) evidence 
of student learning based on pre/post assessments from 1,276 high school students in two states. Our framework 
articulates three progress variables (defining the system, sensemaking with system data / representations, and 
explaining and predicting events with imperfect data/models), and three reasoning levels (lower: literal, middle: 
procedural, and upper: principle/model-based). Principle/model-based reasoning that integrates knowledge and 
practice in EES and CT is necessary for explaining and predicting events and processes in complex systems. 

Several implications for designing effective instruction that integrates CT and environmental sciences 
have emerged. First, becoming more sophisticated in CT is not merely a matter of becoming incrementally better 
at interpreting computational system models. Rather, it includes shifting how one views what a system and/or 
computational system model is and what it is useful for. Also, as students move from engaging in literal reasoning 
about systems and system models toward reasoning that invokes scientific principles to explain and predict events 
and processes in systems, they become better positioned to think computationally (e.g., concerning boundaries, 
discretization, and parameterization) about those systems. We have found that an instructional approach that 
engages students in multiple connected experiences with different types of models of the same system (e.g., 



physical, conceptual, computational), and that moves from concrete to abstract experiences over time, can support 
students in developing increased sophistication and capacity for integrated systems and computational reasoning.  
 
CT-ifying STEM Education: Co-designing with teachers to integrate computational 
thinking into high-school math and science curricula 
Golnaz Arastoopour Irgens, Michael Horn, and Uri Wilensky 
Integrating CT and STEM (CT-STEM) helps students approach scientific inquiry in authentic and 
computationally sophisticated ways. In terms of assessing CT-STEM, few studies have empirically tested 
assessments or used contemporary learning sciences methods to measure learning (Grover & Pea, 2013). In 
various iterations of the CT-STEM project, we have produced a taxonomy of practices based on interviews with 
computational scientists (Weintrop et al., 2016), developed learning objectives and curricula that engaged a wide 
range of students, including those who are underrepresented (Swanson et al., 2019), and collaborated with teachers 
to “CT-ify” curricula and developed assessments. In our current project, teachers are co-designers in modifying 
existing science curricula to include computational tools and practices. The objectives are to help teachers develop 
an understanding of CT-STEM practices, discover why teachers think CT is powerful for science learning, and 
empower teachers to feel confident in teaching CT-STEM. 
            To assess learners’ CT-STEM practices, we developed a pre-posttest consisting of an agent-based NetLogo 
(http://ccl.northwestern.edu/netlogo/) model seven questions related to the model that were aligned with CT-
STEM learning objectives, and a rubric for each question. To characterize learners’ developing practices, we 
coded student responses to reflection questions embedded in the curriculum using automated qualitative coding 
methods and visualized their learning using Epistemic Network Analysis (ENA) (Shaffer, 2017). Our analyses 
suggest that a combination of automated coding algorithms, ENA, and pre-post assessments, revealed differences 
among students’ CT-STEM practices. For example, in a biology CT-STEM unit implementation with 41 students 
(Arastoopour Irgens et al., 2019a), students showed an increase from pre to post in (1) exploring a model and 
explaining how interactions produce system behaviors, (2) identifying simplifications, and (3) understanding a 
model’s range of applications. Moreover, students with high scores were more likely to justify agent actions in 
the model and link justifications to biological phenomena. In contrast, students with low scores were more likely 
to discuss agents’ actions but less likely to justify and link agents, actions, and data. In another example, in a 
chemistry CT-STEM unit with 384 students, ENA networks and a clustering analysis revealed that students 
identified relationships among micro-level particles and macro-level phenomena, such as pressure and 
temperature change, in various ways (Arastoopour Irgens et al., 2019b). Current work on this project involves (1) 
expanding the CT-STEM taxonomy to include developing algorithms, data mining/visualization, and 
designing/building computational models, (2) refining pre-post assessments to align with additional practices, and 
(3) continue co-designing with teachers to “CT-ify” curricula that integrate CT and STEM learning.  

Computational thinking and modeling for elementary science education via 
immersive virtual worlds 
Shari Metcalf, Soobin Jeon, Amanda Dickes, and Christopher Dede 
The NGSS (2013) identifies CT and scientific modeling as essential STEM education practices. Computational 
modeling is a useful subset of CT well suited for elementary science education. Modeling is an authentic science 
practice through which knowledge is constructed, and engaging students in computational modeling provides 
opportunities to make scientific concepts more accessible and to enhance student understanding of phenomena 
(Dwyer et al., 2013; Sengupta et al., 2013).  

Immersive virtual environments provide highly engaging and situated experiences (Dede, 2009) for 
science learning, and visual block-based programming interfaces offer new opportunities to make coding 
accessible in elementary school science. The EcoMOD research project blends two modalities, a 3D virtual forest 
ecosystem and a 2D visual block-based programming tool, in order to support computational modeling and 
ecosystem science learning. During the 14-day EcoMOD curriculum, 3rd grade students explore an immersive 
virtual forest ecosystem, collect data, observe change over time, and program an agent-based computational model 
of a beaver building a dam. As students run their model, they observe emergent outcomes as their programmed 
agent impacts other elements of the ecosystem.  

The curriculum was implemented with 7 teachers and approximately 150 students; data analysis is 
currently in progress. Our computational modeling assessments used qualitative methods to examine student 
artifacts: computational models constructed over three class periods, and hand-drawn concept map representations 
of the ecosystem three points during the curriculum. Analysis of computational models centered on student use 
of the agent-based modeling language, focusing on growth in coding skills, including understanding of 



sequencing, loops, and conditionals. We developed a rubric to assess student progress and identify common errors, 
both semantic and syntactic (Lane & VanLehn, 2005). Early analysis of students’ computational modeling 
activities found that, in a sample of 35 pairs of students, all students achieved some steps towards programming 
the beaver building a dam, though only 31% were able to construct a complete model on their own. Analysis of 
student concept maps centered on the type and number of connections identified, as well as student reasoning 
used to make claims. Initial findings indicate that, over the course of the curriculum, the concept maps were 
significantly more detailed and included more complex pathways and connections between factors in the 
ecosystem over time. In group concept mapping activities, students cited evidence from both the immersive 3D 
world and the 2D computational models. We believe our strategies for assessment of student models can 
generalize to a range of learning experiences.  

Computational Thinking Practices in an Interdisciplinary Middle School Curriculum  
Gilly Puttick, Debra Bernstein, Kristen Wendell, Ethan Danahy, Michael Cassidy, and Fay Shaw  

Most learning in middle schools is segregated by discipline, yet recent trends in science and engineering 
education suggest this approach is outdated. The Designing Biomimetic Robots project is designed to support 
students to think across disciplines. Students participating in this 4-week curriculum first study the natural world 
to learn how animals accomplish different tasks, then engineer a robot that is inspired by what they learned. 

Students deploy a set of practices that span computing, engineering, and biology. In addressing the 
robotics design challenge, students create a conceptual model of an animal structure-function (S/F) relationship 
by decomposing the animal system and abstracting relevant principles to create their model (Clement & Rea-
Ramirez, 2008), then use the model as a basis for conceptualizing their robot design, and building a functional 
robot. Students engaged in problem scoping, iterating on their designs, and algorithmic thinking and debugging 
while programming (Grover & Pea, 2013), all elements of computational thinking (CT). To guide analysis of 
student work, we defined each of the CT practices, then operationalized each practice with respect to the two 
disciplines (see Table). Our poster will demonstrate how application of these codes to student work helps us 
understand students’ sensemaking in the interdisciplinary environment. 

Design work is a good vehicle for promoting disciplinary learning (Kolodner et al., 2003), and robotics 
design allows to practice CT skills (Sullivan & Heffernan, 2016). We found that the design task encouraged 
students to develop models of S/F relationships. When students explained their robot design choices, they argued 
for the relationships between animal S/F and robot S/F, thus understanding S/F relationships in a deeper way than 
a design task in the disciplines alone. 

Computational Thinking definition Operationalized in:  Biology Operationalized in:  Engineering 
Decomposition: Breaking a sequence into 
steps/breaking a large problem down into 
several smaller problems 

Identifying the structures that 
help an animal dig 

Identifying multiple parts needed to 
enable a robot to perform in certain 
way 

Abstraction: Identifying and representing 
the most important features in a model or 
design sketch 

Conceptualizing and labeling 
the relevant movements/ 
functions of digging structures 

Matching understanding of digging 
movements to an engineering 
mechanism, creating a design sketch 

Algorithmic Thinking: Creating a series of 
ordered steps to carry out a task 

  Defining the sequence of actions that 
each component of the robot will take. 

Iteration: Refining a sequence of 
operations to achieve a result successively 
closer to a desired outcome 

  Using results from a test to re-design a 
particular robot component 

Situating Computational Thinking in the Context of Systems Modeling Using an 
Approach to Expand Equitable Access 
Daniel Damelin, Steve Roderick, Lynn Stephens, and Namsoo Shin 
Today’s most challenging problems, from climate change, to understanding social networks, are best tackled by 
drawing on disciplinary core ideas across multiple STEM fields and practices. Two types of thinking are critical 
in addressing these types of issues, systems thinking (ST) and computational thinking (CT). Computational 
models and the underlying ST with its emphasis on system structure and behavior are invaluable in understanding 
complex phenomena and developing solutions. Wing, Cuny, and Snyder’s (2010) definition of CT broadens CT 
to include all people working on solutions, not just programmers.  

Given the broad application of CT and ST across a spectrum of phenomena, it is critical that we develop 
a strategy for engaging all students in developing their ability to use CT and ST as a lens for understanding the 



world around them. Two things are necessary to facilitate this change: (1) a framework that describes how CT 
and ST can be contextualized in a common scientific practice like system modeling, which can be integrated 
throughout STEM classrooms, and (2) development of a tool that makes student building of computationally 
solvable system models accessible. 

To develop the framework, we reviewed a wide range of perspectives on CT. Two main branches of 
thought emerged, those suggesting a generic approach such as Grover and Pea (2018), and those that situate CT 
in STEM (Weintrop et al., 2016). Systems thinking definitions vary as well (Sweeney & Sterman, 2000; Stave & 
Hopper, 2007). Using the following criteria, we reviewed multiple papers defining CT and ST to generate a set of 
practices we incorporated into the framework: (a) Which aspects of CT or ST are common across multiple 
definitions? (b) Are these aspects generalizable across applications of CT or ST in solving a variety of problems? 
(c) Is there enough specificity to a particular aspect of CT or ST such that it can uniquely be applied to that 
domain? and (d) Can the aspect be operationalized in a way that it can be measured for research in STEM 
education? By applying these criteria, we developed a framework that makes explicit how elements of CT and ST 
are utilized in various phases of system modeling. For example, one phase of system modeling in our framework 
is Define the Boundaries of the System, which brings together Defining a system from ST and Decomposing 
problems and Representing data through abstractions from CT. 

Creating the tool to facilitate student engagement in system modeling is ongoing and involves designing 
a pathway for students to use a visual interface for creating a runnable system model without the need for writing 
complex equations or traditional coding. Together with the framework we have a way forward for engaging 
students in developing critical ST and CT skills, developing curricula, and designing assessments. 

 
Designing Teacher Professional Development to Support CT Integration in 
Middle School Science 
Irene Lee and Emma Anderson 
The implementation of CT integration curricula that address new standards and initiatives is mediated by 
availability of curricula, accessibility to associated technology, and teacher preparation. Teacher preparation in 
particular has been noted as a critical limiting factor in the integration of CT into K-12 subject areas (Barr & 
Stephenson, 2011; Yadav, Hong, and Stephenson, 2016). To prepare science teachers for the integration of CT in 
science classrooms, Teachers with GUTS designed and studied a yearlong teacher professional development (PD) 
program aimed at increasing teachers content knowledge in and practice of CT, and providing a systematic model 
of CT integration in science through computer modeling and simulation. To align CT with teachers’ science 
learning objectives for students, CT was operationalized as a thinking process necessary when developing 
computer models of scientific phenomena and using those models as experimental testbeds to conduct simulation 
experiments. The program’s research focuses on teacher learning and subsequent enactment of a CT-rich 
modeling and simulation curriculum in middle school science classrooms. A design-based research approach was 
used to refine the PD, curriculum modules, and online PD network. We found that additional implementation 
supports such as teacher guides, online practice sessions, and webinars were needed to augment face-to-face PD 
offerings and retain connections to teachers throughout the year. 

Scenario- and artifact-based interviews, and pre-post tests were used to measure teachers’ knowledge, 
skills, attitudes, and application of CT. Observation and interviews were used to study teachers’ enactment of the 
CT-rich Project GUTS curriculum. CT knowledge and skills were assessed in the pre-post test as independent 
conceptual knowledge in five domains: modeling and simulation; complex adaptive systems, agent based 
modeling, computer science constructs, and program tracing and decoding. We conducted a mixed method study 
of teachers’ development of CT and how their CT understanding relates to their enactments of a CT-rich 
curriculum. Findings across studies show that participants’ growth in CT/CS was correlated with their attendance 
hours and implementation hours though their specific enactments of curriculum (categorized as simulation-
centric, coding-centric, abstraction-centric) were correlated with their disciplinary instructional goals more so 
than their growth in CT/CS. These findings suggest that broadening teachers’ conception of CT to the full range 
of practices in our operationalization is needed before they attempt to make the match between CT practices and 
instructional goals.  
 
Enriching mathematics and science with computational thinking: Co-designing 
preschool activities with educators and parents 
Ximena Dominguez, Shuchi Grover, and Phil Vahey 
Although research on CT in early learning is limited, current CT definitions (Grover & Pea, 2013) include skills 
and practices that align with school readiness goals related to mathematics (Clements & Sarama, 2007) and 



science (NGSS, 2013). In order to understand how elements of CT align with the abilities and interests of young 
children and explore how CT can be integrated with early STEM learning in a mutually supportive manner, we 
developed learning blueprints to guide the development of integrated activities and partnered with teachers and 
families to co-design and pilot test resulting activities in classrooms and homes. 

Early co-design meetings helped identify target content and initiate the design of the learning blueprint. 
As part of the initial stages of co-design, our team identified the following CT skills as productive starting points 
for our work: (1) problem decomposition; (2) algorithmic thinking; and (3) abstraction; and (4) testing and 
debugging. The blueprint listed developmentally appropriate learning goals for each CT skill. The team held co-
design meetings involving discussions and interactive activities where teachers, coaches, parents, and researchers 
brainstormed and generated hands-on and digital activity sketches. Resulting activities were later pilot-tested in 
two classrooms and three homes. Data from the pilots were evaluated to inform next iterations to the activities. 
When linking CT with mathematics we found that activities designed to promote algorithmic thinking provided 
natural opportunities to promote visual spatial thinking, whereas activities designed to promote problem 
decomposition often provided opportunities to promote understanding of shapes. Counting, cardinality, and 
comparison of quantities were easily integrated across most CT activities. When linking CT with science we found 
that activities designed to promote abstraction naturally provided opportunities for children to engage in 
observation, description and sorting, whereas activities designed to promote problem decomposition naturally 
provided opportunities for children to engage in prediction and experimentation.  

We are currently conducting a field study to examine the promise of the designed activities in 5 preschool 
classrooms and the homes of 10 families. In addition to classroom and home observations to examine 
implementation, we are conducting teacher and parent interview parents to gather their feedback, and one on one 
assessments with a subsample of children using a standardized early math measure (Weiland et al., 2012) and a 
series of play based learning tasks developed by our research team to examine the program’s promise in improving 
children’s learning of CT, mathematics, and science.  

Leveraging computational thinking to teach elementary mathematics and science  
Aman Yadav, Katie Rich, Christina Schwarz, and Rachel Larimore 
Recent educational reforms in K-12 education, such as the NGSS and Common Core State Standards, either 
explicitly or implicitly call out the need for students to engage in computational thinking (CT). While there is 
work starting to emerge on teacher training at the high school level, there has been less attention paid to how to 
bring CT to elementary classrooms. As elementary schools face additional pressures of accountability due to 
standardized tests in language arts and mathematics, core subjects like science are being pushed out (Marx & 
Harris, 2006) and there is even less time during the school year to add new initiatives like CT.  

One approach to bring CT to elementary classrooms is to work within the constraints of K-12 systems 
and integrate it within core subject areas, such as mathematics, science, and language arts. In our work with 
elementary teachers, we used in-depth interviews to study how teachers conceptualize CT within the context of 
their mathematics and science instruction (Rich, Yadav, & Schwarz, 2019). We found teachers primarily focused 
on the problem-solving aspects of CT. However, teachers also saw connections between some CT practices and 
their teaching practices, with stronger connections to their mathematics instruction than science.  

In this presentation, we will describe how we have productively used four CT practices—abstraction, 
decomposition, patterns, and debugging—with elementary teachers as a part of our NSF-funded project--
CT4EDU. In particular, we will present how our unplugged approach to CT (i.e., without the use of computers or 
technology) shifted how our partner teachers conceptualized CT and how those conceptualizations influenced 
their mathematics and science instruction. Drawing from a number of data sources (e.g., focus groups, classroom 
video, and interviews), we will discuss how CT can be conceptualized in a way that removes barriers teachers see 
to integrating CT and allows them to more frequently embed CT in their curricula. We will also discuss how our 
focus on a few core CT practices can serve as an on-ramp for elementary teachers to bring computationally rich 
environments into their classrooms.  
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