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a b s t r a c t

The objective of containment control in multi-agent systems is to design control algorithms for the
followers to converge to the convex hull spanned by the leaders. Sampled-data based containment
control algorithms are suitable for the cases where the power supply and sensing capacity are limited,
due to their low-cost and energy-saving features resulting from discrete sensing and interactions. In
addition, sampled-data control has advantages in performance, price and generality. On the other hand,
when the agents have double-integrator dynamics and the leaders are dynamic with nonzero inputs,
the existing algorithms are not directly applicable in a sampled-data setting. To this end, this paper
proposes a sampled-data based containment control algorithm for a group of double-integrator agents
with dynamic leaders with nonzero inputs under directed communication networks. By applying the
proposed control algorithm, the followers converge to the convex hull spanned by the dynamic leaders
with bounded position and velocity containment control errors, and the ultimate bound of the overall
containment error is proportional to the sampling period. A numerical simulation is presented to
illustrate the proposed algorithm.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Due to the advantages in achieving group performance with
low operation cost and flexible scalability, and potential practical
applications in vehicle formation, sensor networks, cooperative
surveillance, and so on [1,2], distributed cooperative control of
a group of robots/agents have drawn massive attention from
various scientific communities. Consensus is an important re-
search subject in distributed cooperative control of multi-agent
systems, where all the agents reach an agreement on a state of
interest. A number of distributed consensus algorithms have been
proposed to solve the consensus problems for a group of agents
with no leader [3,4] and one leader [5,6]. When there are multiple
leaders in the group, the objective is to solve the containment
control problem [7], where the followers are to converge to the
convex hull spanned by the leaders. Several natural phenom-
ena exhibit the relationship between leaders and followers in
the containment control problem. For instance, several sheep-
dogs gather a flock of sheep and guide them safely to a desired
location [8]. Another biological example is provided in [9,10],
where female silkworm moths are capable of releasing a certain
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kind of pheromone to attract male moths to swarm in tight
geometrical configurations. On the other hand, the containment
control problem has practical applications. For instance, several
robots capable of self-navigation are able to guide a group of
agents to cross a partially known area [10]. Also, the containment
control problem has applications in coordination of a group of
robots [11].

A number of algorithms have been reported in the literature
to deal with the containment control problem under various sce-
narios. For instance, containment control algorithms are proposed
for a group of single-integrator agents [12,13], double-integrator
agents [11,13,14], and agents with general linear dynamics [15]
and Euler–Lagrange dynamics [16]. The aforementioned results
are derived for continuous-time cases, which require continu-
ous sensing and interaction among agents. However, when each
agent has limited power supply and sensing capacities, energy
saving becomes one of the main factors that the designers have
to take into account. Because of the advantages in cost reduc-
tion, the event-triggered and discrete-time containment control
algorithms are studied in the literature.

Several different event-triggered containment control algo-
rithms are proposed in the literature. See [17–23] for instance.
These event-triggered containment control algorithms require
that each agent continuously monitor the communication chan-
nels and certain states, and continuously compute and check
the event-triggering functions to see whether they exceed some
threshold. These actions will cost additional energy and resources.
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It is also worth noting that in [17–23], the leaders’ inputs are
either zero or designed to drive the leaders to some stationary
locations, which are simpler than the case where the dynamic
leaders’ inputs can be arbitrary as long as they are bounded.

Discrete-time containment control algorithms are proposed
for multi-agent systems with single-integrator dynamics [10,24],
double-integrator dynamics [13,25–27], higher-order integrator
dynamics [28,29], and general discrete-time linear dynamics [15].
The containment control problem for heterogeneous multi-agent
systems is addressed in [30], where the followers have single- and
double-integrator dynamics and the leaders are single-integrator
agents.

Among these discrete-time containment control algorithms,
the sampled-data based ones stand out because of their ad-
vantages in performance/accuracy, price and generality. Also it
is more coincident with practical applications in real life. For
instance, sampled-data based algorithms are proposed in [27]
and [13] to solve the containment control problem for multi-
ple agents with fractional-order double-integrator dynamics and
ordinary double-integrator dynamics, respectively.

In the above mentioned discrete-time containment control al-
gorithms, however, the leaders’ inputs remain zero, which greatly
simplifies analysis and design. One natural question arises is
how to solve the containment control problem for the case
where leaders’ inputs are nonzero. In this case, discontinuous
algorithms are usually used to achieve containment control for
continuous-time single- and double-integrator agents [11,12].
However, the discontinuous algorithms proposed in [11,12] re-
quire each agent to continuously interact with its neighbors,
and it is not clear whether it is applicable for double-integrator
agents in a sampled-data setting. A solution to the question is
provided in [10] for discrete-time higher-order-integrator agents
if the leaders’ trajectories are described by polynomial functions.
Such trajectories can be generated by integrator agents with
polynomial inputs. However, it is not directly applicable when the
followers’ dynamics become complicated and the leaders’ inputs
are non-polynomial as considered in this paper. Also, note that
to implement the discrete-time containment control algorithm
in [10], each double-integrator follower needs to store a great
amount of historical state information to update its controller.

In the sampled-data setting, there exist new challenges for the
containment control of double-integrator agents with dynamic
leaders with nonzero inputs. The coexistence of the sampled-
data setting, double-integrator dynamics and dynamic leaders
with nonzero inputs, makes the containment control problem
more difficult and complicated, and renders the existing related
results in the literature inapplicable. Therefore, the development
of new sampled-data containment control algorithm is needed
for double-integrator agents with dynamic leaders with nonzero
inputs. Inspired by the above observations, in this paper, we
address the containment control problem in a sampled-data set-
ting for double-integrator agents with multiple dynamic leaders
with nonzero inputs under directed communication networks.
The contributions of this paper are two-fold. First, a sampled-data
based containment control algorithm is proposed for double-
integrator agents, which eliminates the requirement of contin-
uous sensing and interactions. It is more suitable for practical
applications, since continuous sensing and interaction are not
energy-efficient, and demand a larger portion of energy on board
compared with periodic ones. Second, the proposed algorithm is
proposed for the case where there are multiple dynamic leaders
with nonzero inputs, which is one of the main differences dis-
tinguishing our work from the existing discrete-time distributed
containment control algorithms in the literature. By the proposed
algorithm, we show that all the followers converge to the con-
vex hull spanned by the leaders with bounded errors. Both the

collective position and velocity containment control errors are
bounded, and the ultimate bound of the overall containment
control error is proportional to the sampling period.

The remainder of this paper is arranged as follows. In
Section 2, some preliminaries are presented, and the containment
control problem is introduced. Section 3 shows that by the pro-
posed algorithm, the containment control problem is solved with
bounded errors. A numerical example is provided in Section 4 to
explain the main results and a few concluding remarks are made
in Section 5.

2. Preliminaries

For a given vector x ∈ Rp, ∥x∥2 denotes the two-norm of x.
For a scalar r , |r| denotes the absolute value of r . For a complex
number c , Re {c} and Im {c} denote the real and imaginary parts
of c , respectively. For a set S , |S| denotes the cardinality of S .
⊗ denotes the Kronecker product. 0m×n ∈ Rm×n denotes the
m×n dimensional zero matrix, and for simplicity, let 0m = 0m×1.
In ∈ Rn×n denotes the identity matrix.

2.1. Graph theory

For a multi-agent system consisting of n agents, the interaction
topology can be modeled by a directed graph G = {V, E}, where
V = {1, . . . , n} and E ⊆ V × V denote the node set and edge set,
respectively. Each edge, denote by (j, i) ∈ E , means that node j
is a neighbor of node i, and that node i can obtain information
from node j. Self edges (i, i) are not considered here. The set of
neighbors of node i is denoted by Ni = {j ∈ V | (j, i) ∈ E}. A
directed path is a sequence of edges in a directed graph of the
form (i1, i2), (i2, i3), . . . , where ik ∈ V .

Define a row-stochastic matrix D = [dij] ∈ Rn×n associated
with G, and assume that dii > 0, dij > 0 if (j, i) ∈ E , and dij = 0
otherwise.

2.2. Problem statement

Consider a network of n agents whose interactions are repre-
sented by the directed graph G. Each agent i has double-integrator
dynamics given by

ṙi(t) = vi(t), v̇i(t) = ui(t), i = 1, . . . , n,

where ri(t) ∈ Rp and vi(t) ∈ Rp denote the position and velocity
of agent i at time t , respectively, and ui(t) is the corresponding
control input. In this paper, we consider a sampled-data setting
where the agents have continuous-time dynamics while the con-
trol inputs are based on zero-order hold and the interactions with
neighbors are made at discrete sampling times. Then the system
can be discretized as

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k]

vi[k + 1] = vi[k] + Tui[k],
(1)

where T is the sampling period, k is the discrete-time index, and
ri[k] ∈ Rp, vi[k] ∈ Rp and ui[k] ∈ Rp represent the position,
velocity, and control input of the ith agent at t = kT , respectively.

We adopt the definitions of the leaders and the followers used
in [31]. That is, an agent is called a leader if and only if it has no
neighbor, and otherwise it is called a follower. Without loss of
generality, let F = {1, . . . ,m} and L = {m + 1, . . . , n} denote
the follower set and the leader set, respectively. Therefore, the
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row-stochastic matrix D associated with the directed graph G can
be written as

D =

[
D1 D2

0(n−m)×m I(n−m)×(n−m)

]
where D1 ∈ Rm×m and D2 ∈ Rm×(n−m). We assume that G satisfies
the following assumption.

Assumption 1. For each of the followers, there is at least one
leader that has a directed path to the follower.

Lemma 1 ([15]). Under Assumption 1, the matrix D1 has all the
eigenvalues within the unit circle, and each entry of (Im − D1)−1D2
is nonnegative, and each row of (Im − D1)−1D2 has a sum equal
to 1. □

Definition 1. Let C be a set in a real vector space S ⊆ Rp. The set
is convex if, for any x and y in C, the point (1−α)x+αy ∈ C for any
α ∈ [0, 1]. The convex hull for a set of points X := {x1, . . . , xm}

in S , denoted by Co(X ), is the minimal convex set containing
all points in X , that is, Co(X ) := {

∑m
i=1 βixi | xi ∈ X , βi ≥

0,
∑m

i=1 βi = 1}.

In this paper, the objective is to solve the containment con-
trol problem, that is to design ui[k] for follower i, i ∈ F , by
using its own and neighbors’ states, {rj}j∈Ni∪{i} and {vj}j∈Ni∪{i},
such that all followers’ positions and velocities converge to the
convex hull spanned by the dynamic leaders’ positions and veloc-
ities, respectively, which are given by Co({rl}l∈L ) and Co({vl}l∈L ),
respectively.

Note that by properly designing ui[k] for leader i ∈ L , the
leader will be able to follow a certain desired trajectory. Then,
the leaders are capable of guiding the followers through a certain
region safely and reach the desired location. We assume that
the leaders’ inputs are pre-designed and satisfy the following
condition.

Assumption 2. The inputs of the leaders are bounded, i.e., for
any j ∈ L ,

uj[k]

2 ≤ c1, where c1 is a positive constant.

3. Sampled-data containment control

In order to solve the multi-agent containment control prob-
lem, we consider the following controller for follower i as

ui[k] =

∑
j∈L ∪F

dij

(
vj[k] − vj[k − 1]

T
− γ1{ri[k] − rj[k]}

− γ2{vi[k] − vj[k]}
)

, i ∈ F

(2)

where dij is the (i, j) the entry of the matrix D, and γ1, γ2 > 0
are constant. Essentially, the term vj[k]−vj[k−1]

T make use of past
data to approximate the acceleration of agent j. Therefore, each
follower only uses its own and its neighbors’ current and previous
velocities as well as the current positions to update its control
input, which means the algorithm (2) can be implemented in
reality.

Define the position and velocity containment control errors
for follower i as xi[k] =

∑n
j=1 dij(ri[k] − rj[k]) and yi[k] =∑n

j=1 dij(vi[k] − vj[k]), respectively. Define the collective position
and velocity containment control errors as X[k] =

(
x⊤

1 [k], . . . ,
x⊤
m[k]

)⊤ and Y [k] =
(
y⊤

1 [k], . . . , y⊤
m[k]

)⊤, respectively. Using (2)

for (1), we have

X[k + 1] =
(
A11 ⊗ Ip

)
X[k] +

(
A12 ⊗ Ip

)
Y [k]

−

(
T
2
D1 ⊗ Ip

)
Y [k − 1] +

(
T
2
D2 ⊗ Ip

)
∆[k]

Y [k + 1] =
(
A21 ⊗ Ip

)
X[k] +

(
A22 ⊗ Ip

)
Y [k]

−
(
D1 ⊗ Ip

)
Y [k − 1] +

(
D2 ⊗ Ip

)
∆[k],

where

A11 =

(
1 −

T 2

2
γ1

)
Im +

T 2

2
γ1D1,

A12 =

(
T −

T 2

2
γ2

)
Im +

(
T
2

+
T 2

2
γ2

)
D1,

A21 = −Tγ1
(
Im − D1

)
,

A22 =
(
1 − Tγ2

)
Im +

(
1 + Tγ2

)
D1.

and ∆[k] = 2vL[k] − vL[k + 1] − vL[k − 1] with vL[k] =(
v⊤

m+1[k], . . . , v
⊤
n [k]

)⊤. Define Z[k+1] =
(
X⊤

[k + 1], Y⊤
[k + 1],

X⊤
[k], Y⊤

[k]
)⊤. It then follows that

Z[k + 1] = ÃZ[k] + B̃∆[k], (3)

where Ã = A ⊗ Ip with

A =

⎡⎢⎢⎣
A11 A12 0m×m −

T
2D1

A21 A22 0m×m −D1

Im 0m×m 0m×m 0m×m

0m×m Im 0m×m 0m×m

⎤⎥⎥⎦ , (4)

and B̃ =
[ T
2 , 1, 0, 0

]⊤
⊗
(
D2 ⊗ Ip

)
.

The eigenvalues of Ã play an important role in determining
the solution of (3). Therefore, we investigate the eigenvalues of
Ã in the following. We first present three useful lemmas before
moving on.

Lemma 2 (Generalized Schur’s Formula [32]). Let Mij ∈ Rn×n, i, j ∈

M, where M = {1, . . . ,m}, and

M =

⎡⎢⎣M11 · · · M1m
...

. . .
...

Mm1 · · · Mmm

⎤⎥⎦ .

If Mij, i, j ∈ M pairwise commute, i.e., MijMls = MlsMij for all
possible pairs of indices i, j and l, s, then

det(M) = det

(∑
π∈Sm

sgn(π )M1π (1)M2π (2) . . .Mmπ (m)

)
,

where det(·) denotes the determinant of a matrix, π is a permuta-
tion, set Sm denotes the set of all possible permutations of the M,
and sgn(π ) denotes the parity of the permutation π . □

Lemma 3. Let P(z) be a polynomial of order three with complex
coefficients in the form of P(z) = z3 + α1z2 + α2z + α3, where
αi = pi + jqi, i = 1, . . . , 3 and j is the imaginary unit. The
polynomial P(z) has all its zeros in the open left half of the z-complex
plane if and only if p1 > 0, p21p2 + p1q1q2 − p1p3 − q22 > 0, and
det(M3) > 0 where

M3 =

⎡⎢⎢⎢⎣
p1 p3 p5 −q2 −q4
1 p2 p4 −q1 −q3
0 p1 p3 0 −q2
0 q2 q4 p1 p3
0 q1 q3 p1 p2

⎤⎥⎥⎥⎦ .
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Proof. This lemma is a special case of the Theorem 3.2 in [33],
and the proof is thus omitted. □

Lemma 4 ([34]). The matrix M ∈ Rn×n has eigenvalues λ1, . . . ,
λn. Let g(x) = a0 + a1x + · · · + akxk be a polynomial, and let
g(M) = a0In + a1M + · · · + akMk. Then the eigenvalues of g(M)
are g(λ1), . . . , g(λn). □

With the above three lemmas, we can obtain the following
results on the eigenvalues of the matrix Ã.

Lemma 5. Suppose that Assumption 1 holds. Let λi be the ith
eigenvalue of D1. The matrix Ã has all eigenvalues within the unit
circle if and only if there exist positive scalars T , γ1 and γ2 such that

2γ2

Tγ1
>

1 − |λi|
2

|1 − λi|
2 , i = 1, . . . ,m, (5)

and(
2γ2

T
−

1 − |λi|
2

|1 − λi|
2 γ1

)2 [2(1 − |λi|
2)

|1 − λi|
2 − Tγ2

]
−

16(Im {λi})2γ 3
2

|1 − λi|
4T

> 0, i = 1, . . . ,m, (6)

hold. In addition, such positive scalars T , γ1 and γ2 always exist.

Proof. First, we prove that the matrix A defined in (4) has all
eigenvalues within the unit circle if and only if there exist positive
scalars T , γ1 and γ2 such that (5) and (6) hold. Note that the
characteristic polynomial of A is given by
det(sI4m − A)

= det

⎛⎜⎜⎝
⎡⎢⎢⎣
sIm − A11 −A12 0m×m

T
2D1

−A21 sIm − A22 0m×m D1

−Im 0m×m sIm 0m×m

0m×m −Im 0m×m sIm

⎤⎥⎥⎦
⎞⎟⎟⎠

= det
(
s
[
s(sIm − A11)(sIm − A22) − sA12A21

+ (sIm − A11)D1 +
T
2
D1A21

])
= det

(
s

{[
s3 −

(
2 −

T 2

2
γ1 − Tγ2

)
s2 +

(
1 +

T 2

2
γ1

− Tγ2

)
s
]
Im +

[(
−1 −

T 2

2
γ1 − Tγ2

)
s2

+

(
2 −

T 2

2
γ1 + Tγ2

)
s − 1

]
D1

})
,

where we have used Lemma 2 to obtain the second to the last
equality because sIm − A11, −A12, 0m×m, T

2D1, −A21, sIm − A22, D1,
−Im and sIm commute pairwise. Let λ1, . . . , λm be the eigenvalues
of D1. Then by Lemma 4 and the fact that the determinant of a
matrix is the product of its eigenvalues, it holds that det[g1(s)Im+

g2(s)D1] =
∏m

i=1[g1(s) + g2(s)λi], where g1 and g2 are two
polynomial functions of s. Thus, it follows that
det(sI4m − A)

=

m∏
i=1

(
s

{
s3 −

(
2 −

T 2

2
γ1 − Tγ2

)
s2+

(
1 +

T 2

2
γ1

− Tγ2

)
s+

[ (
−1 −

T 2

2
γ1 − Tγ2

)
s2

+

(
2 −

T 2

2
γ1 + Tγ2

)
s − 1

]
λi

})
.

Thus, the roots of det(sI4m −A) = 0 either equal to zero or satisfy

s3 +

[
−2 − λi + (1 − λi)

(
T 2

2
γ1 + Tγ2

)]
s2

+

[
1 + 2λi + (1 − λi)

(
T 2

2
γ1 − Tγ2

)]
s − λi = 0.

(7)

It is trivial when the roots of det(sI4m −A) = 0 are zero. Note that
the matrix A has all eigenvalues within the unit circle if and only
if, for any eigenvalue of D1, the roots of (7) all lie inside the unit
circle. Instead of computing the roots of (7) directly, we apply the
bilinear transformation s =

z+1
z−1 to (7), which yields

(1 − λi)T 2γ1z3 + 2(1 − λi)Tγ2z2 + (1 − λi)(4 − T 2γ1)z
+ 4(1 + λi) − 2(1 − λi)Tγ2 = 0.

(8)

Such bilinear transformation maps the left half of the complex
z-plane to the interior of the unit circle in the s-plane, it then
follows that (7) has all the roots within the unit circle if and
only if (8) has all the roots in the open left half of the complex
plane. Since Assumption 1 holds, it follows that |1 − λi| > 0
by Lemma 1. Note that both γ1 and the sampling period T are
positive. Then (8) is equivalent to

z3 + α1z2 + α2z + p3 + jq3 = 0. (9)

where α1 =
2Tγ2
T2γ1

, α2 =
4−T2γ1
T2γ1

, p3 =
4(1−|λi|

2)
|1−λi|

2T2γ1
−

2Tγ2
T2γ1

, and

q3 =
8Im{λi}

|1−λi|
2T2γ1

. Denote by P(z, λi) the left hand side of (9) for

some given λi. Note that for a given λi, P(z, λi) is a polynomial in
the indeterminate z of degree 3. Then for a given λi, by Lemma 3,
P(z, λi) has all the zeros in the open left half of the complex plane
if and only if the positive scalars T , γ1 and γ2 satisfy

f ij > 0, j = 1, . . . , 3, i = 1, . . . ,m, (10)

with f i1 = α1, f i2 = α1α2 − p3, and f i3 = (α1α2 − p3)2p3 − q23α
3
1 . It is

easy to see that (5) follows from f i1 > 0 and f i2 > 0, i = 1, . . . ,m.
Note that f i3 > 0 can be written as (6). Thus, the matrix A has all
eigenvalues within the unit circle if and only if there exist positive
scalars T , γ1 and γ2 such that (5) and (6) hold.

By the fact that µ is an eigenvalue of Ã if and only if µ is also
an eigenvalue of A, we conclude that Ã has all eigenvalues within
the unit circle if and only if there exist positive scalars T , γ1 and
γ2 such that (5) and (6) hold.

In the following, we show that such positive scalars T , γ1 and
γ2 always exist. Obviously, f i1 > 0 ∀i = 1, . . . ,m. We rewrite f i2
and f i3, i = 1, . . . ,m as

f i2 =

(
8γ2

γ 2
1

)
β3

−

[
4(1 − |λi|

2)
|1 − λi|

2γ1

]
β2,

f i3 = 32
{[

8(1 − |λi|
2)γ 2

2

|1 − λi|
2γ 5

1

]
β8

−

[
8(1 − |λi|

2)2γ2

|1 − λi|
4γ 4

1

+
4γ 3

2

γ 5
1

+
16
(
Im {λi}

)2
γ 3
2

|1 − λi|
4γ 5

1

]
β7

+

[
4(1 − |λi|

2)γ 2
2

|1 − λi|
2γ 4

1

+
2(1 − |λi|

2)3

|1 − λi|
6γ 3

1

]
β6

−

[
(1 − |λi|

2)2γ2

|1 − λi|
4γ 3

1

]
β5
}
,

where β =
1
T . Note that f i2 and f i3 are two polynomials in the

indeterminate β of degree 3 and 8, respectively. The leading
coefficients (the coefficient of the term with the highest degree)
of f i2 and f i3 are ei2 :=

8γ2
γ 2
1
, and ei3 :=

256(1−|λi|
2)γ 2

2
|1−λi|

2γ 5
1

, respectively.

We can see that ei2 > 0 ∀i = 1, . . . ,m, since γ1, γ2 > 0. When
Assumption 1 holds, the eigenvalues of D1 are located inside
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the unit circle by Lemma 1, which implies that 1 − |λi|
2 > 0

∀i = 1, . . . ,m. It then holds that ei3 > 0 ∀i = 1, . . . ,m. Then
it follows that, for any eigenvalue of D1, and any given positive
constants γ1 and γ2,

lim
T→0+

f ij = +∞, j = 2, 3.

Hence, given any eigenvalue of D1, and for any positive finite
constants γ1 and γ2, there always exists a positive constant T λi

such that for any T < T λi , f i2 > 0 and f i3 > 0 hold. Let
T = mini=1,...,m T λi . When T < T , f ij , j = 1, . . . , 3, hold
for any eigenvalues of D1, which implies the existence of these
three positive scalars T , γ1 and γ2 such that (10) holds for any
eigenvalue of D1. □

Theorem 1. Let Assumptions 1 and 2 hold. If the positive scalars T ,
γ1 and γ2 satisfy (10) for any eigenvalue of D1, using the algorithms
(2) for (1), the followers converge to the convex hull spanned by
the leaders with bounded position and velocity containment control
error, and the overall containment control error, ∥X[k]∥2 +∥Y [k]∥2,
is ultimately bounded by 2c1c2T

√
n − m

̃B2 /(1 − ρ), where c1
is given in Assumption 2, and positive constant c2 and ρ ∈ [0, 1)
satisfy

̃Aj

2 ≤ c2ρ j, j ≥ 0.

Proof. It follows that the solution of (3) is

Z[k] = ÃkZ[0] +

k−1∑
i=0

Ãk−i−1̃B∆[i].

Then, it holds that

∥Z[k]∥2 ≤
̃AkZ[0]


2 +


k−1∑
i=0

Ãk−i−1̃B∆[i]


2

≤
̃Ak


2 ∥Z[0]∥2 + 2

√
n − mTc1


k−1∑
i=0

Ãk−i−1


2

̃B2 ,

where we have used the fact that

∥∆[i]∥2 = ∥2vL[i] − vL[i + 1] − vL[i − 1]∥2

≤ ∥vL[i + 1] − vL[i]∥2 + ∥vL[i] − vL[i − 1]∥2

≤ 2
√
n − mTc1

holds for all i if Assumption 2 holds. Since Assumption 1 holds,
and by Lemma 5, if the positive scalars T , γ1, and γ2 satisfy (10)
for any eigenvalue of D1, the matrix Ã has all the eigenvalues
within the unit circle. Then by [35,36], there exist two finite
positive constants c2 and ρ ∈ [0, 1) such that

̃Aj

2 ≤ c2ρ j.

Then, we have ∥Z[k]∥2 ≤ c2ρk ∥Z[0]∥2 + 2Tc1c2
√
n − m(1 −

ρk)
̃B2 /(1 − ρ) < ∞, which implies that both the position

and velocity containment errors are bounded. It also follows that
limk→∞ ∥Z[k]∥2 ≤ 2Tc1c2

√
n − m

̃B2 /(1 − ρ), since limk→∞ ρk

= 0. Therefore, it holds that limk→∞(∥X[k]∥2 + ∥Y [k]∥2) ≤

limk→∞

√
2 ∥X[k]∥2

2 + 2 ∥Y [k]∥2
2 = limk→∞ ∥Z[k]∥2 ≤ 2Tc1c2

√
n − m

̃B2 /(1 − ρ). This completes the proof. □

Remark 1. The ultimate overall containment control error is
proportional to the sampling period T . As T → 0, ∥X[k]∥2 +

∥Y [k]∥2 → 0, which implies that the position and velocity
containment errors for each follower approach zero eventually.

Remark 2. The discrete-time controller (2) is robust to bounded
state disturbance. Consider that ri[k+1] = ri[k]+Tvi[k]+ T2

2 ui[k]+
dri [k], vi[k+ 1] = vi[k] + Tui[k] + dv

i [k], where dri [k] and dv
i [k] are

the position and velocity disturbances, respectively. Since (3) is a
linear time-invariant system, then under the state disturbances,
the followers are still capable of converging to the convex hull
with bounded errors, the values of which depend on the bounded
disturbances, in addition to the sampling period and the choices
of positive scalars γ1 and γ2.

The real-world communication environment may be corrupted
by noise, that is, each agent has access to noisy state information
received from its neighbors. In the present case, each agent i
receives r̂j[k] = rj[k] + nr

j [k] and v̂j[k] = vj[k] + nv
j [k] from

its neighbor i, where nr
j and nv

j ∈ Rp are noise vectors. The
entries of each noise vector are drawn independently from some
identical zero-mean distribution. Then by using noisy transmitted
position and velocity information in the control law (2), that is,
replacing rj[k] and vj[k] with r̂j[k] and v̂j[k], respectively, the
followers are to converge to the convex hull spanned by the
leaders with bounded error in expectation. The variance of the
resulting overall containment control error is also bounded.

Remark 3. The containment control problem for double-
integrator agents in a sampled-data setting is also investigated
in [13]. However, in [13], the leaders are with zero inputs, which
can be included as a special case of the present paper. Moreover,
when the leaders has nonzero inputs, the sampled-data contain-
ment algorithm proposed in [13] does not work anymore. It is
also worth noting that the analysis and controller design have
been greatly simplified under the assumption of zero inputs for
the leaders.

3.1. Selection of the sampling period

The sampling period T plays an essential role in ensuring that
the matrix Ã has all its eigenvalues inside the unit circle and thus
the convergence. Although it has been proven from Lemma 5, that
given a communication network G satisfying Assumption 1 and
some positive scalars γ1 and γ2, one can always find small enough
sampling period T such that (5) and (6) hold, it is still not clear
about how to choose appropriate sampling period T . We address
this problem in the following.

Given any positive scalars γ1 and γ2, we can obtain the solu-
tion to (5) as

S1 =

{
T
⏐⏐ 0 < T < min

i=1,...,m

{
2|1 − λi|

2γ2

(1 − |λi|
2)γ1

}}
. (11)

The inequality (6) can be equivalently expressed as

ai3T
3
− ai2T

2
+ ai1T − ai0 < 0, (12)

where ai3 = (1 − |λi|
2)2|1 − λi|

2γ 2
1 γ2, ai2 = 2(1 − |λi|

2)γ1[
(1 − |λi|

2)2γ1 + 2|1 − λi|
4γ 2

2

]
, ai1 = 4|1 − λi|

2γ2

{[
|1 − λi|

4

+4
(
Im {λi}

)2]
γ 2
2 + 2(1 − |λi|

2)2γ1

}
and ai0 = 8(1−|λi|

2)|1 − λi|
4

γ 2
2 . The left-hand side of the inequality in (12), denoted by gi(T ),

is a polynomial of T with order 3. There are at most three roots
for gi(T ) = 0, and then set S i

2 can be obtained. Let S2 =
⋂m

i=1 S
i
2.

Therefore, we have the following corollary.

Proposition 1. Suppose that Assumption 1 holds. Let λi be the ith
eigenvalues of D1. The matrix Ã has all eigenvalues within the unit
circle if and only if the sampling period T ∈ S1 ∩ S2. □

Note that from Lemma 5, a small enough sampling period T
always exists such that the eigenvalues of Ã are located inside
the unit circle. The following corollary gives a rough idea on how
to choose a small enough sampling period given the underlying
communication networks and positive scalars γ1 and γ2.
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Corollary 1. Suppose that Assumption 1 holds. Let λi be the ith
eigenvalue of D1. Given positive scalars γ1 and γ2, the matrix Ã
has all eigenvalues within the unit circle if the sampling period
T ∈ (0, Ta) where

Ta = min
i=1,...,m

⎧⎨⎩ 2(1 − |λi|
2)|1 − λi|

2[
|1 − λi|

4
+ 4

(
Im {λi}

)2]
γ 2
2 + 2(1 − |λi|

2)2γ1

⎫⎬⎭ .

Proof. The sets of S1 has been derived in (11). We focus on
solving the inequality (12). Note that ai3T

3
− ai2T

2 < 0 if 0 <

T <
ai2
ai3
, and ai1T − ai0 < 0 if 0 < T <

ai0
ai1
. Then, the inequality (12)

holds if 0 < T < min
{

ai2
ai3

,
ai0
ai1

}
. In addition, it can be verified that

ai0
ai1

<
2|1−λi|

2γ2
(1−|λi|

2)γ1
<

ai2
ai3
. Therefore, if 0 < T < mini=1,...,m

{
ai0
ai1

}
= Ta,

(5) and (6) hold. □

Note that Lemma 5 and Proposition 1 give necessary and
sufficient conditions such that Ã has all its eigenvalues inside the
unit circle, and Corollary 1 only provides a conservative interval
for the sampling period T , which is a sufficient condition.

It can be seen that the sampling period T should be small
enough if the design parameter γ1 and γ2 are chosen to be
large numbers. This observation coincides with the proof of
Lemma 5. Also, note that as T → 0, the controller (2) turns
into a continuous-time controller, and it is well-known that the
followers are to converge to the convex hull as long as γ1 and γ2
are positive. However, the resulting continuous-time controller
as T → 0 cannot be implemented in practice since each agent’s
input depends on its neighbors’ inputs while the neighbors’
inputs depend on their neighbors’ inputs, which creates algebraic
loops. In contrast, the introduced control algorithm (2) uses data
from neighboring agents and can be implemented in a distributed
manner in reality.

Given a graph satisfying Assumption 1, and any γ1 and γ2, to
implement control algorithm (2) in practice, one can calculate the
value of Ta given in Proposition 1, and select a valid sampling
period T in the range (0, Ta). If the interaction topology among
the followers is undirected, all the eigenvalues of D1 are real and
inside the unit circle, then a simplified result can be obtained.

Corollary 2. Suppose that Assumption 1 holds, and the interaction
topology among the followers is undirected. Given positive scalars γ1

and γ2, the matrix Ã has all eigenvalues within the unit circle if the

sampling period T ∈

(
0,mini=1,...,m

{
2(1−λ2i )

(1−λi)2γ 2
2 +2(1−λ2i )

2γ1

})
.

3.2. Design of scalars γ1 and γ2

Though for any given scalars, γ1 and γ2, Corollary 1 provides
a way to select a valid sampling period T , it is also important
to design the scalars, γ1 and γ2, under given T . It is because
sometimes, small enough sampling period cannot be guaranteed
due to economic constraint and energy consumption issues, and
each sampling device has limits on its sampling frequency. We
provide the following results on the design of γ1 and γ2 given
any sampling period T .

Proposition 2. Suppose that Assumption 1 holds. Let λi be the ith
eigenvalue of D1. Given the sampling period T , the matrix Ã has all
eigenvalues within the unit circle if the positive scalars γ1 and γ2 are
chosen such as

0 < γ1 < min
i=1,...,m

{
|1 − λi|

2

1 − |λi|
2

(
2γ2

T
−
√

φi

)}
, (13)

0 < γ2 < min
i=1,...,m

{
2(1 − |λi|

2)|1 − λi|
2[

|1 − λi|
4
+ 4 (Im {λi})

2] T
}

, (14)

where φi =
16(Im{λi})

2γ 3
2

|1−λi|
2T [2(1−|λi|

2)−|1−λi|
2Tγ2]

, i = 1, . . . ,m.

Proof. By (6), it is easy to see that

γ2 <
2(1 − |λi|

2)
|1 − λi|

2T
, i = 1, . . . ,m. (15)

Note that (6) is equivalent to(
2γ2

T
−

1 − |λi|
2

|1 − λi|
2 γ1

)2

− φi < 0, i = 1, . . . ,m, (16)

where φi is given in the statement. The left hand side of (16) has
two zeros, i.e.,

γ11,i, and γ12,i =
|1 − λi|

2

1 − |λi|
2

(
2γ2

T
±
√

φi

)
.

Then the solution to (16) is γ1 > maxi=1,...,m
{
γ11,i

}
or γ1 <

mini=1,...,m
{
γ12,i

}
. Note that γ1 > maxi=1,...,m

{
γ11,i

}
contradicts

(5). Hence, we have (13). Since γ1 > 0, and in order to ensure
such choice of γ1 exist, it requires that γ12,i > 0 ∀i = 1, . . . ,m,
which yields that γ2 < mini=1,...,m

{
2(1−|λi|

2)|1−λi|
2

[|1−λi|
4+4(Im{λi})

2]T

}
. Combin-

ing (15), we have (14). Therefore, if γ1 and γ2 are selected to
respectively satisfy (13) and (14), (5) and (6) hold, which implies
that all the eigenvalues of matrix Ã are inside the unit circle. □

It can be seen that the two design parameters γ1 and γ2 should
be small if the sampling period T is chosen to be a large number.

In practice, given the graph G satisfying Assumption 1 and
the sampling period T , one can first choose γ2 satisfying (14),
and then choose γ1 satisfying (13) given the selected γ2. Such
choices of γ1 and γ2 ensure that (5) and (6) hold. If the interaction
topology among followers is undirected, a simplified result can be
obtained.

Corollary 3. Suppose that Assumption 1 holds, and the interaction
topology among the followers is undirected. Given the sampling
period T , the matrix Ã has all eigenvalues within the unit circle if the
positive scalars γ1 and γ2 are respectively chosen such as 0 < γ1 <

mini=1,...,m

{
2(1−λi)2γ2
(1−λ2i )T

}
and 0 < γ2 < mini=1,...,m

{
2(1−λ2i )
(1−λi)2T

}
. □

Remark 4. The design of the sampling period T and parameters
γ1 and γ2 depends on the eigenvalues of the matrix D1, which is
related to the underlying interaction graph. In real applications,
one can always let the weights dij, j ∈ Ni ∪ {i} for agent i
to be 1

|Ni|+1 , which is valid since it ensures that D is a row-
stochastic matrix. The number of possible values of D such that
the underlying interaction graph satisfies Assumption 1, is finite
since there are a finite number of agents. Note that the choices
of the sampling period T and the design parameters γ1 and γ2
depend on each other. If the parameters γ1 and γ2 are fixed, for
each possible D, one can select T by Corollary 1. Among these
values of T , the smallest one can be selected for implementation
in practice. If the sampling period T is fixed, valid scalars γ1 and
γ2 can be selected in a similar manner.

3.3. Two special cases

3.3.1. Discrete-time single-integrator agents
When the agents have single-integrator dynamics given by

ri[k + 1] = ri[k] + Tui[k], (17)
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we implement the following control law for follower i ∈ F

ui[k] =

∑
j∈L ∪F

dij

(
rj[k] − rj[k − 1]

T
− γ {ri[k] − rj[k]}

)
, (18)

where γ is positive constant to be determined. Define the con-
tainment control error for follower i as xi[k] =

∑n
j=1 dij(ri[k] −

rj[k]). Define the collective containment control error vector as
X[k] =

(
x⊤

1 [k], . . . , x⊤
m[k]

)⊤. Let W [k] =
(
X⊤

[k + 1], X⊤
[k]
)⊤.

Then we have

W [k + 1] = Ã1W [k] + B̃1∆L[k], (19)

where Ã1 = A1 ⊗ Ip and B̃1 =

[
D2 ⊗ Ip

0mp×(n−m)p

]
with

A1 =

[
(1 − Tγ )Im + (1 + Tγ )D1 −D1

Im 0m×m

]
. (20)

Lemma 6. Suppose that Assumption 1 holds. Let λi be the ith eigen-

value of D1. Then θi > 0 holds, where θi =
2|1−λi|

2
[
2(1−Re{λ}i)−|1−λi|

2
]

|1−λi|
4+4[Im{λi}]2

.
If the positive scalars T and γ satisfy

Tγ < min
{
1, min

i=1,...,m
θi

}
, (21)

then the matrix Ã1 has all eigenvalues within the unit circle.

Proof. The proof can be derived by following a similar analysis
of Lemma 3.3 in [6] and the properties of the Kronecker product,
thus is omitted here. □

Corollary 4. Suppose that Assumptions 1 hold and the leaders’
inputs are bounded, i.e., ∥ui[k]∥2 ≤ c3, i ∈ L , where c3 is a
positive constant. If the positive scalars T and γ satisfy (21), using
the algorithms (18) for (17), the followers converge to the convex
hull spanned by the leaders with bounded position containment
error, and the ultimate bound of overall containment control er-
ror, ∥X[k]∥2, is c3c4T

√
2(n − m)

̃B1

2 /(1 − ρ1), where positive

constant c4 and ρ1 ∈ [0, 1) satisfy
̃Aj

1


2

≤ c4ρ
j
1, j ≥ 0.

Proof. By following a similar analysis in the proof of Theorem 1, it
can be obtained that limk→∞ ∥W [k]∥2 ≤ 2c3c4T

√
n − m

̃B1

2 /

(1 − ρ1). Therefore, it holds that limk→∞ ∥X[k]∥2 =
1
2 limk→∞√

(∥X[k]∥2 + ∥X[k − 1]∥2)2 ≤

√
2
2 limk→∞ ∥W [k]∥2 ≤ c3c4T√

2(n − m)
̃B1


2 /(1 − ρ1). □

3.3.2. Discrete-time double-integrator agents
When the agent i’s model is discretized as

ri[k + 1] = ri[k] + Tvi[k]
vi[k + 1] = vi[k] + Tui[k]

(22)

where ri[k] ∈ Rp, vi[k] ∈ Rp and ui[k] ∈ Rp represent the position,
velocity, and control input of the ith agent at t = kT , respectively.

Use the same definitions of xi[k] and yi[k], respectively, for the
position and velocity containment errors of the follower i, and
X[k] and Y [k], respectively, for the collective position and velocity
containment control errors. Using (2) for (22) for each follower,
and defining Z[k + 1] =

(
X⊤

[k + 1], Y⊤
[k + 1], X⊤

[k], Y⊤
[k]
)⊤,

we then have the same form of system as

Z[k + 1] = Ã2Z[k] + B̃2∆[k],

with Ã2 = A2 ⊗ Ip and B̃2 = [1, 1, 0, 0]⊤ ⊗
(
D2 ⊗ Ip

)
, where

A2 =

⎡⎢⎣ Im TIm 0m×m 0m×m

Ā21 Ā22 0m×m −D1
Im 0m×m 0m×m 0m×m

0m×m Im 0m×m 0m×m

⎤⎥⎦
with Ā21 = −Tγ1(Im − D1) and Ā22 = (1 − Tγ2)Im + (1 + Tγ2)D1.

Lemma 7. Suppose that Assumption 1 holds. Let λi be the ith
eigenvalue of D1. The matrix Ã2 has all eigenvalues within the unit
circle if and only if there exist positive scalars T , γ1 and γ2 such that

2γ2

γ1
>

(
1 − |λi|

2

|1 − λi|
2 + 1

)
T , i = 1, . . . ,m, (23)

and[
1

Tγ1
−

1 − |λi|
2

|1 − λi|
2(2γ2 − Tγ1)

]2 [ 4(1 − |λi|
2)

|1 − λi|
2(2Tγ2 − T 2γ1)

− 1
]

−
16(Im {λi})2

|1 − λi|
4T 2γ 2

1

> 0, i = 1, . . . ,m. (24)

In addition, such scalars T , γ1 and γ2 always exist.

Proof. The proof can be obtained by following a similar analysis
procedure in the proof of Lemma 5, thus is omitted here. □

Corollary 5. Suppose that Assumptions 1 and 2 hold. If the positive
scalars T , γ1 and γ2 satisfy (23) and (24), the followers converge to
the convex hull spanned by the leaders with bounded position and
velocity containment error, and the ultimate bound of overall con-
tainment control error, ∥X[k]∥2+∥Y [k]∥2, is 2c1c5T

√
n − m

̃B2

2 /

(1 − ρ2), where c1 is given in Assumption 2, and positive constants
c5 and ρ2 ∈ [0, 1) satisfy

̃Aj
2


2

≤ c5ρ
j
2, j ≥ 0. □

Remark 5. The containment control problem for agents with
the same model as (22) has been addressed in [25]. However,
in [25], the leaders’ dynamics are assumed to be the same as the
followers with zero control inputs. The proposed algorithm (2)
can deal with the case where the leaders have bounded nonzero
inputs, which is more general, and the corresponding result takes
into account the more realistic sampled-data setting.

4. Simulation

We provide a simulation to illustrate the results obtained in
previous section.

Consider a group of ten agents, which are labeled as 1, . . . , 10.
Denote by F = {1, . . . , 6} and L = {7, . . . , 10} the sets of
the followers and the leaders, respectively. The directed com-
munication network is shown in Fig. 1. Let (rxi [k], ryi [k]) and
(vxi [k], vyi [k]) be the coordinates of agent i’s position and velocity
at time k, respectively. The input of the ith leaders is chosen to
be ui[k] = −

1
(i−6)2

sin( 1
i−6k) + 0.01(i − 6)2e−0.1(i−6)k, i ∈ L . Set

the sampling period T to 0.1, and choose γ1 = 0.9 and γ2 =

1.25. The control law (2) is implemented for all the followers
with dynamics (1). The resulting trajectories of positions and
velocities are shown in Fig. 2. It can be seen that both positions
and velocities of all the followers converge to the convex hull
spanned by those of the four leaders.

5. Conclusion

In this paper, we have proposed a sampled-data based con-
tainment control algorithm for a group of double-integrator
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Fig. 1. Directed network topology for a group of ten agents, which are labeled
from 1 to 10. There are four leaders, which are denoted by gray-filled circles.
The rest are the followers.

Fig. 2. Position and velocity trajectories of the agents with dynamics (1)
under a directed network topology presented in Fig. 1. The followers’ input
is implemented with (2). The solid lines denote the trajectories of the leaders’
positions and velocities, and the dashed lines denote the followers’ positions and
velocities. The black circles and red squares denote the positions (velocities) of
the leaders and the followers, respectively. The areas formed by four connecting
black lines are convex hull spanned by the leaders. Two snapshots at t = 15 s
and t = 25 s show that all the followers’ positions and velocities are within the
convex hull spanned by the leaders.

agents under directed communication networks. This algorithm
contributes the solution to the discrete-time containment control
problem with dynamic leaders whose inputs are nonzero. It has
been shown that, by applying the proposed control algorithm,
the containment control problem is solved with bounded position
and velocity containment control errors, and the ultimate bound
of the overall containment control error is proportional to the
sampling period. A numerical simulation is presented to illustrate
the proposed algorithm.
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