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Distributed Continuous-Time Algorithms for
Optimal Resource Allocation With Time-Varying

Quadratic Cost Functions
Bo Wang , Shan Sun , and Wei Ren , Fellow, IEEE

Abstract—In this article, we propose distributed
continuous-time algorithms to solve the optimal resource
allocation problem with certain time-varying quadratic
cost functions for multiagent systems. The objective is
to allocate a quantity of resources while optimizing the
sum of all the local time-varying cost functions. Here,
the optimal solutions are trajectories rather than some
fixed points. We consider a large number of agents that
are connected through a network, and our algorithms
can be implemented using only local information. By
making use of the prediction–correction method and
the nonsmooth consensus idea, we first design two
distributed algorithms to deal with the case when the
time-varying cost functions have identical Hessians.
We further propose an estimator-based algorithm which
uses distributed average tracking theory to estimate
certain global information. With the help of the estimated
global information, the case of nonidentical constant
Hessians is addressed. In each case, it is proved that the
solutions of the proposed dynamical systems with certain
initial conditions asymptotically converge to the optimal
trajectories. We illustrate the effectiveness of the proposed
distributed continuous-time optimal resource allocation
algorithms through simulations.

Index Terms—Distributed algorithms, optimization, re-
source allocation, time-varying cost functions.

I. INTRODUCTION

R ECENT years have witnessed a surge of interest in the
distributed optimization problem [1]–[12]. Many practical

situations have led to a strong demand for distributed optimal
control in multiagent systems, where all the agents cooperatively
fulfill a complex task in distributed ways. The optimal resource
allocation or economic dispatch problem, which requires the
agents to satisfy a common demand with their own constraints,
is one of the fundamental aspects of distributed optimization
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and has been studied in power systems and other fields for many
years using discrete-time algorithms [1]–[5]. A distributed al-
gorithm for optimal economic dispatch using frequency control
in discrete time is presented in [1] for an electric grid system.
Considering transmission losses and generator constraints in
a smart grid system, a consensus-based distributed running
algorithm is proposed in [2] for the optimal economic power
dispatch problem. Two cases are studied in [3] using distributed
primal–dual subgradient algorithms incorporating the global
constraint that is the intersection of all the local constraints. The
Laplacian-gradient dynamics, where each agent is required to
exchange the gradient information over the network, combined
with nonsmooth exact penalty functions, is introduced in [4]
to dynamically converge to the fixed optimal solution for the
economic dispatch problem. To tackle the time-varying loads,
the method in [4] is further developed in [5] based on dynamic
average consensus to estimate the mismatch in load satisfac-
tion. This method guarantees the convergence of the economic
dispatch problem while the initial allocation is arbitrary.

Contrary to the above conventional discrete-time algorithms,
some researchers have been devoted to designing distributed
continuous-time algorithms for the optimal resource alloca-
tion problem in recent years [6]–[10]. The initialization-free
distributed algorithms are applied in [6] to solve the optimal
resource allocation problem with general local constraints. A
distributed continuous-time algorithm based on average con-
sensus theory is proposed in [7] for the optimal resource allo-
cation problem, where all the agents need to satisfy multiple
weighted demands. Compared with [5], all of the agents in [7]
communicate the Lagrange multiplier information rather than
the gradient with neighbors. By using nonsmooth penalty func-
tions and differential inclusions, a distributed continuous-time
method is presented in [8] for the resource allocation in power
systems with second-order dynamics. This approach, which uses
the exact approximate function and average consensus theory,
is a combination of [5] and [7]. Distributed continuous-time
subgradient algorithms are proposed in [9] to handle the nons-
mooth optimization problem with general local constraints. The
saddle point dynamics and consensus protocols are employed
in [10] to address the optimal resource allocation problem in a
power grid system with distributed thermal generators that have
time-invariant quadratic cost functions.

All the above algorithms assume that the local cost functions
or resources are time invariant. In many practical situations,
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however, the cost functions and resources depend explicitly on
time. Examples include the utility maximization problem for
wireless sensor networks [11] and tracking of moving targets
[13], [14], and the optimal resource allocation problem [15]. As
a result, the optimal solution is no longer a fixed point but a time-
varying trajectory that the agents need to not only collectively
find but also track asymptotically. The decentralized discrete-
time prediction–correction method is proposed in [11] to solve
the constrained optimization problem with time-varying smooth
strongly convex cost functions while involving bounded tracking
errors. An extension of the above prediction–correction method
in the dual space is shown in [12]. The aforementioned discrete-
time algorithms deal with the time-varying resource allocation
problem by sampling the time-varying cost functions at each
discrete time instant, which results in bounded tracking errors
that depend on the sampling period, the computation time at each
step, and the number of iterations. Continuous-time methods are
proposed in [13] and [15] to address the time-varying optimal
resource allocation problem. The prediction–correction interior-
point method in [13] is a centralized algorithm. The method
in [15] is distributed and deals with time-varying resources, but
the quadratic cost functions are required to be time invariant.
In all the above-mentioned articles, the distributed continuous-
time optimal resource allocation problem with time-varying cost
functions is not addressed.

Motivated by the above discussion, this article proposes novel
distributed continuous-time algorithms to address the optimal
resource allocation problem with certain time-varying quadratic
cost functions. The algorithms guarantee that the state of each
agent will asymptotically track the time-varying optimal trajec-
tory while satisfying the common demand. We first deal with
the case of cost functions with identical Hessians by combining
the prediction–correction method and the nonsmooth consensus
idea. With the help of distributed estimators employed to esti-
mate certain global information shared by all agents, we then
deal with the case of cost functions with nonidentical constant
Hessians. In each case, it is proved that the states of the proposed
dynamical systems can globally asymptotically converge to the
corresponding optimal trajectories. In addition, unlike some of
the results in the existing literature, it is not necessary for each
agent to obtain the gradient information of its neighbors in all
the proposed algorithms.

Comparison with the literature: To address the optimal re-
source allocation problem, [1]–[5] propose distributed discrete-
time algorithms for time-invariant cost functions, while [11]
and [12] propose distributed discrete-time algorithms for time-
varying cost functions but subject to bounded tracking errors.
Also, [6]–[10] and [15] propose distributed continuous-time
algorithms for time-invariant cost functions. In contrast, the
current article proposes distributed continuous-time algorithms
for time-varying cost functions with zero tracking errors. In
addition, with our proposed algorithms, there is no need to
exchange the gradient information among the agents as in [4] and
[5] or estimate the Hessian inverse of the global cost function
by truncating its Taylor expansion as in [11], which leads to
increasing computation cost and decreasing convergence accu-
racy. While the current article gains some insight from [7], [8],

and [10], the results therein are limited to time-invariant cost
functions. In contrast, the current article deals with time-varying
cost functions. The most relevant results to the current article are
provided in [13] and [14]. While the equality constraint is taken
into account in [13] for the time-varying optimization problem,
the algorithms are centralized and each agent needs to obtain cer-
tain common global information. Distributed continuous-time
algorithms including an estimator-based algorithm to handle
nonidentical Hessians are studied in [14] for the time-varying
unconstrained optimization problem, but the results cannot be
directly applied to the time-varying optimal resource allocation
problem in the presence of a common equality constraint.

II. PRELIMINARIES

A. Notation and Graph Theory

Let R, R+, and R++ denote the set of real, non-negative,
and positive numbers, respectively. Let Z++ denote the set of
positive integers. Let Rn and Rm×n, wheren,m ∈ Z++, denote
the set of real-valued vectors with n entries and all m× n real
matrices, respectively. Let | · | be the absolute value of a real
number and || · ||1, || · ||2, || · ||∞ denote the 1-norm, 2-norm, and
∞−norm of a vector or a matrix, respectively. Let 1n denote the
column vector with n ones, 0n denote the column vector with all
entries being zero, and In denote then× n identity matrix. For a
number x ∈ R, the standard sign function is denoted by sign(x),
i.e., sign(x) = 1 when x > 0, sign(x) = −1 when x < 0, and
sign(x) = 0 otherwise. For a vector x = [x1, ..., xn]

T ∈ Rn, let
sign(x) � [sign(x1), ..., sign(xn)]T . Let ∇xf(x, t) ∈ Rn and
H(x, t, f(·)) ∈ Rn×n represent the gradient and Hessian of the
function f(x, t) : Rn × R+ → R with respect to x ∈ Rn, and
∇xtf(x, t) ∈ Rn denote the partial derivative of∇xf(x, t)with
respect to t ∈ R+. A symmetric matrix P ∈ Rn×n is said to be
positive semidefinite, which is denoted by P � 0, if xTPx ≥ 0
for all x ∈ Rn. For two symmetric matrices P ∈ Rn×n and
Q ∈ Rn×n, P � Q means that P −Q is positive semidefinite.

For a group of N ∈ Z++ agents, each agent is considered a
node and the communication topology among them is denoted
by an undirected graphG(A) = {I, E ,A}. Here, the node index
set is denoted by I = {1, 2, ..., N}, E ⊆ I × I is the set of
edges (i, j), i, j ∈ I, which means that agents i and j are able
to get information from each other, and A = [aij ] ∈ RN×N

is the adjacency matrix associated with the undirected graph
G(A), where aij = aji = 1 if edge (j, i) ∈ E and aij = 0 oth-
erwise, and aii = 0 for all i ∈ I. An undirected path in an
undirected graph is defined by a sequence of edges of the form
(i, j), (j, s), ..., where i, j, s ∈ I. The undirected graph is called
connected if there exists an undirected path between any two
distinct nodes in I. The set of neighbors of node i is denoted
by Ni = {j : (j, i) ∈ E}. Let the matrix L = [lij ] ∈ RN×N , in
which lii =

∑N
j=1,j 	=i aij and lij = −aij for i 	= j, denote the

Laplacian matrix associated with the undirected graphG(A). By
arbitrarily assigning directions for the edges, let B = [bik] ∈
RN×� denote the incidence matrix associated with the undi-
rected graph G(A), where k = 1, 2, ..., �, and � ∈ Z++ is the
cardinality of the edge set E . The incidence matrix describes the
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relationship among these agents using vertices and edges. That
is, for the edge ek toward the node i, bik = 1, for the edge ek
left from node i, bik = −1, and bik = 0 otherwise. Note that the
Laplacian matrix L of the undirected graph G(A) is symmetric
positive semidefinite and L = BBT . The eigenvalues of L are
ordered as λ1(L) = 0 < λ2(L) ≤ · · · ≤ λN (L) when the undi-
rected graph G(A) is connected, and λ2(L) denotes the second
smallest eigenvalue of the Laplacian matrix L, which has the
following properties [16]:

xTLx =
1

2

N∑
i=1

∑
j∈Ni

(xj − xi)
2, (1)

xTLx ≥ λ2(L)x
Tx when 1T

Nx = 0 and x 	= 0 (2)

where x = [x1, x2, ..., xN ]T ∈ RN . Defining Π � (IN −
1
N 1N1T

N ), we then have the following property [17]:

Π = L(L)+ = BBT (BBT )+ = B(BTB)+BT (3)

for the incidence matrixB and the Laplacian matrixL associated
with any connected undirected network G(A). Here, (·)+ is the
generalized inverse.

B. Nonsmooth Consensus Algorithms

The nonsmooth consensus idea plays an important role in
our distributed optimization algorithm development. We in-
troduce two nonsmooth consensus algorithms that will be ex-
ploited in our main results. Especially, in the first algorithm in
Section III-A, we need to exploit the nonsmooth consensus
idea for systems involving a damping term and a time-varying
disturbance term. Consider N agents with dynamics

ṙi(t) = −νri(t) + di(t) + ui(t), i ∈ I (4)

where ri(t) ∈ R is the variable associated with the ith agent, ν ∈
R++,ui(t) ∈ R is the control input for the ith agent, and di(t) ∈
R is the time-varying function satisfying supt≥0 |di(t)| < D ∈
R++ for the ith agent. We have the following lemma.

Lemma 1: For the agents with dynamics (4) over a fixed
connected undirected graph topologyG(A), the variables ri for
i ∈ I will reach consensus using the nonsmooth controller

ui(t) = −η
∑
j∈Ni

sign (ri(t)− rj(t)) (5)

where η ∈ R++ satisfies η ≥ D
√

2N
λ2(L) . Here, λ2(L) is the

second smallest eigenvalue of the Laplacian matrix L defined
in Section II-A.

Proof: See Appendix A. �
Moreover, in the second algorithm in Section III-A, we need

to exploit the nonsmooth consensus idea to guarantee the output
consensus for systems involving a time-varying damping term
and a nonuniform time-varying signal in their outputs. Consider
N agents with dynamics

ṗi(t) = σ(t)pi(t) + ui(t), (6a)

qi(t) = φi(t) + pi(t), i ∈ I (6b)

where pi(t) ∈ R is the variable associated with the ith agent,
qi(t) ∈ R is the output, |σ(t)| ≤ σmax ∈ R++, and φi(t) ∈ R is
the time-varying signal for the ith agent. Here, the time-varying
signals φi(t) and φj(t) for each (i, j) ∈ E satisfy

sup
t≥0

|φi(t)− φj(t)| ≤ φmax

sup
t≥0

|φ̇i(t)− φ̇j(t)| ≤ ϕmax. (7)

We then have the following lemma.
Lemma 2: For the agents with dynamics (6) over a fixed

connected undirected graph topology G(A), the outputs qi(t)
for i ∈ I will reach consensus eventually using the controller

ui(t) = −ζ
∑
j∈Ni

(qi(t)− qj(t))

− μ
∑
j∈Ni

sign (qi(t)− qj(t)) (8)

where ζ ∈ R++ satisfies ζ > σmax · λmax{(BTB)+},μ ∈ R++

satisfies μ > 1 + (ϕmax + σmaxφmax)
∣∣∣∣(BTB)+

∣∣∣∣
∞,B is the in-

cidence matrix defined in Section II-A, and λmax{(BTB)+} is
the largest eigenvalue of (BTB)+.

Proof: See Appendix B. �
Remark 1: The proposed system (6) with the controller (8)

can guarantee the consensus of the outputs when σ(t) is time
varying and bounded while the methods in [17] deal with the
case that σ(t) is a negative constant.

C. Prediction–Correction Method and
Problem Formulation

Because the proposed distributed algorithms gain some in-
sight from the centralized prediction–correction method in [13],
we first review some results from [13]. Consider the time-
varying optimization problem

x∗(t) = argmin
x(t)∈Rn

f0 (x(t), t) s.t. Ax(t) = b (9)

where x∗(t) is the minimizer at any given time t ∈ R+, the
matrix A ∈ Rq×n includes the constraint parameters, q ∈ Z++

satisfies q < n, and b ∈ Rq is the demand that should be collec-
tively satisfied by all states of x(t). Before giving the lemmas,
we need the following assumptions.

Assumption 1: The cost function f0(x(t), t) is twice con-
tinuously differentiable and uniformly strongly convex with
respect to x(t) for all t, i.e., H(x(t), t, f0(·)) � mIn for some
m ∈ R++, as well as continuously differentiable with respect
to t. Here, H(x(t), t, f0(·)) denotes the Hessian of f0(x(t), t)
with respect to x(t).

Assumption 2: The Slater’s condition always holds. There
exists at least one x(t) ∈ Rn such that Ax(t) = b for each t.
That is, the optimization problem is feasible at all times.

The uniform strong convexity of f0(x(t), t) in Assumption 1
ensures the uniqueness of the optimal solution at any given time
t. Assumption 2 ensures that the optimal solution x∗(t) for all t
can be characterized using the Karush–Kuhn–Tucker conditions.
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Define the Lagrange function associated with the optimization
problem (9) as

L (x(t), λ(t), t) = f0 (x(t), t) + λ(t)T (Ax(t)− b) (10)

where λ(t) ∈ Rq is the Lagrange multiplier. Note that the La-
grange function (9) is strongly convex in x(t) and concave in
λ(t) under Assumption 1. Define the dual function F(λ(t), t) =
minx(t)∈Rn L(x(t), λ(t), t) and the corresponding dual opti-
mizer λ∗(t) = argmaxλ(t)∈Rq F(λ(t), t). We also define the
variable z(t) = [x(t)T , λ(t)T ]T ∈ Rn+q and the optimal solu-
tion z∗(t) = [x∗(t)T , λ∗(t)T ]T ∈ Rn+q. The following lemma
is then obtained.

Lemma 3 ([13]): If Assumptions 1 and 2 hold, the variable
z(t) satisfying

H (z(t), t,L(·)) ż(t) = −α∇zL (z(t), t)−∇ztL (z(t), t)
(11)

globally exponentially converges to the optimal solution z∗(t)
with some α ∈ R++.

Note that for all z(t) ∈ Rn+q, the Hessian of the Lagrange
function (10) satisfies

∣∣∣∣H−1(z(t), t,L(·))∣∣∣∣
2
≤M for some

M ∈ R++ when Assumptions 1 and 2 hold. We then have the
following lemma.

Lemma 4 ([13]): Suppose that Assumptions 1 and 2 hold. If
the time evolution of ∇zL(z(t), t) satisfies

∇̇zL (z(t), t) = −α∇zL (z(t), t)

where α ∈ R++, then the inequality

||z(t)− z∗(t)||2 ≤M
∣∣∣∣∇zL (z(t), t)

∣∣∣∣
2
e−αt

is obtained, which means that the variable z(t) exponentially
converges to the optimal solution z∗(t).

To solve the distributed optimal resource allocation problem
for a multiagent system, we aim to propose distributed dynami-
cal systems whose solutions converge to the optimal trajectory

x∗(t) = argmin
x(t)∈RN

N∑
i=1

fi (xi(t), t) s.t.
N∑
i=1

xi(t) = b (12)

where xi(t) ∈ R is the state of the ith agent, x(t) =
[x1(t), ..., xN (t)]T , b ∈ R is the desired constant demand that
should be satisfied by all agents collectively, and fi(xi(t), t) is
the time-varying convex and differentiable local cost function
for the ith agent. To gain insight, we first derive the centralized
solution to (12) by letting

∑N
i=1 fi(xi(t), t) play the role of

f0(x(t), t) in (9). In the following, for simplicity, we remove the
time-dependence associated with the variables (e.g., xi instead
of xi(t)) when appropriate.

Suppose that the global cost function
∑N

i=1 fi(xi, t) satisfies
Assumption 1. Define the Lagrange function associated with the
optimization problem (12) as

L (x, λ, t) =

N∑
i=1

fi(xi, t) + λ

( N∑
i=1

xi − b

)

=
N∑
i=1

fi(xi, t) + λ

( N∑
i=1

(xi − bi)

)

where λ ∈ R is the Lagrange multiplier, and bi ∈ R for i ∈ I
is designated such that

∑N
i=1 bi = b. Also define z = [xT , λ]T .

Note that there is only one equality constraint for the opti-
mization problem (12), and the optimal solution always ex-
ists for t ∈ R+ under Assumption 2. Therefore, by invoking
the prediction–correction method described in Lemma 3, the
variable z satisfying (11) globally exponentially converges to
the optimal solution z∗. Here, ∇zL(z, t) = [∇x1

f1(x1, t) +

λ, ...,∇xN
fN (xN , t) + λ,

∑N
i=1 xi − b]T , ∇ztL(z, t) = [∇x1t

f1(x1, t), ...,∇xN tfN (xN , t), 0]
T , andH(z, t,L(·)) is given by⎡⎢⎢⎢⎢⎣

H1 (x1, t, f1(·)) · · · 0 1
...

. . .
...

...

0 · · · HN (xN , t, fN (·)) 1

1 · · · 1 0

⎤⎥⎥⎥⎥⎦
where Hi(xi(t), t, fi(·)) denotes the Hessian of the local cost
function for the ith agent. Substituting the above ∇zL(z, t),
∇ztL(z, t), and H(z, t,L(·)) to (11) gives

Hi (xi, t, fi(·)) ẋi + λ̇ = −α∇xi
fi(xi, t)− αλ

−∇xitfi(xi, t), (13a)

N∑
i=1

ẋi = −α
( N∑

i=1

xi − b

)
. (13b)

Note that (13) is a centralized algorithm as it requires global
information from all agents.

When the time-varying cost functions fi(xi, t) for i ∈ I have
identical Hessians, we letH(t) = Hi(xi, t, fi(·)). Summing up
(13a) for all agents, replacing Hi(xi, t, fi(·)) with H(t) for i ∈
I, and multiplying both sides of (13b) by H(t), (13) becomes

H(t)

N∑
i=1

ẋi +N λ̇ = −α
N∑
i=1

∇xi
fi(xi, t)− αNλ

−
N∑
i=1

∇xitfi(xi, t), (14a)

H(t)

N∑
i=1

ẋi = −H(t)α

( N∑
i=1

xi − b

)
. (14b)

Manipulating (13a) after replacing Hi(xi, t, fi(·)) with H(t)
and substituting (14b) to (14a), we then obtain that

ẋi = −H−1(t)

× (α∇xi
fi(xi, t) + αλ +∇xitfi(xi, t) + λ̇

)
(15a)

λ̇ = −αλ − α

N

N∑
i=1

∇xi
fi(xi, t)− 1

N

N∑
i=1

∇xitfi(xi, t)

+
αH(t)

N

(
N∑
i=1

xi − b

)
. (15b)

Note from (15b) that the Lagrange multiplier λ is updated
using global information from all agents and (15a) relies on λ,
which implies that (15) is a centralized algorithm. The structures
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of (15) and (13) will be exploited in the next section to derive
distributed solutions.

III. MAIN RESULTS

In this section, we focus on certain time-varying quadratic
cost functions for the problem (12). That is, fi(xi, t) for i ∈ I
is given by

fi (xi(t), t) =
1

2
ai(t)x

2
i (t) + ci(t)xi(t) + gi(t) (16)

where ai(t) ∈ R++, ci(t) ∈ R, and gi(t) ∈ R. Note that
∇xi

fi(xi, t) = ai(t)xi + ci(t), ∇xitfi(xi, t) = ȧi(t)xi +
ċi(t), and Hi(xi, t, fi(·)) = ai(t). We consider the cases that
the quadratic cost functions defined by (16) have identical
Hessians and nonidentical constant Hessians. To distinguish
the different cases, we keep the time dependency for ai(t),
ci(t), and gi(t). We aim to design distributed algorithms for
each agent using local information with inspiration from the
centralized algorithms (13) and (15).

A. Distributed Time-Varying Optimal Resource
Allocation with Identical Hessians

This section considers the case of identical Hessians for the
optimization problem defined by (12) and (16).

With identical Hessians in (16), we let ai(t) = a(t) for i ∈ I.
As a result, (15) becomes

ẋi = − a−1(t) (αa(t)xi + αci(t) + αλ + ȧ(t)xi

+ċi(t) + λ̇
)
, (17a)

λ̇ = − αλ − α

N

N∑
i=1

ci(t)− 1

N

N∑
i=1

(ȧ(t)xi + ċi(t))

− αba(t)

N
. (17b)

Define wi = a(t)xi + λ for the ith agent. Note that ẇi =
ȧ(t)xi + a(t)ẋi + λ̇ for i ∈ I. After some manipulation, it fol-
lows from (17a) that

ẇi = −αwi − αci(t)− ċi(t). (18)

Now if distributed algorithms can be designed such that agent
i’s state xi tracks that of (17a) for i ∈ I, then the optimization
problem defined by (12) and (16) with identical Hessians can
be solved in a distributed manner. Considering the definition of
wi for i ∈ I, the problem is then equivalent to tracking wi and
λ simultaneously for the ith agent. Based on the above idea,
we next consider two distributed continuous-time algorithms,
each of which has its own merits, to deal with the optimization
problem with identical Hessians. In the following, to distin-
guish between the centralized system (17) and our proposed
distributed algorithm, we use x̂i to denote agent i’s state and
λ̂i to denote agent i’s Lagrange multiplier in our distributed
algorithm. Before moving on, an assumption on (16) is needed.

Assumption 3: In (16), ai(t) = a(t) ∈ R++, and |a(t)|,
|ȧ(t)|, |ci(t)|, and |ċi(t)| are upper bounded for i ∈ I.

1) Algorithm 1 of Identical Hessians Case: For each
agent, we propose the distributed algorithm

˙̂xi = − α(x̂i − bi) + τa(t)−1
∑
j∈Ni

sign(λ̂i − λ̂j), (19a)

˙̂
λi = − αλ̂i − αci(t)− ċi(t)− αbia(t)− ȧ(t)x̂i

− τ
∑
j∈Ni

sign(λ̂i − λ̂j) (19b)

where τ ∈ R++ is the control gain, α > supt≥0 |ȧ(t)a−1(t)|
can be adjusted to improve the convergence rate, and
bi ∈ R for i ∈ I is arbitrarily designated such that their
sum equals the total demand b. In particular, τ satisfies

τ ≥ Dτ

√
2N

λ2(L) with Dτ > supt≥0 |αci(t) + ċi(t) + αbia(t)|
+ supt≥0

∣∣ȧ(t)a−1(t)(supt≥0 |ci(t) + α−1ċi(t)|+ |a(0)x̂i(0)
+ λ̂i(0)|)

∣∣ for all i ∈ I, λ2(L) is defined in Section II-A, and
bi = b/N for i ∈ I is a possible selection, which implies that
every agent knows the common demand and the size of the
group. Another special selection is that only one agent knows
the common demand, for example, b1 = b, and bi = 0 for
i ∈ {2, 3, ..., N}. Note that due to Assumption 3, α and Dτ are
well defined. The following theorem is then obtained.

Theorem 1: Suppose that the fixed graphG(A) is undirected
and connected. If Assumptions 2 and 3 hold, then the state x̂i
and Lagrange multiplier λ̂i of the ith agent with dynamics (19)
will converge to the corresponding optimal state and Lagrange
multiplier as t→ ∞ for the optimization problem defined by
(12) and (16), respectively.

Proof: Note that Assumption 3 guarantees that the global cost
function

∑N
i=1 fi(xi, t) satisfies Assumption 1. Then, it follows

from the derivation of (15) that the solution of the dynamical
system (17) will converge to the corresponding optimal trajec-
tory for the optimization problem defined by (12) and (16). Next,
we show that the state x̂i and Lagrange multiplier λ̂i of the ith
agent with dynamics (19) can track the corresponding part in
(17) in a distributed manner.

Define ŵi = a(t)x̂i + λ̂i for i ∈ I. After some manipula-

tion, it follows from (19) that ˙̂wi = ȧ(t)x̂i + a(t) ˙̂xi +
˙̂
λi =

−a(t)αx̂i − αλ̂i − αci(t)− ċi(t) for i ∈ I, which can be writ-
ten as

˙̂wi = −αŵi − αci(t)− ċi(t). (20)

Define ewi = ŵi − wi for i ∈ I. It follows from (18) and (20)
that ėwi = −αewi, which implies that limt→∞ ewi = 0 for i ∈
I.

Because the fixed graph G(A) is undirected, we have∑N
i=1

∑
j∈Ni

sign(λ̂i − λ̂j) = 0. Note that
∑N

i=1 bi = b. Sum-

ming up (19a) for all agents, we have
∑N

i=1
˙̂xi =

−α(∑N
i=1 x̂i − b). Substituting (17b) to (17a) and summing up

(17a) for all agents, we obtain that
∑N

i=1 ẋi = −α(∑N
i=1 xi −

b). Define ex =
∑N

i=1 x̂i −
∑N

i=1 xi. It follows that ėx =
−αex, which implies that limt→∞ ex = 0.
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Summing up (17b) for all agents, we obtain that

N∑
i=1

λ̇ = − αNλ −
N∑
i=1

ȧ(t)xi

− α

N∑
i=1

ci(t)−
N∑
i=1

ċi(t)− αba(t). (21)

Because the fixed graph G(A) is undirected and
∑N

i=1 bi = b,
we obtain from (19b) that

N∑
i=1

˙̂
λi = − α

N∑
i=1

λ̂i −
N∑
i=1

ȧ(t)x̂i

− α

N∑
i=1

ci(t)−
N∑
i=1

ċi(t)− αba(t). (22)

Define eλ =
∑N

i=1 λ̂i −Nλ. It follows from (21) and (22) that
ėλ = −αeλ − ȧ(t)ex. Because limt→∞ ex = 0 and |ȧ(t)| is up-
per bounded due to Assumption 3, we then have limt→∞ eλ = 0.

Because |ci(t)| and |ċi(t)| are upper bounded due to As-
sumption 3, it follows from (20) that ŵi(t) is bounded
and satisfies |ŵi(t)| ≤ supt≥0 |ci(t) + α−1ċi(t)|+ |ŵi(0)|. Re-
placing ŵi(0) with a(0)x̂i(0) + λ̂i(0), we have |ŵi(t)| ≤
supt≥0 |ci(t) + α−1ċi(t)|+ |a(0)x̂i(0) + λ̂i(0)|. According to
the definition of ŵi, we have x̂i = a−1(t)(ŵi − λ̂i). Substituting
it to the right-hand side of (19b), we have

˙̂
λi = − (α− ȧ(t)a−1(t)

)
λ̂i + si(t)− τ

∑
j∈Ni

sign(λ̂i − λ̂j)

where si(t) = −αci(t)− ċi(t)− αbia(t)− ȧ(t)a−1(t)ŵi.
Based on the definition of Dτ , it can be verified that
Dτ > supt≥0 |si(t)|. Because α > supt≥0 |ȧ(t)a−1(t)|
and τ ≥ Dτ

√
2N

λ2(L) , it follows from Lemma 1 that λ̂i

for i ∈ I will reach consensus, i.e., λ̂i → λ̂j , ∀i, j ∈ I,
as t→ ∞.

Combining with the fact that limt→∞ eλ = 0, it follows that
limt→∞ |̂λi − λ| = 0 for i ∈ I. By further invoking the defini-
tions of ŵi and wi and the fact that limt→∞ ewi = 0, we obtain
that limt→∞ |x̂i − xi| = 0 for i ∈ I.

Since the solution of (17) will converge to the optimal trajec-
tories x∗ and λ∗ for the optimization problem defined by (12)
and (16), the state x̂i and Lagrange multiplier λ̂i of the ith agent
with dynamics (19) will converge to the corresponding optimal
state and Lagrange multiplier, respectively. �

Remark 2: For the optimal resource allocation problem with
time-varying resources as in [15], our proposed algorithm (19)
can be slightly modified to handle the same situation when the
cost functions have identical Hessians. Suppose that the resource
bi(t) ∈ R assigned to the ith agent is bounded as well as its time
derivative ḃi(t) ∈ R as in [15] for i ∈ I. For each agent, we
propose the distributed algorithm

˙̂xi = − α(x̂i − bi) + ḃi + τa(t)−1
∑
j∈Ni

sign(λ̂i − λ̂j),

(23a)

˙̂
λi = − αλ̂i − αci(t)− ċi(t)− αbia(t)− a(t)ḃi − ȧ(t)x̂i

− τ
∑
j∈Ni

sign(λ̂i − λ̂j) (23b)

where α > supt≥0 |ȧ(t)a−1(t)|, and τ satisfies τ ≥
Dτ

√
2N

λ2(L) with Dτ > supt≥0 |αci(t) + ċi(t) + αbia(t) +

a(t)ḃi|+ supt≥0

∣∣ȧ(t)a−1(t)(supt≥0 |ci(t) + α−1ċi(t)|+
|a(0)x̂i(0) + λ̂i(0)|)

∣∣ for all i ∈ I . The proof is similar to
Theorem 1 and hence is omitted here. Note that while [15]
allows for nonidentical Hessians, it requires ai(t) and ci(t) in
(16) to be constant. In contrast, with identical Hessians, the
algorithm (23) is able to deal with time-varying ai(t) and ci(t)
in (16).

Note that the selection of τ is affected byDτ , which depends
on all agents’ initial state variables x̂i(0) and λ̂i(0). To relax
such a requirement, we develop the following algorithm where
the control gains are independent on the initial state variables.

2) Algorithm 2 of Identical Hessians Case: For each
agent, we propose the following distributed algorithm:

ḃi = a−1(t)

×
⎛⎝ζo ∑

j∈Ni

(δi − δj) + μo

∑
j∈Ni

sign(δi − δj)

⎞⎠ , (24a)

˙̂xi = −α(x̂i − bi) + ḃi, (24b)

˙̂
λi = −αλ̂i − αci(t)− ċi(t)− a(t)αbi − a(t)ḃi

− ȧ(t)x̂i, (24c)

δi = −ci(t)− a(t)bi (24d)

where ζo ∈ R++ satisfies ζo > Dζλmax{(BTB)+},Dζ ∈ R++

is the upper bound of |ȧ(t)a−1(t)|, λmax{(BTB)+} is the
largest eigenvalue of (BTB)+, μo ∈ R++ satisfies μo > 1 +∣∣∣∣(BTB)+

∣∣∣∣
∞
∣∣∣∣BT (−Ċ(t) + ȧ(t)a−1(t)C(t))

∣∣∣∣
∞ , C(t) de-

notes [c1(t), ..., c2(t)]T , and bi ∈ R for i ∈ I is initially desig-
nated such that

∑N
i=1 bi(0) = b. The following theorem is then

obtained.
Theorem 2: Suppose that the fixed graphG(A) is undirected

and connected. If Assumptions 2 and 3 hold, then the state x̂i
and Lagrange multiplier λ̂i of the ith agent with dynamics (24)
will converge to the corresponding optimal state and Lagrange
multiplier as t→ ∞ for the optimization problem defined by
(12) and (16), respectively.

Proof: Note that Assumption 3 guarantees that the global cost
function

∑N
i=1 fi(xi, t) satisfies Assumption 1. Next, we show

that the state x̂i and Lagrange multiplier λ̂i of the ith agent
with dynamics (24) can track the corresponding part in (17) in
a distributed manner.

Define ŵi = a(t)x̂i + λ̂i for i ∈ I. Note that a(t) is time
varying according to Assumption 3. After some manipulation,
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it follows from (24b) and (24c) that ˙̂wi = ȧ(t)x̂i + a(t) ˙̂xi +
˙̂
λi = −a(t)αx̂i − αλ̂i − αci(t)− ċi(t) for i ∈ I, which can
also be written as (20). Define ewi = ŵi − wi for i ∈ I. It
follows from (18) and (20) that ėwi = −αewi, which implies
that limt→∞ ewi = 0 for i ∈ I.

Substituting (17b) to (17a) and summing up (17a) for all
agents, we obtain that

∑N
i=1 ẋi = −α(∑N

i=1 xi − b). Because
the fixed graph G(A) is undirected, it follows from (24a) that∑N

i=1 ḃi = 0. We then obtain that
∑N

i=1
˙̂xi = −α(∑N

i=1 x̂i −
b). Define ex =

∑N
i=1 x̂i −

∑N
i=1 xi. It follows that ėx =

−αex, which implies that limt→∞ ex = 0.
Note that (24c) is equivalent to

˙̂
λi = −αλ̂i − αci(t)− a(t)αbi − ċi(t)− a(t)ḃi − ȧ(t)bi

− ȧ(t)(x̂i − bi). (25)

It follows from (24d) that δ̇i = −ċi(t)− ȧ(t)bi − a(t)ḃi for i ∈
I. Substituting (24d) and δ̇i to (25), we obtain that (24b)–(24d)
can be written as

( ˙̂xi − ḃi) = −α(x̂i − bi),

( ˙̂λi − δ̇i) = −α(λ̂i − δi)− ȧ(t)(x̂i − bi)

which implies that λ̂i → δi for i ∈ I as t→ ∞ under Assump-
tion 3 that |ȧ(t)| is bounded. Define vi = −a(t)bi such that
v̇i = −ȧ(t)bi − a(t)ḃi for i ∈ I. Substituting vi to (24d) and
using (24a), we obtain that

δi = −ci(t) + vi,

v̇i = ȧ(t)a−1(t)vi − ζo
∑
j∈Ni

(δi − δj)− μo

∑
j∈Ni

sign(δi − δj).

Because the fixed undirected graph G(A) is connected, |a(t)|
and |ȧ(t)| are bounded, and |ci(t)| and |ċi(t)| are bounded for
i ∈ I under Assumption 3, it follows from Lemma 2 that δi will
reach consensus as t→ ∞ for i ∈ I. Therefore, we can obtain
that λ̂i → λ̂j , ∀i, j ∈ I, as t→ ∞. Combining with the fact
that limt→∞

∑N
i=1 ewi = 0 and limt→∞ ex = 0, it follows that∑N

i=1 λ̂i → Nλ as t→ ∞, which results in limt→∞ |̂λi − λ| =
0 for i ∈ I. By further invoking the definitions of ŵi andwi, we
obtain that limt→∞ |x̂i − xi| = 0 for i ∈ I.

Since the solution of (17) will converge to the optimal trajec-
tories x∗ and λ∗ for the optimization problem defined by (12)
and (16), the state x̂i and Lagrange multiplier λ̂i of the ith agent
with dynamics (24) will converge to the corresponding optimal
state and Lagrange multiplier, respectively. �

Remark 3: The algorithm (24) can be slightly modified to
relax the assumption that the upper bounds of |ci(t)| and |ċi(t)|
for i ∈ I are known in advance by replacing the parameter μo in
(24a) with some adaptive gains as in [17]. But it is still necessary
to know the bounds of the identical time-varying Hessian and
its time derivative.

Remark 4: Each of (19) and (24) has its own merits. It is more
efficient to implement (19), which has fewer variables and less
computational cost than (24). The control gains of (24), however,
are independent on the initial state variables. It is also worth
mentioning that in the special case that a(t) is a constant, the

control gain τ in (19) would not rely on the initial state variables

but instead satisfy τ ≥ Dτ

√
2N

λ2(L) withDτ > supt≥0 |αci(t) +
ċi(t) + αbia(t)| for i ∈ I. In addition, (19) can be modified to
handle the situation in [15] where the resource assigned to each
agent is time varying and bounded (see Remark 2) but not for
(24).

B. Estimator-Based Distributed Time-Varying Optimal
Resource Allocation With Nonidentical
Constant Hessians

This section considers the case of nonidentical constant Hes-
sians for the optimization problem defined by (12) and (16).

With nonidentical constant Hessians in (16), we let ai(t) = ai
for i ∈ I. As a result, (13) becomes

aiẋi + λ̇ = −aiαxi − αci(t)− αλ − ċi(t), (26a)
N∑
i=1

ẋi = −α
( N∑

i=1

xi − b

)
. (26b)

By manipulating (26a), we then obtain that

ẋi = −a−1
i

(
aiαxi + αci(t) + αλ + ċi(t) + λ̇

)
. (27)

Summing up (27) for all agents results in

N∑
i=1

ẋi = − α

N∑
i=1

xi −
N∑
i=1

a−1
i (αci(t) + ċi(t))

− (αλ + λ̇)

N∑
i=1

a−1
i . (28)

Letting the right sides of (26b) and (28) be equal, we obtain that

λ̇ = − αλ −
(

N∑
i=1

(
a−1
i (αci(t) + ċi(t)) + αbi

))

×
( N∑

i=1

a−1
i

)−1

. (29)

Note from (29) that the Lagrange multiplier λ is updated using
global information from all agents and (27) relies on λ, which
implies that (27) with (29) is a centralized algorithm.

In order to relax the condition that every agent knows the com-
mon global information

∑N
i=1(a

−1
i αci(t) + a−1

i ċi(t) + αbi)

and
∑N

i=1 a
−1
i in (29), we propose a distributed estimator, which

uses only local information, for each agent. Before moving on,
we need the following assumption.

Assumption 4: In (16), ai(t) = ai ∈ R++ is a constant, and
|ci(t)|, |ċi(t)|, and |c̈i(t)| are upper bounded for i ∈ I.

For each agent, we design the estimator

ξ̇i(t) = γ
∑
j∈Ni

sign (ωj(t)− ωi(t)) , (30a)

ωi(t) = ξi(t) + a−1
i (αci(t) + ċi(t)) + αbi, (30b)

ψ̇i(t) = β
∑
j∈Ni

sign (θj(t)− θi(t)) , (30c)

θi(t) = ψi(t) + a−1
i (30d)
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where β ∈ R++, and γ ∈ R++ satisfies γ >
supt≥0

∣∣∣∣a−1
i αċi(t) + a−1

i c̈i(t)
∣∣∣∣
∞ for i ∈ I. In the following,

to distinguish between the centralized system given by (27) and
(29) and our proposed distributed algorithm, we use x̂i to denote
agent i’s state and λ̂i to denote agent i’s Lagrange multiplier in
our distributed algorithm. By leveraging the estimator (30), we
propose the distributed algorithm

˙̂xi = −a−1
i

(
aiαx̂i + αci(t) + αλ̂i + ċi(t) +

˙̂
λi

)
, (31a)

˙̂
λi = −αλ̂i − θ−1

i (t)ωi(t)− ηo
∑
j∈Ni

sign(λ̂i − λ̂j) (31b)

where ηo ∈ R++ is the gain determined later, α ∈ R++ can be
adjusted to improve the convergence rate, and bi ∈ R for i ∈ I
is designated such that

∑N
i=1 bi = b. The following theorem is

then obtained.
Theorem 3: Suppose that the fixed graphG(A) is undirected

and connected. If Assumptions 2 and 4 hold, then the state x̂i and
Lagrange multiplier λ̂i of the ith agent with dynamics (31) using
the estimator (30) will converge to the corresponding optimal
state and Lagrange multiplier as t→ ∞ for the optimization
problem defined by (12) and (16), respectively.

Proof: Note that Assumption 4 guarantees that the global
cost function

∑N
i=1 fi(xi, t) satisfies Assumption 1. Next, we

show that the state x̂i and Lagrange multiplier λ̂i of the ith
agent with dynamics (31) will converge to the correspond-
ing optimal state and Lagrange multiplier in a distributed
manner.

Because the fixed graph G(A) is undirected and connected,
|ċi(t)| and |c̈i(t)| are upper bounded for i ∈ I, and the
Hessian ai is a constant for i ∈ I under Assumption
4, it follows from Theorem 1 in [18] that there exists
a T ∈ R++ such that

∣∣∣∣ωi(t)− 1
N

∑N
i=1(a

−1
i αci(t) +

a−1
i ċi(t) + αbi)

∣∣∣∣
2
= 0, and

∣∣∣∣θi(t)− 1
N

∑N
i=1 a

−1
i

∣∣∣∣
2
= 0

for all t ≥ T . Define ω(t) = 1/N
∑N

i=1(a
−1
i αci(t) +

a−1
i ċi(t) + αbi) and θ(t) = 1/N

∑N
i=1 a

−1
i . It follows that

ωi(t) = ωj(t) = ω(t), θi(t) = θj(t) = θ(t), ∀i, j ∈ I, for
all t ≥ T .

Define Si(t) = −θ−1
i (t)ωi(t) for i ∈ I. It follows from

(31b) that ˙̂
λi = −αλ̂i + Si(t)− ηo

∑
j∈Ni

sign(λ̂i − λ̂j)

for i ∈ I. For t ≥ T , define S(t) = −θ−1
(t)ω(t), and it

follows that Si(t) = Sj(t) = S(t), ∀i, j ∈ I. Denoting
Ψi(λ̂i, t) = −αλ̂i + Si(t) for i ∈ I, we obtain that
|Ψi(λ̂i, t)−Ψj(λ̂j , t)| ≤ α|̂λi − λ̂j |, ∀i, j ∈ I, for t ≥ T .
For the fixed connected undirected graph G(A), there is
a finite time T

′ ∈ R++ and λ̂ ∈ R such that λ̂i = λ̂j = λ̂,
∀i, j ∈ I, when t > T + T

′
, if we choose an appropriate

parameter ηo according to Theorem 3.1 in [19]. Specifically, ηo

is set such that ηo >
2(N−1)α·maxi |̂λi(T )−λ̂(T )|

N ·amin
, where amin is the

minimum positive entry of the adjacency matrixA, λ̂(t) denotes

1/N
∑N

j=1 λ̂j(t), and maxi |̂λi(T )− λ̂(T )| is the maximum

value of |̂λi(T )− λ̂(T )| for i ∈ I. It follows from (31b) that

˙̂
λ + αλ̂ = S(t) = −θ−1

(t)ω(t)

= −
( N∑

i=1

a−1
i

)−1( N∑
i=1

a−1
i (αci(t) + ċi(t)) + αb

)
(32)

where θ(t) and ω(t) are the common global information for t >

T + T
′
. Summing up (31a) for all agents and replacing ˙̂

λi + αλ̂i

with (32) for i ∈ I, we obtain that

N∑
i=1

˙̂xi = −
N∑
i=1

a−1
i (aiαx̂i + αci(t) + ċi(t))

− ( ˙̂λ + αλ̂) ·
N∑
i=1

a−1
i = −α

( N∑
i=1

x̂i − b

)
. (33)

For t > T + T
′
, define the Lyapunov function candidate

V = 1
2 (∇ẑL(ẑ, t))T (∇ẑL(ẑ, t)), where ẑ = [x̂1, ..., x̂N , λ̂]

T

and L(ẑ, t) =∑N
i=1 fi(x̂i, t) + λ̂(

∑N
i=1 x̂i − b). We then ob-

tain the time derivative of V along (31) as

V̇ = (∇ẑL(ẑ, t))T ·
(
H (ẑ, t,L(·)) · ˙̂z +∇ẑtL(ẑ, t)

)

= (∇ẑL(ẑ, t))T ·
[
[−aiαx̂i − αci(t)− αλ̂]N∑N

i=1
˙̂xi

]
(34)

where [−aiαx̂i − αci(t)− αλ̂]N denotes [−a1αx̂1 − αc1(t)−
αλ̂, ...,−aNαx̂N − αcN (t)− αλ̂]T , and H(ẑ, t,L(·)) is the
Hessian of L(ẑ, t) with respect to ẑ. Note that ∇x̂i

fi(x̂i, t) =
aix̂i + ci(t) for i ∈ I. Substituting (33) to (34), we obtain that

V̇ = (∇ẑL(ẑ, t))T ·
[
[−α∇x̂i

fi(x̂i, t)− αλ̂]N

−α
(∑N

i=1 x̂i − b
) ]

= −α (∇ẑL(ẑ, t))T (∇ẑL(ẑ, t)) ≤ 0.

It follows from Lemma 4 that the variable ẑ will converge to
the optimal solution z∗ for the optimization problem defined
by (12) and (16). Thus, the state x̂i and Lagrange multiplier
λ̂i of the ith agent with dynamics (31) using the estimator (30)
will converge to the corresponding optimal state and Lagrange
multiplier, respectively. �

Remark 5: The algorithm (31) is able to solve the case with
nonidentical constant Hessians at the cost of increasing commu-
nication over the network because the variables ωi(t) and θi(t)
for i ∈ I associated with the ith agent must be communicated
to its neighbors besides λ̂i. In contrast, the algorithm (19) just
needs to exchange the λ̂i.

Remark 6: The algorithm (31) can be modified to handle
the situation in [15], where the resource assigned to each agent
is time varying and bounded, by redesigning the estimator
(30b) as ωi(t) = ξi(t) + a−1

i (αci(t) + ċi(t)) + αbi(t) + ḃi(t).
The proof is similar to Theorem 3 and hence is omitted here. Note
again that [15] requires time-invariant quadratic cost functions.

IV. NUMERICAL SIMULATIONS

In this section, numerical examples are provided to illustrate
the effectiveness of the proposed distributed continuous-time
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Fig. 1. State trajectories in four scenarios. (a) Scenario I. (b) Scenario
II. (c) Scenario III. (d) Scenario IV.

optimization algorithms for the optimal resource allocation
problem defined by (12) and (16). We consider a multiagent
system composed of N = 6 agents communicating over a fixed
ring graph.

In the following four scenarios, the common demand that all
agents should satisfy cooperatively is set as b = 120. In scenario
I, each agent has identical constant Hessians. The local cost
functions are given by fi(xi, t) = x2i − 2isin(t)xi + i2sin2(t)
for i ∈ I. The parameters of the algorithm (19) are set as
α = 1 and τ = 8, and bi is set as b/N for i ∈ I. In scenario
II, for comparison, we employ the method proposed in [15]
to the case in scenario I.In scenario III, each agent has identi-
cal time-varying Hessians. The local cost functions are given
by fi(xi, t) = 0.5a(t)xi + ci(t)xi + gi(t), where a(t) = 8 +
2sin(0.34t), ci(t) = −4icos(0.5it), and gi(t) = i2sin(0.5it)
for i ∈ I. The parameters of the algorithm (24) are set as
α = 1, μo = 10, ζo = 25, and bi(0) is set as b/N for i ∈ I. In
scenario IV, each agent has nonidentical constant Hessians. The
local cost functions are given by fi(xi, t) = (aixi − isin(π4 t))

2,
where a1 = 3.1211, a2 = 3.5716, a3 = 4.5144, a4 = 4.9527,
a5 = 3.7608, and a6 = 4.1356. The parameters in (30) and (31)
are set as α = 1, ηo = 5, γ = 10, and β = 0.1, and we set
bi = b/N for i ∈ I.

The trajectories of the states in all four scenarios are presented
in Fig. 1 and compared with the results obtained by Matlab’s
constraint optimization solver (centralized approach). The op-
timal solutions using the Matlab tool are depicted in dashed
lines, and the states using our algorithms and the method in [15]
are depicted in solid lines. The corresponding time evolution
of the demand violation, i.e.,

∑N
i=1 xi − b, is shown in Fig. 2.

As shown in Fig. 1(a), (c), and (d), each agent’s state converges
to its corresponding optimal state of the optimization problem
defined by (12) and (16) using our proposed algorithms (19),
(24), and (31), respectively, and as shown in Fig. 2(a), (c),
and (d), the corresponding demand violations approach zero.
In contrast, Fig. 1(b) shows that the states using the method
in [15] cannot converge to the optimal solutions while the

Fig. 2. Demand violation
∑N

i=1
xi − b in four scenarios. (a) Scenario

I. (b) Scenario II. (c) Scenario III. (d) Scenario IV.

corresponding demand violation does not approach zero in the
case of identical constant Hessians.

V. CONCLUSION

This article studied the distributed continuous-time optimiza-
tion algorithms for the time-varying optimal resource allocation
problem with certain quadratic time-varying cost functions.
The proposed distributed dynamical systems were proved to
solve the problem with time-varying cost functions under the
assumptions that all local cost functions have identical Hessians
and nonidentical constant Hessians. We showed that the state of
each agent converges to the corresponding optimal trajectory as
the Lagrange multipliers reach consensus. The performance of
the distributed algorithms has been demonstrated in simulations.

APPENDIX A
PROOF OF LEMMA 1

Define ei(t) = ri(t)− r(t), where r(t) � 1
N

∑N
j=1 rj(t).

Motivated by [20], we consider the Lyapunov function candidate
V = 1

2

∑N
i=1 e

2
i (t). We then obtain the time derivative of V

along (4) and (5) as

V̇ =

N∑
i=1

ei(t)ėi(t) =

N∑
i=1

ei(t)
(
ṙi(t)− ṙ(t)

)
.

Since the graph G(A) is undirected, we have ṙ(t) =
1
N

∑N
j=1 ṙj =

1
N

∑N
j=1(−νrj(t) + dj(t)). We then have

V̇ =

N∑
i=1

ei(t)

⎛⎝−ν
⎛⎝ri(t)− 1

N

N∑
j=1

rj(t)

⎞⎠+ di(t)

− 1

N

N∑
j=1

dj(t) + η
∑
j∈Ni

sign (rj(t)− ri(t))

⎞⎠ .
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Note that
∑N

i=1 ei(t) = 0. We then have
∑N

i=1 ei(t)(− 1
N∑N

j=1 dj(t)) = 0. Because G(A) is undirected, it follows

from [21, Lemma 6.1] that
∑N

i=1 ei(t)
∑

j∈Ni
sign(rj(t)−

ri(t)) =
1
2

∑N
i=1

∑
j∈Ni

(ej(t)− ei(t))sign(ej(t)− ei(t)).

Hence, we have V̇ = −ν∑N
i=1 e

2
i (t) +

∑N
i=1 ei(t)di(t)−

1
2η
∑N

i=1

∑
j∈Ni

|ej(t)− ei(t)|. Define e(t) = [e1(t), ..., eN

(t)]T . We have ||e(t)||1 ≤ √
N ||e(t)||2, i.e.,

∑N
i=1 |ei(t)|

≤ √
N(
∑N

i=1 e
2
i (t))

1
2 . Define ε(t) = [ε11(t), ..., ε1N (t), ..., ε

N1(t), ..., εNN (t)]T , where εij(t) = aij |ej(t)− ei(t)| for i, j ∈
I. We have ||ε(t)||2 ≤ ||ε(t)||1, i.e., (

∑N
i=1

∑
j∈Ni

|ej(t)−
ei(t)|2) 1

2 ≤∑N
i=1

∑
j∈Ni

|ej(t)− ei(t)|. By leveraging the
property of (1) and (2) for the connected undirected network
G(A) and

∑N
i=1 ei(t)di(t) < D

∑N
i=1 |ei(t)|, we obtain that

V̇ < −ν
N∑
i=1

e2i (t) +
√
ND

(
N∑
i=1

e2i (t)

) 1
2

− 1

2
η

( N∑
i=1

∑
j∈Ni

|ej(t)− ei(t)|2
) 1

2

≤ −2νV − (η
√

λ2 −D
√
2N)V

1
2 ≤ 0.

Then, it follows that the variables ri for i ∈ I with dynamics (4)
will reach consensus as t→ ∞.

APPENDIX B
PROOF OF LEMMA 2

Define P (t) = [p1(t), ..., pN (t)]T , Q(t) = [q1(t), ..., qN
(t)]T , and Φ(t) = [φ1(t), ..., φN (t)]T . We then write the
system (6) in the following vector form:

Ṗ (t) = σ(t)P (t)− ζLQ(t)− μBsign
(
BTQ(t)

)
, (35)

Q(t) = Φ(t) + P (t). (36)

Let Q̃(t) = ΠQ(t) and Y (t) = BT Q̃(t). We have Y (t) =
BTQ(t) due to the fact that BTΠ = BT . Note that L = BBT .
It follows from (35) and (36) that

˙̃
Q(t) = ΠQ̇(t) = Π

(
Φ̇(t) + Ṗ (t)

)
= Π

(
Φ̇(t)− σ(t)Φ(t)

)
+ σ(t)Q̃(t)− ζBBTQ(t)

− μBsign
(
BTQ(t)

)
, (37)

Ẏ (t) = BT ˙̃
Q(t)

= BT
(
Φ̇(t)− σ(t)Φ(t)

)
+ σ(t)Y (t)− ζBTBY (t)

− μBTBsign (Y (t)) . (38)

Motivated by [17], we consider the Lyapunov function can-
didate V = 1

2Y (t)T (BTB)+Y (t). We then obtain the time
derivative of V along (37) and (38) as

V̇ = Y (t)T (BTB)+Ẏ (t)

= Y (t)T (BTB)+BT
(
Φ̇(t)− σ(t)Φ(t)

)

+ σ(t)Y (t)T (BTB)+Y (t)

− ζY (t)T (BTB)+BTBY (t)

− μY (t)T (BTB)+BTBsign (Y (t)) . (39)

Replace Y (t) with BTQ(t) in (39), invoke the property (3) that
Π = B(BTB)+BT for the fixed connected undirected network
G(A), and we then obtain

V̇ = Y (t)T (BTB)+BT
(
Φ̇(t)− σ(t)Φ(t)

)
+ σ(t)Y (t)T (BTB)+Y (t)

− ζY (t)TY (t)− μY (t)T sign (Y (t))

≤ ||Y (t)||1
∣∣∣∣(BTB)+

∣∣∣∣
∞
∣∣∣∣BT

(
Φ̇(t)− σ(t)Φ(t)

) ∣∣∣∣
∞

+ σmax · λmax{(BTB)+}Y (t)TY (t)

− ζY (t)TY (t)− μ||Y (t)||1.
It follows from (7) that supt≥0 ||BTΦ(t)||∞ ≤ φmax

and supt≥0 ||BT Φ̇(t)||∞ ≤ ϕmax, where Φ(t) =

[φ1(t), ..., φN (t)]T . Therefore, we have V̇ ≤ −||Y (t)||1 ≤
−||Y (t)||2, which guarantees the boundness of Y (t).
We then obtain that Ẏ (t) is bounded according to (38)
with (7). In addition, Y (t) is square-integrable since∫∞
t0
(Y (t)TY (t))1/2dt <∞. According to Barbalat’s lemma,

we have limt→∞Y (t) = 0�, where � is defined as the cardinality
of set E in Section II-A, which implies that the entries of
Q̃(t) will reach consensus as t→ ∞ due to the fact that
Y (t) = BT Q̃(t). Note that 1T

n Q̃(t) = 0 always hods. We then
obtain limt→∞Q̃(t) = 0N and hence the consensus of variables
qi for i ∈ I is reached.
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