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Abstract: As human society advances, new scientific challenges are constantly emerging. The 

use of systems thinking (ST) and computational thinking (CT) can help elucidate these 

problems and bring us closer to a possible solution. The construction and use of models is one 

of the most widely used tools when trying to understand systems. In this paper, we examine 

four case studies of student pairs who were engaged in building and using system models in an 

NGSS-aligned project-based learning unit on chemical kinetics. Using a theoretical framework 

that describes how CT and ST practices are manifested in the modeling process we examine the 

progression of students’ models during their model revisions and explore strategies they employ 

to overcome modeling challenges they face. We discuss some suggestions to scaffold students’ 

progression in constructing computational system models and prepare teachers to support their 

students in engaging in CT and ST practices. 
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Introduction 
Climate change, epidemics, and economic uncertainty are problems whose solutions depend on systems thinking 

(ST) and computational thinking (CT). Systems thinking is a cognitive approach to problem solving that 

emphasizes the relationships between the various interconnected elements that make up a system and how the 

system changes over time (Meadows, 2008). Systems and system models, identified as a crosscutting concept in 

the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013), are foundational to scientific thinking 

and are increasingly emphasized as an important component of science education. However, learning materials 

that effectively integrate ST with disciplinary core ideas remain elusive. Computational thinking has also received 

increasing attention in science education through the NGSS. Computational thinking describes the cognitive 

processes necessary to deconstruct a problem or a phenomenon in such a way that it can be solved using an 

information-processing agent, either a computer or human (Grover & Pea, 2013; Wing, 2006, 2011). Because 

both ST and CT have only recently been emphasized in the science education discourse (NGSS, 2013), a key 

challenge for educators is how to integrate ST and CT into multiple STEM curricula. Modeling is a powerful tool 

for understanding complex systems that engages students with computational thinking and systems thinking. In 

this paper, we investigate the ST and CT practices students engage in while iteratively developing system models 

to make sense of a phenomenon.  

Theoretical background 
Our work is based upon a theoretical framework developed by our research team (Damelin, Stephens, & Shin, 

2019), which describes how CT and ST practices are manifested in system modeling (see Figure 1). We reviewed 

the literature in ST and CT, applying criteria to develop definitions of both, and integrated them to form a 

contextualized application of ST and CT through the development and use of computationally runnable system 

models. While this conceptual model demonstrates a theoretical understanding of how students might engage in 

CT and ST practices through modeling, additional evidence is needed to understand how this occurs in classrooms. 

Computational thinking 
There is a wide range of perspectives—from a generic approach (Grover & Pea, 2013; The International Society 

for Technology in Education [ISTE] and Computer Science Teachers Association [CTSA], 2011) to a STEM-

centered approach (Weintrop et al., 2016)—on how to describe computational thinking. Based on both of these 

approaches, we identified several key CT practices. We briefly elaborate on the CT practices we are focusing on 

in this paper. Problem decomposition is defined as the cognitive process of isolating specific features or 
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relationships observed in phenomena by breaking a problem down into smaller sub-problems (Grover & Pea, 

2013). The practice of problem decomposition requires capturing essential elements, removing irrelevant 

elements, and mapping essential elements onto computational solutions for modeling. The creation of 

computational artifacts in the context of system modeling includes developing, revising, and using models by 

defining the variables of the model and describing the relationships among variables. Testing and debugging refer 

to evaluating the appropriateness of a model based on the explanatory goal as well as the available supporting 

evidence, and includes detecting faults in a model and fixing them based on model behavior and the presence (or 

lack) of key ideas related to the phenomenon being modeled (Weintrop et al., 2016). By exploring the range of 

model predictions based on exhaustive testing of model use, and verifying that the model behaves as expected, 

frequent testing and debugging through iterative refinement leads to model improvements.  

Systems thinking 
Systems thinking focuses on patterns of events (behaviors over time) and the underlying feedback, accumulation, 

and delay structures that are responsible for them. We briefly describe the ST practices we are focusing on in this 

paper. A system can be defined as a single atom, a cell, planet Earth, or a group of galaxies. It is crucial for any 

investigation to define system boundaries according to the question or goal of the model by considering the 

different components in the system, as well as their appropriate inclusion based on the scale, complexity, and 

scope of the question being answered. Students must engage in causal reasoning to define the relationships 

between the components to investigate how the web of components and their interactions produce system 

behavior. Framing problems or phenomena in terms of behavior over time is important because systems consist 

of components that can vary in amount or intensity over time (Meadows, 2008). A system’s behavior commonly 

fluctuates over time and with different inputs.  

 

 
Figure 1. Theoretical framework describing computational and systems thinking through modeling. 

CT and ST through modeling 
On the right side of the framework are prominent CT practices described in the literature while the left side 

displays prominent ST practices. The central part of the framework represents a set of modeling practices, which 

provide a context for operationalizing CT and ST in the process of constructing models (see Figure 1). In this 

paper, we focus on four of the modeling practices in the framework: (i) define the boundaries of the system, (ii) 

design and construct model structure, (iii) test, evaluate, and debug model behavior, and  (iv) use the model to 

explain and predict the behavior of phenomenon or design solution to a problem. 

While engaged in each of these modeling practices students have opportunities to employ one or more 

CT and ST practices. For example, in a system modeling context, students identify the components that constitute 
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the system and decide which are relevant and should be represented in the computational artifact. This represents 

the define the boundaries of the system modeling practice, marrying both decomposing problems from CT and 

defining a system and (potentially) framing problems or phenomena in terms of behavior over time from ST.  

The design and construct model structure modeling practice involves defining the relationships between 

variables to specify how a change in one variable affects the value of one or more variables with which it is linked. 

This practice brings together creating computational artifacts from CT and both engaging in causal reasoning 

and recognizing interconnections and (where appropriate) identifying feedback from ST. When setting the 

relationship between two variables, it is helpful to not only focus on one specific relationship, but also to think 

about the integration of this effect with the rest of the system. During this process, the modeler may rethink the 

components in their model, returning to the define the boundaries of the system practice. One example of the 

cyclic nature of engaging in the modeling practices is shown in the framework with curved arrows that link the 

design and construct model structure and define the boundaries of the system practices. 

One of the major advantages of computational models is that they provide the opportunity to run a 

simulation of student ideas regarding how a phenomenon works. The act of simulating the model is manifested as 

the test, evaluate, and debug model behavior modeling practice and directly aligns with the CT practice of testing 

and debugging, as well as the making iterative refinements CT practice, and additionally involves the ST practice 

of modeling both conceptually and computationally.  

Once a model reaches a level of functionality that it seems to correctly model the behavior of the system 

under exploration, one can engage in the use the model to explain and predict the behavior of phenomenon or 

design solution to a problem modeling practice, which brings together representing data through abstractions 

from CT and modeling computationally from ST. Because the model serves as a tool to explain or predict a 

phenomenon or solve a problem, examining the usability of the model is critical, especially when revising the 

model and comparing it with other models (Schwarz et al., 2009).    

Research question 
What are the opportunities and challenges students face as they engage in computational and systems thinking 

practices in the context of system modeling? More specifically: How do students progress in (i) defining the 

boundary of the system, (ii) constructing and designing the model, (iii) testing, evaluating and debugging, and 

(iv) using the model to make sense of phenomena or to design a solution to a problem. 

Methodology 

SageModeler modeling tool 
SageModeler is a web-based, open-source tool designed to support student learning by facilitating engagement in 

systems thinking through building, testing, sharing, evaluating, and revising models (Bielik, Damelin, & Krajcik, 

2018, 2019; Damelin, Krajcik, McIntyre, & Bielik, 2017). Supports include a) visual representation of variables 

and relationships, customizable by the student; b) a simple drag-and-drop interface for constructing a systems 

diagram; c) the ability to define relationships between components using simple menus, eliminating the need to 

write complex mathematical equations; and d) the use of an exploratory data analysis environment designed for 

students.  
One of the advanced features of SageModeler is the ability for learners to create time-based dynamic 

models using aspects of a “stock and flow” system dynamics modeling approach (Zuckerman & Resnick, 2005). 

Time-based models present a challenge for students as they demand consideration of changes in the system over 

time, which are affected by the feedback of interconnecting rate-limiting factors (Tadesse & Davidsen, 2019). 

While SageModeler facilitates easy construction of such models, constructing a useful system model of a 

particular phenomenon still presents a significant challenge for students as we will discuss in the results below.  

Development of PBL-aligned curricular materials 
A two-week NGSS-aligned chemistry unit using principles of project-based learning (PBL) (Shwartz, Weizman, 

Fortus, Krajcik, & Reiser, 2008) was co-designed by the classroom teachers and the authors of this paper. The 

unit focused on the kinetics of chemical reactions. Students were presented with the scenario of a shirt that was 

stained. A bleach pen was not able to remove the stain in time to wear the shirt. The driving question was: “What 

can you do to speed up the removal of the stain?” The phenomenon that accompanied the driving question was 

the gradual fading of food coloring in water when bleach was added. The kinetics unit aimed at students’ 

explaining the phenomenon and giving a solution to the driving question as they progressed in learning three key 

scientific ideas: 1) A reaction can occur when there are collisions between molecules, 2) increase in temperature 
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increases the frequency of collisions and speeds up the reaction, 3) a higher concentration of reactants increases 

the frequency of collisions and speeds up the reaction. Students were asked to make a model of the phenomenon 

using SageModeler to help them answer the driving question. Throughout the unit, students investigated new data 

to support them in revising their model. They explored various factors that might affect the reaction rate, such as 

temperature and concentration of reactants and products. The unit was accompanied by an online activity that 

allowed students to watch science demonstration videos, engage with scientific simulations, answer questions, 

and build, test, and revise their system models over four iterations. Students also engaged in a hands-on activity 

in which they collected and analyzed data using a spectrophotometer. They entered the data in a table in 

SageModeler that allowed them to compare graphs that were generated from their model to graphs generated from 

their experimental data.   

Participants 
In the spring of 2019, the chemistry unit was enacted in five classes in a single school in the Midwest U.S. with a 

total of approximately 100 students. The research population included four 10th grade student pairs from these 

classes (total = 8 students, 7 females, 1 male) who performed the unit tasks together. The students came from 16 

districts and were accepted to a math and science center that accelerates STEM learning at a higher level than is 

typically available in high school. There were five classes across two science teachers. One teacher had 15 years 

of teaching experience and the other teacher had 4 years of experience. The teachers participated in professional 

learning using the modeling tool, which included 10 hours of face-to-face and video chat meetings. The unit 

consisted of five 80-minute lessons and took approximately two weeks to conclude.  

Data sources and analysis 

Screencasts  
Screencasts of classroom laptops recorded audio discussions and computational operations during three of the 

unit’s five lessons as students developed and revised models (other lessons were dedicated to lab experiments to 

collect evidence). Screencast recordings were approximately 200 minutes in duration for each group. We used the 

screencasts to follow students’ progress in building, evaluating, and revising their models, focusing on the iteration 

of the four modeling practices introduced above. We analyzed the screencasts for engagement in CT and ST 

during each of those modeling practices, using the modeling practices in our theoretical framework. For the first 

practice, define the boundaries of the system, we looked for students’ problem decomposition, meaning how 

students had broken the phenomenon into different variables to represent the progress of a chemical reaction and 

how its rate is affected by various factors. In regard to the second practice, design and construct model structure, 

we followed students’ discussions at points in which they were setting relationships between variables in the 

model. For the third practice, testing, evaluating and debugging, we identified the testing and evaluation of the 

model as any event in which students ran a simulation of their model and reflected on the outcome of its behavior. 

We documented who initiated the simulation, as well as students’ evaluation following the simulation. Two of the 

authors in this paper analyzed the screencasts, shared their analysis, and reached full consensus on their decisions.   

Student interviews 
Semi-structured interviews were conducted with four students, one from each focus group. Each interview lasted 

approximately 30 minutes. In the interview, students were asked to describe in retrospect their thinking process 

and strategies for building their final model, to explain how they think the model helped them to answer the driving 

question, and about their experiences from the unit. Interviews were fully transcribed. Analysis was based on the 

four modeling practices with an emphasis on the usability of the model. Some of the questions the students were 

asked included: What was the unit about? Can you tell me about your experience? What is the question you are 

trying to answer in your model? How do you think your model helps you to answer the driving question? 

Student models 
Models were analyzed and scored according to a quantitative rubric from a minus three to a positive three. The 

rubric targets three of the four focal modeling practices: (i) define the boundaries of the system, (ii) design and 

construct model structure and (iv) use model to explain and predict behavior of phenomena. The missing 

modeling practice -- (iii) test, evaluate, and debug model behavior -- could not be measured solely through 

observation of students’ models. 

Under define the boundaries of the system, model variables were scored according to key variables, 

inappropriate variables, and irrelevant variables. Under the design and construct model structure, we assessed the 

quality of the relationship between variables. Relationships were sorted into categories. Incorrect relationships 
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were given a negative score, while correct relationships received a positive score. The relationships were scored 

according to the effect the relationship had on the behavior of the model. In the use model to explain and predict 

the behavior of phenomena or to design solution to a problem practice, we looked for the representation of key 

scientific ideas in students’ models and sorted the models into three categories: models that included all key ideas, 

models that included at least one key idea, and models that did not include any key ideas.  

Results 

Define the boundaries of the system (variables and components) 
Figure 2a shows the progression in students’ models in define the boundaries of the system practice, which 

displays a general trend of improvement in all groups. That is, students included more key variables in comparison 

to inappropriate or irrelevant variables. (Group 2 is missing one revision because they did not complete the unit.)  

 

   
 (a) (b) 

Figure 2. Students’ progress in (a) the define the boundaries of the system practice and (b) the design and 

construct model structure practice. (IM = initial model, R1 = revision 1, R2 = revision 2, FM = final model.). 

Design and construct model structure 
Figure 2b shows the progression of students’ models in the practice of designing and constructing model structure. 

It shows that patterns of progression vary among the groups. The differences in the quality of relationships 

between variables in students’ models change from one revision to the next. As students’ progress in the unit their 

models become more complex, because there are new ideas to implement in the model and, therefore, they are 

more prone to errors as the number of connections between variables increases. 
We examined how students addressed time in their models using the screencast data collected from four 

groups. If the models are structured correctly, utilizing a special kind of variable we call a “collector” in 

SageModeler, which accumulates changes from one model calculation to the next, then changes over time become 

evident in the model behavior. However, all four groups inappropriately included time as a variable in their initial 

models, explicitly representing an aspect of the model that should be inherent in how it is computed.  

During simulation, each variable shows a graph of its value over time. If there is no change over time the 

simulation will show a flat line (see Figure 3a). To show change over time one needs to set at least one variable 

to be a collector (see Figure 3b). All focus groups faced challenges in constructing models showing behavior over 

time, with only one group (Group 1) deleting the time variable and adopting a dynamic approach without explicit 

teacher instruction. We examined the prompts that led to the eventual deletion of the time variable in each group. 

From the screencasts, it seemed that the simulations they ran led Group 1 to the conclusion that the time variable 

does not contribute to their model and, therefore, they decided to take it out. 
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Figure 3. Iterations of student models demonstrating (a) no change over time (Group 2, IM) and (b) a model that 

includes appropriate types of variables that can accumulate changes over time (Group 1, R3). 

Test, evaluate, and debug model behavioral  
Table 1 displays the number of times students ran a simulation of their models in Lessons 1 and 2 while building 

and revising their models. We differentiated between student-driven and teacher-driven initiatives for running the 

models. Group 1 had the highest number of model simulations, all of which were student driven.  Without much 

support from the teacher they simulated their model almost every time they set a new relationship between 

variables. The high number of simulations relative to other groups correlates with results that showed higher 

scores in the three modeling practices examined in their final model. The data from the screencasts indicates that 

students were less dependent on the teacher after completing their initial model. It is important to mention that 

teachers’ prompts for simulation always occurred after students asked the teacher for support. Also, there was a 

difference between the two teachers in the way they addressed students’ questions. The more experienced teacher 

of Groups 1 and 2 usually answered with a question, hint, or prompt, and encouraged students to figure out their 

model on their own, in comparison to the less experienced teacher of Groups 3 and 4, who was more explicit and 

instructive in his answers, especially in the first lesson.  

Table 1: Frequency of simulating the model 

Group #  Lesson 1 (initial model construction) Lesson 2 (first and second model revision) 

Student-driven Teacher-driven Student-driven Teacher-driven 

1 6 0 5 0 

2 0 2 3 2 

3 0 2 2 0 

4 3 2 3 0 

 

We asked one student from Group 1 during the interview about the decision making she and her teammate had 

engaged in. She said: “Well, we pretty much just decided it. Trial and error. We had these connected here at one 

point and this connected to this (pointing at the screen). Because at first, we didn’t have this valve thing here. We 

had just a normal relationship. So, just trial and error, and conversations with Mr. H (the teacher).” We can see 

more evidence for the Group 1 strategy. According to the student, trial and error means running a simulation, 

evaluating the model, and debugging it, though she did not have an answer as to why she and her partner chose to 

adopt this strategy, which apparently other groups did not. Even with the persistent self-directed testing exhibited 

by Group 1, no group’s models correlated precisely with their experimental results. Students’ experimental results 

showed an exponential decay trend of absorbance over time graph (an indicator of the rate of reaction) while the 

equivalent graph generated by their model showed a linear decay. Only students from Groups 1 and 3 provided 

explanations for the differences between the behavior of the model and their experimental results. Group 3 

students attributed the difference to a probable lack of their own proficiency in conducting the experiment, despite 

correctly collecting data on the phenomenon. They stated that they believed the computer model was more 

accurate. Group 1 students said they were aware of the difference, but they were unable to overcome the challenges 

of modeling a phenomenon that exhibited exponential decay, which would have required the implementation of 

an appropriate feedback mechanism within the model. 

Use the model to explain and predict the behavior of phenomenon 
Regarding model behavior, Groups 1, 3, and 4 produced a model that demonstrated only the first two key ideas 

—that concentration of reactants and temperature affect the rate of reaction. Group 2’s model did not demonstrate 

any key idea. All four students who were interviewed expressed the first and second key ideas, and all groups 
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except for Group 2 had this idea manifested in their model. To manifest the first two key ideas in the model 

students had to have a representation of transfer from reactants to products, as well as a representation of 

concentration and temperature variables that affect the rate of reaction. The following excerpt of an interview with 

a student from Group 3 shows the first two key ideas, namely an explanation at the microscopic level describing 

how an increase in the particles’ kinetic energy affects the rate of reaction. Student from Group 3: “And then with 

the temperature, it causes the particles to move faster. If the reaction is caused by collisions of the particles, then 

if they’re moving faster, there’ll be a greater chance that they collide and that the reaction will go faster.” The 

third scientific key idea was mentioned by students from Groups 1, 3, and 4.  For example, a student from Group 

1 said during an interview: “Yes. So, it’s decreasing at a decreasing rate. At first, there are a lot of particles in 

there reacting with each other and then over time it just gets less and less. But they’re still reacting with each 

other, it just takes more time for them all to react.” However, this idea was not manifested in any of their models. 

To include the third idea students had to create a feedback loop in their model that would result in an exponential 

decay behavior of the variables that represent reactants or absorbance in the model. 

Discussion 
In this paper, we have explored how students’ progress in each of four different modeling practices and found that 

there is a discrepancy between the students’ progression in defining the boundaries of the system, hence defining 

key variables, and their ability to properly construct the relationship between the variables. The first one trends 

upwards as the unit progresses and the second one fluctuates. 

We believe the curricular approach is partially responsible for this result. There was a greater emphasis 

on exposing students to key variables, which supports the define the boundaries practice, and can be seen in the 

increasing scores across groups related to this modeling practice. However, the measure of the design and 

construct practice did not show a corresponding overall increase, but rather showed fluctuating success in this 

area. This supports what Ergazaki et al. (2007) noted in their research, namely that defining the relationship 

between model components is the most demanding and time-consuming practice students engage in while 

modeling, and, therefore, requires the attentiveness of modeling facilitators. To better support students in all model 

building practices, explicit support regarding each practice should be embedded in the curriculum.  

A close examination of the fluctuating pattern reveals that students who initiated more simulations were 

more likely to end up at a higher score than students who relied on teacher-initiated simulations. This finding 

points to the importance of supporting students in developing agency to progress in their model creation. The 

findings show that students who are more self-driven are likely to progress in their model creation. As such, 

supporting students with additional scaffolds to more effectively build, test, revise and evaluate models is needed.   

We also noticed that when students were confronted with experimental data that did not align with their 

model, they gave explanations during the interviews that ranged from trying to adjust their model to fit the 

evidence (desired approach) to a reluctance to accept the experimental data due to the perception that the model 

itself represents absolute truth. Similar to Cheng and Lin (2015) and Schwartz et al. (2009), the findings highlight 

the importance of proper teacher support on the nature and purpose of a model and the interplay between the 

model and obtained experimental data.  

We found that constructing the initial model was very challenging for students. The general strategy 

students used when they started modeling was to include any variable that came to mind (e.g., time, chemical 

reaction) and to set relationships between the different variables. Students may resort to this strategy, which 

requires minimal reflection, to ease the cognitive load of developing a computational model. This means that 

emphasis should be given to the initial model creation and, in particular, that scaffolds are necessary to address 

each practice separately to not overload the students as they create their initial model. This correlates with findings 

from previous studies investigating students’ computational modeling processes (Fretz et al., 2002; Stratford, 

Krajcik, & Soloway, 1998). One possible strategy would be to engage students in simple paper-pencil models. 

That type of model draws less on students’ ability to abstract model components into calculable variables and 

allows for a greater focus on descriptive mechanisms. Making the transition from paper-and-pencil modeling to a 

computational system could shine light on how a computational model is different and provide an opportunity to 

naturally transition to talking about CT and ST practices more explicitly as they support various computational 

modeling practices.  

We believe that the findings presented in this paper provide a foundation for exploring further how 

teachers can support students in ST and CT through modeling. We characterized some of the challenges students 

face while engaging in model building, testing, evaluating, and revising, specifically looking through the lens of 

CT and ST practices. We also suggested some applications and teaching strategies that can be applied in the 

classroom. However, a better understanding of the interplay between CT, ST, and modeling will allow for the 

development of curriculum, assessment, and teacher support scaffolds that improve students’ engagement, 
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understanding, and problem-solving skills.  
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