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The asynchronously switched multi-agent systems comprising switched agents of different dynamics
and switching signals are considered under arbitrarily switching communication topologies. The
practical output synchronization problem is studied for such a kind of systems due to the heterogeneity
brought by both the dynamics and the switchings of agents. A switching-dependent controller with an
embedded virtual reference system is proposed for each agent. The original problem is then converted

Keywords: into tracking problems between each agent and its reference system. The analysis of resultant tracking
Asynchronously switched multi-agent error systems involves the analysis of switched systems with bounded but non-attenuating state
systems impulses. By satisfying sufficient conditions featuring the average dwell time (ADT) and the newly

Practical output synchronization

out : proposed piecewise ADT, the practical output synchronization can be achieved and the ultimate
Fast-switching perturbations

bound of the output errors can also be obtained for the considered systems. Furthermore, a realistic
case where the agent switching signals undergo adverse fast-switching perturbations is studied. The
perturbations may potentially invalidate the “slow-switching" based method. A regulation strategy is
thus developed for each agent to render it adaption to such adversity. A payload transport task is
taken as the practical example to illustrate the effectiveness of the proposed method and the adaption

strategy.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems have received tremendous attention in
recent years due to increasing demand in studying the group
behaviors of autonomous objects, such as unmanned vehicles and
robots. The consensus problems are one of the central topics
for multi-agent systems, see, e.g., Knorn, Chen, and Middleton
(2016), Li, Duan, Chen, and Huang (2010), Olfati-Saber and Mur-
ray (2004), Ren and Beard (2008), Ren, Beard, and Atkins (2007)
and Yu, Chen, Cao, and Kurths (2010). The goal is to seek a
control strategy for each agent such that all the agent states
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asymptotically converge to a certain value or a dynamic tra-
jectory. However, in some real applications, the asymptotical
consensus performance for a multi-agent system may not always
be expected since there might exist environmental restrictions
or disturbances that impede the states from converging to a
single point or trajectory. In such cases, one usually expects the
practical consensus performance instead, i.e.,, the agent states
finally reach a bounded consensus region. Some recent results
regarding such a topic are collected as Back and Kim (2017), Chen,
Ho, Li, and Liu (2015), Ding and Zheng (2017) and Dong, Xi, Shi,
and Zhong (2013). On the other hand, for state consensus prob-
lems, most multi-agent models considered are homogeneous,
that is, all the agents have identical dynamics. Nevertheless,
when there are demands of studying the more practical het-
erogeneous models which exhibit different agent dynamics, the
state consensus would remain senseless. For such a case, the
output synchronization (Almeida, Silvestre, & Pascoal, 2017; Chen
& Chen, 2017; Wieland, Sepulchre, & Allgéwer, 2011) and the
output regulation problems (Meng, Yang, Dimarogonas, & Johans-
son, 2015; Su & Huang, 2012) were extensively studied instead.
Generally, the leader-following framework (Liu & Huang, 2018)
was often applied in these problems (there may be no actual
leader existing in the system, e.g., in some output synchronization
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problems Wieland et al., 2011), which usually led to the analysis
of some tracking-like problems.

As another popular topic in the control community, the
switched systems have seen fast development over the last few
decades. Representative works, e.g., Hespanha (2004), Hespanha
and Morse (1999), Kundu, Chatterjee, and Liberzon (2016), Liber-
zon (2012), Liberzon and Morse (1999), Lin and Antsaklis (2009)
and Zhang, Zhuang, and Shi (2015) have provided some useful
approaches and tools for analyzing various kinds of switched
systems. Switched systems have also long been applied to the
problems of the multi-agent systems. One of the well-known ap-
plications is in modeling the multi-agent systems with switching
communication topologies. Fundamental results, such as Olfati-
Saber and Murray (2004) and Ren and Beard (2005), have paved
the way for numerous subsequent works on such a topic, e.g.,
Dong and Hu (2016), Liu and Huang (2018), Meng et al. (2015)
and Saboori and Khorasani (2014).

On the other hand, the switching behavior can also occur in
agent dynamics. This is motivated by some practical scenarios
in which an agent is required to work in different modes, such
as the payload transport tasks (Foehn, Falanga, Kuppuswamy,
Tedrake, & Scaramuzza, 2017; Lee, Sreenath, & Kumar, 2013).
For instance, in Lee et al. (2013) the cooperating load tracking
control was studied for a group of quadrotors performing a se-
ries of pick-up and drop-off maneuvers on the cable-suspended
payloads. This process features variations in the agent dynam-
ics (mass, geometry, etc.) and is thus described by the hybrid
(switched) systems. Recently, some attention has been paid to
such a kind of multi-agent systems, see, e.g., Jia and Zhao (2015),
Lin and Zheng (2017), Yoo (2018) and Zhang, Ho, Tang, and
Liu (2019). A finite-time consensus problem has been addressed
in Lin and Zheng (2017) as the authors considered a two-mode
switched multi-agent system comprising both continuous-time
and discrete-time single integrators. The authors in Zhang et al.
(2019) addressed the quasi-consensus problem for a class of syn-
chronously switched heterogeneous multi-agent systems. Note
that all the agents considered in these works share a common
switching signal. However, it is usually unpractical since it is
hard to make all the agents switch simultaneously in existence
of some factors like delays, faults and etc. This has been re-
ferred to as the asynchronous switching problems for the classic
switched systems, e.g., Zhang and Gao (2010), though, to date
only a few number of works have considered the multi-agent
systems with such asynchronous switchings. In Jia and Zhao
(2015), the output regulation problems were considered for a
class of asynchronously switched linear heterogeneous multi-
agent models and the authors used the agent-dependent average
dwell time (ADT) approach to deal with the case where the stabi-
lizable and unstabilizable modes co-exist. However, the method
only applies when the solutions to the pivotal output regulation
equations are independent of switchings. The obtained asymp-
totical convergence result implicitly restricts the output matrices
to be non-switching and is thus rather ideal. A kind of asyn-
chronously switched multi-agent systems with special nonlinear
agent dynamics was considered in Yoo (2018) and the function
approximation technique was utilized to address the practical
tracking consensus problem. Despite that the work has presented
a decent method for nonlinear switched multi-agent systems, the
result for the arbitrarily switching signals still entails the search
of a common Lyapunov function, which would be difficult to find
for the general linear or nonlinear switched model.

Furthermore, as the application scenarios become much more
complicated, there can be a considerable number of cooperation
tasks executed in adverse or hostile environments. These ele-
ments, such as device malfunctions (Yang, Jiang, & Cocquempot,
2014) or deliberate attacks (Wu, Wang, Xiao, & Guan, 2010),

would constantly affect the agent dynamics and force it to vary at
unexpected time. For the agent system with switched dynamics,
such unexpected changes would lead to an uncontrollable in-
crease of the switching frequency as we call these changes a kind
of “fast-switching” perturbations. In such a case, the coordination
approaches that are based on the classic “slow-switching” princi-
ple (Liberzon, 2012), such as the ADT-based methods used in Jia
and Zhao (2015) and Zhang et al. (2019) could not be effective
anymore when the switching frequency increases to a certain
value. It is notable that although the “fast-switching” perturba-
tions can be deemed the arbitrary switchings such that one can
handle them with some classic tools like the common Lyapunov
function, it turns out to be rather conservative and costly for
the controller design since it is always required to cover all the
possible switching patterns once applied. In a practical sense, to
allow for all the switching situations remains unnecessary or even
not affordable. Therefore, how to handle the “fast-switching”
perturbations in a way that the system can dynamically react
to such changes is worth investigating. All these points have
motivated this work.

In this work, we consider the practical output synchronization
problem of asynchronously switched multi-agent systems with
switching topologies and take into account the case where the
switched agents suffer the “fast-switching” perturbations. We
summarize the contributions of this work as follows:

(1) The asynchronously switched multi-agent system under
switching topologies is considered. The system is of high
heterogeneity as it consists of switched agents of differ-
ent dynamics and switching signals. The practical output
synchronization problem is thus addressed by employing
a switching-dependent controller which converts the orig-
inal problem into tracking problems between each agent
and its virtual reference.

(2) The corresponding tracking error system is analyzed by
respectively studying its zero-input response and zero-
state response. The zero-input response system can be
modeled as an impulsive switched linear system. To han-
dle the non-attenuating impulsive effects, we propose the
piecewise ADT which generalizes the classic ADT method
to guarantee the desired performance of such a system.

(3) We take into account a practical scenario where there are
fast-switching perturbations against the switched agents
that would undermine the slow-switching patterns of
agents. Since it is unable to ensure the desired performance
by constraining the switching frequency of the agent in
this case, we develop a real-time strategy that dynami-
cally regulates the dwell-time lower bound for switched
agents such that they can adapt to such fast-switching
perturbations.

The rest of this work are organized as follows: the graph
theory and the system formulation with some preliminaries are
given in Section 2; the main results are collected as two parts
in Section 3; practical examples and simulation results are pre-
sented in Section 4 to show the effectiveness of the proposed
methods; the conclusion of this work is given in Section 5.

Notations: The notations are summarized as follows: R~ denotes
the non-negative real number set, R" and R™*" represent the
nth dimensional Euclidean vector space and m x n matrix space,
respectively; C_ denotes the open left-half complex plane and C
denotes the open right-half complex plane; C denotes the com-
plement of set C; the identity matrix without explicitly specifying
its dimension is denoted by I and the nth dimensional identity
matrix is denoted by I,; for any square matrix R € R™", A(R)
denotes the spectrum of R; A;j(R) denotes the jth eigenvalue of
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R, Re(...) denotes the real part of a complex number; P > 0
means that P is real symmetric and positive definite; Ami,(P)
and Amax(P) denote the minimum and maximum eigenvalues of
a symmetric matrix P, respectively; diag(...) stands for a block-
diagonal matrix; ||...| denotes the Euclidean norm of a vector
and its induced norm of a matrix; min(...) and max(...) are the
minimization and the maximization operators, respectively.

2. Problem statement

In this section we will give some preliminaries for the consid-
ered problem and present the mathematical model for the asyn-
chronously switched multi-agent systems with switching topolo-
gies.

2.1. Communication topology

Given a piecewise continuous switching signal o(t), o : R>o —
P = {1,2,...,s} where s is the number of switching modes
of o(t), the switching communication topology of an N-agent
system can be represented by a switching directed graph G, =
{V, &)} in which each switching mode indicates a possible
switching topology. Vv = {1, 2, ..., N} denotes the vertex set of
the graph G,(;) and &;(;) € V x V is the edge set. It is assumed that
the graph contains no self loops, i.e., (i, i) € &,(;). The joint graph
of Gy() over the certain time interval [t], tJ), 0 < t] < t; < 400
is defined by U[E[[T’q)g,,(t) = {V, Ute[t’f.t}")gg(f)}' Let Ay =
[a;(o(t))] € RN*N denote the switching adjacency matrix of Gy ()
in which ag;j(o(t)) = 0if (j, i) & & (p), i.e., there is not a directed
edge from j to i, otherwise a;(o(t)) = 1. A Laplacian matrix of
Go(r) is denoted by Ly(r) = [lij(0(t))] = Do (r) — Aos(r), Where Dy(r) =
[du(a(t))] is the correspondmg sw1tch1ng in-degree matrix with

di(o (1)) = 0, Vi #j and di(o(t)) = Y1, ag(o(t)).

For the switching graphs Gy(¢), the followmg assumption on
switching topologies is commonly adopted in the related litera-
ture (see, e.g., Back & Kim, 2017; Liu & Huang, 2018; Ren & Beard,
2005; Scardovi & Sepulchre, 2009):

Assumption 1. It is assumed that there exists T* > 0, such that
forany t > 0 the joint graph of the switching directed graphs G,
contains a directed spanning tree over the time interval [t, t+T*].

2.2. System formulation and preliminaries

The asynchronously switched multi-agent system with hetero-
geneous linear dynamics is presented as follows:

xi(t) = Aj 6;0)Xi(t) + Bi o;(0yui(t),
Yi(t) = G oi0rxi(t), (1)

where for each agent i € V, x;(t) € R™ is the agent state; u;(t) €
RY is the control input and y;(t) € RY is the output of interest;
Aioy(e) € R"M By oy € R and G 1) € RPM; the matrix pairs
(Aig;» Big;) and (A g, Gig;) for any i € V, ¢; € P; are assumed
to be stabilizable and detectable, respectively; o; : R>o — P;;
P ={1,2,...,s;} is the switching signal which is assumed to be
right-continuous at each switching instant. Note that by calling
them “asynchronously switched”, we mean that all the agents do
not share a common switching signal. Then for (1) we employ
the following distributed observer-based switching controller for
each agent

Ui(t) = Ki oy(0(Ri(t) — 2i6,0&i(1)) + O 5y 0ilt), (2)

where Ki s € RV, 2. € R"P and O, € Ri*P are
constant matrices to be calculated. X;(t) € R™ is the observer state
satisfying

Ri(t) = Aioi()Ri(t) + Bi oy hi(t) + Gioy)Fi(t) — yilt)),

Ji(t) = G oyoXilt), (3)

where Ji(t) € RY% Gisq € R is the gain matrix to be
determined. Note that to handle the heterogeneity in the agent
dynamics (1), in the above we have introduced to each agent
i a virtual exogenous reference: &;(t) € RP, whose dynamics is
subject to:

g = Sgl(t

Zau

in which S € RP*P is a matrix that can be determined according
to certain performance objectives, A;(S) € C. with at least one
eigenvalue on the imaginary axis and all such eigenvalues having
the identical algebraic and geometric multiplicity. Assume there
exists a matrix H € RYP such that the matrix pair (S, H) is
observable.

For the reference system (4), the next lemma ensures its
consensus performance under the switching topologies satisfying
Assumption 1.

NE(L) = gi(1)), eV, (4)

Lemma 1 (Scardovi & Sepulchre, 2009). Consider (4) with switching
topologies represented by the switching directed graphs G, sat-
isfying Assumption 1. Then the consensus can be reached for (4)
ie, lim,, ;o |I&(t) — &i(t)ll = O, Vi, j € V given that no eigenvalue
of S has the positive real part.

Moreover, we have the following assumption:

Assumption 2. The matrices A; 4, By, and G4 for any i € v,
¢; € P; satisfy the rank property:

mm[M%;?“ By}:nr+mvhexmy (5)

Note that (5) is often called the transmission zeros condition (Su
& Huang, 2012). With the above, we have the following lemma:

Lemma 2 (Huang, 2004). Given systems (1) and (4) under Assump-
tion 2, then there exist 2; 4, € R and ©;, € RVP, Vi € V),
V¢; € P; such that

£2i,4;S = Aig;82i,9; + Big;Oig;
Cipi$2ig; = H. (6)

Remark 1. The condition (5) ensures the existence of solutions
to (6). The detailed proof of this conclusion for a general case can
be found in Huang (2004). Note that since the virtual reference
system matrix S is in essence a parameter that can be freely
set under corresponding assumptions, then given the system
dynamics (1) one can always find such a matrix that satisfies the
requirement in Assumption 2.

Remark 2. As was stated in Wieland et al. (2011), the method of
constructing the virtual reference system (4) reflects the spirit of
the internal model principle (Francis & Wonham, 1976), since its
state &;(t) is embedded in (2), which indicates (4) can be regarded
as an internal model in (1). This method has been proved effective
in handling multi-agent systems with heterogeneous dynamics as
shown in Wieland et al. (2011). Moreover, for the asynchronously
switched multi-agent system (1), its heterogeneity not only lies
in the agent dynamics but also lies in the asynchronous switching
signals. Thus we made the controller (2) depend on the switch-
ing of each agent as well such that one can well handle the
heterogeneity in switching signals.
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With the introduced virtual reference system, the closed-loop
system can be given as follows:
Xi(t) =Aj 6;0)Xi(t) + Bi oy(0)
X (Ki oty (Rilt) = Qi6i0&i(t)) + O oi(n&i(t)),
Yi(t) =G oy0)Xi(t),
Xi(t) =Aioi0Xi(t) + Bioyoyti(t) + Gioye)(CioyoyXi(t)
— yi(t)),
E(t) =S&(t) —

Zau

Before proceeclmg, some definitions and useful conclusions
necessary for further analysis are given as follows:

— (1), ieV. (7)

Definition 1 (Hespanha, 2004). For t > tg > 0, let N, (tg, t) be the
switching times in the time interval (tg, t), if there holds

t—to
Ta

Na(tOv ) < NO +

(8)

in which 7, > 0, Ny > 0 is the chatter bound, then 1, is called
the ADT of the switching signal o (t).

A switching signal satisfying (8) is often referred to as the “slow
switching” (Liberzon & Morse, 1999). Note that if one reverses the
inequality symbol then the corresponding switching signal can
be referred to as the “fast switching” (Zhao, Shi, Yin, & Nguang,
2017). A similar concept based on it will be introduced next.

For the convenience of further development, based on Defi-
nition 1 we are introducing a new framework for describing the
switching characteristics of o (t):

Definition 2. For any t > t, > tp > O, let N,(t, t) be the
number of switchings in the time interval (ty, t), where t; is the
kth switching instant of o (t). The piecewise ADT of o (t) on (t, t)
is defined as

t—ty
Tty t) = ——m—,
e )= S D+ 1

Moreover, we call t,(t) = 74(to, t) the current ADT at ¢t.

k=1,2,...,Ns(to, ). (9)

Remark 3. The piecewise ADT depicts the average activating
period of the switching modes on a specific time interval (, t). It
can be seen that a piecewise ADT satisfies (8) if choosing t; =
Thus the ADT can be deemed a special case of the piecewise ADT.
Note that one can also regard the piecewise ADT as the ADT that
has the initial instant at switching instant t.

In what follows, Ni(...) indicates the number of switchings
during a certain time span of the switched agent i.

If on any certain time interval [to, t;], denoting a switching
sequence as tp < t; < --- < b < o0 < Iy < If, then
with the above definitions, we immediately have the following
definition for the “fast-switching” perturbation:

Definition 3. Given a positive constant z;, then a switching
signal o(t) is said to suffer a “fast-switching” perturbation on
[t%, tr], t* € (&, ng(to,rf)) that violates ¢f, if its current ADT and
all the piecewise ADTs satisfy 7,(t*) > 7 and t4(ti—1, t*) > 7775
‘L'a(ff) < ‘L': or to(tk_1, ff) < ‘E;, Yk e {1,...,N,(to, tf)}.

Remark 4. The “fast-switching” perturbations indicate the dis-
ruptions against a “slow-switching” signal that result in an in-
crease of its switching frequency during a period of time. The
“fast-switching” perturbations can be confirmed only if the ADT
or the piecewise ADT of the switching signal has violated the
“slow-switching” lower bound t;. It is thus also clear from

Definition 3 that the “fast-switching” perturbed switching signal
will recover into the “slow-switching” one if the corresponding
ADT and any piecewise ADT do not violate t; any more.

The definition of the practical output synchronization of the
system (1) is stated as follows:

Definition 4. For the system (1), the practical output synchro-
nization is said to be achieved if for any given € > 0, it holds that

lim |lyi(t) — ()l <€, Vi,jeV. (10)
t—>+o00
Some similar definitions on the practical convergence can be
found in Back and Kim (2017) and Ding and Zheng (2017).
The following lemma is also useful for the analysis.

Lemma 3 (Squashing Lemma Bernstein, 2009). For the asymptoti-
cally stable system x(t) = Ax(t) with the initial state xo = x(to),
there exist positive constants A, ¢ such that

le* | < P~ l1IPlle (11)

in which x(t) € R, A € R™" maxjRe(%(A)) < 0, cisa
scalar related to A and —x € (max; Re(Aj(A)),0). P € R™" is
a nonsingular matrix satisfying P~'AP = J, with ], the Jordan
canonical form of A.

With the system formulation provided, we are ready to present
the main results of this work.

3. Main results

In this section, the main results are presented twofold. In Sec-
tion 3.1, the standard practical output synchronization problem is
addressed for (1). Then based on the obtained results, the strategy
for dealing with the fast-switching perturbations is presented in
Section 3.2.

3.1. Practical output synchronization for asynchronously switched
multi-agent systems

In this subsection, we will present the result on the practical
output synchronization for (1), which is captured by the following
theorem.

Theorem 1. Considering the system (1) with switching topologies
Go(ty 0 : Rsg — P under Assumptions 1 and 2, then the practical
output synchronization can be achieved via (2) if there exist positive
deﬁni;e matrices P; g, Pig, € R, V¢, € P; such that Vt €
[t,’q, t,'q +1) ki € N.q, the ADT and the piecewise ADTs of oi(t) satisfy:

. \ 1 Ind;
tl > o =max n i M (12)
7 Y
o Inpi + Ind;
w6 > A g k-1, (13)

Y.

1

where w; and [1; can be derived from the following constrained
optimization problems, respectively:

min i, s.tPg < WPy . Yéi # i€ P, (14)
minfii, s.t. Py < Py . Yéi # i€ Pi (15)

In the above, t’ denotes the jth switching instant of oi(t), y. =

mingep, (Vi) Vi ﬁaxm ) + 24 i d = 2 maxv¢,€7:,.
Amax(Pj, @, ) .
()‘mm(Px ¢:)> Zi = mlnd”e‘p’(yl ¢’) V’ bi )»max( ) + 2)\' it

Moreover, the ultimate error bound defined in (10) can be calculated
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. My Gev ”QLJJ,-*QL&,- 11&i(to)ll
by € = 2 maxvnev,¢,ep, Ch.gy ll€n € = Nz ,
in‘?’i' ‘Qi«?),- are solutions to (6) )for any ¢; and ¢;, S, = Mminy; §j’,
& = limepoo Ti(t], £) — PAERE j = 1,2, k- 1L

L

Proof of Theorem 1. See the Appendix. ®

In addition, the above conditions only require the local infor-
mation (oi(t), A; ¢,, €tc.) of the agent i, i € V, in which sense, they
are all distributed.

Remark 5. The eigenvalue settings for S are slightly different
from some existing works, e.g., Wieland et al. (2011), as we
further require &;(t) in (4) to be bounded. Note that this is an
essential requirement given the control scheme (2) since it can be
seen from (39) in the proof of Theorem 1 that one must guarantee
the boundedness of the impulsive jumps Asi(t,i(i) of &;(t) at any

switching instant t,i,_, which entails the boundedness of &;(t).

Remark 6. The impulsive jumps of the tracking error state &;(t)
are brought by the switching solution £2;,,) to (6), which is
the result of the switching C; ). Different from the impulsive
effects that would attenuate to zero as the state converges to zero
(e.g., Xu & Teo, 2010), the impulses in (39) would never reach zero
since they are always invoked by the switchings of each agent.
This impedes us from seeking for the asymptotical synchroniza-
tion performance of the outputs. Thus the ultimate boundedness
synchronization performance is studied instead. Nevertheless, the
asymptotical convergence result can be expected if one consid-
ers a special case where all the output matrices remain non-
switching. This has also been reflected in the proof of Theorem 1.
It is also notable that the obtained multiple Lyapunov func-
tion condition (44) at the switching (impulsive) instant is more
general than that in Hespanha, Liberzon, and Teel (2008) and
Yang et al. (2014) since an extra constant term is added, which
implies the non-attenuating impulsive effects. This entails the
development of the piecewise ADT condition (13).

Based on the obtained result, next we will consider a prac-
tical case where the agent switching o;(t), Vi € V suffers the
“fast-switching” perturbations.

3.2. Regulation strategy for the existence of fast-switching perturba-
tions

As has been defined in Definition 3, the “fast-switching” per-
turbations may cause an increase of the switching frequency in a
short time. This would potentially make the conditions (12) and
(13) be violated. Since it has been pointed out in Section 1 that
it is practically unnecessary to handle such perturbations as the
arbitrary switching, then the challenge is to develop a control
strategy that contains such “fast-switching” perturbations while
does not merely statically allow for all the switching patterns. To
attack these problems, in this subsection we will develop such a
strategy that enables each switched agent to dynamically react to
the “fast-switching” perturbations.

The following assumption is prerequisite for the upcoming
development.

Assumption 3. The matrix pairs (A; g, Bi4) and (A; 4, G g,) for
i €V, ¢; € P; are controllable and observable, respectively.

Since the “fast-switching” perturbations feature the violations
of the conditions (12) and (13), then the key in neutralizing the
perturbations is to “recalibrate” these conditions such that they
can still be satisfied when the “fast-switching” hits. Observing

conditions (12) and (13), it can be seen that the lower bound of
the ADT is in fact related to the convergence rate of the subsystem
state (Liberzon, 2012). It enables one to “regulate” (hence the
name of the “regulation strategy”) the lower bound of the ADT of
a switched system by properly affecting the subsystem dynamics
such that the violated conditions can be “recalibrated”.

Note that for (41) if perturbing A; g, + BjgKig into A;g +
Bi 4,Ki g — Ail, A > 0, since the Hurwitzness still holds, one can
derive that

(Aig+BigKig; — M) Pig, + Pigi(Aig; + BigKig,
— i) 4 2(hi g + Ai)Prg = —1, (16)

which yields an identical solution to (41), i.e., the solution P; 4,
remains unchanged under such a structure perturbation. Appar-
ently, this conclusion also applies to (26). Such a feature makes
the lower bounds (12) and (13) only vary with the change of A;
which as a result plays a central role in the regulation strategy.
In addition, we introduce to the switching signal of each agent
i a slow-switching threshold ¢; which satisfies ¢; = Al*, where
0 < A; < 1. In the regulation strategy the threshold {, mainly
serves as an early alert for the switching’s potential violation of
the ADT lower bound. Note that this threshold is dependent on
i,
Remark 7. It can be seen clearly from (9) that the current ADT
is monotonously increasing during the activating period of each
switching mode except at the switching instants. In terms of the
switching frequency, a slow-switching features a small number
of switchings during a certain time span while a fast switching
features an increasing number of switchings during the same
time span. When the occurrence of the fast switchings makes the
current ADT decrease towards the corresponding lower bound,
there should be a mechanism that always keeps the current ADT
over the corresponding alerting threshold.

To perform the aforementioned regulation operation, each
agent will be equipped with the so-called internal regulators v;(t),
Di(t), i.e., the system (1) becomes
Xi(t) =Ai oy 0)Xi(t) + B o,oytti(t) + vi(t),
yi(t) =G cf,(t)xi( ),

Xi(t) =Ai oy0yXi(t) + By eyt
— yi(t)) + Di(t),
ui(t) =Ki o, ()A(i(t)

i(6) + Gi oy(0)(CioyyRi(t)

lrrl Sl( )) + @i,rri(t)%_i(t)v

Ei(t) =S&(t Zau —&(0), iev. (17)
In the above,

vi(t) = _Xl(fé((tzii)+))xl(t) i

0(0) = —i(eie )y o), S e ) (18)

where ):i(r(ﬁ((t,’;i Y)). Ai : Si — R is the regulation coefficient
subject to a certain procedure which will be presented later.
Note that by calling them “internal regulators”, we mean that
the regulators are able to directly acquire the information of the
agent states instead of obtaining via the observers. Clearly, the
Hurwitz requirements in Theorem 1 are still satisfied since the
introduction of the regulators only drives the value of the real
part of the relevant eigenvalues towards the negative direction
of the real axis. Additionally, define the gap between the dwell-
time lower bounds of the zero-input tracking error system (38)

and the observation error system (25) as A; = w — 1;;" For
1

a concise implementation of the regulation process, here suppose
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that the lower bound w.r.t. (38) is always no smaller than the
lower bound w.r.t. (25), i.e., there exists a desired bound A} > 0
for each agent such that Aj‘ < A;. This can be readily achieved by
properly placing the poles of (25) and (38) in advance. With this
In pj+Ind;
204z (6, )
can thus be implemented by tuning only Xi(r;(t,ii)). Moreover,
according to (16), the sign of A; turns out unchanged under
the variation of Ai(t;(tLi)). Next we are ready to present the

regulation procedure for X,-(ré(t,';i)) as the following algorithm.

setup, we have ré* = and the regulation process

Algorithm 1. Regulation of L(rﬁ(t,ii)) for agent i at switching
instant ¢ .

Input: § < &, T < ti*.

1: for k; <— 1 to Ni(to, tr) — 1 do
2 ift e[t ) then

3: if 7i((t,)") < Z; then
4 & < ()"
5: ?a <« Z‘,- X Aj
6: else
—ik .
7: T, <1
8: end if
o: forj=1tok —1do
10: if r;((tj‘, t)) < ¢; then
11 HORSRA(GND)
12: Z.0) < G0) x A
13: else _
14: i:l*(]) <« ‘E;*
15: end if
16: end for )
17: )« rr\%ni;*(j)
18: T < min(z,, ) )
19: Xi(fé(t;i{i)) - Inpi+lnd; lnui-flndi

2% 2cl*
20: end if
21: end for
Output: k,-(rt;(t,'{l_)).

Remark 8. The execution of Algorithm 1 is on-demand since it
only regulates A;(z4(t; )) when there is a violation of z;* occurring.
Similar to the event-triggered control (Almeida et al., 2017), such
a on-demand scheme is favored by some scenarios where the
resource saving is required. The algorithm assigns new values
to the current lower bounds of the ADT and the piecewise ADT
according to the current ADT it calculates. The Algorithm 1 is only
executed at the switching instant since the current ADT never
decreases during any non-switching period and thus rules out
any potential violation of the lower bound. The piecewise ADT
requires the test at every switching instant which indeed brings
about some increase on the computation complexity. Neverthe-
less, such complexity is acceptable since it is no higher than that
of the fixed dwell time (Liberzon, 2012) which remains a special
case of the piecewise ADT. Moreover, since the lower bound of the
(piecewise) ADT of an agent’s switching signal is regulated only
according to its own current ADT which is the local information,
the algorithm is in a distributed manner.

The next theorem illustrates that the practical output syn-
chronization of the asynchronously switched multi-agent systems
can still be maintained when the fast-switching perturbations hit
under the above regulation strategy.

Theorem 2. Under Assumptions 1 and 3, considering (1) with (2)
suffering the fast-switching perturbations against o;(t) on [to, tr],

then the practical output synchronization can be achieved for (1)
and (2) with (18) applied on [to, t], provided that Yis € A(S)
the matrices A; g, Bi gy, and G4 for any i € v, ¢; € P; satisfy the
following rank property:

Aig — (Xi(T;(ff(,.)) + i)l Big

rank|: cy 0 :| =n+q, (19)

where the regulation of X,-(t;(t,';i)) > 0 in (18) is performed by
Algorithm 1.

Proof of Theorem 2. Following a similar procedure to the proof
of Theorem 1, since (19) holds then with Lemma 2 one concludes
there exist £2;4, € R"*P, Oy € Ri*P and )L,-(rj(t,'q)) > 0 such
that Vt,ii € S; the following matrix equalities hold:

Q1S = (Aigy — My (G )Ri.g; + Bigy Oigy
Ci,tﬁi‘Qi,gbi:Hy l=],,N (20)

Then with (20) and (17) the tracking error system of each switch-
ing mode ¢; of agent i activated during [t,‘q, t,’q 41] is given by:

&i(t) =ki(t) — 24 4,Ei(0)
=(Ai¢; + Big;Kig; — Xi(T;(f,i,.))Ini Jei(t)

N
+ Qig Y ag(o(ONED) — &(1))

=1
- Biv¢iKiv¢iéi(t)' (21)

Correspondingly, the observation error system is formulated as
the follows:

&i(t) =xi(t) — xi(t)
=(Aig; + Gi9;Cigy — Xf(T;(t;ii))In,- JEi(t). (22)

Clearly, since ii(r;(t,ii)) > 0, the Hurwitzness of A; 4, + Bi ¢, Ki ¢, —
Xi(ff(tli,-))lm and A; 4, +Gi 4,Ci g, —Xi(t;(t,ii))lni retains only if A; 4, +
Biwd’iI(iwli’i and Ai-d’i + Gi-d’ici,d’i are both Hurwitz, which is gnsured
by Assumption 3. Furthermore, at any switching instant t,'q_ Algo-

rithm 1 always outputs the regulation parameter X,-(r;(t,‘;i)) that

yields a lower bound t* smaller than the current ADT t/(to, t,ii)
and the piecewise ADTs ti(tj, t.), j = 1,..., ki — 2. This implies
the satisfaction of the conditions (12) and (13) over the given time
span [to, tr] with Algorithm 1 applied. The rest of the proof are
identical to that of Theorem 1. ®

Remark 9. The proof of Theorem 2 has followed a similar fashion
to that of Theorem 1, though, the considered system (17) and
condition (19) are slightly different from those of Theorem 1.
Moreover, the proof of Theorem 2 is presented given that
Algorithm 1 has been applied, which implies the proof performs
under the case that there have been regulators introduced to
neutralize the “fast-switching” perturbations. Thus in the proof
of Theorem 2, one only needs to deal with the system structure
changes brought by the introduction of (18) and ensures they
would not change the way of proving the stability of g;(t), &(t)
as that in the proof of Theorem 1.

The proposed regulation strategy will be proved effective in
neutralizing the fast-switching perturbations by the practical ex-
ample to be presented.

4. Illustrative examples
For the illustration of the proposed methods, the example

presented in this section is based on the payload transport prob-
lem studied in Lee et al. (2013). Consider four different drones
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equipped with electromagnetic grippers (a similar setting can be
found in Foehn et al., 2017) as each gripper performs a series
of pick-up and drop-off maneuvers to the magnetic payloads.
Similar to Lee et al. (2013), we also regard such maneuvers
as switchings between two operation modes. Particularly, each
drone i, i = 1,2,3,4 is set to work in mode ¢; = 1 if it is
unloaded and in mode ¢; = 2 if it carries the payload. It is
assumed that all the drones work in a vertical plane as each of
them tracks and catches a moving payload on the ground using
the electromagnetic attractions.

Specifically, drones 1 and 2 are modeled as typical quadrotors
with both translational and rotational states; drones 3 and 4 are
modeled as tiny-sized quadrotors that only translational states
are considered. Hence, the considered states can be given as
x(t) = [zi(t), vi(t), 6i(t), ()", i = 1,2, x(t) = [z(t), vi(t)]",
i = 3, 4. For any drone i, z;, v; € R denote the position and the
velocity on a specific axis in the horizontal plane, respectively;
0;, w;i € R denote the angular position and velocity w.r.t. the
perpendicular axis in the same plane, respectively. The interested
outputs of each drone are two certain combinations of its trans-
lational position and velocity. These combinations correspond to
the two different payload operation modes described above. The
objective is to seek the practical synchronization of the outputs
of all the drones during given payload transport processes.

With the above settings and a modified configuration of that
in Lee et al. (2013), we have the following asynchronously
switched model for the payload transport task: for dronei = 1, 2,

0 1 0 0

2 P 0
1.4 14 i.¢; 1
A; i mig Y mig B, — | Mo
0 0 o0 I A A
0 Pla !
0 0 o g '"i«;,- M g,
Gig, =[16—-06¢; —02+06¢ 0 0], (23)
for drone i = 3, 4,
0 1 0
A =| . Pl |- Big = [1] ,
Yigr  mig mi g
Cig =[1.6 —0.6¢; —0.2+0.6¢;]. (24)
In the above, ail = —0.1, Vi, fm = —05,i = 1,2, Yo¢i;
7 = —0.2,i=3,4,V¢; af,=0.15, Vi; 53@ = 05i=12,
Vi B s = —0.2,i = 3,4, V¢;. These parameters denote the

friction coefficients regarding the translational and the rotational
variables in different operation modes of drone i. m; 4, = mj'J +
(¢i — 1)m;, where mj, and m; denote the mass of the drone and
the payload, respectively. Specifically, m}) = 1 kg, m3 = 0.92
kg, m} = 0.5 kg, mj = 0.49 kg; m; = 0.2 kg, m? = 0.192 kg,
m? = 0.1 kg, m} = 0.097 kg. Moreover, the parameters of (4)

0 1
1o ],H:[lO].

The switching topologies are depicted in Fig. 1 with the fourth
subplot denoting the joint graph of the switching graphs G,(;) on
[0, 60].

Applying the controller (2) and deriving the corresponding
feedback gain matrices K; 4 and G;4 by specifying the stable
poles, one can readily obtain the lower bounds for the ADT
and the piecewise ADTs for each agent by solving corresponding
Lyapunov equation (41). Fig. 2 shows the switching signal for
each agent with the corresponding lower bounds of the ADT
and the ADT over [to, tf]. The piecewise ADTs are also shown
in the captions. Clearly the ADT and the piecewise ADT series
of each agent satisfy conditions (12) and (13). Fig. 3 depicts the
outputs y;(t), i = 1,2, 3,4 and the output errors y;(t) — yi(t),

are given as the harmonic oscillator: S = |:

G Ga
'y
ol k™ 1
Gy GUG UG
5’) [ "]
Je ol 1
L

Fig. 1. Directed graphs gy, ¢ = 1,2, 3 of switching topologies and their joint
graph on [0, t], t; = 60 s. The numbers shown on red nodes denote the agent
labels.
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Fig. 2. Switching signals o;(t), i = 1, 2, 3, 4 without fast switching perturbations.
The piecewise ADTs of oj(t) on [0, t;] are t}(t], tr) = 7.50, t)(t;, tr) = 7.42,
el ) = 7.60, Tl(t).tr) = 7.88, t}(tl, ty) = 7.67, tM(el,tr) = 7.25;
T2(t2,t;) = 8.50, t2(t2,t;) = 8.30, t2(t3,tf) = 8.38, 12(t2,t5) = 8.33,
t2(62,tr) = 9.08; t2(t7, &) = 8.32, TX(85, ty) = 8, 12(83, ty) = 7.75, t2(t3, tf) =
7.78, T3(t2,t) = 8.05; t(t}, tr) = 8.65, 1 (], ty) = 8.68, Ti(t5, ;) = 8.58,
td(e], tr) = 8.89, T2(t2, ty) = 8.60.

Jj = 2, 3,4 under switching signals in Fig. 2. It can be seen from
Fig. 3 that the outputs track the reference systems well but only
with some fluctuations at each switching instant, this implies the
ultimate boundedness of the output errors which thus validates
the practical synchronization of all the outputs.

The equipped electromagnetic grippers are considered to be
prone to the electromagnetic inference (EMI). The EMI can be ex-
ploited as a deliberate attack against the electromagnetic equip-
ment (Angskog, Nisman, & Mattsson, 2019). When the payload
transport undergoes a constant series of external EMI, the grip-
pers would be forced to lose and regain the attractions frequently.
Such malfunction operations would consequently generate fast-
switching patterns that undermine the original “slow-switching”
ones.
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Fig. 3. Outputs y;(t), i = 1,2, 3,4 under slow-switching signals. The subplot

depicts the corresponding output errors y;(t) — y1(t), i = 2, 3, 4.
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Fig. 5. Output error y;(t) — y»(t) under fast-switching perturbations without
regulation strategy.

Assume such EMI-induced malfunctions have happened to all
the drones at t = 0. The resultant fast-switching perturbations
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Fig. 6. Outputs y;(t), i = 1,2,3,4 under fast-switching perturbations with

regulation strategy. The subplot depicts the corresponding output errors y;(t) —
nl(t), i=2,3,4.

against oi(t) are depicted in Fig. 4. It can be seen that in such
a case the conditions (12) and (13) are apparently violated. If
there are no regulators applied, then it is shown by Fig. 5 that
the output error is divergent which means the practical out-
put synchronization cannot be achieved. Nevertheless, when one
applies the regulators (18), then it is demonstrated in Fig. 6
that the all the outputs of drones have successfully reached the
practical synchronization. This indicates that the EMI-induced
“fast-switching” perturbations are well contained.

5. Conclusion

The practical output synchronization problem of the asyn-
chronously switched multi-agent system under switching
topologies has been addressed. The proposed distributed
switching-dependent controllers with embedded virtual refer-
ence states convert the original problem into tracking prob-
lems between each agent and its reference. To handle the non-
attenuating impulses in the resultant tracking error system, the
new concept of piecewise ADT has been introduced to ensure the
ultimate boundedness of the tracking error state. Furthermore,
for a realistic case where each agent is subject to fast-switching
perturbations, the same performance can be maintained by the
proposed dynamic regulation strategy. For future works, related
experiments of the payload transport can be performed for a
more reliable validation of the considered problem; new control
structures like the dynamic output feedback controller can be
considered to improve the performance; more general agent
dynamics such as those are arbitrarily switching or uncertain can
be considered; the piecewise ADT can also be further improved
to reduce the computation complexity and to eliminate the need
of testing every switching instant.
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Appendix

Proof of Theorem 1. Denote a certain switching instant set of
the agenti by &; = {3, 5, ..., t,’(iﬂ}. On the time interval [to, tf],
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t,ii denotes the instant of the k;th switching of agent i. Assume on
the period of [t; , t; ,,) the switching mode ¢; € 7; is activated.

(I) Observation error analysis

For any switching mode ¢; € P; of each agenti € V, denote the
observation error &(t) = x;(t) — X;(t). A differentiating operation
on both sides yield

8i(t) = x(t) — Xi(t) =

Since (A; ¢, Ci.¢;) is detectable, then there always exists a matrix
Gi,¢; such that A; 4,+G; ,Ci ¢, is Hurwitz for any switching mode ¢;
of agent i. Then it is concluded that there exists a positive definite
matrix P; 4, such that the following Lyapunov equation holds

(Ai g + Gig;Cig; )8il1). (25)

(Aig, + GigiCig) Pigy + Pigi(Aig, + GigCig)
+ 25»,'1@131,@ =—I, (26)

where 0 > _ij’(ﬁi > max; Re(Aj(A; g + Gig;Cig))- If constructing
a multiple Lyapunov function for each agent i as V; 4 (&i(t)) =
&l (t)P; 4,€i(t), then one gets

Vi (Bi(0) < =7 Vi (Bi(0)), ¥t € [t 6 1), (27)

with zi = mingep,(Pig) View = Amax(m) + 2A,¢ Moreover,

if Vk; > 0, o((t,’;i)ﬂ = ¢ U((tki) ) = ¢, then with the

corresponding solutions to (26) obtained, there exists a positive
scalar ft; > 1 which is given by (15) such that:

V.5 (Bt 1)) < a5 (Bi(6L) ) (28)

By Definition 2 as well as the well-known result fulfilled by Liber-
zon and Morse (1999), one can readily specify the lower bound
of the ADT for agent i, i.e., T'* = l"y’f” and with (12) satisfied,

lnp.l

" X N (
Vi,o'i(t’i(i)(ei(t)) = Vi,o'l ((t0)+)e Ta

which guarantees that there exists a positive constant ¢; such that
Vt € [to, +00),

&6 < Eilléi(to) e 210, (29)

-7 t—to)
— 0ast —» +oo,

(II) Tracking error analysis

Similarly, let an activating period of ¢; be [t; , t; ). Following
the same terming manner as in Wieland et al. (2011), Vt €
[t,il_, t,ii+]), defining the tracking error as &(t) = x;(t) — £; 4,&(t),
then for any ¢;, a differentiating operation on both sides with
applying (6) of Lemma 2 yields:

&i(t) =X(t) — 2 4,Ei(t)
(A' i + 81 o I<' ¢1 + 'Ql i Z aU
x (&(t) —§(t)) — Bi,dz,-Ki,dJ,-gi( )- (30)

Then'the corresponding solution or the complete response to (30)
on [t,’{i, t] is given by

B kv .
&i(t) —eiaithigKio )Xt t"f)Ei((fl'q ")
t N
+ /(i . e(Ai’¢i+Bi'¢iKi'¢i)(t_I)<Qi,¢i Y ai(a(t)
s j=1

X (5(7) = &(1)) — B,~,¢,.1<,~,¢iéi(r>> dr. (31)

If taking £2; 4, Z 1 Gii(0 (£))(&i(t)—&(t))—Bi,¢,Ki ¢, €i(t) as the input
and setting 81((tk,-) ) =0, then (31) becomes

t N
&(t) = / - eiort Biv%"iw(f")(m,@Zau(d(t))

=
x (&(t) = &(t)) — Bi,¢i1<i,¢,-§i(f)>df, (32)

which is termed the zero-state response of (30). Correspondingly,
denoting the zero-input response as

_ (Ai.p; +Bi g, Ki p: NE—t} ) i T
gi(t) = e ATk e ((6)T) ) VE € [t by y) (33)
by setting the input to 0, then it follows that there exist positive
constant scalars ¢; 4, and «; 4, such that Vt € [t,’{i, t,’q 1)

- i —ri g, (t—1th)

()] < cigyllea((ty, ) lle o, (34)

provided A; ¢, + B; ¢,K; ¢ is Hurwitz for any ¢;. Clearly, there holds
&i(t) = g,(t) + &(t), Vt = to.

(II-1) Zero-state response analysis
For (32), according to Lemma 1 one readily concludes that
there exist positive constant scalars ¢; and ¥ such that Vt > to,

N

1 ago (X&) — &)

=1

' N

séZm(to — &(to) e, (35)

Note here we use the fact that gj(o(t)) < 1, Vi,j € V. Fur-
thermore, since for any switching mode of agent i, £2;4 is a
unique solution to (6), then one can always select a solution of
the maximum norm from the solution pool generated by different
switching modes, i.e,, £2; = maxy, ||£2; 4|, Y¢; € P;. Additionally,
one can derive the following via the mean value theorem of
definite integrals for (32):

B;.

x (&) — E(ty)) — BigKig Bilt ))( ), (36)

where t,’;f € (tliq’ t};l_ 1] Then given (29), one concludes from (36)

via Lemma 3 and the property of the compatible matrix norm that
Vi € P,

o i N
()l sae‘*f’d’f““'ﬁ)(umn 3 lit0) — (to)

=1
o —R(tF—tg) A A —7 (£ —tg)
x Ge k% 4 G|IBiKilll|8i(to)lle K 0)

X (t—1;.),Vt € [t b i)

<We H(70), vt € [tg, 00) (37)
where ||BKi|l = maxgep, IIBi4Kigll since Ky can always be
calculated as a matrix with finite norm for any switching mode
¢i. Moreover, A; = ming,(Ai g, &, ), in which, ;4 € (max;Re
(Mg + BigKig)). 0) W = G&max(tl . — eIl [,
15i(to) — &(to)ll + Eici||BiKill | &i(to)ll, € = maxg, (hi g 11Q; ¢,||I|Q,;f||
in which h; 4, is a posmve constant and Q,¢ is a non- smgular

matrix satisfying Q, (Aig; + BigKig, )Q; o = = J #i» Where ]14,
denotes the Jordan canomcal form of A; ¢, + B; ¢,Ki ¢;-
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(II-2) Zero-input response analysis
Given the zero-input version of (30):

&i(t) = (A, + Big;Ki g )ei(t), i€V, (38)

clearly (33) is the solution to (38), thus we will slightly abuse the
denotation &;(t) instead of g;(t) as the zero-input state in part of
the following proof.

Note that the error state ¢;(t) suffers the jumping dynamics
brought by the switching-dependent parameter £2;4 at each
switching instant tk, ki = 1,..., Ni(to, tf) This means (38) is
essentially a switched system w1th state jumps or an impulsive
switched system (Xu & Teo, 2010). The instant variation or the
impulse of the state at t,’;l_ is given by:

Aei(t)) =eil(6})") = eil(e))

=(Liaef)) ~ Dol ) Eilll,): (39)
in which one can also note that £2; ;) always switches at any t,"q
and &;(t) does not converge to 0. These imply that the variation
As,(tk) at the switching instant would never diminish to O as
the 1mpu151ve effects that have been commonly considered in,
e.g., Xu and Teo (2010). Consequently, the methods in addressing
classic impulsive switched systems turn out less effective. It thus
brings the challenge of using a different method to study such an
impulsive switched system with non-attenuating impulses.
Moreover, given the eigenvalue setting in Section 2.2 for
S, one can conclude the boundedness characteristics of &(t),
e., ”éf(tliq)” < csl||&i(to)]l, where ¢s > 0 is a constant scalar

related to the selection of S. This implies ||Ae-(t,i )l < ¢s maxyy, ||

Qm(([. ) Qm((tl )+)||||f§,(t0)|| given the boundedness of
lI£2; il [, -y = Qw (t )Jr | over a certain time span [to, tf]. Fur-
thermore one has
||8i((t}ii)+)” <2(cs max l1£2; (7((t1 ) Qi,gi(([{{i)ﬂ”

x ||s,-<to)||)2+2||ef((t,';,.)*>||2. (40)

Since (A; ¢, B 4,) is stabilizable then there always exists a matrix
K; 4, such that A; 4, + B; 4,K; ¢, is Hurwitz for any ¢; € P;. Then one
concludes that for each switching mode ¢; there exists a positive
definite matrix P; 4 such that the following Lyapunov equation
holds:

(Aig; + BigKig) Pig+Pig(Aig + BigKig)

+ 2hi ¢, = 1, (41)
where 0 > —1;4 > max;Re(Aj(Aiy + Bi #iKi, ;). Constructing
a multlple Lyapunov function for each agent i as V; 5 n(&i(t)) =
&l (t)Pi,o;0)€i(t), then one gets for oi(t) = ¢ € Py, Vt € [tk , t,<+1)
ki=1, 2, ..., Nito, t),

Vig(ei(t) < =y Vig (D)), (42)
with v, = mingep,(Vig ) Vigy = 2Mhig; + m Moreover, if
Vki > 0,0((th ") = g o((t],)) =
solutions to (41) obtained, then there exists u; > 1 which is
derived from (14) such that:

V, g (it )7) < iV, (ei(£)) ). (43)

In addition, with the multiple Lyapunov functions selected, one
can derive from (40) that

Vit - E(8) ) <AV, g

<Z>i, and with the corresponding

) )

+ G max ()\max(P,a(([, - ))) , (44)

)»max(P

)
~ @) -
in which d; = 2 maxyy, <)> G =
6.)7)

= 2ty &I

From (43) and (44), one can obtain the following by integrating
(42) on both sides with respect to t:

. i
Vit (6HE1) Vs (e e 2

Amin(P, z(maXVkl ”Ql a((t’ )

k i ~k i —y.(t—
<Ud{ Vi oo (Ei((E0)T))e LT 4y
ki—1

(Z de’C, max (Amax(P, it} ))>

j=0
« e Tt 1)). (45)

With (45) and (8), the following holds

ki(In jui+Ind;)—y (t—
Vit &) Viarto (el (fo) e (Intitindi=y (t=t0)

ki—1

.

ej(lnm+lnd,-)—zi(r—rki,,)>' (46)

Next, to obtain the practical output synchronization for (1), one
needs to prove the ultimate boundedness of V. U(t, (ei(t))ast —

+o00, which is presented as follows.

(Ill) Ultimate bound derivation

Note in (46), as t — oo the second additive term becomes
an infinite series with non-negative terms because we rule out a
trivial case where the number of switchings is finite on an infinite
time span, i.e., we have t,{ , ki > +o0 ast — +oo. Then with (9)
we can readily obtain the following limit:

G-1)In fi+in d,-)fli(tft

_ ki—(f—l))
lim { lim e i
j—-+oo \I7>+00
In ud,
. . In juidi—y (et Jt)— ==
= lim ( lim e " “ k-0 7 ) =g, (47)
j—+oo \I>+0o©

then one derives via (13) that ¢; < 1. Furthermore, with the aid of
the Cauchy’s criterion for the convergence of the infinite series,
one can conclude from (47) that the second additive term con-
verges to a certain positive constant as t — +o0. For calculating
such a constant, we specify the difference between the piecewise
ADTs of (1) and their common lower bound as t — +oo to be

&= limes o Ti(t] 1) — w ,i=1,2,.... k — 1. With (9),

it is evident that Vj, g > O Denoting S = miny; ;-; then the
constant can be calculated via (46) as follows

ki—1
. 11’1L+ll‘ld t—ti
lim Z jiin yilt=t, )
ki—4o00
ki—1

— lim Ze(l+1)<(lnu,+lnd) vy, ))—(1nu,-+1na,»)

ki—400

j=0
ki—1 i
< lim E e~ U+1)y;s;~(Inpi+Indy)
ki——+00 .
j=0

S (48)

pid; (eXisi — 1)
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Therefore it follows: V. (i(t)) — € ast — 4oo where

(7(tl
Cl maxv; (}Lmax(P t' ) )))

€ = TS with conditions (12) and (13) holding.

Recalling that in the above we have slightly abused &;(t) to denote
gi(t), then we have

lim |&(t)] < e, (49)
t—>+00

in which ¢; = m Recalling (31), with (37) and (49) then
we have that the following holds:

lim (0] < lim (20 + lle(Ol) < e, (50)
t—~400 t—+00

which implies lim;_ ;o [|1X;(t)—$2; 4, &i(t)]l < €;. With (6) we have:
lim; oo [lyi(t) — HE(L)]] < maxvg, [|Ci g ll€i, which implies Vi, j €
v, limt~>+oo llyi(t) — yj(t)” €= 2maxVheV,¢h ||Ch,¢h llen, ie., the
practical output synchronization is achieved. Note that ¢ =
Mk, 192,00 y+) ~ iy, ICs16(to)ll /S — 1. This indi-

cates that glven certain dynamlcs settings of (1) and (4 ( ), the ulti-
mate bound € actually depends on the minimum margin between
the piecewise ADT and its prescribed lower bound ¢, among
agents. It enables one to specify an arbitrarily small bound for
the output synchronization error by specifying a sw1tch1ng signal
with sufficiently large piecewise ADTs t (t‘ t),j=1,2,..., k-1
for each agent i. Particularly, one can further conclude a spec1al
case where the asymptotical synchronization can be achieved for
the outputs, i.e., ¢ = 0. This can be implemented by requiring
that for each agent i the output matrix C;4 does not switch.
Since it will always yield a non-switching £2; 4, (see Huang, 2004
for detailed derivations), then it is obvious that Hgi.rf,-((t,';.)ﬂ -

2oyl = 0, Vt;., which implies e

is that Ithere is not any switching occurring in a given time span,
this would make ¢; — 400 which implies ¢ = 0. The proof is
complete. H

= 0. Another trivial case
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