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Abstract— This paper investigates the distributed average
tracking problem for a group of double-integrator agents. In
some practical applications, velocity measurements may be
unavailable due to technology and space limitations, and it is
also usually less accurate and more expensive to implement. To
this end, a distributed average tracking algorithm without using
velocity measurements and correct initialization is established.
It is worth noting that no global information is needed for
parameter design. Then, in order to remove the requirement on
continuous interaction, and reduce the communication cost and
improve the energy efficiency, an event-triggered distributed
average tracking algorithm is designed by incorporating an
event-triggered communication strategy without using velocity
measurements. To be exact, the idea of a dynamic event-
triggered strategy is used to construct a triggering condition for
each agent to guarantee the exclusion of Zeno behavior. Finally,
simulations are provided to illustrate the obtained results.

I. INTRODUCTION

During the recent decades, the distributed average tracking
problem, which includes consensus and distributed tracking
as special cases, is formulated and addressed in the literature.
In the distributed average tracking problem, each agent in the
group has a time-varying reference signal, and the goal is to
design controllers such that the agents can track the average
of the group’s reference signals. It has useful and practical
applications, such as region following formation control [1],
[2], coordinated path planning [3], and distributed convex
optimization [4]. It is noted that the distributed average
tracking problem is theoretically more challenging compared
with consensus and distributed tracking problems.

When each agent aims to only estimate the average of
the group reference signals instead of designing controllers
for physical agents, the problem is often termed as dy-
namic average consensus in the literature. There are several
applications, such as feature-based map merging [5], and
distributed Kalman filtering [6], reported in the literature.
Some distributed algorithms are established to deal with
the dynamic average consensus problem for certain types
of reference signals. See [7]–[12] for instance.

In this paper, we focus on the distributed average tracking
problem in the context of controller design for physical
agents. Several distributed average tracking algorithms are
proposed for agents with double-integrator dynamics [13],
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general linear dynamics [2], [14], nonlinear dynamics [15]–
[17], and Euler-Lagrange dynamics [18]. The distributed
average tracking algorithms mentioned above need full state
information (e.g., both positions and velocities for double-
integrator agents) to update the controllers. However, in some
practical applications, only partial states are available due to
technology and space limitations. Moreover, it is usually less
accurate and more expensive to implement velocity mea-
surements compared with position measurements. Hence,
it is worth investigating the distributed average tracking
problem for double-integrator agents without using velocity
measurements. In [19], the authors investigate the same
problem described above. However, the lower bounds of
the design parameters depend on the bounds related to the
reference signals and the graph information including the
number of agents in the network, and the largest and smallest
nonzero eigenvalues of the Laplacian matrix, which are
global information and inaccessible to the agents.

All these aforementioned continuous-time distributed aver-
age tracking algorithms require continuous interaction among
the agents. However, because of the constrained bandwidth
of the communication network and limited power supply,
continuous communication may not be practical in reality.
On the other hand, discrete-time distributed average tracking
algorithms require agents to interact with each other peri-
odically, which may result in a waste of network resources.
Moreover, there usually exist tracking errors by using the
discrete-time algorithms for general bounded reference sig-
nals. Thus, it makes sense to employ event-triggered commu-
nication strategies in distributed average tracking algorithms
to reduce the communication cost. In [20], building on the
algorithm in [9], the authors establish an event-triggered dy-
namic average consensus algorithm, but specific initialization
is needed for a certain variable and there exist tracking
errors for general bounded reference signals. A dynamic
average consensus algorithm under dynamic communication
is proposed in [21] without correct initialization. These two
works focus on the estimation aspect of the distributed
average tracking problem.

The objective of this paper is to design controllers with-
out using any velocity measurements for double-integrator
agents such that their positions and velocities are able to,
respectively, track the averaged reference signal and refer-
ence signals’ averaged velocity. First, a robust distributed
average tracking algorithm without velocity measurements
is presented. This algorithm distinguishes itself from [19]
by removing any requirement of global information for pa-
rameter design. Then an event-triggered distributed average
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tracking algorithm is proposed, which further distinguishes
this paper from [19] by removing the continuous interaction
requirement. To be exact, in the event-triggered algorithm,
we borrow the idea of the dynamic event-triggered strategy
in [22] and construct a dynamic event-triggering condition
to exclude Zeno behavior. This event-triggered algorithm is
able to drive double-integrator agents to track the averaged
reference signal without velocity measurements and correct
initialization, which is a more complicated problem com-
pared with [20], [21]. Finally, we present simulations to
illustrate the results obtained.

II. PRELIMINARIES AND PROBLEM STATEMENT

For a given vector x ∈ Rp, ‖x‖2, ‖x‖1, and ‖x‖∞
denote the two-norm, one-norm, and infinity norm of x,
respectively. For a set S , |S| denotes the cardinality of S .
The transpose of matrix A is denoted by AT . For matrices
A and B, the Kronecker product is denoted by A⊗ B. Let
0m×n ∈ Rm×n denote the m× n dimensional zero matrix,
and for simplicity, let 0m = 0m×1. In ∈ Rn×n denotes
the identity matrix. For x = [x1, . . . , xp]

T ∈ Rp, we denote
sgn(x) = [sgn(x1), . . . , sgn(xp)]

T , where sgn(xi) = 1 if
xi > 0, sgn(xi) = −1 if xi < 0, and sgn(xi) = 0 if xi = 0.
In the rest of the paper, we omit the argument t for notational
simplicity.

A. Graph Theory

For a multi-agent system consisting of N agents, the
interaction topology can be modeled by an undirected graph
G = {V, E}, where V = {1, . . . , N} and E ⊆ V × V denote
the node set and edge set, respectively. An edge denoted by
(i, j) ∈ E , means that agents i and j can obtain information
from each other. In an undirected graph, the edges (i, j)
and (j, i) are equivalent. It is assumed that (i, i) /∈ E . The
neighbor set of node i is denoted by Ni = {j ∈ V |
(j, i) ∈ E}. The adjacency matrix A = [aij ] ∈ RN×N of
the graph G is defined such that aij = 1 if (j, i) ∈ E and
aij = 0 otherwise. For an undirected graph, aij = aji. By
arbitrary assigning an orientation for every edge in G, let
B = [Bij ] ∈ RN×|E| denote the incidence matrix associated
with graph G, where Bij = −1 if edge ej leaves node i,
Bij = 1 if it enters node i, and Bij = 0 otherwise.

An undirected path between node i1 and ik is a sequence
of edges of the form (i1, i2), (i2, i3), . . . , (ik−1, ik), where
ik ∈ V . A connected graph means that there exists an
undirected path between any pair of nodes in V .

B. Problem Formulation

In this paper, we consider N physical agents, and the
interaction topology among these agents is characterized as
the undirected graph G = (V , E). Unless otherwise stated,
throughout this paper, we assume a time-invariant graph.
Each agent i is modeled by double-integrator dynamics

ẋi = vi, v̇i = ui, i ∈ V , (1)

where xi ∈ Rp and vi ∈ Rp are the ith agent’s position and
velocity, respectively, and ui is its control input.

Each agent has a time-varying reference signal xri (t) ∈
Rp, i ∈ V satisfying

ẋri = vri , v̇ri = uri , i ∈ V , (2)

where vri , u
r
i ∈ Rp are the velocity and acceleration of the ith

agent’s reference signal, respectively. Clearly, the reference
signal xri , i ∈ V , is twice differentiable. We assume that the
reference signals are generated internally by the agents, and
that each agent has access to its own reference signal, and
the velocity and acceleration of the reference signal. In this
paper, we make the following assumption on the reference
signals.

Assumption 1: For any two connected agents, the lo-
cal difference in reference signals xri , their veloci-
ties vri and their accelerations ari are bounded, i.e.,
sup t∈[0,∞)
∀(i,j)∈E

∥∥xri − xrj∥∥∞ ≤ x̄r, sup t∈[0,∞)
∀(i,j)∈E

∥∥vri − vrj∥∥∞ ≤
v̄r, and sup t∈[0,∞)

∀(i,j)∈E

∥∥uri − urj∥∥∞ ≤ ār.
In the distributed average tracking for a group of double-

integrator agents, the objective is to design controller ui
for agent i ∈ V such that each agent’s position (velocity)
is capable of tracking the group average of their reference
signals (their reference signals’ velocities). That is, for any
i ∈ V , it is achieved that limt→∞

∥∥∥xi − 1
N

∑N
j=1 x

r
j

∥∥∥
2

= 0

and limt→∞

∥∥∥vi − 1
N

∑N
j=1 v

r
j

∥∥∥
2

= 0. In this paper, we are
particularly interested in developing a controller for each
agent without velocity measurements and any correct ini-
tialization. The motivation behind is that employing velocity
measuring device is usually costly in the aspect of finance
and energy. Also, the velocity measurements are less accurate
compared with position measurements. On the other hand,
perfect initialization is hard to achieve in reality.

III. ROBUST DISTRIBUTED AVERAGE TRACKING
WITHOUT VELOCITY MEASUREMENTS

In this section, we introduce a distributed average tracking
algorithm for double-integrator agents without using the
velocity measurements and in the absence of any correct
initialization.

For each agent i, we design a filter as

φ̇i = −κ(xi − xri )− 2κ(wi − vri ) + uri (t)

−
N∑
j=1

aijπij(t)sgn(xi − xj + wi − wj)

wi = φi + κ(xi − xri ), i ∈ V , (3)

where κ ∈ R is a positive constant to be determined, φi(t) ∈
Rp is the internal state of the filter, wi ∈ Rp is the output
of the filter, and πij(t) is a time-varying gain for the edge
(i, j) satisfying the following adaptation law

π̇ij = aij ‖xi − xj + wi − wj‖1 , (4)

with πij(0) > 0 if (i, j) ∈ E . In addition, each agent i needs
to coordinate with its neighbor j ∈ Ni to ensure πij(0) =
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πji(0). In this way, the gains πij(t) and πji(t) remain equal
to each other. For each agent i, we design the controller as

ui = −κ(xi − xri )− κ(wi − vri ) + uri

−
N∑
j=1

aijπij(t)sgn(xi − xj + wi − wj), i ∈ V . (5)

Essentially, the filter is designed such that its output is
capable of tracking the average of the reference signals’
velocities, and the controller is applied to drive each agent’s
position to the average of the reference signals and velocity
to the output of the filter. Note that the designs of the filter
(3) and the controller (5) for each agent i depend on only
local information and the positions and filter’s outputs from
its neighbors. Therefore, it is implementable in reality.

Remark 1: Note that there is no requirement on the ini-
tialization of each agents’ position and velocity, as well as
the internal state of the filter. Thus, the proposed algorithm
(3)-(5) is called robust distributed average tracking algorithm.

Let x =
[
xT1 , . . . , x

T
N

]T
, v =

[
vT1 , . . . , v

T
N

]T
, w =[

wT1 , . . . , w
T
N

]T
, xr =

[
(xr1)T , . . . , (xrN )T

]T
, vr =[

(vr1)T , . . . , (vrN )T
]T

, and ur =
[
(ur1)T , . . . , (urN )T

]T
. De-

fine x̃ = (M ⊗ Ip)x, ṽ = (M ⊗ Ip)v, and w̃ = (M ⊗ Ip)w,
where M = IN − 1

N 1N1TN . Then we have

˙̃x = ṽ

˙̃v = −κx̃+ (M ⊗ Ip)κxr − κw̃ + (M ⊗ Ip)κvr

+ (M ⊗ Ip)ur − (BΠ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(x̃+ w̃)

]
˙̃w = −κx̃+ (M ⊗ Ip)κxr − 2κw̃ + (M ⊗ Ip)κvr + κṽ

+ (M ⊗ Ip)ur − (BΠ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(x̃+ w̃)

]
,
(6)

where Π(t) ∈ R|E|×|E| is a time-varying diagonal matrix,
and the sth diagonal entry, denoted by Πss(t), represents the
weight on the sth edge. That is, if the sth edge is between
agent i and agent j, then Πss(t) = πij(t).

Theorem 1: Suppose that the undirected graph G is con-
nected, and Assumption 1 holds. Using the algorithm (3)-(5)
for (1), distributed average tracking is achieved asymptoti-
cally if κ > 3+2

√
3

3 .
Proof: We prove this statement in two steps, which are

denoted by consensus and sum-tracking steps. In consensus
step, we prove that for any i ∈ V , xi → 1

N

∑N
j=1 xj and

vi → 1
N

∑N
j=1 vj as t→∞. In sum-tracking step, we prove

that for any i ∈ V ,
∑N
j=1 xj →

∑N
j=1 x

r
j and

∑N
j=1 vj →∑N

j=1 v
r
j as t → ∞. Combining these two steps, it can be

concluded that distributed average tracking is achieved.
Consider a Lyapunov function candidate as

V =
1

2
XTPX +

N∑
i=1

N∑
j=1

(πij − πm)2

4
, (7)

where X =
[
x̃T , ṽT , w̃T

]T
, πm is a positive constant to be

determined, and P =

 µINp 0Np×Np INp
0Np×Np INp −INp
INp −INp 2INp

. It

holds that P is positive definite if and only if µ > 1. Taking
the derivative of V along (6) yields

V̇ = −XTQX + (x̃+ w̃)T (M ⊗ Ip)α

− 1

2

N∑
i=1

N∑
j=1

aijπij ‖xi − xj + wi − wj‖1

+
1

2

N∑
i=1

N∑
j=1

πij π̇ij −
πm
2

N∑
i=1

N∑
j=1

π̇ij .

where α = κxr + κvr + ur, and

Q =

 κINp −µ+κ2 INp
3κ
2 INp

−µ+κ2 INp κINp − 1+3κ
2 INp

3κ
2 INp − 1+3κ

2 INp 3κINp

 . (8)

Note that

‖x̃+ w̃‖1 ≤
1

N

N∑
i=1

N∑
j=1,j 6=i

‖xi − xj + wi − wj‖1

≤ N − 1

2

N∑
i=1

N∑
j=1

aij ‖xi − xj + wi − wj‖1 ,

and by Assumption 1, it holds that

‖(M ⊗ Ip)α‖∞ ≤
1

N
max
i∈V


N∑

j=1,j 6=i

‖αi − αj‖∞


≤ N − 1

2N

n∑
i=1

∑
j∈Ni

‖αi − αj‖∞ ≤
β

2
,

where
β = Nmax(N − 1)(κx̄r + κv̄r + ār), (9)

and Nmax = maxi∈V |Ni|. It follows that V̇ ≤ −XTQX −[
πm

2 −
(N−1)β

4

]∑N
i=1

∑N
j=1 aij ‖xi − xj + wi − wj‖1. Se-

lecting πm such that πm > (N−1)β
2 , one has V̇ ≤

−XTQX := −W [X(t)]. The matrix Q is positive definite if
and only if κ > µ+ 1

3(µ−1) = f(µ), which implies that Q is

positive definite if κ > minµ>1 f(µ) = 3+2
√
3

3 . Thus V̇ ≤ 0,
which implies that V is nonincreasing. Then it follows that
x̃(t), ṽ(t), w̃(t), and πij(t) are bounded. Note that V (t) is
bounded from below by zero. Thus, limt→∞ V (t) exists and
is finite. It also holds that limt→∞

∫ t
0
W [X(τ)]dτ exists and

is finite. Note that ˙̃x(t), ˙̃v(t) and ˙̃w(t) are also bounded.
Hence, x̃(t), ṽ(t), and w̃(t) are uniformly continuous. Con-
sequently, W [X(t)] is uniformly continuous. By Barbalat’s
Lemma, it can be concluded that W [X(t)] → 0 as t → ∞,
which implies that xi → 1

N

∑N
j=1 xj , vi →

1
N

∑N
j=1 vj , and

wi → 1
N

∑N
j=1 wj , as t → ∞. This completes consensus

step.
Second, define Sx =

∑N
j=1 xj −

∑N
j=1 x

r
j , Sv =∑N

j=1 vj −
∑N
j=1 v

r
j , and Sw =

∑N
j=1 wj −

∑N
j=1 v

r
j . Then

we have that Ṡ =

 0 1 0
−κ 0 −κ
−κ κ −2κ

⊗ Ip
S = (A ⊗

Ip)S, where S =
[
STx , S

T
v , S

T
w

]T
. Note that κ > 3+2

√
3

3 > 0.
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According to the Routh-Hurwitz stability criterion, it is easy
to verify that A is Hurwitz, which indicates limt→∞ S(t) =
03p. This completes sum-tracking step. �

Remark 2: Theorem 1 shows that the agents are capable
of achieving distributed average tracking under any fixed
connected undirected communication network. It is actually
able to extend to the case of arbitrarily switching connected
communication networks with positive dwelling time. The
function defined in (7) can be used as a common Lyapunov
function during the proof process.

Remark 3: Note that the dynamics (6) is discontinuous
due to the introduction of the signum function in the con-
troller and filter design (3)-(5). Then, the solutions should
be understood in terms of differential inclusion by using
non-smooth analysis [23], [24]. However, since the signum
function is measurable and locally essentially bounded, the
Filippov solutions for the closed-loop dynamics always exist.
The Lyapunov function used in the proof is continuously
differentiable. Then its set-valued Lie derivative is a singleton
at the discontinuous points. Therefore, the proof is valid as
in the case without discontinuities.

Remark 4: In the proposed algorithm (3)-(5), the adaptive
gain πij(t) is introduced to remove the requirement of
knowledge on global information, such as the interaction
graph information and the bounds related to the reference
signals. Although the related works in [19] also studied
the distributed average tracking problem without velocity
measurements, the lower bounds of the design parameters
depend on the reference signals’ bounds, the total number of
agents, and the graph information including the largest and
smallest nonzero eigenvalues of the Laplacian matrix. In the
present paper, as long as κ > 3+2

√
3

3 , the proposed algorithm
(3)-(5) achieves distributed average tracking with zero error.
That is, no global information is needed for parameter design.

Remark 5: If each agent chooses its own κi(0) > 3+2
√
3

3 ,
then the agents can run the finite-time max consensus algo-
rithm in [25] as κ̇i(t) = sgn+

{∑
j∈Ni

aij [κi(t)− κj(t)]
}
,

where sgn+ : R → R is defined as sgn+(z) = 1 if z > 0
and sgn+(z) = 0 if z ≤ 0. Then, κi(t) ∀i ∈ V converges to
κ̄ = maxj∈V κj(0) > 3+2

√
3

3 in finite time.

IV. EVENT-TRIGGERED DISTRIBUTED AVERAGE
TRACKING WITHOUT VELOCITY MEASUREMENTS

The algorithm (3)-(5) in Section III requires each agent i
to continuously exchange the position and the filter output
with its neighbors, which may not be practical in real-
ity. To this end, we design an event-triggered distributed
average tracking algorithm without velocity measurements
and initialization requirements to remove the requirement of
continuous communication.

Inspired by the dynamic event-triggered mechanism in
[22], we propose a dynamic event-triggered distributed av-
erage tracking algorithm in this section. We consider the
following event-triggered version of the filter, controller, and
adaptation law presented in Section III as follows. For agent

i, the filter is given by

φ̇i = −κ(xi − xri )− 2κ(wi − vri ) + uri

−
N∑
j=1

aijπijsgn(x̂i − x̂j + ŵi − ŵj)

wi = φi + κ(xi − xri ), i ∈ V , (10)

and the controller is given by

ui = −κ(xi − xri )− κ(wi − vri ) + uri

−
N∑
j=1

aijπijsgn(x̂i − x̂j + ŵi − ŵj), i ∈ V , (11)

and πij satisfies the adaptation law

π̇ij = aij ‖x̂i − x̂j + ŵi − ŵj‖1 , i ∈ V , (12)

where x̂j(t) = xj(t
j
kj

) and ŵj(t) = wj(t
j
kj

) t ∈ [tjkj , t
j
kj+1),

denote the last broadcast position and filter’s output of agent
j, respectively, and tjkj = max

{
tjk
∣∣ tjk ≤ t} is the latest

triggering time instant of agent j. The agent i’s sequence of
triggering time instants ti1, ti2, . . . , is to be determined later.
For agent i ∈ V , define exi

= x̂i − xi, ewi
= ŵi − wi, and

let q̂i =
∑N
j=1 aijπijsgn(x̂i − x̂j + ŵi − ŵj). Each agent i

maintains the following additional internal dynamics

ẏi = −γiyi − σ1i
[
θi ‖exi

+ ewi
‖1 + (exi

+ ewi
)T q̂i

]
(13)

with yi(0) > 0, where γi > 0, σ1i ≥ 1 and θi > 0 are design
parameters to be determined.

Theorem 2: Suppose that the undirected graph G is con-
nected, and Assumption 1 holds. Selecte the positive scalar
θi such that θi ≥ β

2 for any i ∈ V , where β is defined in (9),
then using the algorithm (10)-(12) for (1), the distributed
average tracking is achieved with zero tracking error if
κ > 3+2

√
3

3 , and the triggering time instant is determined
by

tik+1 = min
{
t > tik

∣∣ σ2i[θi ‖exi + ewi‖1

+ (exi
+ ewi

)T q̂i
]
≥ yi

}
(14)

with ti1 = 0 ∀i ∈ V , where σ2i ∈ (0, 1). In addition, the
dynamic triggering law (14) excludes Zeno behavior while
running the algorithm (10)-(12).

Proof: The proof process for convergence are similar to
the proof of Theorem 1. For the consensus step, consider the
Lyapunov candidate function V1 = V +

∑N
i=1 yi, where V is

given in (7). From (14), it holds that σ2i
[
θi ‖exi

+ ewi
‖1 +

(exi
+ ewi

)T q̂i
]
≤ yi. Thus, ẏi ≥ −γiyi − σ1i

σ2i
yi, which

implies that yi > 0 ∀t ≥ 0. Use the same definitions of
x̃, ṽ and w̃ as in Section III, and let x̂ =

[
x̂T1 , . . . , x̂

T
N

]T
,

ŵ =
[
ŵT1 , . . . , ŵ

T
N

]T
, ex =

[
eTx1

, . . . , eTxN

]T
and ew =
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[
eTw1

, . . . , eTwN

]T
. It follows that

˙̃x = ṽ

˙̃v = −κx̃− κw̃ + (M ⊗ Ip)α
− (BΠ⊗ Ip)sgn

[(
BT ⊗ Ip

)
(x̂+ ŵ)

]
˙̃w = −κx̃− 2κw̃ + κṽ + (M ⊗ Ip)α
− (BΠ⊗ Ip)sgn

[(
BT ⊗ Ip

)
(x̂+ ŵ)

]
.

(15)

Taking the derivative of V1 along (15) yields

V̇1 = −XTQX + (x̂+ ŵ)T (M ⊗ Ip)α
− (ex + ew)T (M ⊗ Ip)α
− (x̂+ ŵ)T (BΠ⊗ Ip)sgn[(BT ⊗ Ip)(x̂+ ŵ)]

+ (ex + ew)T (BΠ⊗ Ip)sgn[(BT ⊗ Ip)(x̂+ ŵ)]

+
1

2

N∑
i=1

N∑
j=1

πij π̇ij −
πm
2

N∑
i=1

N∑
j=1

π̇ij +
N∑
i=1

ẏi

≤ −XTQX +
N∑
i=1

(exi
+ ewi

)T q̂i +
N∑
i=1

ẏi

− (ex + ew)T (M ⊗ Ip)α.

where the equality follows by noting that M2 = M and
MB = B, and the inequality follows by selecting πm such
that πm ≥ (N−1)β

2 . Applying the triggering law (14) with
the internal dynamics (13) yields

V̇1 ≤ −XTQX −
N∑
i=1

(σ1i − 1)(exi
+ ewi

)T q̂i

−
N∑
i=1

γiyi −
N∑
i=1

(σ1i − 1)θi ‖exi
+ ewi

‖1

≤ −XTQX −
N∑
i=1

γiyi := W1,

Apparently, W1 ≤ 0. It then follows that V1 is nonincreasing,
and hence x̃, ṽ, w̃, Π, and yi ∀i ∈ V are all bounded.
Note that V̇1 ≤ −XTQX . Following the similar analysis
in the proof of Theorem 1 and Barbalat’s Lemma, it can be
concluded that xi → 1

N

∑N
j=1 xj , vi →

1
N

∑N
j=1 vj , and

wi → 1
N

∑N
j=1 wj , as t → ∞, which means consensus is

achieved.
The sum-tracking step follows directly from that of Theo-

rem 1. The proof of Zeno behavior exclusion part follows a
similar line of analysis to that in [21],which is omitted here.
�

Remark 6: In [20], [21], event-triggered distributed av-
erage tracking schemes are proposed for the estimation
purpose. However, the proposed algorithm in this section
aims to solve the distributed average tracking problem for
double-integrator agents without using velocity measure-
ments, which is more complicated compared with [20], [21].
Moreover, compared with the work in [20], the proposed
algorithm (10)-(12) requires no correct initialization and
achieves distributed average tracking with zero errors.

Remark 7: As indicated in Theorem 2, the lower bound
of θi depends on some global information, i.e., the bounds of

the reference signals and some graph information. In reality,
one can always select θi to be large enough. Moreover,
when designing the distributed average tracking algorithm
under event-triggered communication, in order to achieve
distributed average tracking with zero error, the dependence
on certain global information for the design parameter’s
bound might be unavoidable, which has usually been done
in the literature [21]. In addition, one might use some
algorithms in the literature [25], [26] to estimate N and the
bounds on the reference signals x̄r, v̄r and ār, so as to get a
better estimate on the lower bound for the design parameter.

V. ILLUSTRATIVE EXAMPLES

We consider a group of seven physical agents (N = 7)
given in (1), which are labeled as 1, . . . , 7. These seven
agents form a ring topology In the simulation, we set uri =
Ai sin(ϑit+ ϕi) in (2) with Ai = −0.09(0.7i+ 0.5)2[6(i−
3.5)− 2(−1)i], ϑi = 0.3(0.7i+ 0.5), and ϕi = 2iπ

N − π.
Select κ = 5 and πij(0) = 250 for any i and j that

are connected. Implement the algorithm (3)-(5) for (1). The
position and velocity trajectories are shown in Fig. 1, which
indicates that the agents’ positions and velocities track,
respectively, 1

7

∑7
j=1 x

r
j(t) and 1

7

∑7
j=1 v

r
j (t).
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Fig. 1. Seven agents’ position and velocity trajectories while using
algorithm (3)-(5). The black lines denote the average of the reference signals
and their velocities. The rest are the position and velocity trajectories of
these seven agents.

In the following, we use the algorithm (10)-(12) for (1)
with the same set of reference signals. The triggering time
instants is determined as in (14). In this simulation, we
use a fixed step solver to solve the Simulink model, and
fixed-step size is 10−4. For simplicity, we set yi(0) = 650,
θi = 700, σ1i = 1, σ2i = 0.99 and γi = 0.01 for any i =
1, . . . , 7. The position and velocity trajectories of the agents
are shown in Fig. 2, which indicates that all the agents’
positions and velocities track, respectively, 1

7

∑7
j=1 x

r
j(t)

and 1
7

∑7
j=1 v

r
j (t), respectively. The number of triggering

time instants for each agent is presented in Fig. 3. In the 7
seconds simulation time, agents 1 − 7 are triggered 8.76%,
25.97%, 26.26%, 26.05%, 37.85%, 26.02%, and 25.60% of
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times. Therefore, the proposed algorithm (10)-(12) avoids
continuous communication.
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Fig. 2. Seven agents’ position and velocity trajectories while using the
algorithm (10)-(12).
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Fig. 3. The number of triggering time instants of the agents while using
the algorithm (10)-(12).

VI. CONLUSION

This paper investigated the distributed average tracking
problem for double-integrator agents without velocity mea-
surements and correction initialization. First, a distributed
average tracking algorithm has been proposed without using
velocity measurements, which removes the requirement of
global information for parameter design. Then, building
on this algorithm, an event-triggered distributed average
tracking algorithm has been derived by using the idea of
a dynamic event-triggered strategy to remove the continu-
ous communication requirement. Zeno behavior is excluded
in the event-triggered algorithm. Finally, we provided two
examples to illustrate the results obtained in this paper.
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