Automatica 127 (2021) 109535

Contents lists available at ScienceDirect

automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Check for
updates

Continuous-time distributed Nash equilibrium seeking algorithms for
non-cooperative constrained games™

Yao Zou®”, Bomin Huang *¢, Ziyang Meng **, Wei Ren ¢

@ Department of Precision Instrument, Tsinghua University, Beijing 100084, PR China

b School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
¢ School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China

4 Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA

ARTICLE INFO ABSTRACT

Article history:

Received 26 March 2019

Received in revised form 3 January 2021
Accepted 13 January 2021

Available online 26 February 2021

This paper studies the Nash equilibrium seeking problem for non-cooperative games subject to set
and nonlinear inequality constraints. The cost function for each player and the constrained function
are determined by all the players’ decision variables. Each player is assigned a constrained set while
all the players are subject to a coupling nonlinear inequality constraint. A continuous-time distributed
seeking algorithm using local information interaction is proposed, where the players deliver/receive
information unidirectionally over a directed network. In particular, a distributed observer is first
introduced for each player to estimate all the others’ decision variables. Then, by using these estimates,
a seeking algorithm is synthesized with a projection operator. Based on the time-scale separation
approach, it is shown that the proposed continuous-time distributed seeking algorithm guarantees
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1. Introduction

Significant attention has been paid to the research on game
theory due to its various applications in traffic, communication
networks, energy and other fields in recent years (Koshal, Nedic,
& Shanbhag, 2016; Lei & Shanbhag, 2018; Liu, Cheng, Yu, Zhong,
& Lei, 2018; Pisarski & de Wit, 2016; Shakarami, Persis, & Mon-
shizadeh, 2019; Zheng, Cai, Chen, Li, & Zhang, 2015). With the
rapid development of game theory, the Nash equilibrium seeking
in non-cooperative games is of considerable interest from both
theoretical and application perspectives (Cominetti, Facchinei, &
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Lasserre, 2012). In the general Nash equilibrium seeking problem,
each player attempts to minimize its cost function by responding
to its own and other players’ actions. This requires a fully con-
nected network such that a full observation over all the players’
actions in the network can be performed (Cominetti et al., 2012;
Contreras, Klusch, & Krawczyk, 2004). To relax this connectiv-
ity requirement, especially for a large-scale network, distributed
algorithms borrowed from the consensus idea for multi-agent
systems are proposed. In such distributed algorithms, the players
minimize their cost functions via local information interaction
with only adjacent players.

Nowadays, a variety of discrete-time distributed Nash equi-
librium seeking algorithms have been proposed. In particular, a
gossip-based methodology was developed for seeking the Nash
equilibrium of non-cooperative games in Salehisadaghiani and
Pavel (2016). Moreover, in Salehisadaghiani, Shi, and Pavel (2019),
an altering direction method of multipliers was introduced into
the distributed Nash equilibrium seeking under partial-decision
information. In Poveda, Teel, and Nesic (2015), a discrete-time
stochastic algorithm was proposed such that the players took
actions in both simultaneous and asynchronous manners. Besides,
by considering a shared affine constraint into the games, multiple
discrete-time distributed algorithms based on operator splitting
methods were proposed in Pavel (2020) and Yi and Pavel (2019a,
2019b). In addition, by imposing coupling constraints of the
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average of the decision variables, a discrete-time distributed Nash
equilibrium seeking algorithms was developed for aggregative
games in Grammatico (2017). Furthermore, instead of the linear
or set constraint considered in the previous references, a nonlin-
ear constraint on the decision variable was taken into account
in Paccagnan, Gentile, Parise, Kamgarpour, and Lygeros (2019);
and correspondingly, seeking algorithms were designed for the
aggregative games.

On the other hand, without necessity of determining the
step size as done in the discrete-time seeking algorithms, var-
ious continuous-time distributed seeking algorithms have also
been proposed recently. In particular, a continuous-time semi-
decentralized seeking algorithm was proposed for monotone
aggregative games with linear and set constraints in Persis and
Grammatico (2019a). By introducing consensus-based distributed
observers, continuous-time distributed algorithms were devel-
oped such that the Nash equilibrium was locally reached in
Ratliff, Burden, and Sastry (2016) and Ye and Hu (2017). More-
over, by considering decoupling nonlinear and set constraints,
continuous-time distributed gradient-based Nash equilibrium
seeking algorithms were designed for noncooperative games in
Gadjov and Pavel (2019), Lu, Jing, and Wang (2019) and Persis and
Grammatico (2019b). Furthermore, rather than the multi-player
game, the multi-cluster game was studied in Zeng, Chen, Liang,
and Hong (2019), and a continuous-time seeking strategy was
proposed therein. Nevertheless, the aforementioned continuous-
time distributed seeking algorithms are in terms of an undirected
topology, which means a synchronous bilateral interaction be-
tween adjacent players. This might not be practical in some real
applications.

In this paper, a continuous-time distributed Nash equilibrium
seeking algorithm is proposed for non-cooperative constrained
games over a directed communication topology. Each player is
assigned a cost function and a constrained set, while a nonlinear
inequality constraint is imposed on all the players’ actions repre-
sented by decision variables. The objective is to seek a generalized
Nash equilibrium which satisfies the set and inequality con-
straints such that each cost function coupled by all the decision
variables is unilaterally minimized. In particular, by developing
a distributed observer to estimate other players’ decision vari-
ables, a distributed seeking algorithm with a projection operator
is proposed. It is shown in terms of the time-scale separation
approach that, given a strong connectivity topology condition,
all the decision variables uniformly ultimately converge to an
arbitrarily small neighborhood of the generalized Nash equilib-
rium satisfying a KKT condition. Compared with the previous
continuous-time distributed seeking algorithms (Gadjov & Pavel,
2019; Lu et al., 2019; Persis & Grammatico, 2019a, 2019b; Ratliff
et al,, 2016; Ye & Hu, 2017), the main contributions herein lie in
three aspects. First, this paper simultaneously considers the set
constraint and coupling nonlinear inequality constraint existing
in the general noncooperative game. To overcome the constraint
impact, a continuous-time distributed Nash equilibrium seeking
algorithm resorting to a distributed observer is proposed. Second,
instead of the impractical bidirectional interaction over the undi-
rected topology, the players deliver/receive information to/from
their neighbors unidirectionally in this paper. Such an informa-
tion interaction manner is characterized by a directed topology.
It is shown that the strong connectivity topology condition is
sufficient for seeking the generalized Nash equilibrium of interest
successfully. Last but not the least, the time-scale separation
approach is used for the convergence analysis. Specifically, it
is first shown that the distributed observer, considered as the
fast dynamics, guarantees the estimation errors converging to an
arbitrarily small neighborhood of the origin within finite time.
By using this result, it is next shown that the seeking algo-
rithm, considered as the slow dynamics, guarantees the decision
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variables uniformly ultimately converging to an arbitrarily small
neighborhood of the Nash equilibrium of interest.

The following sections are organized as follows. Section 2
presents some useful preliminaries. Section 3 describes the game
problem to be addressed. Section 4 introduces the main results
including the seeking algorithm synthesis and the convergence
analysis. Section 5 performs a simulation to validate the proposed
theoretical results. Section 6 draws final conclusions.

Notations. In what follows, R" denotes real vectors of dimension
n, RT denotes non-negative real numbers, I, is an n x n unit
vector, 1, is an n-dimensional vector with all its entries being 1,
| - || denotes the Euclidean norm of a real vector or the Frobenius
norm of a real matrix, col(xy,xa,...,%,) = [x],x0,... x]",
diag{y1,¥2,...,yn} is a diagonal matrix with diagonal entries
being scalars y; to yy, sgn(y) = [sgn(y1), sgn(y2), .. ., sgn(ya)l"
for y = [y1,¥2,...,ya]" with sgn(-) being the sign function,
and Ymax(-) and Unmin(-) denote the maximum and minimum
eigenvalues of a square matrix. Given a positive constant u, the
wn-neighborhood around a fixed point X € R" is defined by a
compact set {x € R" | |x — x| < u}. Moreover, let Vf be
the gradient of a function f and JF be the Jacobian matrix of a
map F.

2. Preliminaries
2.1. Function properties

Given a closed set £2 C R", a differentiable function f : 2 —
R is said to be convex if (Vf(x) — VF(¥))'(x —y) > 0, Vx,y € £2.
Moreover, such f is locally 8-Lipschitz if ||f(x)—f)ll < 0llx—yll,
Vx,y € £2.In addition, a map F : R" — R" is said to be
monotone over set 2 if (x — y)T(F(x) — F(y)) > 0, Vx,y € £,
and F is said to be w-strongly monotone if there exists a positive
constant  such that (x — y)'(F(x) — F(y)) > wl|lx — y|?, Vx,y €
2 (Bauschke & Combettes, 2011; Facchinei & Kanzow, 2007).
According to Liang, Yi, and Hong (2017), a differentiable map F is
w-strongly monotone over set §2 if and only if the corresponding
Jacobian matrix JF(x) is positive definite for each x € £2.

2.2. Projection operator

A set 2 C R" is called convex if ux; + (1 — u)x, € 2 for
any x1,Xx; € £ and any u € [0, 1]. Given a closed convex set
£2 C R", we define the projection operator Pg(x) : R" — £2 as
Po(x) = arg min,ce ||Xx — w||. Next, two useful results concerned
with the projection operator are presented as follows.

Lemma 2.1 (Aubin & Cellina, 1984). Given a closed convex set
£2 C R", the following inequalities hold:

(x — Po(x)) (Po(x) —y) >0, xeR", ye £, (1)
[Pe(x) = PoW)Il < Ix—yll, x,y €R" (2)

Lemma 2.2. Consider the following system:
X = —x+ Pz (h(x, u)), (3)

where x € R and u € R are the system state and input, & = {& <
x < &} is a closed convex set, and h(x, u) is a differentiable function.
The following results hold:

(1) if x(0) € Z, then x(t) € &2, Vt > 0, and

(2) if x(0) ¢ &, there exists a positive constant y such that |x(t)| <
y, Vt > 0.

Proof. See Appendix A. W
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Remark 2.1. In terms of Lemma 2.2, it also follows that X in
(3) is bounded given that x is bounded and Pz (h(x, u)) € [&1, &].
Moreover, following the argument in Lemma 2.2, we can also
obtain that x(t) € 51 = {x > &} or 8, = {x < &}, vVt = 0
given x(0) € &1 or &,.

2.3. Graph theory

The information interaction among agents is built by a topol-
ogy graph ¢ £ {V, &}, where the node set is defined by v £
{1,2,...,n} and the edge set is defined by &€ C vV x V. In a
directed graph, (j, i) € £ means that node i has access to node j's
information but not vice versa; and in such a case, node j is called
a neighbor of node i. All the neighbors of node i are included in
set \; = {j € V| (j,i) € &€}. A path from node i to node j is
a sequence of directed edges. A directed graph is called strongly
connected if each node has a path to every other node. Moreover,
the adjacency matrix A = [a;] € R™" associated with a directed
graph is defined such that qj = 1if (j,i) € € and g = 0
otherwise; and its Laplacian matrix L = [l;] € R™" is defined
such that l; = >, .;a; and Iy = —aj for i # j.

3. Problem statement

Consider an n-player non-cooperative game subject to coupled
constraints. The set of players is denoted by v = {1,2,...,n}.
Each player i € V is assigned a decision variable x; € R and a
cost function fi(x) : R" — R, where x = [X1, X2, ..., %]’ € R"is
the strategy profile of this game. Suppose that player j's decision
variable is available to player i only if player j is a neighbor
of player i. In addition, consider each decision variable x; being
subject to a set constraint:

X € £, (4)

where £2; C R is a closed convex set; and the strategy profile x
is constrained by a nonlinear inequality satisfying

x = {x € R"|g(x) < 0}, (5)

where g : R" — R is the constrained function. Define 2 =
£21 X §25 X --- X £2,. Then the feasible strategy set of this game
is @ = £ N x. For notational simplicity, we just consider the
non-cooperative game with one-dimensional decision variables.
The corresponding results can be straightforwardly extended to
the higher-dimensional case with some augmented operations.

Given the aforementioned constrained non-cooperative game,
the objective herein is to develop a Nash equilibrium seeking
algorithm such that the strategy profile reaches the generalized
Nash equilibrium. For the development of the seeking algorithm,
except that the constrained function g is known to all the players,
each cost function f; and constrained set £2; are only available
to their corresponding players, while all the others, even their
neighbors, have no access to these pieces of information. First,
we formalize the definition of the generalized Nash equilibrium,
which follows the one introduced in Cominetti et al. (2012) and
Facchinei and Kanzow (2007).

Definition 3.1 (Generalized Nash Equilibrium). A strategy profile
X =[x],%5, ..., %) T is called a generalized Nash equilibrium of
the constrained non-cooperative game if

filxf, x5) < filxi, x55), % € Qi(x7)), (6)

where x_j = [X1, ..., Xi—1,Xiy1- -+, Xp] and Qi(x%;) = {x; € £2; :
g(xi,x*;) <0} ie W

—1
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Actually, the generalized Nash equilibrium is an optimal strat-
egy profile incorporated in set Q in the sense that no player can
further reduce its associated cost function by unilaterally chang-
ing its own decision variable. Moreover, to clarify the subsequent
analysis, we define two vectors

F(X) :[V?qfl(x)! VXsz(X)7 RN Vxnfn(x)]Ta (7)
G(X) :[Vx1g(x)7 Vng(X)7 LR} Vxng(x)]T- (8)

Before moving on, several fundamental assumptions associated
with the considered game are made as follows.

Assumption 3.1 (Existence Condition). The feasible strategy set Q
is non-empty, i.e., Q # .

Assumption 3.2 (Differentiability and Convexity). Each cost func-
tion fi(x) and the constrained function g(x) are at least twice
continuously differentiable with respect to x € R", and they are
convex with respect to x; € R for fixed x_; € R" 1.

Assumption 3.3 (Monotonicity). The map F(x) formulated in (7)
is w-strongly monotone over R", and the map G(x) in (8) is
monotone over R".

Remark 3.1. The existence condition claimed in Assumption 3.1
guarantees the existence of the generalized Nash equilibrium
introduced in Definition 3.1 (Bazaraa, Sherali, & Shetty, 2006).
Then, the differentiable condition claimed in Assumption 3.2, also
adopted in Ye and Hu (2017), guarantees that the constrained
function g(x) and the gradient functions V,.fi(x) and V,.g(x),i € V
are locally 6-Lipschitz over any given closed convex set (Khalil,
2002), while the convex condition therein is a sufficient condition
for determining a KKT condition which characterizes the Nash
equilibrium of interest into an equality (Cominetti et al., 2012).
Under Assumption 3.3, it is trivial to show that JF(x) is posi-
tive definite and JG(x) is positive semi-definite. This property
is useful in the subsequent convergence analysis. Furthermore,
according to Liang et al. (2017), the strong monotonicity of F(x)
guarantees the uniqueness of the Nash equilibrium of interest.

In order to show the convergence of the strategy profile
to the generalized Nash equilibrium, we first characterize the
Nash equilibrium of interest. Intuitively, a KKT condition for
the considered game is determined in the following theorem,
which indicates that the strategy profile satisfying this KKT con-
dition is exactly the generalized Nash equilibrium introduced in
Definition 3.1.

Theorem 3.1 (Cominetti et al., 2012). Suppose that Assumptions 3.1
-3.3 hold. The strategy profile x* is a generalized Nash equilibrium
in the sense of Definition 3.1 if and only if there exist optimal
multipliers Af > 0, i € V such that the following KKT condition

holds:
X — Pa,(x{ — Vfi(X") — A Vxg(x")) = 0, (9a)
g(x") <0, Afgx")=0, ieV. (9b)

4. Main results

In this section, a distributed seeking algorithm is developed
such that the strategy profile x converges to the generalized
Nash equilibrium introduced in Definition 3.1. A directed graph is
applied to describe the information exchange relationship among
players. Introducing a distributed observer, we first propose a
continuous-time distributed seeking algorithm for the studied
non-cooperative game subject to both the set and inequality
constraints. Then, the system stability is analyzed by using the
time-scale separation approach.
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4.1. Seeking algorithm synthesis

To guarantee that the strategy profile x converges to the gener-
alized Nash equilibrium, a seeking algorithm using the projection
operator is proposed as follows:

Vi filx) — AiVy,g(x)), (10a)
)‘\.i =— XA+ Pp+(Ai + g(x)), ieV, (10b)

where x;(0) € R and A;(0) > 0. In terms of Lemma 2.2 and
Remark 2.1, it is not hard to show that |x;(t)] < y and Xi(t) > 0,
vVt > 0 given 1;(0) > 0 for i € V, where y > 0 is a bound
parameter. Next, a lemma characterizing the equilibrium x =
(X1, X2, ..., %07 and A = [A1, Az, ..., Al of algorithm (10) is
presented as follows.

X = — X + Po,(xi —

Lemma 4.1. For an equilibrium (%, 1) of algorithm (10), X is the
generalized Nash equilibrium introduced in Definition 3.1.

Proof. In terms of (10b), )i,- = 0 implies that

ki = Par (3 + 8(R)),

If ;; = 0, then Pr+(g(%)) = 0. This implies that g(X) < 0.1f 4; > 0,
then A; +g(X) > 0. This implies that g(X) = 0. It thus follows that

iev.

rig(x) =0, g(x) <0,
Next, by considering the fact that A; > 0, it follows from (10a)
that each x; satisfies

—Pg,(X; — Vi fi(X)— 1V g(X)) = 0,

By comparing (11) and (12) with (9), it is evident that equilib-
rium (X, A) satisfies the KKT condition (9). Hence, according to
Theorem 3.1, x is exactly the generalized Nash equilibrium in the
sense of Definition 3.1. M

iev. (11)

ieVv. (12)

It is worthwhile to point out that, the seeking algorithm (10)
is feasible under a fundamental condition that each player’s de-
cision variable is accessible to every other player. In other words,
the seeking algorithm (10) is in a centralized manner. To address
the game problem introduced in Section 3 in a distributed fash-
ion, motivated by Ratliff et al. (2016) and Ye and Hu (2017), the
following distributed observer is proposed for i € V:
i&y = 1| rens auli—Sigay(iy—x)] . v\, a3

Xi = xi,

where %; denotes the player i's estimate on the jth decision
variable for j € V, n is a positive tunable parameter, and a;
is the (i, j)-entry of the adjacency matrix A associated with the
underlying graph G. Note that the true x; is just available to the
neighbors of agent j (i.e., a; # 0) in the distributed observer (13).
However, unlike Ye and Hu (2017); Ratliff et al. (2016) in terms
of an undirected topology, the distributed observer (13) is based
on a directed topology. This means that the information delivery
therein is unidirectional.

Next, define the estimate vector X; = [x,l, Ria, ..., Rin]  forie v
and introduce a closed convex set A = {A € R | 0 < A <
Amax}, Where Anax IS a given positive constant. By implementing X;
instead of the unavailable strategy profile x, the seeking algorithm
(10) is revised as

Xi = — Xi + Po,(xi — Vi fi&i) — i Vx,8(Xi)), (14a)
Ai=— i+ Palhi+g&), iev, (14b)

where x;(0) € R and A;(0) € A. In terms of Lemma 2.2, the
seeking algorithm (14) ensures that each decision variable is
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bounded by |x;(t)| <y, YVt >0 with a bound parameter y > 0, and
that each multiplier A;(t) € A, Vt > 0 given 1;(0) € A. Note from
the seeking algorithm (14) that, player i updates its individual
variables x; and A; using its private information including the
cost function f; and the constrained set £2;, as well as X; from the
distributed observer (13), whereas the others’ private information
is unnecessary.

4.2. Convergence analysis

In this subsection, we show that the seeking algorithm (14)
drives the strategy profile to an arbitrarily small neighborhood
of the generalized Nash equilibrium introduced in Definition 3.1
under a strong connectivity topology condition. The proof is in
terms of the time-scale separation approach. The underlying idea
behind this approach lies in that the distributed observer (13) and
the seeking algorithm (14) are considered as a composite system
with fast dynamics (13) and slow dynamics (14). By following
this idea, the analysis can be divided into two parts. The first
one focuses on the initialized time interval [0, T{]. In particular,
Theorem 4.1 shows that the distributed observer (13) guarantees
the estimated error converging to a w-neighborhood of the origin
in finite time T; and remaining within it afterwards. Such a
u-neighborhood can be made arbitrarily small by sufficiently
increasing the parameter 7. Using this result, Theorem 4.2 in the
second part for [T;, o0) shows that the strategy profile x driven
by the seeking algorithm (14) converges to a small neighborhood
of the generalized Nash equilibrium of interest.

First, define the estimated error %; = X; — x for i € Vv and
the column stack vector X = col(X1, Xa, .. ., X,). Also, define x,; =

col(Xyj, . . ., X(j—1)j» X(j+1)j» - - - » Xnj) for j € V. It follows from (13)
that it satisfies the following dynamics:
X = — L%y + L%y) — %1

= — nM]-)?*j — kj]n, ] eV, (]5)

where L; is the Laplacian matrix L of graph g without the jth row
and jth column, L; = diag{ay;, . . ., aj-1y,

As1ys ---» Ay}, and M; = L + L. Given j € V, if graph G
is strongly connected, it is obvious that player j has a directed
path to any other player. In such a case, according to Qu (2009,
Theorem 4.25), matrix M, j € V is non-singular, and there exists
a positive definite diagonal matrix &; = diag{&yj, ..., §j-1y,
&j+1y» - - - » &} such that matrix 7; = &;M; + M/ &; is symmet-
ric and positive definite. Moreover, it follows from Lemma 2.2
that, by using the seeking algorithm (14), there exists a positive
constant y such that maxjey |Xi(t)| < ¥, YVt > 0.

The following theorem shows that the estimated error X can
be driven to a neighborhood of the origin in finite time and
such a neighborhood can be made arbitrarily small by choosing a
sufficiently large parameter 7.

Theorem 4.1. Consider the distributed observer (13). Suppose that
Assumption 3.1-3.3 hold, and the underlying graph G is strongly
connected. Given any finite time T; > O, the estimated error X
converges to a p-neighborhood of the origin within T;, where

nﬁ1T1 . 1 B
= § * o) * 2 — | 16
12 |: X J ]XJ )) + 7,”31:| ( )

with
B = mmjev{qum(T})}/maxjev{ﬂmax(:’?])} B2 = Zﬁ)_/ MmaXjey
{lel,l#j gu}/mmjev{ﬁmm(u])} and B3 = minjev{ﬁmin(ﬂgj)}-
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Proof. Assign a Lyapunov function W = Zj 1%, T.8%,. Its deriva-
tive along (15) satisfies

n
A ST ¢ T =3 =T ooy
W=-—ng E X*j(djl\/lj—i-Mj dj)X*j—i-Z E X*janjln_1
171 =1

< Zx*]Tx*j +2 Z( > &)k

=1 i=1,i#f
<—nvam % 12+27 Z( Z £ ) 1%
j=1 i=1j#j

5—71,31W+l32V . (17)
Then, take V = +vW. When W # 0, it follows from (17) that
y np B2
V=—=—V+—7 18

AR (18)

When W = 0, the Dini derivative of V satisfies DTV < B,/2.
Hence, D™V satisfies (18) all the time. In terms of Comparison
Principle (Khalil, 2002), it follows that
B 8

v e v+ e B L (19)
This implies that V(t) < e="#1T1/2V(0) + B, /(nB1), t > T; for any
T; > 0. By considering the definition of V, this further implies
that [X(t)| < u. t €[T1,00). |

Remark 4.1. In fact, 81, B, and S5 given in (16) are related
to the edge weights and initial decision variables X;(0). Hence,
given a time-invariant network topology and the initial deci-
sion variables, 81, 8, and B3 are determined accordingly as con-
stants. It then follows from (16) that the w-neighborhood can
be made sufficiently small if a sufficiently large parameter 7 is
chosen beforehand. In addition, if we extend the finite time T;
to infinity, it further follows from the analysis in Theorem 4.1
that the estimated error X is bounded and ultimately converges
toset 2 = {X € R™" | || < B2/(nPip3)}. Note that
a sufficiently large parameter n also guarantees a sufficiently
small ultimate convergence bound. This effectively improves the
estimation accuracy.

In addition, based on Lemma 2.2, each decision variable x;,
i € V driven by the seeking algorithm (14) cannot escape to
infinity. Hence, we just need to study the convergence of the
strategy profile for the time interval [Ty, 00).

Define X = col(X1, X2, ..., %) and I' = diag{i, A2, ..., An},
and introduce

| ox = v | Fx)+ I'G(x)
® =2 x A", H(g)=Po(p —F(9)), (20b)
where A" = Ax Ax---x A, and F(x) and G(x) have been defined

in (7) and (8). Thus, the seeking algorithm (14) can be rewritten
in the following compact form:

¢ =—¢ + Po(¢ — F'(R, 1)), (21)

where F/(&, 1) is a column stack vector composed in sequence by
Vufi(Ri) + 2iVyg(%;) and —g(&;), i € V. We further introduce a
function:
_ I 1 -
S = (F(¢) — F(¢))'(¢ — H(¢)) + 5||¢—¢||2, (22)
where ¢ = col(x, 1), and X and A have been introduced in
Lemma 4.1. Before presenting the main result, we propose a
proposition to indicate the positive definiteness of function S.
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Proposition 4.1. Under Assumptions 3.1-3.3, function S in (22) is
positive definite with respect to ¢ — ¢.

Proof. See Appendix B. ®

In terms of Theorem 4.1 and Proposition 4.1, we next present
the convergence result of the seeking algorithm (14) in the fol-
lowing theorem.

Theorem 4.2. Consider the distributed observer (13) and the seek-
ing algorithm (14). Suppose that Assumptions 3.1-3.3 hold, and the
underlying graph G is strongly connected. Then the strategy profile
x ultimately converges to a u/(j)-neighborhood of the generalized
Nash equilibrium in the sense of Definition 3.1.

Proof. Note from the analysis of Lemma 4.1 that A conforms
0 (11). It is trivial to show that there always exists a A such
that each A; € A given Ay > 0. This implies that ¢ = H(¢).
Assign a Lyapunov function in the form of (22). According to
Proposition 4.1, S is positive definite with respect to ¢ — ¢. Its
derivative along (21) satisfies

S =(F(¢) — F(¢) + TF(¢)¢ — H()) + ¢ — ) (—¢)
+ Po(¢p — F'(}, 1))

=—(F(¢)—F(#)+TF(p)p—H(¢)+d—0) (¢
— H(¢)+(F(¢)—F()+TF(p)Xp—H(¢)+p—¢)"
-H(¢) — Po(¢p — F'(&, 1)). (23)

In view of Lemma 2.2, the seeking algorithm (14) guarantees
that there exists a positive constant y; such that |x(t)] < 4,
vVt > 0. This, according to Assumption 3.2, guarantees that the
constrained function g(x), and the gradient functions Vy.f(x) and
Vy,&i(x) are locally §-Lipschitz over this domain. It then follows
from Theorem 4.1 that ||X(t)]|] < w, Yt > Ti. Thus, in terms of
Lemma 2.1, it follows that for t > Tj,

| — H(¢) + Po(¢p — F'(R, W)l < [[F(¢) — F'(&, )
= (IVfi0
i=1

+ lg(x) - 8(R)1)
<V22 4+ Amax O IR] < s,

= ViRl + 12 Vi g (%) — Vi g(R))

where « = ﬁ(z + Amax)d. Moreover, by considering
Assumption 3.2 and the facts that |x| < y; and A; € A, i € V,
there exists a positive constant & such that

I(F(¢) — F(¢) + (¢ — H($)TF($)) (¢ — p)I| < .

Accordingly, for ¢t > Ty, S(t) satisfies

$ < —(F(¢) — F(¢)+ TF($)d — H()) + ¢ — )
(¢ —H(P) + ko

= — (F(¢) — F(¢) + TF(¢)d —H($)) + ¢ — &)
(p—¢—H@)+¢)+Kkopu
=— (¢ —H(9)) TF(¢)(¢ — H(®)) — llp — &1
— F(¢)— F($)' (¢ — ¢) — (H(¢) — ¢)'F(¢)
— (¢ — F(¢) — H(¢)) (H(¢) — p)
+ (¢ —H()+ ¢ — @) (H(p) — p+d—)+rkmp. (24)

Based on Assumption 3.3, it is trivial to show that the Jacobian
matrix JF(¢) is positive semi-definite. This implies that —(¢ —
H(¢)) JF(¢)¢ — H(¢)) < 0. It then follows from the analysis
in Proposition 4.1 that —(F(¢) — F(¢)) (¢ — ¢) < —ow||x — |2
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Fig. 1. Fixed topology among players.

Moreover, constrained by the variational inequality (Facchinei &
Kanzow, 2007), we have that —(H(¢) — ¢)TF(¢) < 0. Further-
more, in terms of Lemma 2.1, we have that —(¢ — F(¢) — H(¢))

(H(¢) — ¢) < 0. It then follows that, for t > Ty, S(t) satisfies
S <—ollx—X|* - ll¢ —H@)I* + ko u
<—owllx—x|*+ kT u. (25)

This implies that S is negative definite provided that ||x — X|| >
k@ p/w. Consequently, according to Khalil (2002, Theorem
4.18) it can be concluded that x — X is bounded and ultimately
converges to set Z = {x € R" | ||x|| < k@ u/w}. Since it
has been shown in Lemma 4.1 that x = x*, it finally follows
that x ultimately converges to the w'-neighborhood of x* with

W= kopu/o. B

Remark 4.2. According to the expression of parameter ' in the
analysis of Theorem 4.2, the convergence accuracy of the strategy
profile x to the generalized Nash equilibrium is determined by pa-
rameter . As shown in Theorem 4.1, parameter u can be driven
arbitrarily small by specifying a sufficiently large parameter 7.
Towards this end, increasing parameter n enables the strategy
profile x to converge to an arbitrarily small neighborhood of the
generalized Nash equilibrium.

5. Simulations

In this section, an example is given to verify the effectiveness
of the proposed distributed seeking algorithm.

Suppose that there is a non-cooperative game consisting of six
players. The cost function f;(x) assigned to each player is fi(x) =
mif(x), where my =1, my =5 m3=2,my=3,ms =2, mg =4
and

5
fx) =5X% + 2x1X; + 5X§ + X2X3 + XpX5 + 5x§ + X3X4

+ X2 + 2x4X5 + 3x2 4 3X5X6 + X2 — 2x1+3%;
— 8X3 — 6X4 + 10)(5 — X6.

The network topology among these six players is illustrated in
Fig. 1, which can be examined to be strongly connected. The
parameters in the seeking algorithms are chosen as n = 100
and Ama.x = 10. Consider that the strategy profile is subject to
a set constraint: £2; = {|x;i < 1}, i € V and an inequality
constraint: g(x) = Z?zlxiz + Yo XiXisn — 4 < 0.1t can
be calculated that the generalized Nash equilibrium is (x*); =
[0.2708, —0.3542, 1, 0.7, —1, 1]". Fig. 2 shows that each decision
variable driven by the seeking algorithm (14) converges to the
small neighborhood of the generalized Nash equilibrium.

6. Conclusion
This paper investigates the Nash equilibrium seeking problem

for non-cooperative games subject to set and nonlinear inequal-
ity constraints. Each player is assigned a cost function and a
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Fig. 2. Trajectories of decision variables with set and inequality constraints.

constrained set, while all the cost functions, as well as the con-
strained function, are coupled by all the decision variables. A
distributed observer is first developed such that each player
obtains all others’ decision variables. Using these estimates, we
then propose a continuous-time seeking algorithm with a projec-
tion operator. By using the time-scale separation approach, it is
proven that the proposed seeking algorithm achieves the conver-
gence of the strategy profile to an arbitrarily small neighborhood
of the generalized Nash equilibrium satisfying a KKT condition.

Appendix A. Proof of Lemma 2.2

First, we prove the invariant set of & by contradiction. Sup-
pose that this is not true. In such a case, based on the continuity
of x, there exists a time t’ such that x(t') = & with x(t’) < 0 or
x(t") = & with x(t’) > 0. Considering the projection operator, we
have that &; < Pg(h(x, u)) < &. Hence, it follows from (3) that
there exists a constant & € [£1, &] such that

Xt)=—&+&=0o0rx(t')=—& +£ <0. (A1)

This brings in contradiction. Therefore, given x(0) € Z, it follows
that x(t) € &, Vt > 0.

Next, we focus on the boundedness of x when x(0) ¢ &. Assign
a positive function W = x?/2. Its derivative along (3) satisfies

W < —2W + V2WE, (A2)

where & = max{|§], |&]}. Take V. = VW. It then follows that
its Dini derivative satisfies DTV < —V + ﬁ“;‘/Z. According to
Comparison Principle (Khalil, 2002), it follows that

2
V(t) < e 'V(0)+ (1 — e*f)gé‘ <v, (A3)
where y =max{V(0), +/2& /2}. This completes the proof.
Appendix B. Proof of Proposition 4.1

Note from the analysis of Lemma 4.1 that X conforms to (11).
When g(x) = 0, A; > 0 can be specified arbitrarily. In such a case,
there always exists a A; € A no matter which Anax is chosen
as. When g(x) < 0, it follows from (11) that A; = 0, making
no difference to the choice of Anax. Therefore, given Amax > 0,
there must exist A such that each A; € A. This further implies
that ¢ = H(¢). In such a case, according to Lemma 2.1, S satisfies
S =51+ S, where

S1 =(F(¢) — F(@))' (¢ — &),
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_ _ - _ 1 _
S2 = = (F(¢) — F@)'(H($) — )+ S Il — $II”.
Under Assumption 3.3, Sy satisfies

S1 =(F(x) = F(R)'(x = &)

n

+ ) ((AVg(x) — LiVig®)x — %)
i=1

+Hg(x) — g®)(Ai — A))

—_

>olx — X7 + ) M(ER) — g(x) — VigX)(X — x))
i=1

+ ) hi(gx) — g(X) — Vig®)x — X))
i=1
>olx - X|* > 0. (B.1)

Next, by considering the variational inequality F(¢)"(H(¢)
— @) =F(¢)'(H(¢) — H(¢)) = 0, S, satisfies

_ _ 1 _
S, > — F(¢) (H(¢) — ¢) + o — o1?
=(¢ — F(¢) — H(¢))"(H(¢) — ¢)
_ 1 _
— (¢ —H(¢))'(H(¢) — ¢) + Slo - ol

-1 -
> — (¢ — H(@))' (H(¢) — ) + Slle— oII?
-1 -
=ll¢ — H@)II* — (¢ — H(9)) (¢ — ¢) + e — 1?
1 2112
z5lle =2l (B.2)

where the second inequality follows from Lemma 2.1, and the last
inequality follows from the fact that +a"b > —Z[lal|* — |b]?
for Va,b € R". Substituting (B.1) and (B.2) into S yields that
S > ;ll¢—@ 11> This implies that S is positive definite with respect

to ¢ — ¢.
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