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a b s t r a c t

This paper studies distributed economic dispatch problems for smart grids, in which a quadratic
generation cost is to be minimized over a feasible set that is determined jointly by an equality
constraint and a box constraint. Our primary objective is to seek a distributed design that can handle
heterogeneous time-delays, while preserving agents’ privacy—a fundamental prerequisite that has
become gradually important for cyber–physical systems. For this purpose, we design a state predictor
for each agent to compensate for the effect of heterogeneous time-delays, which allows the agents
to predict the missing states between two consecutive update times. Based upon the predictor, we
present a distributed gradient-descent algorithm to locally update the outputs of the generators, which
guarantees that the optimal solution is attained in an asymptotic manner. Among other things, we
incorporate a privacy preservation scheme to the proposed algorithm in order to preserve agents’
privacy and delicately characterize its convergence, differential privacy properties, as well as accuracy.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Cooperative control of multi-agent systems (MASs) has re-
eived intensive attention in recent years. Typically research
roblems in MASs include consensus (Olfati-Saber & Murray,
004), formation control (Ji et al., 2008), and distributed opti-
ization (Liu et al., 2017; Lü et al., 2017). In particular, the last

few years have witnessed a growing interest in dispatching power
generation for smart grids (Abedini et al., 2013; He et al., 2018;
Nagata et al., 2012; Yan et al., 2013). The economic dispatch (ED)
problem is one of the most fundamental problems for smart grids,
which aims at distributing the total power demand among the
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enerators to minimize the operating cost under certain security
onstrains.
Earlier works on ED problems could be roughly classified

nto two categories: convex optimization based approaches and
on-convex optimization based approaches. Convex optimization
ethods include the gradient search approach (Wood & Wollen-
erg, 2012) and the Newton approach (Yorino et al., 2012). In
he non-convex case, heuristic algorithms such as genetic algo-
ithms (Chen & Chang, 1995) and particle swarm optimization
lgorithms (Park et al., 2010) have been employed. However,
ost of the existing economic dispatch schemes are centralized,
hich require global information over the entire power grid. It
as been revealed in one way or another that centralized methods
re usually expensive to implement and susceptible to one-point
ailures—a fact known generally; therefore, it is necessary and
ppealing to develop distributed algorithms for the ED problem.
It has been customary to employ consensus-based algorithms

o solve ED problems in a distributed manner, which have led to
ully distributed algorithms employing solely local information.
here has been a variety of research works along this line of
each in recent years (see, e.g., Li et al., 2018; Wen et al., 2016;
ang et al., 2013; Yu et al., 2015 and the references therein). Ref.
u et al. (2015) discusses the relationship between the optimal
olution of economic dispatch and consensus in smart grids.
ef. Yang et al. (2013) proposes a distributed consensus-based
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lgorithm to maintain the balance between power generation and
emand. In order to handle communication uncertainties in the
D problem, an adaptive consensus-based scheme is proposed
nd analyzed in Wen et al. (2016) . In Li et al. (2014), a fast dis-
ributed gradient-descent method consisting of the θ-logarithmic
arrier function is proposed to solve the ED problem. Moreover,
n event-triggering scheme is proposed in Li et al. (2016), which
eeks to reduce the computational and communication cost for
mart grids. The aforementioned works all assume that the net-
ork is ideal and reliable; more practical network models (Binetti
t al., 2014; Nedić & Olshevsky, 2015; Zhang & Chow, 2012) are
lso discussed.
Despite the efficiency and autonomy offered by the distributed

ptimization scheme, smart grids face a challenge in employing
he delayed information, subject to possibly different computa-
ional time-delays, that are inevitable in distributed systems, par-
icularly when generators are hard to synchronize (see, e.g., Yang
t al., 2015; Zhao et al., 2016). If the computation is implemented
ia a circuit, the delay might be incurred by sensing or circuit
iring. If the algorithm is implemented via a digital computer,
here also exists non-ignorable latency or response time, since
he computational task needs to compete for the CPU time with
ther computer tasks, e.g., package routing. Additionally, there
re significant privacy risks associated with delayed gradients
or applications dealing with sensitive data, such as distributed
D (Mandal, 2016; Zhao et al., 2017). The optimal operating out-
uts and power demand are significant private information that
eserves careful protection, which should be taken into account
n distributed ED. This motivates the problem of designing dis-
ribute ED algorithms which are robust to heterogeneous delayed
radients and are secure to potential adversaries. Additionally,
t is worth pointing out that there exist fundamental challenges
ue to the coupling amongst the different techniques for predic-
ion, optimization, and privacy preservation, since the separation
rinciple generally fails to work for nonlinear systems.
In this paper, we propose a fully distributed algorithm for the

D problem under heterogeneous time-delays while meeting the
equirement of privacy preservation. Specifically, we make the
ollowing contributions.

• We construct a state predictor for each agent to attenuate
the effect of heterogeneous time-delays. The predictor al-
lows each agent to predict the missing states between two
consecutive update times. The predicted values are then
employed in the distributed gradient-descent algorithm to
guarantee the desired convergence properties.

• We propose a privacy-preserved predictive scheme by
adding noise to the output information to meet the require-
ment of privacy preservation under heterogeneous time-
delays. Among other things, we carefully characterize its
convergence, differential privacy properties, as well as ac-
curacy.

The rest of this paper is organized as follows. In Section 2, we
rovide mathematical preliminaries. In Section 3, we describe the
D problem of this paper. In Section 4, we propose a predictive
ontrol scheme to compensate for the effect of heterogeneous
ime-delays and investigate its convergence. In Section 5, we
resent the privacy-preserved predictive scheme to meet the
equirement of privacy preservation and analyze its performance.
inally, Section 6 concludes this paper.

. Mathematical preliminaries

The notation used throughout this paper is fairly standard.
e denote the set of real numbers by R, the set of positive real
umbers by R+, the set of N-dimensional real vectors by RN , and
2

he set of N × N real matrices by RN×N . We denote the identity
atrix by I . We denote the column vectors of all ones and all
eros by 1 and 0, respectively. For a vector x ∈ RN , we denote
he two norm by ∥x∥2 = (|x1|2 + · · · + |xN |

2)1/2. We denote by
iag{a1, . . . , aN} the diagonal matrix with ai, i = 1, . . . ,N , being
ts ith diagonal element. We denote the transpose over a vector or
atrix by the superscript T . We denote the gradient and Hessian
f a function by ∇f and ∇

2f , respectively. A twice differentiable
unction f : R → R is said to be strongly convex if there exists
constant m > 0 such that ∇

2f ≥ m. For simplicity, we denote
vents of the type Er = {ω ∈ Ω | r(ω)} by {r}, where r is a logical
tatement on the elements of Ω , and Ω denotes the total sample
pace of the noise sequence ω. We denote the probability of Er
y P{Er}. For a random variable X , we denote its expectation and
ariance by E(X) and Var(X), respectively.
We denote a graph by G = {V, E}, where V = {1, 2, . . . ,N} is

he node set, and E ⊆ V × V is the edge set. The graph with the
roperty that (i, j) ∈ E ⇔ (j, i) ∈ E is said to be undirected. The set
f neighbors of the ith node is denoted by Ni = {j ∈ V | (j, i) ∈ E}.
he adjacency matrix A = [aij] ∈ RN×N of G is defined as
ollows: aij = 1 if (i, j) ∈ E; aij = 0 otherwise. The degree
f node i is defined as di =

∑N
j=1 aij, and the degree matrix is

efined as D =diag{d1, . . . , dN} ∈ RN×N . The Laplacian matrix
f G is given by L = D − A ∈ RN×N . In this paper, we use an
ndirected graph G to describe the information flows among the
ower grid, where each node represents a generator, and an edge
i, j) denotes an information channel between generators i and
. To design distributed ED algorithms, the connectedness of the
raph is necessary to postulate.

ssumption 1. Graph G is connected.

. Problem formulation

Consider an N-generator power grid. The generation cost for
he ith generator is given by the quadratic function Ci(Pi) =

iPi2 + βiPi + γi, where Pi denotes the output of the ith power
enerator, and αi, βi, and γi ∈ R are some non-negative con-
tants (Wood & Wollenberg, 2012). The ED problem is defined
s

in
Pi

C(P) =

N∑
i=1

Ci(Pi) (1a)

s.t.
N∑
i=1

Pi = Pd (1b)

Pi,min ≤ Pi ≤ Pi,max, (1c)

here Pd is the total power demand, and Pi,min and Pi,max are,
espectively, the lower and upper bound of the ith generator’s
utput capacity. Each generator should work under its capac-
ty constrain, i.e., Pi ∈ [Pi,min, Pi,max]. Particularly, we denote
he global optimal solution of the ED problem (1) by P∗

=

P∗

1 , . . . , P∗

N ]
T . In practice, there always exist time-delays. It is

ow well recognized that time-delays are not negligible and
ight destroy system stability (Gu et al., 2003). Motivated by

he fact, we consider the following distributed ED model with
eterogeneous time-delays:

i(K + 1) = Pi(K ) + Ui
(
{Fj(K − τj)}j∈Ni∪{i}

)
, (2)

here Pi(K ) is the output of the ith generator at time K , Ui is
he control input of the ith generator, which depends solely upon
Fj(K − τj)}j∈Ni∪{i}, the delayed information of generator i and
ts neighbors, and τj is the time-delay of agent j. Note that for
iscrete-time dynamical systems, computation time-delay is also
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central issue that needs to be addressed before the algorithm
an be implemented in real-time. We are interested in designing
he control input Ui for the delayed system (2) such that

lim
→∞

P(K ) − P∗

2 ≤ ξ, (3)

here P(K ) = [P1(K ), . . . , PN (K )]T , and ξ can be arbitrarily small.
In what follows, we relax the box constraint (1c) by employing

he θ-logarithmic barrier function (Fiacco & McCormick, 1990)
nd transform the optimization problem (1) to

in
Pi

f (P) =

N∑
i=1

fi(Pi) (4a)

s.t.
N∑
i=1

Pi = Pd (4b)

here fi(Pi) = Ci(Pi) −
1
θ

(
ln(Pi − Pi,min) + ln(Pi,max − Pi)

)
. It

s noticed that the penalized objective function (4a) is finite
only if the box constraints (1c) are strictly satisfied. Under the
barrier function method, each generator should be initialized in a
feasible domain with a sufficiently large parameter θ . We denote
the global optimal solution to the ED problem (4) by P⋆

=

P⋆
1 , . . . , P

⋆
N ]

T . Under the proposed method, Pi will never reach
i,min or Pi,max. Consequently, if the optimal solution P∗

i to (4) is
i,min or Pi,max, the optimal point will not be achieved. Instead, a
uboptimal point P⋆

i will be achieved, whose difference with the
rue optimum is upper bounded by 2N

θ
(see Li et al., 2016). Note

hat when θ goes to infinity, the optimal solution P⋆ of (4) will
converge to the optimal solution P∗ of the original problem (1).

The Hessian Matrix of the penalized objective function (4a) is

iven by ∇
2f =

⎡⎣ 2α1+M1 0 ··· 0
0 2α2+M2 ··· 0
...

...
...

...
0 0 ··· 2αN+MN

⎤⎦, where 2αi +Mi, i ∈

1, 2, . . . ,N} is the second-order derivative of fi(Pi) with respect
o Pi, and Mi =

1
θ

(
1

(Pi−Pi,min)2
+

1
(Pi,max−Pi)2

)
. Since αi is positive,

and Pi is an interior point of the feasible domain, 2αi + Mi is
lower bounded by 2αi. In practical implementation, one should
guarantee that Pi does not get arbitrarily close to the bounds Pi,min
and Pi,max. This is usually achieved by setting up tighter bounds,
e.g., Pi,min+ϵ and Pi,max−ϵ, where ϵ is a small positive constant. In
his way, the output variable Pi will keep a distance of, at least,
from Pi,min and Pi,max, which insures that there exists M i > 0

such that 2αi + Mi ≤ M i (Li et al., 2014). Therefore, we have

≤ ∇
2f ≤ Ψ , (5)

with Π = diag{2α1, . . . , 2αN}, Ψ = diag{M1, . . . ,MN}.

. The predictive control scheme

In this section, we design the following predictive control law
o attenuate the effect of time-delays:

i(K ) = −ζ

N∑
j=1

lij∇fj
(
P̂j(K |K − τj)

)
, (6)

where Ui(K ) is the control input of agent i, P̂j(K |K − τj) is the
rediction of agent j’s output at time K using the available infor-
ation up to K − τj, and ζ > 0 is a control gain. Substituting (6)

nto (2) yields the following closed-loop system

i(K + 1) = Pi(K ) − ζ

N∑
lij∇fj

(
P̂j(K |K − τj)

)
(7)
j=1

3

where the predictor is designed as

P̂i(K − τi + 1|K − τi)

=P̂i(K − τi|K − τi − 1) + kf
(
Pi(K − τi)

− P̂i(K − τi|K − τi − 1)
)

+Ui(K − τi).

(8)

n (8), τi denotes the time-delay for agent i to process the infor-
ation and calculate its incremental cost ∇fi(·), whereas P̂i(K −

i +1|K − τi) denotes agent i’s prediction of its next output value
iven the information up to time K −τi. The predictor consists of
hree terms: the prediction at the last time P̂i(K − τi|K − τi − 1),
he prediction error feedback kf (Pi(K − τi)− P̂i(K − τi|K − τi −1)),
nd agent i’s input Ui(K − τi), where kf is a predictor gain to be
esigned. In practical implementation, the prediction P̂i(K−τi|K−

i−1) is calculated at time K−τi−1. Consequently, the prediction
rror feedback can also be obtained at time K . The input Ui(K−τi)
s obtained by agent i by summing up all its neighboring delayed
nformation.

The outputs during the time interval [K − τi + 2, K ] can be
redicted by

P̂i(K − τi + k|K − τi) = P̂i(K − τi + k − 1|K − τi)
+Ui(K − τi + k − 1), k = 2, . . . , τi,

(9)

here P̂i(K − τi + k|K − τi) and Ui(K − τi + k − 1) are defined
imilarly. Instead of sending the delayed information directly,
enerator i will send its predicted information (8) and (9) to its
eighbors, which will compensate for the effect of the time-delay.
ote that the prediction P̂i(K |K − τi) is calculated in the interval
K − τi, K − 1], during which the inputs Ui(K − τi), . . .Ui(K − 1)
re available.
Replacing K with K + τi in (8) yields

P̂i(K + 1|K ) = P̂i(K |K − 1) + kf
(
Pi(K )

− P̂i(K |K − 1)
)

+Ui(K ).
(10)

et δi(K ) = Pi(K )− P̂i(K |K − 1). Subtracting (10) from (7) leads to

i(K + 1) = (1 − kf )δi(K ). (11)

pplying (9) recursively gives

P̂i(K |K − τi)

=P̂i(K − τi|K − τi − 1) +

τi∑
k=1

Ui(K − τi + k − 1)

+ kf
(
Pi(K − τi) − P̂i(K − τi|K − τi − 1)

)
.

(12)

imilarly, applying (7) recursively yields

Pi(K ) = Pi(K − τi) +

τi∑
k=1

Ui(K − τi + k − 1). (13)

ubtracting (13) from (12), we have

P̂i(K |K − τi)

=Pi(K ) + P̂i(K − τi|K − τi − 1) − Pτ (K − τi)

+ kf
(
Pi(K − τi) − P̂i(K − τi|K − τi − 1)

)
=Pi(K ) − δi(K − τi) + kf δi(K − τi)
=Pi(K ) − δi(K − τi + 1).

(14)

The main results of this section are stated as follows.

heorem 1. If Assumption 1 holds,

<
4λ2(L)

2
,

(maxi=1,...,N M i + 1)λN (L)
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here λ2(L) and λN (L) are the smallest and largest nonzero eigen-
values of the Laplacian matrix L, and 1 −

√
2mini=1,...,N αi
maxi=1,...,N Mi

≤ kf < 1,
hen under the system (7) and the predictor (8) and (9), the control

objective (3) is achieved asymptotically where ξ =

√
N maxi=1,...,N M i
θ mini=1,...,N α2

i
.

roof. Let △Pi(K ) = Pi(K + 1)−Pi(K ) and △P(K ) = [△P1(K ), . . . ,
PN (K )]T . It follows from (7) that

△P(K ) = P(K + 1) − P(K ) = −ζL∇f
(
P̂τ (K )

)
(15)

here P̂τ (K ) = [P̂1(K |K − τ1), . . . , P̂N (K |K −τN )]T , and ∇f
(
P̂τ (K )

)[
∇f1

(
P̂1(K |K − τ1)

)
, . . . ,∇fN

(
P̂N (K |K − τN )

)]T . A Taylor expan-
sion of f (·) yields

f (P(K + 1)) = f
(
P(K )

)
+ ∇f

(
P(K )

)T
△P(K )

+
1
2
△P(K )T∇2f

(
z(K )

)
△P(K ),

(16)

here z(K ) = [z1(K ), . . . , zN (K )]T with zi(K ) ∈ [Pi(K ), Pi(K + 1)],
nd ∇

2f
(
z(K )

)
is the Hessian Matrix of the penalized objective

unction (4a) at z(K ). Substituting (15) into (16) yields

f
(
P(K + 1)

)
= f

(
P(K )

)
− ∇f

(
P(K )

)T
ζL∇f

(
P̂τ (K )

)
+

1
2
∇f
(
P̂τ (K )

)T
LT ζ∇

2f (z(K ))ζL∇f
(
P̂τ (K )

)
.

(17)

ewrite (14) in a vector form as

P̂τ (K ) = P(K ) − δτ (K ), (18)

where δτ (K ) = [δ1(K − τ1 + 1), . . . , δN (K − τN + 1)]T . Due
to (18), (17) can be written as f

(
P(K + 1)

)
= f

(
P(K )

)
−

∇f
(
P̂τ (K ) + δτ (K )

)T
ζL∇f

(
P̂τ (K )

)
+

1
2∇f

(
P̂τ (K )

)T
LT ζ∇

2f
(
z(K )

)
ζL∇f

(
P̂τ (K )

)
. It follows from the mean-value theorem (Khalil,

1996) that

∇fi
(
P̂i(K |K − τi) + δi(K − τi + 1)

)
−∇fi

(
P̂i(K |K − τi)

)
= εi(K )δi(K − τi + 1),

(19)

where 2αi ≤ εi(K ) = ∇
2fi(yi(K )) ≤ Mi, and yi(K ) is some value

etween Pi(K ) and P̂i(K |K − τi). Rewrite (19) in a vector form as

f
(
P(K )

)
= ∇f

(
P̂τ (K )

)
+ ε(K )δτ (K ), (20)

here ε(K ) = diag{εi(K ), . . . , εN (K )}. It follows from (17) and
20) that

f
(
P(K + 1)

)
− f

(
P(K )

)
= − ∇f

(
P̂τ (K )

)T
ζL∇f

(
P̂τ (K )

)
−
(
ε(K )δτ (K )

)T
ζL∇f

(
P̂τ (K )

)
+

1
2
∇f
(
P̂τ (K )

)T
LT ζ∇

2f
(
z(K )

)
ζL∇f

(
P̂τ (K )

)
.

(21)

Define the Lyapunov function candidate V (K ) = f
(
P(K )

)
−

f (P⋆) + 2∥ε(K )δτ (K )∥2
2 and △V (K + 1) = V (K + 1) − V (K ). It

follows that
△V (K + 1) = f

(
P(K + 1)

)
− f

(
P(K )

)
+2∥ε(K + 1)δτ (K + 1)∥2

2 − 2∥ε(K )δτ (K )∥2
2.

(22)

Substituting (21) into (22) yields
△V (K + 1)

= − ∇f
(
P̂τ (K )

)T
ζL∇f

(
P̂τ (K )

)
−
(
ε(K )δτ (K )

)T
ζL∇f

(
P̂τ (K )

)
+

1
2
∇f
(
P̂τ (K )

)T
LT ζ∇

2f
(
z(K )

)
ζL∇f

(
P̂τ (K )

)
2 2

(23)
+ 2∥ε(K + 1)δτ (K + 1)∥2 − 2∥ε(K )δτ (K )∥2.

4

t thus follows that
(
ε(K )δτ (K )

)T
ζL∇f

(
P̂τ (K )

)
+ ∥ε(K )δτ (K )∥2

2 =

ε(K )δτ (K ) +
1
2ζL∇f

(
P̂τ (K )

)2
2

−
1
4∇f

(
P̂τ (K )

)T
LT ζ 2L∇f

(
P̂τ (K )

)
.

ence, (23) can be written as △V (K + 1) = −∇f
(
P̂τ (K )

)T
ζL

∇f
(
P̂τ (K )

)
−

ε(K )δτ (K ) +
1
2ζL∇f

(
P̂τ (K )

)2
2
+

1
4∇f

(
P̂τ (K )

)T
LT ζ 2

L∇f
(
P̂τ (K )

)
+

1
2∇f

(
P̂τ (K )

)T
LT ζ∇

2f
(
z(K )

)
ζL∇f

(
P̂τ (K )

)
+ 2∥ε(K + 1)δτ (K + 1)∥2

2 − ∥ε(K )δτ (K )∥2
2, leading to

△V (K + 1)

≤ − ∇f
(
P̂τ (K )

)T
ζL∇f

(
P̂τ (K )

)
+

1
4
∇f
(
P̂τ (K )

)T
LT ζ 2L∇f

(
P̂τ (K )

)
+

1
2
∇f
(
P̂τ (K )

)T
LT ζΨ ζL∇f

(
P̂τ (K )

)
+ 2∥ε(K + 1)δτ (K + 1)∥2

2 − ∥ε(K )δτ (K )∥2
2

= −
1
4
∇f
(
P̂τ (K )

)T (
4ζL − 2LT ζΨ ζL − LT ζ 2L

)
∇f
(
P̂τ (K )

)
+ 2∥ε(K + 1)δτ (K + 1)∥2

2

− ∥ε(K )δτ (K )∥2
2.

(24)

y (11), (24) can be written as

△V (K + 1)

≤ −
1
4
∇f
(
P̂τ (K )

)T
Q∇f

(
P̂τ (K )

)
+ 2(1 − kf )2∥ε(K + 1)δτ (K )∥2

2 − ∥ε(K )δτ (K )∥2
2,

(25)

here Q = ζ (4L − 2ζLTML − ζLTL). By Assumption 1, L is
ositive semi-definite with a single zero eigenvalue, i.e., 0 =

1(L) < λ2(L) ≤ · · · ≤ λN (L). Additionally, notice that 2ζLTML+

LTL = ζLT (2M+I)L. Because 0 < ζ (2mini=1,...,N M i+1)λ2
i (L) ≤

λi
(
ζLT (2M+ I)L

)
≤ ζ (2maxi=1,...,N M i+1)λ2

i (L) for i = 2, . . . ,N ,
we have 4ζλi(L) − ζ 2(2maxi=1,...,N M i + 1)λ2

N (L) ≤ λi(Q ) ≤

ζλi(L) − ζ 2(2mini=1,...,N M i + 1)λ2
2(L) for i = 2, . . . ,N . If

ζ <
4λ2(L)

(maxi=1,...,N M i+1)λ2N (L)
, we have 4ζλi(L) − ζ 2(maxi=1,...,N M i +

1)λ2
N (L) > 0, which indicates that 0 = λ1(Q ) < λ2(Q ) ≤ · · · ≤

λN (Q ), i.e., the matrix Q can be made positive semi-definite.
Let e(K ) denote the projection of ∇f

(
P̂(K )

)
to 1, i.e.,

e(K ) =

(
I −

11T

N

)
∇f
(
P̂τ (K )

)
=∇f

(
P̂τ (K )

)
−

1T
∇f
(
P̂τ (K )

)
N

1.

(26)

oting that L1 = 0, the substitution of (26) into (25) yields
V (K + 1)≤−

1
4 e

T (K )Qe(K ) + 2(1 − kf )2∥ε(K + 1)δτ (K )∥2
2

−∥ε(K )δτ (K )∥2
2. If kf is chosen to satisfy 1−

√
2mini=1,...,N αi
maxi=1,...,N Mi

≤ kf <

, we have

2(1 − kf )2∥ε(K + 1)δτ (K )∥2
2 − ∥ε(K )δτ (K )∥2

2 ≤ 0,

hich implies that △V (K + 1)≤0, and △V (K + 1) < 0 only
f e(K )̸=0 or δτ (K )̸=0. Consequently, we have e(K ) → 0 and
τ (K ) → 0. It follows from e(K ) → 0 and (26) that

∇f
(
P̂τ (K )

)
→ α1, (27)

for some α. Additionally, Eq. (18) and δτ (K ) → 0 yield

P̂τ (K ) → P(K ) as K → ∞. (28)

Hence, we can conclude from (27) and (28) that ∇f
(
P(K )

)
→α1,

s K → ∞, which indicates that P⋆ is attained asymptoti-
ally (Wood & Wollenberg, 2012).
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Next, we drive the optimization error bound ξ . It follows from
(5) that (cf. Li et al., 2016)

2

maxi=1,...,N M i

∇f
(
P(K )

)2
2 ≤ f

(
P(K )

)
− f (P∗). (29)

he strong convexity property (5) also yields

f (P∗) ≥f
(
P(K )

)
−
∇f

(
P(K )

)
2

P(K ) − P∗

2

+ min
i=1,...,N

αi
P(K ) − P∗

2
2.

(30)

oting that f (P∗) ≤ f
(
P(K )

)
, it follows from (30) thatP(K ) − P∗


2 ≤

1
mini=1,...,N αi

∇f
(
P(K )

)
2, (31)

hich leads to

P(K ) − P∗

2 ≤

√
maxi=1,...,N M i

2mini=1,...,N α2
i

(
f
(
P(K )

)
− f (P∗)

)
.

Noting f
(
P(K )

)
→ f (P⋆) and lim supK→∞

(
f (P⋆)−f (P∗)

)
=

2N
θ
, one

as lim supK→∞

P(K ) − P∗

2 ≤ lim supK→∞

maxi=1,...,N M i
2mini=1,...,N α2

i

(
f
(
P(K )

)
− f (P∗)

)
≤

√
N maxi=1,...,N M i
θ mini=1,...,N α2

i
= ξ . □

It follows from Theorem 1 that the control error ξ can be made
arbitrarily small by choosing sufficiently large θ . Additionally, the
more convex the objective function, the smaller the control error.

5. Privacy preservation

When the generators do not fully trust each other or the com-
munication channels are insecure, sending the exact (predicted)
gradient information to neighbors induces a risk on the system.
That is, the initial states, which contain significant information
about the optimal solution of the system (see Binetti et al., 2014),
an be inferred by an adversary from their execution. In this
ection, we extend the results in the last section by adding
andom noise to the system (7) in order to protect agent privacy.
pecifically, we propose the following privacy preserving scheme
or the ED problem.

Algorithm 1 Differential Privacy Preserving Scheme
(1) At time K , each agent generates a random noise
ωi(K ) ∼ Lap(ϕK

i ). That is, ωi(K ) follows the Laplace distribution

DF
(
ωi(K )

)
=

1
2ϕK

i
exp

(
−

|ωi(K )|
ϕK
i

)
, where 0 < ϕi < 1 and PDF

enotes probability density function.
2) Each agent uses a ‘‘noisy’’ version of the incremental cost, i.e.,

f̃i(K ) = ∇fi
(
P̂i(K |K − τi)

)
+ ωi(K ). (32)

3) Each agent updates its output by

i(K + 1) = Pi(K ) − ζ

N∑
j=1

lij∇ f̃j(K ). (33)

4) Increase K by one, and go to step 1).

Define the observation sequence executed from P(0) as fol-
ows: Iout

P(0)

(
ω(K )

)
= [∇ f̃1(K ), . . . ,∇ f̃N (K )]T , where ω(K ) = [ω1

K ), . . . , ωN (K )]T . Let Iout
P(0)(ω) = {Iout

P(0)

(
ω(0)

)
, Iout

P(0)

(
ω(1)

)
, Iout

P(0)(
ω(2)

)
, . . .}. In the following, we formally introduce the definition

of differential privacy (Nozari et al., 2017).
5

Definition 1 (Differential Privacy). Given σ > 0, the initial
states P ′(0) and P ′′(0) are σ -adjacent if and only if, there exists

i0 ∈ V ,
⏐⏐P ′

i (0) − P ′′

i (0)
⏐⏐ ≤

{
σ i = i0,
0 i ̸= i0,

where i ∈ V . Given

{σ , ϵ} ⊆ R+, we say the dynamics (33) preserves ϵ-differential
rivacy if, for any pair of σ -adjacent initial states P ′(0) and
′′(0) and any arbitrary set S, P

{
ω ∈ Ω | Iout

P ′(0)(ω) ∈ S
}

≤

xp(ϵ)P
{
ω ∈ Ω | Iout

P ′′(0)(ω) ∈ S
}
.

emark 1. In (32) and (33), ωi(K ) can be replaced with the
delayed version, e.g., ωi(K − τi), which does not affect the va-
lidity of the main results, since the random variables ωi(K ) are
independently identically distributed.

Note that the initial states of the generators contain the im-
portant power demand information. That is, Pd =

∑N
i=1 Pi(0).

Additionally, it is worth pointing out that the optimal outputs
also depend on the initial states, since P∗

i =
λ∗

−βi
2γi

with λ∗
=(∑N

i=1 Pi(0) +
∑n

i=1
βi
2γi

)/(∑n
i=1

1
2γi

)
.

Definition 2 (Accuracy). For r ≥ 0 and p ∈ (0, 1), Algorithm 1 is
aid to be (p, r)-accurate if, for any feasible initial state P(0), the
gents’ state P(K ) converges to P(∞) as K → ∞ with E

(
P(∞)

)
=

⋆, and P{∥P(∞) − P⋆
∥2 ≤ r} ≥ 1 − p.

It is ready to state the main results of this section.

Theorem 2. If Assumption 1 holds,

ζ < min

(
4λ2(L)

maxi=1,...,N M iλ
2
N (L)

,
4

mini=1,...,N αiλN (L)

)
, (34)

< kf < 1, and 1 − kf < ϕi < 1, then Algorithm 1
uarantees that E

(
f
(
P(K )

))
→ f (P⋆) as K → ∞, while preserving

ϵ-differential privacy with ϵ = maxNi=1
M iσϕi

ϕi−(1−kf )
. Additionally, for

any p ∈ (0, 1), Algorithm 1 guarantees (p, r)-accuracy, where r =

N
i=1
∑N

j=1

√
2ζ2 l2ij√

p(1−ϕ2
j )
.

Proof. We first show that E
(
f
(
P(K )

))
→ f (P⋆) as K → ∞.

Let △Pi(K ) = Pi(K + 1) − Pi(K ). It follows from (33) that
△P(K ) = P(K + 1) − P(K ) = −ζL∇ f̃ (K ), where △P(K ) =

[△P1(K ), . . . ,△PN (K )]T , ∇ f̃ (K ) = ∇f
(
P̂τ (K )

)
+ ω(K ). Similar to

the proof of Theorem 1, we can write the objective function as
f
(
P(K+1)

)
= f

(
P(K )

)
−∇ f̃ (K )T ζL∇ f̃ (K )+ 1

2∇ f̃ (K )TLT ζ∇
2f
(
z(K )

)
L∇ f̃ (K )−

(̃
ε(K )δτ (K )

)T
ζL ∇ f̃ (K )+ω(K )T ζL∇ f̃ (K ), where ε̃(K ) =

iag{̃ε1(K ), · · · , ε̃N (K )}, 2αi ≤ ε̃i(K ) = ∇
2fi (̃yi(K )) ≤ Mi, and ỹi(K )

is some value between Pi(K ) and P̂i(K |K − τi). Due to the strong
onvexity of f , we have

f
(
P(K + 1)

)
≤f
(
P(K )

)
−

1
2
∇ f̃ (K )TW∇ f̃ (K )

−
(̃
ε(K )δτ (K )

)T
ζL∇ f̃ (K )

+ ω(K )T ζL∇ f̃ (K ),

(35)

where W = ζ (2L−ζLTΨL), and Ψ is defined in (5). The inequal-
ity 0 < (mini=1,...,N M i)λ2

i (L) ≤ λi(LTΨL) ≤ (maxi=1,...,N M i)λ2
i (L)

yields 2ζλi(L) − ζ 2(maxi=1,...,N M i)λ2
N ≤ λi(W ) ≤ 2ζλi(L) − ζ 2

×

mini=1,...,N M i)λ2
2(L), for i = 2, . . . ,N . If ζ is chosen to satisfy ζ <

2λ2(L)
(maxi=1,...,N M i)λ2N (L)

, we have 2ζλi(L) − ζ 2
(
maxi=1,...,N M i

)
λ2
N (L) >

. Moreover, if ζ is chosen to satisfy ζ < 4
mini=1,...,N αiλN (L) , we have

2(W ) < 4
mini=1,...,N αi

. Hence by choosing ζ as in (34), the matrix
W can be made positive semi-definite and λ (W ) < 4 .
2 mini=1,...,N αi
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h

q. (35) yields f
(
P(K + 1)

)
≤ f

(
P(K )

)
−

1
2λ2(W )∥∇ f̃ (K )∥2

2 −

ε̃(K )δτ (K )
)T

ζL∇ f̃ (K ) + ω(K )T ζL∇ f̃ (K ). Applying the Taylor ex-
ansion of fi(·) at Pi(K ) leads to

f (P⋆) ≥f
(
P(K )

)
+ ∇f

(
P(K )

)T (P⋆
− P(K )

)
+

1
2

(
P⋆

− P(K )
)T

Π
(
P⋆

− P(K )
)
,

(36)

here Π is defined in (5). It follows from (20) and (32) that
∇f
(
P(K )

)
= ∇ f̃ (K ) − ω(K ) + ε̃(K )δτ (K ), substituting which into

(36) leads to

f (P⋆) ≥f
(
P(K )

)
+ ∇ f̃ (K )T

(
P⋆

− P(K )
)

+

((̃
ε(K )δτ (K )

)T
− ω(K )T

)(
P⋆

− P(K )
)

+
1
2

(
P⋆

− P(K )
)T

Π
(
P⋆

− P(K )
)

≥f
(
P(K )

)
+ ∇ f̃ (K )T

(
P⋆

− P(K )
)

+

((̃
ε(K )δτ (K )

)T
− ω(K )T

)(
P⋆

− P(K )
)

+ min
i=1,...,N

αi∥
(
P⋆

− P(K )
)
∥
2
2.

(37)

inimizing the RHS of (37) over
(
P⋆

− P(K )
)
gives

f (P⋆) ≥f
(
P(K )

)
−

2
mini=1,...,N αi

∥∇ f̃ (K )∥2
2

−
2

mini=1,...,N αi
∥
(̃
ε(K )δτ (K )

)
− ω(K )∥2

2.

(38)

t follows that f
(
P(K )

)
−f
(
P(K+1)

)
≥

mini=1,...,N αi
4 λ2(W )

(
f
(
P(K )

)
− f (P⋆)

)
−

1
2λ2(W )∥

(̃
ε(K )δτ (K )

)
−ω(K )∥2

2+
(̃
ε(K )δτ (K )

)T
ζL∇ f̃ (K )

−ω(K )T ζL∇ f̃ (K ), leading to f
(
P(K+1)

)
+

mini=1,...,N αi
4 λ2(W )f

(
P(K )

)
≤ f

(
P(K )

)
+

mini=1,...,N αi
4 λ2(W )f (P⋆) +

1
2λ2(W )∥

(̃
ε(K )δτ (K )

)
∥
2
2 +

1
2λ2(W )∥ω(K )∥2

2+ω(K )T ζL∇ f̃ (K )−
(̃
ε(K )δτ (K )

)T
ζL∇ f̃ (K ). Adding

mini=1,...,N αi
4 λ2(W ) f

(
P(K )

)
− f (P⋆) on both sides yields

f
(
P(K + 1)

)
− f (P⋆)

≤
(
1 −

mini=1,...,N αi

4
λ2(W )

)(
f
(
P(K )

)
− f (P⋆)

)
+

1
2
λ2(W )∥ω(K )∥2

2 +
1
2
λ2(W )

(̃ε(K )δτ (K )
)2

2

+ ω(K )T ζLω(K ) + ω(K )T ζL∇f
(
P̂τ (K )

)
−
(̃
ε(K )δτ (K )

)T
ζL∇f

(
P̂τ (K )

)
−
(̃
ε(K )δτ (K )

)T
ζLω(K ).

(39)

By (11), (39) can be written as f
(
P(K + 1)

)
− f (P⋆) ≤

(
1 −

mini=1,...,N αi
4 λ2(W )

)(
f
(
P(K )

)
− f (P⋆)

)
+

1
2λ2(W )∥ω(K )∥2

2 +
1
2 (1

kf )2λ2(W )
(̃ε(K )δτ (K − 1)

)2
2 + ζλN (L)∥ω(K )∥2

2 + ω(K )T ζL∇

f
(
P̂τ (K )

)
−(1−kf )

(̃
ε(K )δτ (K−1)

)T
ζL∇f

(
P̂τ (K )

)
−(1−kf )

(̃
ε(K )δτ (K

− 1)
)T

ζLω(K ). Taking the expectation on both sides gives

E
(
f
(
P(K + 1)

)
− f (P⋆)

)
≤
(
1 −

mini=1,...,N αi

4
λ2(W )

)
E
(
f
(
P(K )

)
− f (P⋆)

)
+
(1
2
λ2(W ) + ζλN (L)

)
E
(
∥ω(K )∥2

2

)
+

1
2
(1 − kf )2Kλ2(W )E

(
∥̃ε(K )δτ (0)∥2

2

)
− (1 − k )KE

((̃
ε(K )δ (0)

)T
ζL∇f

(
P̂(K )

))
,

(40)
f τ

6

where we vanished the terms −(1 − kf )
(̃
ε(K )δτ (K − 1)

)T
ζLω(K )

nd ω(K )T ζL∇f
(
P̂(K )

)
, because ω(K ) is independent of δτ (K ) and

f
(
P̂(K )

)
, and ω(K ) has a zero mean.

For the second term in (40), using the fact that ωi(K ) is
ndependently identically distributed (i.i.d.), ωi(K ) ∼ Lap(ϕK

i ),(
ωi(K )ωj(K )

)
= E

(
ωi(K )

)
E
(
ωj(K )

)
= 0, for i ̸= j, and E

(
ωi(K )2

)
Var
(
ωi(K )

)
= 2ϕ2K

i → 0 as K → ∞, it follows that(
∥ω(K )∥2

2

)
→ 0 as K → ∞. If 0 < kf < 1, we have −(1 −

f )KE
((̃

ε(K )δτ (0)
)T

ζL∇f
(
P̂(K )

))
→ 0 and 1

2 (1 − kf )2Kλ2(W )

∥̃ε(K )δτ (0)∥2
2 → 0 as K → ∞. Hence, as K → ∞, (40) boils

own to E
(
f
(
P(K + 1)

)
− f (P⋆)

)
≤
(
1 −

mini=1,...,N αi
4 λ2(W )

)
E

f
(
P(K )

)
− f (P⋆)

)
. We have shown previously that λ2(W ) <

4
mini=1,...,N αiλ2(L) , indicating that E

(
f
(
P(K )

)
− f (P⋆)

)
→ 0 as

K → ∞.
Next, we show that the proposed scheme guarantees ϵ-

differential privacy. For any K , let{
R′(K ) = {ω(K ) ∈ ΩK | Iout

P ′(0)

(
ω(K )

)
∈ SK },

R′′(K ) = {ω(K ) ∈ ΩK | Iout
P ′′(0)

(
ω(K )

)
∈ SK },

where ΩK is the sample space up to time K , and SK is the set
by truncating the elements of S to the subsequence of length
K + 1. According to the continuity of probability (Durrett, 2010),
we have P{ω ∈ Ω | Iout

P ′(0)(ω) ∈ S} = limK→∞

∫
R′(K ) F

(
ω′(K )

)
dω′(K )

and

P{ω ∈ Ω | Iout
P ′′(0)(ω) ∈ S}

= lim
K→∞

∫
R′′(K )

F
(
ω′′(K )

)
dω′′(K ), (41)

where F (·) is the N(K + 1)-dimensional joint Laplace probabil-
ity density function given by F

(
ω(K )

)
=
∏N

i=1
∏K

t=0 PDF
(
ωi(t)

)
.

Without loss of generality, we assume that for i0 ∈ V , P ′′

i0
(0) =

P ′

i0
(0) + σ and P ′′

i (0) = P ′

i (0) for all i ̸= i0. For ω′(K ) ∈ R′(K ),
define

ω′′

i (K ) =

{
ω′

i(K ) − (1 − kf )Kκi(K )σ i = i0,
ω′

i(K ) i ̸= i0,

where 2αi0 ≤ κi0 (K ) = ∇
2fi0 (yi0 (K )) ≤ M i0 , and yi0 (K ) is some

value between P ′

i0
(K ) and P̂ ′

i0
(K |K − τ ). It is straightforward to

see that Iout
P ′(0)

(
ω′(K )

)
= Iout

P ′′(0)

(
ω′′(K )

)
, yielding ω′′(K ) ∈ R′′(K ).

Therefore, there exists a unique (ω′(K ), △ωK ) such that ω′′(K ) =

ω′(K )+ △ωK , where △ωK = (△ω1,K , . . . ,△ωN,K )T . It is clear that
△ωK is fixed and independent of ω′′(K ). Hence, we can rewrite
(41) as P{ω ∈ Ω | Iout

P ′′(0)(ω) ∈ S} = limK→∞

∫
R′(K ) F

(
ω′(K ) +

△ωK
)
dω′(K ). It follows that

F
(
ω′(K )

)
F
(
ω′(K )+△ωK

) ≤ exp

∑K
t=0

(1−kf )tM i0σ

ϕt
i0

)
. If 1 − kf < ϕi0 < 1, we have

F
(
ω′(K )

)
F
(
ω′(K )+△ωK

) ≤

exp
(

M i0σϕi0
ϕi0−(1−kf )

)
, leading to

(
ω′(K )

)
≤ exp

(
M i0σϕi0

ϕi0 − (1 − kf )

)
F
(
ω′(K ) + △ωK

)
. (42)

ntegrating both sides of (42) over R(K ) and letting K → ∞, we
ave

P{ω ∈ Ω | Iout
P ′(0)(ω) ∈ S}

≤ exp

(
M i0σϕi0

ϕ − (1 − k )

)
P{ω ∈ Ω | Iout

P ′′(0)(ω) ∈ S},
(43)
i0 f
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hich establishes the ϵi0-differential privacy of agent i0, where

ϵi0 =
M i0σϕi0

ϕi0−(1−kf )
. Since i0 can be any agent, ϵ-differential privacy

reservation is established.
Finally, we show the accuracy. Repeating (33) gives Pi(K ) =

i(0)−ζ
∑K−1

t=0
∑N

j=1 lij∇fj(P̂j(K |K−τj))−ζ
∑K−1

t=0
∑N

j=1 lijwj(K ). Be-
ause the noise is independent over time and among agents, it fol-
ows that, for any time step K ≥ 0, Var

(
Pi(K )

)
= 2ζ 2∑K−1

t=0
∑N

j=1
2
ijϕ

2t
j . As K → ∞, we have E

(
Pi(∞)

)
= P⋆

i and Var
(
Pi(∞)

)
=

2ζ 2∑N
j=1

l2ij
1−ϕ2

j
. Let Var

(
P(∞)

)
=
∑N

i=1 Var
(
Pi(∞)

)
. It follows that

ar
(
P(∞)

)
= 2ζ 2∑N

i=1
∑N

j=1
l2ij

1−ϕ2
j
. By Chebyshev’s inequality, we

ave P{∥P(∞) − P⋆
∥2 ≤ r} = 1 − P{∥P(∞) − P⋆

∥2 > r} ≥

−
Var(P(∞))

r2
. Choosing r =

√
Var(P(∞))

√
p =

∑N
i=1
∑N

j=1

√
2ζ2 l2ij√

p(1−ϕ2
j )

yields

{∥P(∞) − P⋆
∥2 ≤ r} ≥ 1 − p. □

Theorem 2 has established some key convergence properties
of Algorithm 1. In particular, Eq. (40) shows that if ζ satisfies
(34) and 0 < kf < 1, then E

(
f
(
P(K )

))
converges to f (P⋆) as

K → ∞; Eq. (43) establishes the ϵ-differential privacy preser-
vation property, which shows that a more dispersive noise distri-
bution guarantees a higher privacy.

Remark 2. Theorem 2 incorporates the techniques of predictive
control and injecting Laplace noise together to solve a distributed
economic dispatch problem with heterogeneous time-delays un-
der the requirement of preserving generators’ privacy. Compared
with traditional privacy preservation schemes in distributed op-
timization, due to the additional dynamics of the predictor, we
have to handle a higher-dimensional system which is coupled
with the optimization system through both time-delays and the
added noise. This yields significant challenges in analyzing the
system convergence, e.g., deriving the privacy preservation con-
stant ϵ and showing the (p, r) accuracy, since we have to tackle
three different kinds of control errors, i.e., the optimization er-
ror, the prediction error, and the error caused by the noise,
simultaneously.

6. Conclusion

This paper has investigated a distributed predictive scheme for
the ED problem with heterogeneous time-delays. We employed
the θ-logarithmic barrier function to relax the box constraint of
the ED problem. We developed a consensus-based optimization
algorithm to solve the ED problem, where the supply demand
constraint can be efficiently satisfied over the whole time horizon.
A predictive scheme has been proposed to compensate for the
effect of time-delays. We have provided the theoretical analysis
on the convergence of the proposed algorithms. Among other
things, a privacy-preserved predictive scheme has been proposed
to meet the requirement of privacy preservation, for which we
have carefully characterized its convergence, differential privacy
properties, as well as accuracy.
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