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Abstract—Cooperation of connected vehicles is a
promising approach for autonomous intersection control.
This article presents a systematic approach to the cooper-
ation of connected vehicles at unsignalized intersections
without global coordination. A task-area partition frame-
work is proposed to decompose the mission of cooperative
passing into three main tasks, i.e., vehicle state observa-
tion, arriving time optimization, and trajectory tracking con-
trol. To accomplish these tasks, a distributed observation
algorithm is introduced to achieve fixed-time observation
of other vehicles’ states for passing sequence determi-
nation, a distributed optimization algorithm is introduced
to schedule conflict-free arriving times for trajectory plan-
ning, and a distributed control algorithm is proposed to
address parameter mismatches and acceleration saturation
for fixed-time trajectory tracking control. Numerical simula-
tions demonstrate that the proposed method can achieve
cooperative passing of vehicles without global coordina-
tion at the cost of a growth of 8.8–18.1% average travel
times in low and medium traffic volumes.

Index Terms—Connected vehicles, cooperation, dis-
tributed control, distributed observation, distributed opti-
mization, unsignalized intersection.

I. INTRODUCTION

R ECENT years witness the rise of the connected vehicle
technology [1]. With the introduction of vehicle-to-vehicle
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(V2V) and vehicle-to-infrastructure communication, the be-
haviors of multiple connected vehicles can be coordinated for
global traffic improvement, yielding the so-called cooperative
intelligent transportation systems [2].

In the 1-D case, the cooperation of connected vehicles is re-
ferred to as platoon control or cooperative adaptive cruise control
[3], of which recent typical advances can be found in [4]–[8].
When it comes to urban scenarios, intersections become the main
bottlenecks that restrain the application of platoon techniques.
In this case, 2-D cooperation becomes necessary, which enables
connected vehicles to pass intersections without the coordination
of traffic signal lights.

Compared with platoon control that focuses on longitudinal
formation, the challenge of 2-D cooperation lies in the strategy
design to resolve potential collisions at intersections. To this
end, negotiation-based approaches [9], [10] were proposed to
resolve collisions by globally reserving spacial and temporal
resources for approaching vehicles. Different scheduling mech-
anisms [11]–[13] were further proposed to improve the “first
come, first served” (FCFS) policy [9] commonly used in resource
reservation. Moreover, trajectory planning-based methods [14],
[15] were also proposed to achieve collision-free passing by
eliminating potential trajectory overlaps and cross-collision
risks. Note that these methods are based on centralized coor-
dination, which needs global information for decision-making
and may bring heavy communication and computation loads.
Therefore, decentralized methods were proposed to fill this gap.
For example, the virtual platoon method [16] was borrowed
in [17] and [18] to transform 2-D vehicle clusters into 1-D
virtual platoons for conflict-free passing. Distributed optimal
control was studied in [19] to find closed-form solutions in the
presence of state and safety constraints, while distributed model
predictive control was used in [20] to guarantee provable system-
wide safety and liveness. More recent advances in unsignalized
intersection control can be found in [21]–[23].

In most of the study on decentralized 2-D cooperation, a
global coordinator, which can be either a roadside unit or an ap-
proaching vehicle, is still needed for global information sharing
or task scheduling. For example, in [19], a roadside coordinator
is needed for information sharing; in [17] and [18], a global
coordinator is needed for virtual platoon generation. The depen-
dence on global coordination inevitably poses high demands
on communication and computation loads and infrastructure
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construction (if roadside units are needed). Some recent studies
are dedicated to address this issue. In [24], the conflict resolution
is decoupled temporally by iteratively optimizing desired time
slots and speed profiles using neighboring vehicles’ information.
In [25], a consensus-based method is proposed for trajectory
optimization through an iterative process. Different from these
studies, this article tries to address the abovementioned issue
from the multiagent system (MAS) [26], [27] point of view.
In an MAS, individual agents interact locally to accomplish
global tasks in state estimation [28], optimization [29], [30],
and control [31]. By taking connected vehicles as mobile agents
with computational and communication capabilities, this study
presents a systematic approach to the cooperation of multive-
hicle systems without global coordination. In detail, we pro-
pose a task-area partition framework for task decomposition.
Within this framework, distributed observation, optimization,
and control algorithms are designed to achieve cooperative
passing at an unsignalized intersection without the dependence
on global coordination. The contributions of this article include
the following.

1) A task-area partition framework is proposed to decom-
pose the mission of cooperative passing at unsignalized
intersections into three main tasks, i.e., vehicle state
observation, arriving time optimization, and trajectory
tracking control.

2) Distributed observation and optimization algorithms are
introduced to achieve fixed-time observation of other ve-
hicles’ states and to schedule conflict-free arriving times,
respectively. These algorithms remove the dependence
on global coordination in information sharing and task
scheduling.

3) A distributed control algorithm is proposed to guarantee
fixed-time tracking of desired trajectories. This control
algorithm addresses parameter mismatches and acceler-
ation saturation in longitudinal vehicle dynamics, which
are not considered in conjunction in existing works. The
fixed-time convergence of tracking errors, which is also
not considered in existing studies, improves the trajec-
tory tracking performance to guarantee passing safety at
intersections.

The remainder of this article is organized as follows. Section II
presents some preliminaries. Section III details the problem
statement. Section IV introduces the task-area partition frame-
work and the design of distributed observation, optimization,
and control algorithms. Numerical simulations are conducted in
Section V. Finally, Section VI concludes this article.

II. PRELIMINARIES

A directed network is denoted by G = (V, E , A), where V =
{V1, V2, . . . , VN} is the set of nodes, E ⊆ V × V is the set of
directed edges, and A = [aij ] ∈ RN×N is the adjacency matrix
with aij being 1, if node i can obtain the information of node j,
or 0, otherwise. We assume that there is no self-loop in G, i.e.,
aii = 0, ∀i ∈ {1, 2, . . . , N}, which means node (vehicle) i does
not transmit information to itself via communication. The Lapla-
cian matrix associated with G is denoted by L = [lij ] ∈ RN×N ,

where lij = −aij if i �= j, and lii = −
∑N

j=1 aij . Graph G is
undirected and connected if aij = aji ∀i, j ∈ {1, 2, . . . , N},
and there is a path between every pair of nodes.

Definition 1 (see [32]): Consider a system

ẋ = f(x), x(t0) = x0 (1)

where x = [x1, x2, . . . , xN ]� ∈ RN , f(x) : RN → RN is con-
tinuous on RN , and f(0) = 0. System (1) is said to achieve
fixed-time stabilization at the origin if it is asymptotically stable
and there exists a settling time T > t0, which is related to x0,
and a fixed constant Tmax > T such that{

limt→T− x(t) = 0

x(t) = 0 ∀t ≥ T
.

Lemma 1 (see [32]): For system (1), suppose that there ex-
ists a continuous radially unbounded and positive definite func-
tion V (x) : RN → R and four real numbers a > 0, b > 0, 0 <
p < 1, and q > 1 such that

V̇ (x) ≤ −aV (x)p − bV (x)q.

Then, system (1) achieves fixed-time stabilization at the origin,
and the settling time T satisfies

T ≤ 1

a(1− p)
+

1

b(q − 1)
.

Lemma 2 (see [33]): Let x1, x2, . . ., xN ≥ 0, 0 < p < 1,
and q > 1. Then, it holds that

N∑
i=1

xp
i ≥

(
N∑
i=1

xi

)p

,

N∑
i=1

xq
i ≥ N1−q

(
N∑
i=1

xi

)q

.

Given a constant k ≥ 0, for any x ∈ R, define the func-
tion x[k] = sign(x)|x|k, where sign(·) is the sign function, i.e.,
sign(x) = 1, ifx > 0; sign(x) = 0, ifx = 0; and sign(x) = −1,
if x < 0.

Lemma 3 (see [34]): Consider an N -dimensional (N ≥ 2)
chain of integrators

ẋ1(t) = x2(t), x1(t0) = x10

ẋ2(t) = x3(t), x2(t0) = x20

. . .

ẋN (t) = u(t), xN (t0) = xN0 (2)

where x = [x1, x2, . . . , xN ]� ∈ RN and u ∈ R. Let the con-
stants ki,j > 0, i ∈ {1, 2, . . . , N}, j ∈ {1, 2}, be assigned such
that sN + kN,js

N−1 + · · ·+ k1,j is Hurwitz for any j ∈ {1, 2}.
In addition, let the constants γi and βi be selected as fol-
lows: γi ∈ (0, 1), i ∈ {1, 2, . . . , N}, satisfy the recurrent rela-
tions γi−1 = γiγi+1/(2γi+1 − γi), i ∈ {2, 3, . . . , N}, γN+1 =
1, and γN = γ ∈ (1− ε1, 1) for a sufficiently small ε1 > 0;
βi > 1, i ∈ {1, 2, . . . , N}, satisfy the recurrent relations βi−1 =
βiβi+1/(2βi+1 − βi), i ∈ {2, 3, . . . , N}, βN+1 = 1, and βN =
β ∈ (1, 1 + ε2) for a sufficiently small ε2 > 0. Moreover, let
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Fig. 1. Partition of the intersection area (OBZ; OPZ; CZ; MZ).

ε > 0 be a constant. Then, system (2) achieves fixed-time stabi-
lization at the origin under the feedback control

u = −ε

(
N∑
i=1

ki,1x
[γi]
i +

N∑
i=1

ki,2x
[βi]
i

)

with the settling time upper bounded by

Tm(ε) =
λσ1
max(P1)

r1σ1
+

1

r2σ2Υσ2

where σ1 = 1−γ
γ , σ2 = β−1

β , r1 = λmin(Q1)
λmin(P1)

, r2 = λmin(Q2)
λmin(P2)

,
Υ ≤ λmin(P2) is a positive number, and P1, P2, Q1, and Q2 ∈
RN×N are symmetric positive definite matrices satisfying

P1A1 +AT
1 P1 = −Q1, P2A2 +AT

2 P2 = −Q2

with Aj , j ∈ {1, 2}, being

Aj =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 · · · 0

· · ·
0 0 0 · · · 1

−εk1,j −εk2,j −εk3,j · · · −εkN,j

⎞
⎟⎟⎟⎟⎟⎠ .

III. PROBLEM STATEMENT

Consider an unsignalized four-legged intersection shown in
Fig. 1. For simplicity, we assume that each intersection leg has
only one through lane, so vehicles only go straight without
turning movements [19]. The intersection can be simultaneously
occupied by more than one vehicle for better travel efficiency, as
is considered in [9]. Assume that all vehicles are connected vehi-
cles equipped with navigation and V2V communication devices,
so they can measure and share their location and movement
information, and their movements are controllable. In addition,
we assume no communication time delays or package losses to
simplify the problem.

Suppose that all vehicles have satisfactory lane-keeping ca-
pability, so we only focus on the longitudinal vehicle control.

To balance accuracy and conciseness, we neglect the left–right
asymmetry and tire slip and consider the following nonlinear
dynamics model, which is similar to the one used in [4] and [5]
but has no time lags in the powertrain

ṗi = vi (3a)

v̇i =
ηi

miri
Ti −

CA,i

mi
v2i − (fi cosαr,i + sinαr,i)g (3b)

where pi and vi are the position and velocity, respectively; Ti

and ηi are the driving torque (control input) and the mechanical
efficiency, respectively, of the driveline; mi and ri are the mass
and tire radius, respectively; CA,i, fi, and g are the coefficients
of the aerodynamics drag, rolling resistance, and gravitational
acceleration, respectively;αr,i is the slope of the road. Moreover,
we make the following assumption.

Assumption 1: Vehicles’ acceleration ai ≡ v̇i is bounded

am ≤ ai ≤ aM

where am < 0 and aM > 0 are known constants.
To address the nonlinearity in model (3), we define

θ1,i =
miri
ηi

, θ2,i =
CA,i

mi
, θ3,i = fi cosαr,i + sinαr,i

and then use the following feedback linearization law:

Ti = θ̂1,i(ui + θ̂2,iv
2
i + θ̂3,ig) (4)

where θ̂ij is the estimation of θi,j , j ∈ {1, 2, 3}. Under
Assumption 1, we substitute (4) into (3) and obtain the following
model:

ṗi = vi (5a)

v̇i = sataM
am

(
θ̂1,i
θ1,i

ui + wi

)
(5b)

where wi is the equivalent disturbance arising from parameter
mismatches

wi =

(
θ̂1,i
θ1,i

θ̂2,i − θ2,i

)
v2i +

(
θ̂1,i
θ1,i

θ̂3,i − θ3,i

)
g

and sataM
am

(x) : R → R is a saturation function

sataM
am

(x) =

⎧⎪⎨
⎪⎩
am if x < am

x if am ≤ x ≤ aM

aM if x > aM

.

Model (5) is similar to the one used in [7] but contains parameter
mismatches and acceleration saturation.

To sum up, the objective of this article is to design a strategy
for the cooperative passing of vehicles with dynamics (5) at the
unsignalized intersection shown in Fig. 1. In particular, the task
should be fulfilled in a distributed fashion.

IV. METHODOLOGY

This section proposes a task-area partition framework for task
decomposition and presents detailed algorithms to accomplish
these tasks.
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A. Task-Area Partition Framework

The proposed task-area partition framework decomposes the
mission of cooperative passing into three main tasks, i.e., vehi-
cle state observation, arriving time optimization, and trajectory
tracking control. In Fig. 1, the intersection area is accordingly
partitioned into four zones, i.e., observation zone (OBZ), op-
timization zone (OPZ), control zone (CZ), and merging zone
(MZ), of which the ranges are denoted by dOBZ, dOPZ, dCZ, and
dMZ, respectively. In each zone, vehicles are assigned in the
following different tasks.

1) First, in the OBZ, approaching vehicles observe all the
other approaching vehicles’ states, with which the passing
sequence is determined.

2) Then, in the OPZ, approaching vehicles optimize their
arriving times at the MZ, with which their desired trajec-
tories in the CZ are determined.

3) Next, in the CZ, approaching vehicles track their desired
trajectories as well as keeping intervehicle safety gaps so
as to arrive at the MZ on time.

4) Finally, in the MZ, approaching vehicles pass the inter-
section (then they become departing vehicles) and leave
the intersection area.

This framework provides a systematic method for the design
of multivehicle cooperation systems by assigning sensing, deci-
sion, and control tasks to different task areas.

The communication range is denoted by dcomm. Two vehicles
are called neighbors if the distance between them is less than or
equal to dcomm. The graph consisting of all the approaching and
departing vehicles in the four zones is denoted by G. Then, we
make the following assumption.

Assumption 2: Graph G is undirected and connected.
We note that this assumption is realistic when the traf-

fic in the intersection area is not too light so that there are
plenty of vehicles in the intersection area to form a connected
graph. In fact, this assumption is looser than that of a global
coordinator that can communicate with all the approaching
vehicles.

B. Distributed Observation of Vehicle States

Since dcomm is limited, G may not be a complete graph, i.e.,
there may exist a pair of vehicles in G that are not neighbors.
Then, in order to determine the passing sequence in a distributed
manner, approaching vehicles in the OBZ need to observe each
others’ states once they enter the OBZ. At the meantime, they
are also observed by other vehicles in G.

Assume the number of vehicles in G is N + 1. Label with
subscript 0 the vehicle to be observed, and 1, 2, . . . , N the other
vehicles. Vehicle i’s observations of vehicle 0’s position and
velocity are denoted by p̂0,i and v̂0,i, respectively. If vehicle 0
is a neighbor of vehicle i, we directly have p̂0,i = p0 and v̂0,i =
v0. Otherwise, we call vehicle i a naive vehicle. Define Bob =
diag{b1, b2, . . . , bn}, where n is the number of naive vehicles,
and bi equals 1, if vehicle i can acquire information from vehicle
0’s neighbors, or 0, otherwise. The subgraph of G consisting
of all the naive vehicles is denoted by Gob, and the Laplacian
matrix ofGob is denoted byLob. Then, we introduce the following

distributed observation algorithm [31]:

˙̂p0,i = v̂0,i + μ1

⎛
⎝ N∑

j=1

aij(p̂0,j − p̂0,i) + bi(p0 − p̂0,i)

⎞
⎠

[qob]

+ ν1sign

⎛
⎝ N∑

j=1

aij(p̂0,j − p̂0,i) + bi(p0 − p̂0,i)

⎞
⎠

˙̂v0,i = μ2

⎛
⎝ N∑

j=1

aij(v̂0,j − v̂0,i) + bi(v0 − v̂0,i)

⎞
⎠

[qob]

+ ν2sign

⎛
⎝ N∑

j=1

aij(v̂0,j − v̂0,i) + bi(v0 − v̂0,i)

⎞
⎠ (6)

whereμj and νj , j ∈ {1, 2} are gains to be designed, and qob > 1
is an arbitrary constant.

Let the observation errors be p̃0,i = p̂0,i − p0 and ṽ0,i =
v̂0,i − v0, and denote the stacked observation errors by p̃0 =
[p̃0,1, p̃0,2, . . . , p̃0,N ]� and ṽ0 = [ṽ0,1, ṽ0,2, . . . , ṽ0,N ]�. Then,
the observation error system becomes

˙̃p0 = − μ1 (LB p̃0)
[qob] − ν1sign (LB p̃0) + ṽ0

˙̃v0 = − μ2 (LB ṽ0)
[qob] − ν2sign (LB ṽ0)− 1a0 (7)

whereLB = Lob +Bob, and1 = [1, 1, . . ., 1]� ∈ RN . The min-
imum eigenvalue of LB is denoted by λLB

. Then, we make the
following assumption and present the first theorem.

Assumption 3: In the OBZ, approaching vehicles’ velocities
are bounded, i.e.,

vm ≤ vi ≤ vM

where vm > 0 and vM > 0 are known constants.
Theorem 1: Suppose Assumptions 1–3 hold. For vehicle

model (5), if the gains in observer (6) satisfy

μj =
ζ

2
∀j ∈ {1, 2}

ν1 =
ζ

2
+ vM , ν2 =

ζ

2
+ max{|am|, aM}

where ζ > 0 is a constant, system (7) achieves fixed-time stabi-
lization at the origin with the settling time upper bounded by

Tob :=
1

ζ

⎛
⎝ N

qob−1

2

(qob − 1)
(
2λLB

) qob+1

2

+
1(

2λLB

) 1
2

⎞
⎠ .

Proof: Similar to [31]. �
With the observed vehicle states, the passing sequence Sp can

be determined by each approaching vehicle. Note that approach-
ing vehicles that enter the OPZ earlier also appear earlier in Sp

and are supposed to enter the MZ earlier.

C. Distributed Optimization of Arriving Times

When approaching vehicles enter the OPZ, they are going
to optimize their arriving times at the MZ according to Sp.
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Suppose thatSp = {1, 2, . . . , N}. The optimization problem for
determining the arriving times is formulated as follows.

First, if approaching vehicle i runs with velocity vi in both
the OPZ and CZ until entering the MZ, the arriving time, called
the nominal arriving time, is

tMZn,i = tOPZ,i +
dOPZ + dCZ

vi
(8)

where tOPZ,i is the time instant when approaching vehicle i enters
the OPZ.

Next, if approaching vehicle i runs with velocity vi in the
OPZ, but accelerates with the maximum acceleration aM until
reaching a given maximum velocity vM when it enters the CZ,
the arriving time, called the earliest arriving time, is

tMZe,i = tOPZ,i +
dOPZ

vi
+

vM − vi
aM

+
dCZ

vM
− v2M − v2i

2aMvM
. (9)

Here, it is assumed that all approaching vehicles can reach
velocity vM before entering the MZ.

Suppose that approaching vehicle i− k (k > 0) is the closest
predecessor that has a conflict movement with approaching vehi-
cle i, i.e., vehicle i− k may collide with vehicle i in the MZ. The
index of vehicle i− k can be determined using the depth-first
spanning tree searching algorithm [18]. The occupancy time
of vehicle i− k is denoted by tMZo,i−k, i.e., the time duration
that the MZ is occupied by vehicle i− k. This value can be
properly designed to allow more than one vehicle to occupy
the intersection simultaneously for better travel efficiency. The
arriving times of vehicles i− k, i− 1, and i are denoted by
tMZ,i−k, tMZ,i−1, and tMZ,i, respectively, and the aggregated
arriving time is denoted by tMZ = [tMZ,1, tMZ,2, . . . , tMZ,N ]�.
Then, we have the following constraints:

g1,i(tMZ) = tMZ,i−k + tMZo,i−k − tMZ,i ≤ 0 (10a)

g2,i(tMZ) = tMZ,i−1 − tMZ,i ≤ 0 (10b)

hi(tMZ,i) = tMZe,i − tMZ,i ≤ 0. (10c)

Here, constraint (10b) imposes vehicle i to pass the MZ accord-
ing to the passing sequence. This is consistent with the FCFS
policy, which provides a conflict-free passing sequence at a low
computation cost. There are also studies on passing sequence
optimization, e.g., [11], [12]. However, when the global coor-
dinator is removed, these algorithms need to be implemented
on all vehicles to generate a consistent passing sequence in a
distributed manner, which will increase the computation load in
heavy traffic scenarios. Here, we consider constant occupancy
times that are determined based on the intersection layout and
traffic flow rate. In practice, these occupancy times can be
accurately determined based on vehicles’ speed profiles for less
conservativeness, which, however, will increase the complexity
of the optimization problem.

Then, the cost function in the optimization of arriving times
consists of two parts. On the one hand, vehicle i may tend to
pass the intersection quickly for better travel efficiency, so the
deviation from the earliest arriving time, i.e., |tMZ,i − tMZe,i|, is
minimized. On the other hand, vehicle imay tend to maintain the
current velocity for better driving comfort, so the deviation from

the nominal arriving time, i.e., |tMZ,i − tMZn,i|, is minimized.
Then, by assigning different weighting coefficients to these two
objectives, the cost function becomes

fi(tMZ,i) = αi(tMZ,i − tMZe,i)
2

+ (1− αi)(tMZ,i − tMZn,i)
2 (11)

where αi ∈ [0, 1] is a coefficient owned by vehicle i to represent
its preference between driving comfort (a small αi) and travel
efficiency (a big αi). Note that αi may be nonidentical for
different vehicles to represent the diversity.

Finally, the optimization problem of vehicle i’s arriving time
is formulated as follows.

Problem 1:

min
tMZ,i

fi(tMZ,i) (12a)

s.t. : g1,i(tMZ) ≤ 0 (12b)

g2,i(tMZ) ≤ 0 (12c)

hi(tMZ,i) ≤ 0. (12d)

For Problem 1, fi(tMZ,i) and hi(tMZ,i) contain only local in-
formation, while g1,i(tMZ) and g2,i(tMZ) contain predecessors’
information. In detail, tMZo,i−k is a static variable, but tMZ,i−k

and tMZ,i−1 are dynamic variables to be optimized by vehicles
i− k and i− 1, respectively, so they are not available for vehicle
i in real time.

To address this issue, we consider the global optimization
problem. The subgraph of G consisting of all approaching
vehicles in the OPZ is denoted by Gop, and the Laplacian
matrix of Gop is denoted by Lop. Vehicle i’s estimation of
the optimal solution t∗MZ to Problem 1 is denoted by t̂iMZ =
[t̂iMZ,1, t̂

i
MZ,2, . . . , t̂

i
MZ,N ]�. The stacked estimations are denoted

by t̂MZ = [t̂1�MZ, t̂
2�
MZ, . . . , t̂

N�
MZ ]�. A unit vector with the ith entry

being 1 and the other entries being 0 are denoted by ei =
[0, 0, . . . , 1, . . . , 0]� ∈ RN , and the Kronecker product is de-
noted by⊗. Then, the global optimization problem is formulated
as follows.

Problem 2:

min
t̂MZ

N∑
i=1

fi(e
�
i t̂

i
MZ) +

1

2
t̂�MZ(Lop ⊗ IN )t̂MZ (13a)

s.t. : t̂iMZ ∈ Ωi ∀i ∈ {1, 2, . . . , N} (13b)

(Lop ⊗ IN )t̂MZ = 0 (13c)

where Ωi is the feasible set of t̂iMZ defined as

Ωi = {t ∈ RN |hi(e
�
i t) ≤ 0,

g1,k(t) ≤ 0, g2,k(t) ≤ 0 ∀k ∈ {1, 2, . . . , N}}.

For Problem 2, the first term of cost function (13a) penalizes
the sum of vehicles’ cost function in Problem 1, while the
second term penalizes the disagreement of vehicles’ estimations.
Moreover, constraint (13c) restricts t̂MZ to the null space of Lop,
so that vehicles’ estimations achieve consensus, i.e., t̂iMZ = t̂jMZ
∀i, j ∈ {1, 2, . . . , N}.
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For Problem 2, we introduce the following distributed opti-
mization algorithm [29]:

˙̂tiMZ = PTΩi
(t̂iMZ)

⎛
⎝−αs

N∑
j=1

aij(t̂
i
MZ − t̂jMZ)

−αs

N∑
j=1

aij(μi − μj)− ei∇fi
(
e�i t̂

i
MZ

)⎞⎠
(14a)

μ̇i =
N∑
j=1

aij

(
t̂iMZ − t̂jMZ

)
(14b)

where TΩi
(t̂iMZ) is the tangent cone of Ωi at t̂iMZ ∈ Ωi,

PTΩi
(t̂iMZ)

(·) is the projection operator to TΩi
(t̂iMZ), and αs > 0

is an arbitrary constant.
In algorithm (14), the set Ωi is available for approaching ve-

hicle i since it has accurately observed all the other approaching
vehicles’ states in the OBZ. Therefore, vehicle i only needs to
exchange t̂iMZ and μi with its neighbors, which means algorithm
(14) can be implemented in a distributed fashion. Then, we
present the second theorem.

Theorem 2: Suppose that Assumption 2 holds. For
Problem 2, algorithm (14) guarantees that the estimated arriving
time t̂iMZ converges to the optimal one t∗MZ ∀i ∈ {1, 2, . . . , N}.

Proof: See [29]. �
When approaching vehicles leave the OPZ, the desired arriv-

ing times, denoted by t̄MZ,i, are obtained and will be used as
constraints for vehicle trajectory optimization, which is similar
to [35].

D. Distributed Control of Approaching Vehicles

When approaching vehicles enter the CZ, they are going to
adjust their trajectories so as to enter the MZ at t̄MZ,i. To this
end, each approaching vehicle generates and tracks a desired
trajectory pd,i(t), which should avoid trajectory overlaps as well
as satisfying the following constraints:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
pd,i(tCZ,i) = pi(tCZ,i)

pd,i(t̄MZ,i) = pi(tCZ,i) + dCZ

vm ≤ ṗd,i(t) ≤ vM , t ∈ (tCZ,i, t̄MZ,i)

am,0 ≤ p̈d,i(t) ≤ aM,0, t ∈ (tCZ,i, t̄MZ,i)

where tCZ,i is the time instant when approaching vehicle i enters
the CZ, and aM,0 and am,0 are the upper and lower bounds of
desired acceleration, respectively.

In particular, approaching vehicles running in platoons can
pass the intersection without being split into single vehicles,
as shown in Fig. 1. In this case, only the platoon leader takes
part in the optimization and trajectory planning on behalf of all
the followers. Index the vehicles in a platoon by 1, 2, . . . , N ,
and define a virtual leader indexed by 0 with trajectory p0(t) =
pd,1(t) + dp, where dp > 0 is the constant desired intervehicle
distance. A boolean variable is denoted by bi, which equals 1, if
vehicle i can obtain p0, or 0, otherwise. Define neighbor position

and velocity errors as

ei1 =

N∑
j=1

aij(pi − pj + (i− j)dp) + bi(pi − p0 + idp)

ei2 =

N∑
j=1

aij(vi − vj) + bi(vi − v0)

then, we have

ėi1 = ei2

ėi2 =
N∑
j=1

aij(v̇i − aj) + bi(v̇i − a0)

= (di + bi)v̇i −

⎛
⎝ N∑

j=1

aijaj + bia0

⎞
⎠

= (di + bi)sataM
am

(
θ̂1,i
θ1,i

ui + wi

)
−

⎛
⎝ N∑

j=1

aijaj + bia0

⎞
⎠

(15)

where di =
∑N

j=1 aij is the in-degree of vehicle i.
Inspired by Lemma 3, we define a sliding mode variable

si(t) = ei2(t)−
∫ t

tCZ,i

εiuri(t)dt (16)

where εi > 0 is a constant to be designed, and

uri = −
2∑

j=1

kj,1e
[γj ]
ij −

2∑
j=1

kj,2e
[βj ]
ij

where the parameters kj,1, kj,2, γj , κj , and βj , j ∈ {1, 2}, are
selected as given in Lemma 3. Hence, in order to let si converge
to 0, the control input is designed as follows:

ui =
1

di + bi

⎛
⎝ N∑

j=1

aijaj + bia0 + εiuri

−
(
δi(s

[pc]
i + s

[qc]
i ) + ρisign(si)

)⎞⎠ (17)

where 0 < pc < 1 and qc > 1 are arbitrary constants, δi > 0 and
ρi > 0 are constants to be designed.

Assumption 4: The acceleration of the virtual leading vehicle
is bounded, i.e.,

am < am,0 ≤ a0 ≤ aM,0 < aM

where am,0 < 0 and aM,0 > 0 are known constants.
This assumption can be satisfied by properly designing the

desired trajectory pd,i(t). Then, we present the third theorem.
Theorem 3: Suppose that Assumptions 1, 2, and 4 hold and

bi = 1, ∀i ∈ {1, 2, . . . , N}. For vehicle model (5) and controller
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(17), if the following condition holds

bl <

(
θ̂1,i
θ1,i

− 1

)⎛⎝ N∑
j=1

aijai + bia0

⎞
⎠+ (di + bi)wi < bu

∀i ∈ {1, 2, . . . , N} (18)

where⎧⎪⎪⎨
⎪⎪⎩
bl = am − am,0 +

aM−aM,0

2 , bu =
aM−aM,0

2

if aM − aM,0 ≥ am,0 − am

bl =
am−am,0

2 , bu =
am−am,0

2 + aM − aM,0, otherwise

there exist εi > 0, δi > 0, and ρi > 0, such that system (15)
achieves fixed-time stabilization at the origin with the settling
time upper bounded by

Tc := Ts + Te

where

Ts :=
2

mini{δi θ̂1,iθ1,i
}

(
1

1− pc
+

N
qc−1

2

qc − 1

)
(19a)

Te := max
i

{Tm(εi)} (19b)

where Tm(εi) is given in Lemma 3.
Proof: We first prove the existence of parameters εi, δi, and

ρi when condition (18) holds. By substituting (15) into (16), the
time derivative of si becomes

ṡi = ėi2 − εiuri

= (di + bi)sataM
am

(ξ1 + ξ2 + ξ3 + εiuri

di + bi

)
− ξ1 − εiuri

= sat(di+bi)aM

(di+bi)am
(ξ1 + ξ2 + ξ3 + εiuri)− ξ1 − εiuri (20)

where

ξ1 =
N∑
j=1

aijaj + bia0

ξ2 =

(
θ̂1,i
θ1,i

− 1

)⎛⎝ N∑
j=1

aijai + bia0 + εiuri

⎞
⎠+ (di + bi)wi

ξ3 = − θ̂1,i
θ1,i

(
δi(s

[pc]
i + s

[qc]
i ) + ρisign(si)

)
.

Since Assumptions 1 and 4 hold, we have

diam + biam,0 ≤ ξ1 ≤ diaM + biaM,0. (21)

In addition, since condition (18) holds, there exists a sufficiently
small constant εi1 > 0 such that ∀εi ∈ (0, εi1], it holds that

bl < ξ2 < bu. (22)

Moreover, by choosing a proper ρi such that

θ̂1,i
θ1,i

ρi = sup ‖ξ2‖+Δi (23)

where Δi > 0 is a constant, we have

ξ3 = −sign(si)(sup |ξ2|+Δi)− δi
θ̂1,i
θ1,i

(
s
[pc]
i + s

[qc]
i

)
.

When Δi is sufficiently small, there exists a sufficiently small
constant δi > 0 such that

−max{|bl|, bu} ≤ ξ3 ≤ max{|bl|, bu}. (24)

Then, by combining (21), (22), and (24), we have

(di + bi)am < ξ1 + ξ2 + ξ3 < (di + bi)aM . (25)

Then, there exists a sufficiently small constant εi2 > 0 such that
∀εi ∈ (0,min{εi1, εi2}], it holds that

(di + bi)am < ξ1 + ξ2 + ξ3 + εiuri < (di + bi)aM . (26)

This means that the sat(di+bi)aM

(di+bi)am
(·) function in (20) is never

saturated. Therefore, (20) becomes

ṡi = (ξ1 + ξ2 + ξ3 + εiuri)− ξ1 − εiuri = ξ2 + ξ3.

Next, we prove the fixed-time stabilization at the origin.
Consider the following Lyapunov function candidate:

Vs =
1

2

N∑
i=1

s2i .

The time derivative of Vs is

V̇s =

N∑
i=1

siṡi

≤ −
N∑
i=1

si

(
δi
θ̂1,i
θ1,i

(
s
[pc]
i + s

[qc]
i

))

= −
N∑
i=1

δi
θ̂1,i
θ1,i

(
(s2i )

pc+1
2 + (s2i )

qc+1
2

)

≤ −min
i

{
δi
θ̂1,i
θ1,i

}(
V

pc+1
2

s +N
1−qc

2 V
qc+1

2
s

)
.

Here, condition (23) and Lemma 2 are used to derive the first and
second inequalities, respectively. Then, according to Lemma 1,
∀i ∈ {1, 2, . . . , N}, si converges to 0 in Ts given in (19a). Once
si converges to 0, we have

ėi2(t) = εiuri(t).

Then, according to Lemma 3, ei1 and ei2 converge to 0 with the
settling time upper bounded by Te given in (19b).

Therefore, the total settling time is upper bounded byTc given
in (19). �

In controller (17), δi and εi should be sufficiently small
to avoid acceleration saturation. This facilitates the stability
analysis, however, brings conservativeness to the convergence
rate. In practice, these parameters should be selected properly
to improve the convergence rate.

Remark 1: The upper bounds of settling times Tob and Tc

are related to the communication topologies, which make them
difficult to accurately calculate ahead of time. However, they
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TABLE I
SIMULATION PARAMETERS

can still give some insights to determine the ranges of the OBZ
and CZ. For example, we can set dOBZ = vM ·max{Tob} and
dCZ = vM ·max{Tc}, where max{Tob} and max{Tc} can be
determined by using historical data of communication topolo-
gies. In practice, dOBZ and dCZ, as well as dOPZ, need to be
fine-tuned to guarantee the convergence of algorithms.

V. NUMERICAL SIMULATION

In the simulation, we set tMZo,i−k = dMZ+dveh
vn

+
dp

vn
Nf,i−k,

where dveh is the vehicle length, vn is a nominal vehicle speed,
and Nf,i−k is the number of vehicles that follow vehicle i− k
as a platoon. Here, we set vn = 8 m/s since the minimum
vehicle speed in the MZ in the simulation turn out to be greater
than 9 m/s. The desired trajectory is selected as pd,i(t) =

pi(tCZ,i) +
t−tCZ,i

t̄MZ,i−tCZ,i
dCZ so as to satisfy Assumption 4 as well as

to avoid trajectory overlaps. sign(·) in algorithms (6) and (17)
are replaced with sat1−1(·) to mitigate chattering effects. αi is
randomly initialized following a uniform distribution between 0
and 1. qob, pc, and qc are fine-tuned to balance the convergence
performance and chattering effects. Other simulation parame-
ters, as listed in Table I, are selected through trial-and-error
to achieve the satisfactory performance. Communication time
delays and package losses are neglected here for theoretical
validation.

First, the effectiveness of the proposed method is validated
in a medium total traffic volume of 2400 veh/h without vehicle
platoons. Simulation results are shown in Figs. 2–4. In Fig. 2,
the observations tracked the true states well in the OBZ, which
guarantee the consistency of Sp. The chattering effect arises
from the sat(·) function in discrete-time simulation, and can

Fig. 2. State observation profiles in the OBZ (solid lines: true values;
dashed lines: observations; different colors: different vehicles). (a) Ve-
locity observations. (b) Position observations.

Fig. 3. Arriving time profiles in the OPZ (solid lines: private values;
dashed lines: neighbors’ estimations; marker “o”: tCZ,i; different colors:
different vehicles). (a) Evolution trajectories. (b) Consensus process.

Fig. 4. Vehicle state profiles in the CZ (different colors: vehicles from
different entrances). (a) Velocity profiles. (b) Position profiles.

be mitigated via further parameter fine-tuning. From Fig. 3(a),
it is observed that conflict-free arriving times were obtained
before approaching vehicles entered the CZ at tCZ,i. The con-
sensus process of estimated optimal arriving times shown in
Fig. 3(b) further demonstrates the satisfying convergence rate
of the distributed optimization algorithm. Fig. 4 illustrates the
velocity and position profiles of approaching vehicles from four
entrances of the intersection. It is observed that approaching
vehicles reached steady velocities in the CZ and entered the MZ
orderly. Moreover, the average time cost for one iteration of
the optimization algorithm is less than 10 ms, and the average
iteration number is less than 50. This demonstrates the real-time
performance of the proposed optimization algorithm.

Next, the control performance of the proposed fixed-time
platoon controller is compared with the linear platoon controller
used in a recent related work [18], which also addresses de-
centralized cooperation at unsignalized intersections but needs
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Fig. 5. Comparison of the control performance (marker “x”: t̄MZ,i).
(a) Fixed-time controller. (b) Linear controller [18].

TABLE II
COMPARISON OF AVERAGE TRAVEL TIMES

global coordination. In the comparison, a platoon of five vehicles
were considered to track their desired trajectories in the CZ. As
shown in Fig. 5, the fixed-time controller has higher convergence
rate than the linear one, which guarantees lower position errors
at the desired arriving time t̄MZ,i.

Finally, the proposed method is compared with two bench-
marks, i.e., the reservation-based method [9] and virtual platoon-
based method [18]. In this case, we setαi = 1 to achieve the best
travel efficiency. The average travel times of 100 vehicles in 3
different traffic volumes are shown in Table II. It is observed
that the proposed method increases the average travel times
by 8.8–18.1% in low and medium traffic volumes. This is
acceptable considering the cost reduction from removing global
coordination. When it comes to a high traffic volume, the average
travel times is increased by up to 33.1%, which demonstrates the
weakness of the proposed method in high traffic volumes.

VI. CONCLUSION

This article studied the cooperation of multiple connected
vehicles at unsignalized intersections with focus on removing
the dependance on global coordination. To this end, a task-area
partition framework was proposed for task decomposition, and
distributed observation, optimization, and control algorithms
were designed for the vehicle state observation, arriving time
optimization, and trajectory tracking control tasks, respectively.
The observation and optimization algorithms remove the depen-
dence on global coordination in information sharing and task
scheduling, while the control algorithm addressed parameter
mismatches and acceleration saturation in longitudinal vehicle
dynamics and guarantees fixed-time convergence. Simulation
results demonstrated that the proposed method can achieve
cooperative passing of vehicles without global coordination.

A growth of about 8.8–18.1% average travel times in low and
medium traffic volumes was also observed in the performance
comparison, which is acceptable considering the cost reduction
from removing global coordination.

This article only considered vehicles’ through movements.
In the case of turning movements, vehicles’ turning inten-
tions need to be transmitted with V2V communication in the
observation stage, then the conflict relationship tree [18] can
be used to determine the closest conflicting predecessors for
arriving time optimization. In the future work, we are going
to study the traffic-demand-adaptive cooperation method for
dynamic adjustment of zone ranges to remove the assumption
of a connected graph. It is also an interesting topic to extend this
method to the case of multiple adjacent unsginalized intersec-
tions (e.g., [36] and [37]) and mixed traffic flow environments
where human-driven vehicles and autonomous vehicles coexist.
Moreover, the FCFS policy needs to be improved to address
asymmetric traffic demands [38], and the selection of the occu-
pancy time also deserves further study to balance efficiency and
safety.
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