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Finite-Horizon H∞ Fault-Tolerant Constrained
Consensus for Multiagent Systems With

Communication Delays
Jian-Ning Li , Member, IEEE, and Wei Ren , Fellow, IEEE

Abstract—This article focuses on the fault-tolerant constrained
consensus problem for multiagent systems with communica-
tion delays. The communication graphs are first assumed to be
directed and fixed. Then, a novel delay-dependent fault-tolerant
controller is designed such that, in the presence of commu-
nication delays and randomly occurring actuator failures, the
influence of the projections and the initial states on the closed-
loop system can be attenuated with a prespecified level. Based
on the provided performance requirement, the initial state of
each agent does not need to be identical. The proposed control
algorithms ensure that sufficient conditions are met for the fault-
tolerant constrained consensus to be achieved according to the
prespecified performance index. After this, the controller gains
are computed by employing an iterative linear matrix inequality
scheme. Finally, a numerical example is provided to show the
effectiveness of the proposed method.

Index Terms—Communication delays, constrained consensus,
H∞ control, failures, fault-tolerant control, multiagent systems.

I. INTRODUCTION

OVER the past few decades, there has been a growing
interest in solving the consensus problem of multiagent

systems due to its potential applications in formation con-
trol, flocking, coordination, rendezvous, sensor networks, and
swarming. (See [1], [4]–[7], [12], and their associated ref-
erences.) Most of the above research results are derived
without any constraints. However, in some situations, each
agent needs to remain in a certain region, and seeking con-
strained consensus is important [3], [29]. For instance, in the
rescue problem with unmanned aerial vehicles (UAVs), the
position of each UAV has to be located in a constraint set
due to hazardous areas [10], [30]. Recently, some effective

Manuscript received August 28, 2019; revised October 31, 2019; accepted
November 14, 2019. Date of publication December 10, 2019; date of current
version December 22, 2020. This work was supported in part by the Zhejiang
Provincial Natural Science Foundation of China under Grant LY19F030020,
in part by the National Natural Science Foundation of China under Grant
61733009, in part by NSFC-Zhejiang Joint Fund for the Integration of
Industrialization and Informatization under Grant U1509203, and in part by
National Science Foundation under Grant ECCS-1920798. This article was
recommended by Associate Editor P. Shi. (Corresponding author: Wei Ren.)

J.-N. Li is with the School of Automation, Hangzhou Dianzi University,
Hangzhou 310018, China (e-mail: ljn@hdu.edu.cn).

W. Ren is with the Department of Electrical and Computer Engineering,
University of California at Riverside, Riverside, CA 92521 USA (e-mail:
ren@ece.ucr.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2954714

research methods have been developed that can solve the con-
strained consensus problem. More specifically, a distributed
control algorithm is provided in [9] to guarantee the con-
strained optimal consensus with prespecified cost functions.
The proposed algorithm is based on local averaging, local pro-
jection, and local subgradients. In [10], a multiagent system
with multicluster networks is considered that uses a hier-
archical projection-based consensus algorithm to achieve a
constrained consensus. In the context of multiagent systems
with unbalanced networks and communication delays, [2]
solves the constrained consensus problem by deriving an
equivalent delay-free system. By utilizing the H∞ theory, a
distributed algorithm is proposed with a nonlinear cost func-
tion in [11] to solve the constrained consensus problem. A
type of constrained consensus algorithm with a fixed step size
is presented in [31], which concentrates on improving the con-
vergence rate. Margellos et al. [32] dealt with the constrained
consensus problem with time-varying networks and uncer-
tainties by using a scenario-based methodology. Considering
agents with single-integrator and double-integrator dynamics,
the corresponding constrained consensus algorithm is provided
in [33]. In order to solve more general constrained distributed
optimization problems, a second-order multiagent network is
given in [34]. It should be noted that most of the results on
the constrained consensus problem obtained so far have been
achieved without any failure. However, actuator failures are
inevitable in practice.

The multiagent systems are likely to suffer from sudden
failures resulting from unknown phenomena. This will lead
to degradation in control performance, and the closed-loop
systems may even become unstable [17], [23], [45], [46].
Current research on fault-tolerant control can be
divided into two categories, namely, passive fault-
tolerant control [13]–[16], [18] and active fault-tolerant
control [19]–[22], [25]. A fault-tolerant control strategy for
multiagent systems is provided in [23], where the controller
consists of a healthy control protocol and an estimator to
predict the fault severity. In [26], a high-order multiagent
system with actuator failures is examined. To overcome
the problem of network disconnections, an end-to-end
communication rate-based adaptive fault-tolerant control
method is given. For faulty multiagent systems with a
bidirectional communication topology, Khalili et al. [8]
developed a local fault-tolerant control algorithm for each
agent. The controller consists of a baseline controller and two
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adaptive fault-tolerant controllers. Working on the assumption
of a completely unknown system model, Shi et al. [35]
introduced a novel system called weighted edge dynamics
to ensure the fault-tolerant consensus under the designed
controller. For multiagent systems with nonidentical unknown
nonlinear dynamics and undetectable actuator failures,
Wang et al. [24] provided a robust adaptive fault-tolerant
consensus algorithm that can compensate for uncertain
dynamics and unpredictable actuator failures simultaneously.
To cover the case of general linear multiagent systems, a
distributed adaptive event-triggered fault-tolerant consensus
algorithm is developed in [36]. This algorithm uses an online
updating strategy to avoid the computation of the minimum
eigenvalue of a Laplacian matrix while a consensus controller
is designed with an event-triggered mechanism. For a class of
nonlinear second-order leader-following multiagent systems
with multiple actuator failures, a distributed controller
based on the circuit theory is proposed in [37]. Since the
multiagent systems are usually connected via communication
networks and communication delays are inevitable, the
stability of multiagent systems would be affected by the
delays [2], [12], [44]. At present, the corresponding research
problem for the fault-tolerant constrained consensus with
communication delays has not been fully investigated yet,
which motivates this article.

In this article, we endeavor to investigate the finite-
horizon H∞ fault-tolerant constrained consensus problem for
multiagent systems with communication delays. One applica-
tion of the theoretical result could be the rescue problem using
UAVs mentioned earlier. Over the course of our exposition, we
will address the following issues.

1) In the classical H∞ control theory, the zero initial con-
dition has to be satisfied in advance. To meet this
requirement, [11], [38], and [39] have assumed that all
agents’ initial conditions are the same. Unfortunately,
this assumption is rather conservative in practice, espe-
cially when confronted with a constrained consensus
problem.

2) It is well known that partial actuator failures can lead to
performance deterioration of the investigated systems.
The moving directions of the agents can be affected
by partial failures, and hence it is hard to achieve a
constrained consensus without proper controllers.

3) In practice, communication delays between agents will
exist. To overcome this phenomenon, Lin and Ren [2]
proposed a delay-free system that uses an equivalent
method. However, the analysis is performed without
considering the size of the time delay. In other words,
it is a delay-independent approach. The delay-dependent
methods, in contrast, focus on the size of the delay, mak-
ing them less conservative than the delay-independent
techniques [40].

By tackling the above issues, the main contributions of this
article can be summarized as follows.

1) Motivated by the finite-horizon theory [27], a
performance index is constructed that uses projec-
tion information and initial states. This bypasses the
need for zero initial conditions during the controller

design procedure. As a result, the influence of the
initial states on a closed-loop system can be attenuated
at a prespecified level γ .

2) A novel finite-horizon H∞-constrained consensus
scheme is provided for multiagent systems subject to
abrupt partial actuator failures. By using the upper and
lower bounds of the failure coefficients, an iterative lin-
ear matrix inequality algorithm is proposed that can
update the controller gains.

3) A delay-dependent fault-tolerant controller is proposed
that has the advantage that time delays would have no
direct impact on the stability of the system. By using
the delay-dependent iterative linear matrix inequality
approach proposed in this article, the finite-horizon H∞
performance is achieved.

Notation: Rn and R
n×m denote the n-dimensional Euclidean

space and the set of all n × m real matrices, respectively.
Given symmetric square matrices X and Y , X ≥ Y (respec-
tively, X > Y) means that X − Y is positive semidefinite
(respectively, positive definite). Similarly, X ≤ Y (respectively,
X < Y) means that X − Y is negative semidefinite (respec-
tively, negative definite). AT represents the transpose of the
matrix A. diag{. . .} stands for a block-diagonal matrix. “∗”
denotes the symmetric term in a symmetric matrix. The sym-
bol ⊗ means the Kronecker product. For a square matrix X,
we denote He(X) = X + XT. 1n denotes [1, 1, . . . , 1]T ∈ R

n.
PY{χ} denotes the projection of a vector χ on a closed convex
set Y .

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Graph Theory

A directed graph of order n is denoted as G(V, E,A), where
V = {1, 2, . . . , n} is the set of nodes, E ⊆ V × V is the set
of edges, and A = [aij]n×n is an adjacency matrix. If agent i
can receive information from agent j, (j, i) ∈ E and aij > 0;
otherwise, aij = 0. Given any i 
= j, i, j = 1, 2, . . . , n, the
Laplacian matrix L = [lij]n×n of G is denoted as

lij = −aij, lii =
n∑

j=1,j 
=i

aij. (1)

B. Problem Formulation

Consider a group of n nonlinear agents described by the
following discrete-time dynamics:

xi(k + 1) = P�i

{
uF

i (k)
}

(2)

where xi(k) ∈ R
nx denotes the state vector of the ith agent, and

uF
i (k) ∈ R

nu is the fault-tolerant controller of the agent. The
state vector of each agent is constrained to lie in a nonempty
closed convex set �i. Define � = ∩n

i=1�i as the intersection
set of all �i. The controller has the following form:

uF
i (k) = ρiui(k)

where ui(k) is the nominal controller to be designed, and ρi

denotes the coefficient matrix of partial actuator failures of
agent i that satisfies

ρi = diag
{
ρi1, ρi2, . . . , ρinu

}
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0 < ρmin
i ≤ ρim ≤ ρmax

i ≤ 1

i = 1, 2, . . . , n, m = 1, 2, . . . , nu.

If ρim = 1, the mth actuator of agent i is running without
failure. If 0 < ρim < 1, the mth actuator of agent i has a partial
failure with the effectiveness of the actuator being reduced. In
practice, the moving direction of the agents can be changed
due to the effect of the partial actuator failures.

Our main purpose is to design a fault-tolerant control algo-
rithm for each agent modeled by (2) to ensure that the
finite-horizon H∞ fault-tolerant constrained consensus can be
achieved. We first recall the following definition and lemmas,
which are necessary to present our main results.

Definition 1 [2]: For any initial condition, the constrained
consensus problem of the multiagent systems (2) is said to be
reached if

lim
k→∞ ‖xi(k) − z̃‖ = 0 ∀i = 1, 2, . . . , n (3)

where z̃ is a constant vector that belongs to the intersection
set �.

Lemma 1 (Schur Complement [43]): Given a symmetric
matrix

S =
[

S11 S12

ST
12 S22

]

the following statements are equivalent:

1) S < 0

2) S11 < 0, S22 − ST
12S−1

11 S12 < 0

3) S22 < 0, S11 − S12S−1
22 ST

12 < 0.

Lemma 2 [41]: Given matrices ϒ , �, and � of appropriate
dimensions with ϒ being symmetrical, then ϒ + �F(k)� +
�TFT(k)� < 0 for all F(k) satisfying FT(k)F(k) ≤ I, if and
only if there exists some σ > 0 such that ϒ + σ��T +
σ−1�T� < 0.

Proof: Setting R = I in [41, Lemma 2.4], the proof is
obtained.

Lemma 3 [42]: For any constant matrix R ∈ R
n×n with

R = RT > 0, integers r1 and r2 with r2 > r1 > 0, and vector
function ω : {r1, r1+1, . . . , r2} → R

n, the following inequality
holds:

r2−1∑

j=r1

ωT(j)Rω(j) ≥ 1

r2 − r1

⎛

⎝
r2−1∑

j=r1

ω(j)

⎞

⎠
T

R

⎛

⎝
r2−1∑

j=r1

ω(j)

⎞

⎠.

Lemma 4 [29]: Suppose that W 
= ∅ is a closed convex
set in R

m. For any y, z ∈ R
m, the following inequalitiy holds:

‖PW (y) − PW (z)‖ ≤ ‖y − z‖.

III. MAIN RESULTS

A. Delay-Free Fault-Tolerant Control

In this section, consider the following control law for (2) as:

ui(k) = Kk

n∑

j=1,j 
=i

aij
(
xj(k) − xi(k)

)+ P�{xi(k)}

(4)

where Kk is the controller gain to be designed. It is assumed
that each agent knows the intersection set �. Substituting (4)
into (2), we have

xi(k + 1) = P�i

⎧
⎨

⎩ρiKk

n∑

j=1,j 
=i

aij
(
xj(k) − xi(k)

)+ ρiP�{xi(k)}
⎫
⎬

⎭.

The projection error is shown as

e1i(k) = P�i

{
uF

i (k)
}− uF

i (k).

Define ei(k) = e1i(k) + ρiP�{xi(k)}. The closed-loop system
can be described as

xi(k + 1) = ρiKk

n∑

j=1,j 
=i

aij
(
xj(k) − xi(k)

)+ ei(k). (5)

Denote

x(k) = [
xT

1 (k) xT
2 (k) . . . xT

n (k)
]T

e(k) = [
eT

1 (k) eT
2 (k) . . . eT

n (k)
]T

� = diag{ρ1, ρ2, . . . , ρn}

L =

⎡

⎢⎢⎢⎣

l11 l12 · · · l1n

l21 l22 · · · l2n
...

...
. . .

...

ln1 ln2 · · · lnn

⎤

⎥⎥⎥⎦.

The augmented closed-loop system can be rewritten as

x(k + 1) = [−(�L) ⊗ Kk]x(k) + e(k). (6)

Another variable x̂(k) is chosen as x̂(k) = (H ⊗ Inx)x(k),
where H = In − (1/n)1n1T

n . It follows that x̂(k) = 0 if and
only if x1(k) = x2(k) = · · · = xn(k). We have

x̂(k + 1) = [−(H�L) ⊗ Kk]x̂(k) + (
H ⊗ Inx

)
e(k). (7)

Based on the H∞ control approach, a new variable zi(k) =
xi(k) − (1/n)

∑n
j=1 xj(k) is defined as the controlled output,

where 0 ≤ k ≤ N − 1. Here, N is a positive constant number
and hence N − 1 denotes the end of time. We can conclude
that z(k) = [zT

1 (k) zT
2 (k) . . . zT

n (k)]T = x̂(k). The con-
trol performance requirement is constructed with the error
attenuation lever γ > 0, as

J =
{

N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)}

− γ 2
N−1∑

k=0

{
x̂T(0)Wx̂(0)

}
< 0 ∀x̂(0) 
= 0. (8)

where H̃ = H ⊗ Inx , and W and W1 are given positive-definite
matrices with appropriate dimensions.

Remark 1: In the classical H∞ control theory, due to the
requirement on the zero initial condition, x1(0) = x2(0) =
· · · = xn(0) ∈ � in (6) and hence x̂(0) = 0 in (7) must be
satisfied in advance. In practice, such a requirement is conser-
vative. The proposed requirement (8) means that the projection
error H̃e(k) and arbitrary initial state x̂(0) 
= 0 are attenuated
with the level γ , and hence the requirement on the zero initial
condition is avoided.
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In the next stage, we shall tackle the finite-horizon H∞ fault-
tolerant constrained consensus problem. We have the following
theorems.

Theorem 1: Suppose that the directed graph is fixed. Let
the attenuation level γ > 0. Consider the multiagent systems
(2) with fault-tolerant controller (4). Given appropriate con-
troller gain matrices {Kk}k∈[0,N−1], failure coefficient ρim, and
positive-definite matrices W > 0 and W1 > 0, the overall
systems can achieve fault-tolerant constrained consensus with
an H∞ performance γ , if there exists a positive-definite matrix
{Qk}k∈[0,N] > 0 satisfying

�k =
[

�T
k Qk+1�k − Qk + I �T

k Qk+1

∗ −γ 2W1 + Qk+1

]
< 0

(9)

with the initial condition

0 < Q0 < γ 2W (10)

where

�k = −(H�L) ⊗ Kk.

Proof: Choose the Lyapunov function candidate as

V(k) = x̂T(k)Qkx̂(k). (11)

Calculate the difference of V(k) along the solution of
system (7). We have


V(k) = x̂T(k + 1)Qk+1x̂(k + 1) − x̂T(k)Qkx̂(k). (12)

Equation (12) can be rewritten as


V(k) = [
�kx̂(k) + H̃e(k)

]T
Qk+1

[
�kx̂(k) + H̃e(k)

]

− x̂T(k)Qkx̂(k). (13)

Define J̃ = 
V(k) + (zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)) and
denote ζ(k) = [x̂T(k) eT(k)H̃T]T. J̃ can be described as

J̃ = ζT(k)�kζ (k). (14)

It is easy to conclude that J̃ < 0 when �k < 0. Summing up
J̃ from 0 to N − 1 with respect to k, we have

N−1∑

k=0

J̃ =
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

+
N−1∑

k=0

[V(k + 1) − V(k)] < 0.

We can conclude that

V(N) − V(0) +
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)
< 0

⇒ V(N) +
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

− γ 2
N−1∑

k=0

{
x̂T(0)Wx̂(0)

}

+
(

γ 2
N−1∑

k=0

{
x̂T(0)Wx̂(0)

}− x̂T(0)Q0x̂(0)

)
< 0.

Due to V(N) > 0, γ 2W − Q0 > 0, and W > 0, the following
result is obtained:

N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

− γ 2
N−1∑

k=0

{
x̂T(0)Wx̂(0)

}
< 0

which is equivalent to (8). Hence, the performance is achieved.
Next, we will discuss the fault-tolerant constrained con-

sensus problem. System (7) is stable with a prespecified
performance index γ , which implies that limk→∞ x̂(k) =
limk→∞ x̂(k + 1) = 0. We can obtain that

lim
k→∞ x1(k) = lim

k→∞ x2(k) = · · · = lim
k→∞ xn(k) ∈ �

lim
k→∞ x1(k + 1) = lim

k→∞ x2(k + 1)

= · · · = lim
k→∞ xn(k + 1) ∈ �.

Define φi(k) = ρiKk
∑n

j=1,j 
=i aij(xj(k) − xi(k)). By using
Lemma 4, we have the following results:

1) ρim = 1, m = 1, 2, . . . , nu

lim
χ→∞

∥∥∥xi

(
k̂ + χ

)
− xi

(
k̂ + χ − 1

)∥∥∥

= lim
χ→∞

∥∥∥P�i

{
φi

(
k̂ + χ − 1

)
+ P�

{
xi

(
k̂ + χ − 1

)}}

− P�i

{
xi

(
k̂ + χ − 1

)}∥∥∥

≤ lim
χ→∞

∥∥∥φi

(
k̂ + χ − 1

)

+ P�

{
xi

(
k̂ + χ − 1

)}
− xi

(
k̂ + χ − 1

)∥∥∥

= lim
χ→∞

∥∥∥φi

(
k̂ + χ − 1

)∥∥∥.

2) 0 < ρim < 1.
For all ui(k) 
= 0, we can conclude that ‖ρiui(k)‖ < ‖ui(k)‖.

There exist scalars 0 < εk < 1 such that ‖ρiui(k)‖ ≤ εk‖ui(k)‖
holds. We have

lim
χ→∞

∥∥∥xi

(
k̂ + χ

)
− xi

(
k̂ + χ − 1

)∥∥∥

= lim
χ→∞

∥∥∥P�i

{
ρiui

(
k̂ + χ − 1

)}
− P�i

{
ρiui

(
k̂ + χ − 2

)}∥∥∥

≤ lim
χ→∞

∥∥∥ρiui

(
k̂ + χ − 1

)
− ρiui

(
k̂ + χ − 2

)∥∥∥

≤ lim
χ→∞

(∥∥∥φi

(
k̂ + χ − 1

)
− φi

(
k̂ + χ − 2

)∥∥∥

+ εk̂+χ−2

∥∥∥P�

{
xi

(
k̂ + χ − 1

)}

− P�

{
xi

(
k̂ + χ − 2

)}∥∥∥
)

≤ lim
χ→∞

(∥∥∥φi

(
k̂ + χ − 1

)
− φi

(
k̂ + χ − 2

)∥∥∥

+ εk̂+χ−2

∥∥∥xi

(
k̂ + χ − 1

)
− xi

(
k̂ + χ − 2

)∥∥∥
)

= lim
χ→∞

(∥∥∥φi

(
k̂ + χ − 1

)
− φi

(
k̂ + χ − 2

)∥∥∥

+ εk̂+χ−2

∥∥∥P�i

{
ρiui

(
k̂ + χ − 2

)}

− P�i

{
ρiui

(
k̂ + χ − 3

)}∥∥∥
)
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≤ lim
χ→∞

(∥∥∥φi

(
k̂ + χ − 1

)
− φi

(
k̂ + χ − 2

)∥∥∥

+ εk̂+χ−2

∥∥∥ρiui

(
k̂ + χ − 2

)

− ρiui

(
k̂ + χ − 3

)∥∥∥
)

· · ·

≤ lim
χ→∞

⎛

⎝
χ−2∑

l=0

∥∥∥φi

(
k̂ + χ − 1 − l

)
− φi

(
k̂ + χ − 2 − l

)∥∥∥

⎞

⎠

+ lim
χ→∞ εχ−2

∥∥∥xi

(
k̂ + 1

)
− xi

(
k̂
)∥∥∥

where ε = max{εk̂+χ−2−l}, l = 0, 1, . . . , χ − 3. Notice that

xi(k̂) = xj(k̂) ∀i, j = 1, 2 . . . , n, i 
= j when k̂ → ∞, which
implies that limk̂→∞ φi(k̂) = 0 and

lim
k̂→∞

{
lim

χ→∞ xi

(
k̂ + χ

)}
= lim

k̂→∞

{
lim

χ→∞ xi

(
k̂ + χ − 1

)}
.

Defining k = k̂ + χ − 1, we have

lim
k→∞ xi(k) = lim

k→∞ xi(k + 1).

By using the same method, one has

lim
k→∞ xi(k) = lim

k→∞ xi(k + 1)

= lim
k→∞ xi(k + 2) = · · · = z̃i ∈ �

and

lim
k→∞ xm(k) = lim

k→∞ xm(k + 1) = lim
k→∞ xm(k + 2) = · · ·

= z̃m ∈ � ∀m 
= i.

When k → ∞, one has xi(k) = xm(k) ∀m 
= i. It is not difficult
to conclude that z̃i = z̃m = z̃ ∈ �. The corresponding result
limk→∞ ‖xi(k)− z̃‖ = 0 can be obtained, which means that the
constrained consensus is achieved. The proof is completed.

Next, we will design the fault-tolerant controller gain Kk

for system (7). Assume that the failure matrix � is already
known. The theorem is provided as follows.

Theorem 2: Suppose that the directed graph is fixed. Let
the attenuation level γ > 0. Consider the multiagent system
(2) with fault-tolerant controller (4). Given appropriate failure
coefficient ρim and positive-definite matrices W > 0 and W1 >

0, the overall systems can achieve fault-tolerant consensus with
an H∞ performance γ , if there exist positive-definite matrices
0 < {Xk}k∈[0,N−1] < I and {Qk}k∈[0,N] > 0 and real-valued
matrices {Kk}k∈[0,N−1] satisfying

⎡

⎣
−Qk + I 0 �k

∗ −γ 2W1 I
∗ ∗ −Xk

⎤

⎦ < 0 (15)

with the initial condition

0 < Q0 < γ 2W (16)

where

�k = −[In ⊗ KT
k ]LT�H.

Proof: By using Lemma 1, it follows from (9) that:
⎡

⎣
−Qk + I 0 �T

k Qk+1

∗ −γ 2W1 Qk+1
∗ ∗ −Qk+1

⎤

⎦ < 0. (17)

Premultiplying and postmultiplying (17) by diag{I, I, XT
k } and

diag{I, I, Xk}, respectively, we have
⎡

⎣
−Qk + 1 0 �T

k Qk+1Xk

∗ −γ 2W1 Qk+1Xk

∗ ∗ −XT
k Qk+1Xk

⎤

⎦ < 0.

Defining Qk+1Xk = I, the corresponding result in (15) can be
obtained directly. The proof is completed.

In Theorems 1 and 2, we have assumed that the failure
matrix � is already known. However, in practice, the fail-
ure matrix might not be known in advance. According to the
characteristic of ρim as

0 < ρmin
i ≤ ρim ≤ ρmax

i ≤ 1

denote the following variables:

ρ̃i0 = ρmax
i + ρmin

i

2
, g̃im = ρim − ρ̃i0

ρ̃i0
, r̃i = ρmax

i − ρmin
i

ρmax
i + ρmin

i

.

We have

ρim = ρ̃i0(1 + g̃im), |g̃i| ≤ r̃i < 1.

Denote

ρi0 = Inu ⊗ ρ̃i0, gi = diag
{
g̃i1, . . . , g̃inu

}
, ri = Inu ⊗ r̃i.

We then obtain

ρi = ρi0(I + gi), |gi| ≤ ri < I.

Similarly, define

�0 = diag{ρ01, ρ02, . . . , ρ0n}, R = diag{r1, r2, . . . , rn}
G = diag{g1, g2, . . . , gn}, |G| = diag{|g1|, |g2|, . . . , |gn|}.

The failure matrix � can be rewritten as

� = �0(I + G), |G| ≤ R < I. (18)

The following theorem is provided for system (7) with an
unknown failure matrix �.

Theorem 3: Suppose that the directed graph is fixed. Let
the attenuation level γ > 0. Consider the multiagent system
(2) with fault-tolerant controller (4). Given positive-definite
matrices W > 0 and W1 > 0, the overall systems can
achieve fault-tolerant consensus with an H∞ performance γ ,
if there exist positive-definite matrices 0 < {Xk}k∈[0,N−1] < I
and {Qk}k∈[0,N] > 0, real-valued matrices {Kk}k∈[0,N−1], and
positive scalars {σk}k∈[0,N−1] > 0 satisfying
⎡

⎢⎢⎣

−Qk + I 0 �kH �k

∗ −γ 2W1 I 0
∗ ∗ −Xk + σkHRRTHT 0
∗ ∗ ∗ −σk

⎤

⎥⎥⎦ < 0

(19)

with the initial condition

0 < Q0 < γ 2W (20)
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Algorithm 1 Delay-Free Fault-Tolerant Control Scheme
Step 1: Specify the attenuation level γ and positive definite
matrices W > 0 and W1 > 0.
Step 2: Setting k = 0, solve the inequalities (19)-(20) to get
the values of Q0, X0 and K0.
Step 3: Given Q1 = X−1

0 , substitute Q1 into (19) to compute
K1.
Step 4: Setting k − 1 = k, substitute Qk = X−1

k−1 into (19) to
get the controller gain Kk.

where

�k = −[In ⊗ KT
k ]LT�0.

Proof: Substitute (18) into (15). Equation (15) can be
divided into two subparts as �k and 
�k

�k =
⎡

⎣
−Qk + I 0 �̃k

∗ −γ 2W1 I
∗ ∗ −Xk

⎤

⎦

�̃k = −[In ⊗ KT
k

]
LT�0H


�k =
⎡

⎣
0 0 
�̃k

∗ 0 0
∗ ∗ 0

⎤

⎦


�̃k = −[In ⊗ KT
k

]
LT�0GH. (21)

It follows from (21) that:


�k = He

⎧
⎨

⎩

⎡

⎣
�k

0
0

⎤

⎦G[0 0 H]

⎫
⎬

⎭.

Based on Lemma 2, �k + 
�k < 0 holds if and only if there
exists a positive scalar σk such that

�k + σk

⎡

⎣
0
0
H

⎤

⎦RRT[0 0 H]

+ σ−1
k

⎡

⎣
�k

0
0

⎤

⎦[�T
k 0 0

]
< 0.

By using Lemma 1, the corresponding result in Theorem 3
can be obtained directly. The proof is completed.

The delay-free fault-tolerant control scheme is described in
Algorithm 1.

B. Delay-Dependent Fault-Tolerant Control

In the networked multiagent systems, the time delays may
exist between agents. In this section, we will give a type of
delay-dependent fault-tolerant control algorithm for multiagent
systems. The controller is designed as

ui(k) = Kk

n∑

j=1,j 
=i

aij
(
xj(k − τ) − xi(k − τ)

)+ P�{xi(k)}

(22)

where τ denotes the time delay. By using the same augmented
method as delay-free system in (5) and (6), we have

x(k + 1) = −[(�L) ⊗ Kk]x(k − τ) + e(k). (23)

The closed-loop system of state x̂(k) can be described as

x̂(k + 1) = −[(H�L) ⊗ Kk]x̂(k − τ) + H̃e(k). (24)

We have the following theorems.
Theorem 4: Suppose that the directed graph is fixed. Let

the attenuation level γ > 0. Consider the multiagent system
(2) with delay-dependent fault-tolerant controller (22). Given
appropriate controller gain {Kk}k∈[0,N−1], failure coefficient
ρim, and positive-definite matrices U > 0 and U1 >

0, the overall systems can achieve fault-tolerant consen-
sus with an H∞ performance γ , if there exist positive-
definite matrices {Qk}k∈[0,N] > 0, {Wk}k∈[0,N−1] > 0,
{Zk}k∈[0,N−1] > 0, {S1k}k∈[0,N−1] > 0, {S2k}k∈[0,N−1] >

0, and {S3k}k∈[0,N−1] > 0 and matrices {N1k}k∈[0,N−1],
{N2k}k∈[0,N−1], and {N3k}k∈[0,N−1] with appropriate dimen-
sions such that the following inequalities hold:

�̂1k =

⎡

⎢⎢⎢⎢⎣

�̂11k �̂12k N T
3k 0 −τZk

∗ �̂22k −N T
3k �T

k Qk+1 τ�T
k Zk

∗ ∗ �̂33k Qk+1 τZk

∗ ∗ ∗ −Qk+1 0
∗ ∗ ∗ ∗ −Zk

⎤

⎥⎥⎥⎥⎦
< 0

�̂2k =
[

Sk Nk

∗ minl∈[k−τ,k−1] Zl

]
> 0 (25)

with the initial conditions

Q0 < γ̂ 2
1 U, W0 < γ̂ 2

2 U ∀Z0 > 0

γ̂ 2
1 = γ 2

1 , γ̂ 2
2 = 1

τ
γ 2

2 , γ 2
1 + γ 2

2 = γ 2 (26)

where

�̂11k = −Qk + Wk + N1k + N T
1k + S1k + I

�̂12k = N T
2k − N1k

�̂22k = −Wk−τ − N T
2k − N2k + S2k

�̂33k = S3k − γ 2U1

Nk = [
N T

1k N T
2k N T

3k

]T
, Sk = diag{S1k, S2k, S3k}.

Proof: We consider the Lyapunov function candidates as

V1(k) = x̂T(k)Qkx̂(k) +
k−1∑

l=k−τ

x̂T(l)Wlx̂(l)

+ τ

0∑

θ=−τ+1

k−1∑

l=k−1+θ

ηT(l)Zlη(l) (27)

where η(l) = x̂(l + 1)− x̂(l). Calculate the difference of V1(k)
along the solution of system (24). We have


V1(k) ≤ {
x̂T(k + 1)Qk+1x̂(k + 1) − x̂T(k)Qkx̂(k)

+ τ 2ηT(k)Zkη(k) − τ

k−1∑

l=k−τ

η(l)Zlη(l)

+ x̂T(k)Wkx̂(k) − x̂T(k − τ)Wk−τ x̂(k − τ)
}
.

(28)

By using the free-weighting matrix approach [28], the fol-
lowing equation holds for any matrices Nk with appropriate
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dimensions:

0 = 2ζT
1 (k)Nk

⎡

⎣x̂(k) − x̂(k − τ) −
k−1∑

l=k−τ

η(l)

⎤

⎦ (29)

where

ζ1(k) = [
x̂T(k) x̂T(k − τ) eT(k)H̃T]T.

The control performance requirement J1 is constructed as

J1 =
{

N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TU1H̃e(k)

)}

− γ 2
N−1∑

k=0

{
x̂T(0)Ux̂(0)

}
< 0 ∀x̂(0) 
= 0. (30)

Define J̃1 = 
V1(k) + (zT(k)z(k) − γ 2eT(k)H̃TU1H̃e(k)) and
denote

ζ2(k) =
⎡

⎣ζT
1 (k)

k−1∑

l=k−τ

ηT(l)

⎤

⎦
T

.

By using Lemma 3, we have

−τ

k−1∑

l=k−τ

ηT(l)Zlη(l) − ζT
1 (k)Skζ1(k)

− 2ζT
1 (k)Nk

k−1∑

l=k−τ

η(l)

≤ −
⎡

⎣
k−1∑

k−τ

ηT(l)

⎤

⎦ min
l∈[k−τ,k−1]

Zl

⎡

⎣
k−1∑

k−τ

η(l)

⎤

⎦

− 2ζT
1 (k)Nk

k−1∑

l=k−τ

η(l) − ζT
1 (k)Skζ1(k).

Then, J̃1 can rewritten as

J̃1 = ζT
1 (k)�̃1kζ1(k) − ζT

2 (k)�̂2kζ2(k) (31)

where

�̃1k =
⎡

⎣
�̃11k �̃12k �̃13k

∗ �̃22k �̃23k

∗ ∗ �̃33k

⎤

⎦ < 0

�̃11k = −Qk + Wk + τ 2Zk + N1k + N T
1k + S1k + I

�̃12k = −τ 2Zk�k + N T
2k − N1k, �̂13k = −τ 2Zk + N T

3k

�̃22k = �T
k Qk+1�k − Wk−τ + τ 2�T

k Zk�k − N T
2k − N2k + S2k

�̃23k = �T
k Qk+1 + τ 2�T

k Zk − N T
3k

�̃33k = Qk+1 + τ 2Zk + S3k − γ 2U1.

By utilizing Lemma 1, �̃1k < 0 ⇔ �̂1k < 0. Summing up J̃1
from 0 to N − 1, one has

N−1∑

k=0

J̃ =
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

+
N−1∑

k=0

[V(k + 1) − V(k)] < 0.

We can conclude that

N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)
+ V(N) − V(0) < 0

⇒ V(N) +
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

− γ 2
N−1∑

k=0

{
x̂T(0)Ux̂(0)

}

+
(

γ 2
N−1∑

k=0

{
x̂T(0)Ux̂(0)

}− V(0)

)
< 0

⇒ V(N) +
N−1∑

k=0

(
zT(k)z(k) − γ 2eT(k)H̃TW1H̃e(k)

)

− γ 2
N−1∑

k=0

{
x̂T(0)Ux̂(0)

}

+
(

γ 2
1

N−1∑

k=0

{
x̂T(0)Ux̂(0)

}− x̂T(0)Q0x̂(0)

)

+
(

γ 2
2

N−1∑

k=0

{
x̂T(0)Ux̂(0)

}− τ x̂T(0)W0x̂(0)

)
< 0.

Based on the initial conditions (26) in Theorem 4, the required
performance (30) is achieved.

Next, we will investigate the fault-tolerant constrained
consensus problem. The stability of system (24) implies that

lim
k→∞ x1(k) = lim

k→∞ x2(k) = · · · = lim
k→∞ xn(k) ∈ �

lim
k→∞ x1(k + 1) = lim

k→∞ x2(k + 1)

= · · · = lim
k→∞ xn(k + 1) ∈ �.

By using Lemma 4, one has
1) ρim = 1, m = 1, 2, . . . , nu

lim
χ→∞

∥∥∥xi

(
k̂ + χ + τ + 1

)
− xi

(
k̂ + χ + τ

)∥∥∥

= lim
χ→∞

∥∥∥P�i

{
φi

(
k̂ + χ + 1

)
+ P�

{
xi

(
k̂ + χ + τ

)}}

− P�i

{
xi

(
k̂ + χ + τ

)}∥∥∥

≤ lim
χ→∞

∥∥∥φi

(
k̂ + χ + 1

)
+ P�

{
xi

(
k̂ + χ + τ

)}

− xi

(
k̂ + χ + τ

)∥∥∥

= lim
χ→∞

∥∥∥φi

(
k̂ + χ + 1

)∥∥∥.

2) 0 < ρim < 1.
Similar to Theorem 1, there exist scalars 0 < εk < 1 to

ensure that ‖ρiui(k)‖ ≤ εk‖ui(k)‖ ∀ui(k) 
= 0. We have

lim
χ→∞

∥∥∥xi

(
k̂ + χ + τ + 1

)
− xi

(
k̂ + χ + τ

)∥∥∥

≤ lim
χ→∞

∥∥∥P�i

{
φi

(
k̂ + χ + 1

)
+ ρiP�

{
xi

(
k̂ + χ + τ

)}}

− P�i

{
φi

(
k̂ + χ

)
+ ρiP�

{
xi

(
k̂ + χ + τ − 1

)}}∥∥∥
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≤ lim
χ→∞

∥∥∥φi

(
k̂ + χ + 1

)
+ ρiP�

{
xi

(
k̂ + χ + τ

)}

− φi

(
k̂ + χ

)
− ρiP�

{
xi

(
k̂ + χ + τ − 1

)}∥∥∥

≤ lim
χ→∞

∥∥∥φi

(
k̂ + χ + 1

)
− φi

(
k̂ + χ

)∥∥∥

+ lim
χ→∞ εk̂+χ+τ−1

∥∥∥xi

(
k̂ + χ + τ

)
− xi

(
k̂ + χ + τ − 1

)∥∥∥
· · ·
≤ lim

χ→∞

χ−1∑

l=0

(∥∥∥φi

(
k̂ + χ + 1 − l

)
− φi

(
k̂ + χ − l

)∥∥∥
)

+ lim
χ→∞ εχ

∥∥∥xi

(
k̂ + τ + 1

)
− xi

(
k̂ + τ

)∥∥∥

where ε = max{εk̂+χ+τ−1−l}, l = 0, 1, . . . , χ − 1. We can
conclude that

lim
k̂→∞

{
lim

χ→∞ xi

(
k̂ + χ + τ + 1

)}

= lim
k̂→∞

{
lim

χ→∞ xi

(
k̂ + χ + τ

)}
.

Define k = k̂ + χ + τ , one has

lim
k→∞ xi(k) = lim

k→∞ xi(k + 1).

By using the same method as above, the following result can
be obtained:

lim
k→∞ xi(k) = lim

k→∞ xi(k + 1)

= lim
k→∞ xi(k + 2) = · · · = z̃i ∈ �.

Similarly, we have

lim
k→∞ xm(k) = lim

k→∞ xm(k + 1)

= lim
k→∞ xm(k + 2) = · · · = z̃m ∈ � ∀m 
= i.

We can conclude that z̃i = z̃m = z̃ ∈ �. The result of
limk→∞ ‖xi(k) − z̃‖ = 0 can be guaranteed. The proof is
completed.

Next, we will design the delay-dependent fault-tolerant con-
troller gain Kk for system (24). We assume that the partial
failure matrix � is already known. We have the following
theorem.

Theorem 5: Suppose that the directed graph is fixed. Let the
attenuation level γ > 0. Consider the multiagent system (2)
with delay-dependent fault-tolerant controller (22). Given
appropriate failure coefficient ρim and positive-definite matri-
ces U > 0 and U1 > 0, the overall systems can achieve fault-
tolerant consensus with an H∞ performance γ , if there exist
positive-definite matrices {Qk}k∈[0,N] > 0, {Wk}k∈[0,N−1] > 0,
{Zk}k∈[0,N−1] > 0, {Rk}k∈[0,N−1]>0, {T1k}k∈[0,N−1] > 0,
{T2k}k∈[N−1] > 0, 0 < {Xk}k∈[0,N−1] < I, {S1k}k∈[0,N−1] >

0, {S2k}k∈[0,N−1] > 0, and {S3k}k∈[0,N−1] > 0, matrices
{N1k}k∈[0,N−1], {N2k}k∈[0,N−1], and {N3k}k∈[0,N−1] with appro-
priate dimensions, and real-valued matrices {Kk}k∈[0,N−1] such

that the following inequalities hold:
⎡

⎢⎢⎢⎢⎣

�̂11k �̂12k N T
3k 0 −τ

∗ �22k −N T
3k �23k �24k

∗ ∗ �̂33k I τ

∗ ∗ ∗ −Xk 0
∗ ∗ ∗ ∗ −Rk

⎤

⎥⎥⎥⎥⎦
< 0 (32)

[
Sk Nk

∗ T2k

]
> 0 (33)

with the initial conditions

Q0 < γ̂ 2
1 U, W0 < γ̂ 2

2 U ∀R0 > 0

γ̂ 2
1 = γ 2

1 , γ̂ 2
2 = 1

τ
γ 2

2 , γ 2
1 + γ 2

2 = γ 2 (34)

where

�22k = −T1k − N T
2k − N2k + S2k

�23k = −[In ⊗ KT
k

]
LT�H

�24k = −τ
[
In ⊗ KT

k

]
LT�H

Nk = [
N T

1k N T
2k N T

3k

]T
, Sk = diag{S1k, S2k, S3k}.

Proof: Premultiplying and postmultiplying �̂1k in (25) by
diag{I, I, I, XT

k , Z−T
k } and diag{I, I, I, Xk, Z−1

k }, respectively,
we then obtain
⎡

⎢⎢⎢⎢⎣

�̂11k �̂12k N T
3k 0 −τ

∗ �̂22k −N T
3k �T

k Qk+1Xk τ�T
k

∗ ∗ �̂33k Qk+1Xk τ

∗ ∗ ∗ −Xk 0
∗ ∗ ∗ ∗ −Z−1

k

⎤

⎥⎥⎥⎥⎦
< 0.

Denoting Rk = Z−1
k , Qk+1Xk = I, T1k = Wk−τ , and T2k =

minl∈[k−τ,k−1] Zl, (32) and (33) can be obtained directly. The
proof is completed.

Next, consider the unknown partial failure matrix �, which
is defined in (18). We have the following theorem.

Theorem 6: Suppose that the directed graph is fixed. Let
the attenuation level γ > 0. Consider the multiagent
system (2) with delay-dependent fault-tolerant controller (22).
Given positive-definite matrices U > 0 and U1 > 0,
the overall system can achieve the fault-tolerant consen-
sus with an H∞ performance γ , if there exist positive
scalars {σk}k∈[0,N−1] > 0, positive-definite matrices U > 0
and U1 > 0, the overall systems can achieve the fault-
tolerant consensus with an H∞ performance γ , if there exist
positive-definite matrices {Qk}k∈[0,N] > 0, {Wk}k∈[0,N−1] > 0,
{Zk}k∈[0,N−1] > 0, {Rk}k∈[0,N−1]>0, {T1k}k∈[0,N−1] > 0,
{T2k}k∈[N−1] > 0, 0 < {Xk}k∈[0,N−1] < I, {S1k}k∈[0,N−1] >

0, {S2k}k∈[0,N−1] > 0, and {S3k}k∈[0,N−1] > 0, matrices
{N1k}k∈[0,N−1], {N2k}k∈[0,N−1], and {N3k}k∈[0,N−1] with appro-
priate dimensions, and real-valued matrices {Kk}k∈[0,N−1] such
that the following inequalities hold:

⎡

⎢⎢⎢⎢⎢⎢⎣

�̂11k �̂12k N T
3k 0 −τ 0

∗ �22k −N T
3k �1k �2k �3k

∗ ∗ �̂33k I τ 0
∗ ∗ ∗ �4k �5k 0
∗ ∗ ∗ ∗ �6k 0
∗ ∗ ∗ ∗ ∗ −σk

⎤

⎥⎥⎥⎥⎥⎥⎦
< 0 (35)
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Algorithm 2 Delay-Dependent Fault-Tolerant Control Scheme
Step 1: Specify the attenuation level γ and the positive def-
inite matrices U > 0, U1 > 0 and R0 = Z−1

0 > 0. Choose
positive scalars γ1 and γ2 satisfying γ 2

1 + γ 2
2 = γ 2.

Step 2: Setting k = 0, solve (35-37) to obtain the values of
Q0, W0, X0, N0, S0 and K0.
Step 3: Given Qk+1 = X−1

k , T1k = W0 and T2k = Z0, substi-
tute these values into (35)-(36) to obtain Kk, Wk, and Rk. Use
Zk = R−1

k to obtain the value of Zk. If k ≤ 2, back to Step 3;
otherwise, go to Step 4.
Step 4: Given Qk+1 = X−1

k , T1k = W0 and T2k =
minl∈[k−τ,k−1] Zl, solve (35)-(36) to obtain Kk. If k ≤ τ , back
to Step 4; otherwise, go to Step 5.
Step 5: Given Qk+1 = X−1

k , T1k = Wk−τ , and T2k =
minl∈[k−τ,k−1] Zl, solve (35)-(36) to get the controller gain Kk.

Fig. 1. Communication graph of the multiagent system.

[
Sk Nk

∗ T2k

]
> 0 (36)

with the initial conditions

Q0 < γ̂ 2
1 U, W0 < γ̂ 2

2 U ∀R0 > 0

γ̂ 2
1 = γ 2

1 , γ̂ 2
2 = 1

τ
γ 2

2 , γ 2
1 + γ 2

2 = γ 2 (37)

where

�1k = −[In ⊗ KT
k

]
LT�0H

�2k = −τ
[
In ⊗ KT

k

]
LT�0H

�3k = −[In ⊗ KT
k

]
LT�0

�4k = −Xk + σkHRRTH

�5k = σkτHRRTH

�6k = −Rk + σkτ
2HRRTH

Nk = [
N T

1k N T
2k N T

3k

]T
, Sk = diag{S1k, S2k, S3k}.

Proof: Similar to the prove procedure of Theorem 3, substi-
tute (18) into (32). Then, (32) can be divided into the constant
part and the uncertain part. By using Lemma 1, the correspond-
ing results in Theorem 6 can be obtained directly. The proof
is completed.

Next, the delay-dependent fault-tolerant control algorithm
is described in Algorithm 2.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is provided to show the
effectiveness of the proposed methods. Consider a multiagent
system with four agents, and the communication graph is
shown in Fig. 1.

TABLE I
CONTROLLER GAINS Kk

Fig. 2. State trajectories of all agents.

Each edge weight is chosen as 1, and the Laplacian matrix
L in (1) is described as

L =

⎡

⎢⎢⎣

2 −1 0 −1
−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

⎤

⎥⎥⎦.

The constraint set of each agent is denoted as

�1 =
{
(x1, y1) ∈ R

2
∣∣∥∥(x1, y1)

T − (1, 2)T
∥∥ ≤ 5

}

�2 =
{
(x2, y2) ∈ R

2
∣∣∥∥(x2, y2)

T − (−7, 3)T
∥∥ ≤ 6

}

�3 =
{
(x3, y3) ∈ R

2
∣∣∥∥(x3, y3)

T − (1,−4)T
∥∥ ≤ 6

}

�4 =
{
(x4, y4) ∈ R

2
∣∣∥∥(x4, y4)

T − (−6,−8)T
∥∥ ≤ 12

}
.

Choose the partial failures as 0.8 ≤ ρ1m ≤ 1, 0.6 ≤
ρ2m ≤ 1, 0.9 ≤ ρ3m ≤ 1, and 0.9 ≤ ρ4m ≤ 1, m = 1, 2,
and the time delay as τ = 2. Set γ = 2, and U and
U1 as unit matrices. The controller gains Kk are computed
with Algorithm 2. The corresponding results are listed in
Table 1. At time 0, all the actuators are running without
failure. Hence, we set ρim = 1, i = 1, 2, 3, 4, m = 1, 2.
Then, at time k ≥ 7, actuator failures exist in agent 2
and agent 4. We then set ρ1m = 1, ρ3m = 1, m = 1, 2.
ρ21 = 1, 0.6 < ρ22 < 1, 0.9 < ρ41 < 1, and ρ42 = 1,
where the values of ρ22 and ρ41 are unknown but belonging
to the known ranges. Fig. 2 shows the trajectories of each
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agent. Under the designed controller, each agent i stays in
its own constraint set �i and all the agents finally reach the
consensus point in � = ∩4

i=1�i. The simulation result shows
that the control algorithm is suitable to solve the fault-tolerant
constrained consensus problem.

V. CONCLUSION

In this article, a fault-tolerant constrained consensus
problem is investigated for multiagent systems with com-
munication delays. A novel finite-horizon H∞-based delay-
dependent fault-tolerant controller is designed. By utilizing
the augmented and free-weighting matrix technologies, suf-
ficient conditions have been provided to ensure that the
closed-loop system under consideration satisfies a prespecified
performance requirement and the time-varying controller gains
are computed via iterative linear matrix inequalities. Finally, a
numerical example is used to illustrate the effectiveness of the
scheme presented in this article. The topic on the fault-tolerant
constrained consensus for multiagent system with time-varying
communication delays is interesting. This will be investigated
in our future work.
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