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a b s t r a c t

This paper studies the Nash equilibrium seeking problem for non-cooperative games subject to set
and nonlinear inequality constraints. The cost function for each player and the constrained function
are determined by all the players’ decision variables. Each player is assigned a constrained set while
all the players are subject to a coupling nonlinear inequality constraint. A continuous-time distributed
seeking algorithm using local information interaction is proposed, where the players deliver/receive
information unidirectionally over a directed network. In particular, a distributed observer is first
introduced for each player to estimate all the others’ decision variables. Then, by using these estimates,
a seeking algorithm is synthesized with a projection operator. Based on the time-scale separation
approach, it is shown that the proposed continuous-time distributed seeking algorithm guarantees
the convergence of the strategy profile to an arbitrarily small neighborhood of the generalized Nash
equilibrium satisfying a KKT condition. An illustrative example is finally presented to validate the
theoretical results.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Significant attention has been paid to the research on game
heory due to its various applications in traffic, communication
etworks, energy and other fields in recent years (Koshal, Nedić,
Shanbhag, 2016; Lei & Shanbhag, 2018; Liu, Cheng, Yu, Zhong,
Lei, 2018; Pisarski & de Wit, 2016; Shakarami, Persis, & Mon-

hizadeh, 2019; Zheng, Cai, Chen, Li, & Zhang, 2015). With the
rapid development of game theory, the Nash equilibrium seeking
in non-cooperative games is of considerable interest from both
theoretical and application perspectives (Cominetti, Facchinei, &
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Lasserre, 2012). In the general Nash equilibrium seeking problem,
each player attempts to minimize its cost function by responding
to its own and other players’ actions. This requires a fully con-
nected network such that a full observation over all the players’
actions in the network can be performed (Cominetti et al., 2012;
Contreras, Klusch, & Krawczyk, 2004). To relax this connectiv-
ity requirement, especially for a large-scale network, distributed
algorithms borrowed from the consensus idea for multi-agent
systems are proposed. In such distributed algorithms, the players
minimize their cost functions via local information interaction
with only adjacent players.

Nowadays, a variety of discrete-time distributed Nash equi-
librium seeking algorithms have been proposed. In particular, a
gossip-based methodology was developed for seeking the Nash
equilibrium of non-cooperative games in Salehisadaghiani and
Pavel (2016). Moreover, in Salehisadaghiani, Shi, and Pavel (2019),
an altering direction method of multipliers was introduced into
the distributed Nash equilibrium seeking under partial-decision
information. In Poveda, Teel, and Nesic (2015), a discrete-time
stochastic algorithm was proposed such that the players took
actions in both simultaneous and asynchronous manners. Besides,
by considering a shared affine constraint into the games, multiple
discrete-time distributed algorithms based on operator splitting
methods were proposed in Pavel (2020) and Yi and Pavel (2019a,

019b). In addition, by imposing coupling constraints of the
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verage of the decision variables, a discrete-time distributed Nash
quilibrium seeking algorithms was developed for aggregative
ames in Grammatico (2017). Furthermore, instead of the linear

or set constraint considered in the previous references, a nonlin-
ear constraint on the decision variable was taken into account
in Paccagnan, Gentile, Parise, Kamgarpour, and Lygeros (2019);
nd correspondingly, seeking algorithms were designed for the
ggregative games.
On the other hand, without necessity of determining the

tep size as done in the discrete-time seeking algorithms, var-
ous continuous-time distributed seeking algorithms have also
een proposed recently. In particular, a continuous-time semi-
ecentralized seeking algorithm was proposed for monotone
ggregative games with linear and set constraints in Persis and
rammatico (2019a). By introducing consensus-based distributed
bservers, continuous-time distributed algorithms were devel-
ped such that the Nash equilibrium was locally reached in
atliff, Burden, and Sastry (2016) and Ye and Hu (2017). More-

over, by considering decoupling nonlinear and set constraints,
continuous-time distributed gradient-based Nash equilibrium
seeking algorithms were designed for noncooperative games in
Gadjov and Pavel (2019), Lu, Jing, and Wang (2019) and Persis and
Grammatico (2019b). Furthermore, rather than the multi-player
game, the multi-cluster game was studied in Zeng, Chen, Liang,
and Hong (2019), and a continuous-time seeking strategy was
proposed therein. Nevertheless, the aforementioned continuous-
time distributed seeking algorithms are in terms of an undirected
topology, which means a synchronous bilateral interaction be-
tween adjacent players. This might not be practical in some real
applications.

In this paper, a continuous-time distributed Nash equilibrium
seeking algorithm is proposed for non-cooperative constrained
games over a directed communication topology. Each player is
assigned a cost function and a constrained set, while a nonlinear
inequality constraint is imposed on all the players’ actions repre-
sented by decision variables. The objective is to seek a generalized
Nash equilibrium which satisfies the set and inequality con-
straints such that each cost function coupled by all the decision
variables is unilaterally minimized. In particular, by developing
a distributed observer to estimate other players’ decision vari-
ables, a distributed seeking algorithm with a projection operator
is proposed. It is shown in terms of the time-scale separation
approach that, given a strong connectivity topology condition,
all the decision variables uniformly ultimately converge to an
arbitrarily small neighborhood of the generalized Nash equilib-
rium satisfying a KKT condition. Compared with the previous
continuous-time distributed seeking algorithms (Gadjov & Pavel,
2019; Lu et al., 2019; Persis & Grammatico, 2019a, 2019b; Ratliff
et al., 2016; Ye & Hu, 2017), the main contributions herein lie in
three aspects. First, this paper simultaneously considers the set
constraint and coupling nonlinear inequality constraint existing
in the general noncooperative game. To overcome the constraint
impact, a continuous-time distributed Nash equilibrium seeking
algorithm resorting to a distributed observer is proposed. Second,
instead of the impractical bidirectional interaction over the undi-
rected topology, the players deliver/receive information to/from
their neighbors unidirectionally in this paper. Such an informa-
tion interaction manner is characterized by a directed topology.
It is shown that the strong connectivity topology condition is
sufficient for seeking the generalized Nash equilibrium of interest
successfully. Last but not the least, the time-scale separation
approach is used for the convergence analysis. Specifically, it
is first shown that the distributed observer, considered as the
fast dynamics, guarantees the estimation errors converging to an
arbitrarily small neighborhood of the origin within finite time.
By using this result, it is next shown that the seeking algo-
rithm, considered as the slow dynamics, guarantees the decision
2

variables uniformly ultimately converging to an arbitrarily small
neighborhood of the Nash equilibrium of interest.

The following sections are organized as follows. Section 2
presents some useful preliminaries. Section 3 describes the game
roblem to be addressed. Section 4 introduces the main results
ncluding the seeking algorithm synthesis and the convergence
nalysis. Section 5 performs a simulation to validate the proposed
heoretical results. Section 6 draws final conclusions.

otations. In what follows, Rn denotes real vectors of dimension
, R+ denotes non-negative real numbers, In is an n × n unit
ector, 1n is an n-dimensional vector with all its entries being 1,
· ∥ denotes the Euclidean norm of a real vector or the Frobenius
orm of a real matrix, col(x1, x2, . . . , xn) = [xT1, x

T
2, . . . , x

T
n]

T ,
iag{y1, y2, . . . , yn} is a diagonal matrix with diagonal entries
eing scalars y1 to yn, sgn(y) = [sgn(y1), sgn(y2), . . . , sgn(yn)]T
or y = [y1, y2, . . . , yn]T with sgn(·) being the sign function,
nd ϑmax(·) and ϑmin(·) denote the maximum and minimum
igenvalues of a square matrix. Given a positive constant µ, the
-neighborhood around a fixed point x̄ ∈ Rn is defined by a
ompact set {x ∈ Rn

| ∥x − x̄∥ ≤ µ}. Moreover, let ∇f be
he gradient of a function f and J F be the Jacobian matrix of a
ap F .

. Preliminaries

.1. Function properties

Given a closed set Ω ⊆ Rn, a differentiable function f : Ω →

is said to be convex if (∇f (x) − ∇f (y))T (x − y) ≥ 0, ∀x, y ∈ Ω .
oreover, such f is locally θ-Lipschitz if ∥f (x)− f (y)∥ ≤ θ∥x−y∥,
x, y ∈ Ω . In addition, a map F : Rn

→ Rn is said to be
onotone over set Ω if (x − y)T (F (x) − F (y)) ≥ 0, ∀x, y ∈ Ω ,
nd F is said to be ω-strongly monotone if there exists a positive
onstant ω such that (x − y)T (F (x) − F (y)) ≥ ω∥x − y∥2, ∀x, y ∈

(Bauschke & Combettes, 2011; Facchinei & Kanzow, 2007).
ccording to Liang, Yi, and Hong (2017), a differentiable map F is
-strongly monotone over set Ω if and only if the corresponding
acobian matrix J F (x) is positive definite for each x ∈ Ω .

.2. Projection operator

A set Ω ⊆ Rn is called convex if µx1 + (1 − µ)x2 ∈ Ω for
ny x1, x2 ∈ Ω and any µ ∈ [0, 1]. Given a closed convex set

⊆ Rn, we define the projection operator PΩ (x) : Rn
→ Ω as

Ω (x) = argminω∈Ω ∥x − ω∥. Next, two useful results concerned
ith the projection operator are presented as follows.

emma 2.1 (Aubin & Cellina, 1984). Given a closed convex set
⊆ Rn, the following inequalities hold:

x − PΩ (x))T (PΩ (x) − y) ≥ 0, x ∈ Rn, y ∈ Ω, (1)

PΩ (x) − PΩ (y)∥ ≤ ∥x − y∥, x, y ∈ Rn. (2)

emma 2.2. Consider the following system:

˙ = −x + PΞ (h(x, u)), (3)

here x ∈ R and u ∈ R are the system state and input, Ξ = {ξ1 ≤

≤ ξ2} is a closed convex set, and h(x, u) is a differentiable function.
he following results hold:
1) if x(0) ∈ Ξ , then x(t) ∈ Ξ , ∀t ≥ 0, and
2) if x(0) /∈ Ξ , there exists a positive constant γ such that |x(t)| ≤

, ∀t ≥ 0.

roof. See Appendix A. ■
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emark 2.1. In terms of Lemma 2.2, it also follows that ẋ in
3) is bounded given that x is bounded and PΞ (h(x, u)) ∈ [ξ1, ξ2].
oreover, following the argument in Lemma 2.2, we can also
btain that x(t) ∈ Ξ1 = {x ≥ ξ1} or Ξ2 = {x ≤ ξ2}, ∀t ≥ 0
iven x(0) ∈ Ξ1 or Ξ2.

.3. Graph theory

The information interaction among agents is built by a topol-
gy graph G ≜ {V, E}, where the node set is defined by V ≜
1, 2, . . . , n} and the edge set is defined by E ⊆ V × V . In a
irected graph, (j, i) ∈ E means that node i has access to node j’s
nformation but not vice versa; and in such a case, node j is called
neighbor of node i. All the neighbors of node i are included in
et Ni = {j ∈ V | (j, i) ∈ E}. A path from node i to node j is
sequence of directed edges. A directed graph is called strongly
onnected if each node has a path to every other node. Moreover,
he adjacency matrix A = [aij] ∈ Rn×n associated with a directed
raph is defined such that aij = 1 if (j, i) ∈ E and aij = 0
therwise; and its Laplacian matrix L = [lij] ∈ Rn×n is defined
uch that lii =

∑n
j=1,j̸=i aij and lij = −aij for i ̸= j.

. Problem statement

Consider an n-player non-cooperative game subject to coupled
onstraints. The set of players is denoted by V = {1, 2, . . . , n}.
ach player i ∈ V is assigned a decision variable xi ∈ R and a
ost function fi(x) : Rn

→ R, where x = [x1, x2, . . . , xn]T ∈ Rn is
he strategy profile of this game. Suppose that player j’s decision
ariable is available to player i only if player j is a neighbor
f player i. In addition, consider each decision variable xi being

subject to a set constraint:

xi ∈ Ωi, (4)

where Ωi ⊂ R is a closed convex set; and the strategy profile x
is constrained by a nonlinear inequality satisfying

χ = {x ∈ Rn
|g(x) ≤ 0}, (5)

where g : Rn
→ R is the constrained function. Define Ω =

1 × Ω2 × · · · × Ωn. Then the feasible strategy set of this game
s Q = Ω ∩ χ . For notational simplicity, we just consider the
on-cooperative game with one-dimensional decision variables.
he corresponding results can be straightforwardly extended to
he higher-dimensional case with some augmented operations.

Given the aforementioned constrained non-cooperative game,
he objective herein is to develop a Nash equilibrium seeking
lgorithm such that the strategy profile reaches the generalized
ash equilibrium. For the development of the seeking algorithm,
xcept that the constrained function g is known to all the players,
ach cost function fi and constrained set Ωi are only available
o their corresponding players, while all the others, even their
eighbors, have no access to these pieces of information. First,
e formalize the definition of the generalized Nash equilibrium,
hich follows the one introduced in Cominetti et al. (2012) and
acchinei and Kanzow (2007).

efinition 3.1 (Generalized Nash Equilibrium). A strategy profile
∗

= [x∗

1, x
∗

2, . . . , x
∗
n]

T is called a generalized Nash equilibrium of
he constrained non-cooperative game if

i(x∗

i , x
∗

−i) ≤ fi(xi, x∗

−i), xi ∈ Qi(x∗

−i), (6)

where x−i = [x1, . . . , xi−1, xi+1 · · · , xn] and Qi(x∗

−i) = {xi ∈ Ωi :

g(x , x∗ ) ≤ 0}, i ∈ V .
i −i

3

Actually, the generalized Nash equilibrium is an optimal strat-
egy profile incorporated in set Q in the sense that no player can
further reduce its associated cost function by unilaterally chang-
ing its own decision variable. Moreover, to clarify the subsequent
analysis, we define two vectors

F (x) =[∇x1 f1(x), ∇x2 f2(x), . . . ,∇xn fn(x)]
T , (7)

G(x) =[∇x1g(x), ∇x2g(x), . . . ,∇xng(x)]
T . (8)

Before moving on, several fundamental assumptions associated
with the considered game are made as follows.

Assumption 3.1 (Existence Condition). The feasible strategy set Q
is non-empty, i.e., Q ̸= ∅.

Assumption 3.2 (Differentiability and Convexity). Each cost func-
tion fi(x) and the constrained function g(x) are at least twice
continuously differentiable with respect to x ∈ Rn, and they are
convex with respect to xi ∈ R for fixed x−i ∈ Rn−1.

Assumption 3.3 (Monotonicity). The map F (x) formulated in (7)
is ω-strongly monotone over Rn, and the map G(x) in (8) is
monotone over Rn.

Remark 3.1. The existence condition claimed in Assumption 3.1
guarantees the existence of the generalized Nash equilibrium
introduced in Definition 3.1 (Bazaraa, Sherali, & Shetty, 2006).
Then, the differentiable condition claimed in Assumption 3.2, also
adopted in Ye and Hu (2017), guarantees that the constrained
function g(x) and the gradient functions ∇xi fi(x) and ∇xig(x), i ∈ V
are locally θ-Lipschitz over any given closed convex set (Khalil,
2002), while the convex condition therein is a sufficient condition
for determining a KKT condition which characterizes the Nash
equilibrium of interest into an equality (Cominetti et al., 2012).
Under Assumption 3.3, it is trivial to show that J F (x) is posi-
tive definite and JG(x) is positive semi-definite. This property
is useful in the subsequent convergence analysis. Furthermore,
according to Liang et al. (2017), the strong monotonicity of F (x)
guarantees the uniqueness of the Nash equilibrium of interest.

In order to show the convergence of the strategy profile
to the generalized Nash equilibrium, we first characterize the
Nash equilibrium of interest. Intuitively, a KKT condition for
the considered game is determined in the following theorem,
which indicates that the strategy profile satisfying this KKT con-
dition is exactly the generalized Nash equilibrium introduced in
Definition 3.1.

Theorem 3.1 (Cominetti et al., 2012). Suppose that Assumptions 3.1
–3.3 hold. The strategy profile x∗ is a generalized Nash equilibrium
in the sense of Definition 3.1 if and only if there exist optimal
multipliers λ∗

i ≥ 0, i ∈ V such that the following KKT condition
holds:

x∗

i − PΩi (x
∗

i − ∇xi fi(x
∗) − λ∗

i ∇xig(x
∗)) = 0, (9a)

g(x∗) ≤ 0, λ∗

i g(x
∗) = 0, i ∈ V. (9b)

4. Main results

In this section, a distributed seeking algorithm is developed
such that the strategy profile x converges to the generalized
Nash equilibrium introduced in Definition 3.1. A directed graph is
applied to describe the information exchange relationship among
players. Introducing a distributed observer, we first propose a
continuous-time distributed seeking algorithm for the studied
non-cooperative game subject to both the set and inequality
constraints. Then, the system stability is analyzed by using the
time-scale separation approach.
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.1. Seeking algorithm synthesis

To guarantee that the strategy profile x converges to the gener-
lized Nash equilibrium, a seeking algorithm using the projection
perator is proposed as follows:

ẋi = − xi + PΩi (xi − ∇xi fi(x) − λi∇xig(x)), (10a)
˙ i = − λi + PR+ (λi + g(x)), i ∈ V, (10b)

where xi(0) ∈ R and λi(0) ≥ 0. In terms of Lemma 2.2 and
Remark 2.1, it is not hard to show that |xi(t)| ≤ γ and λi(t) ≥ 0,
∀t ≥ 0 given λi(0) ≥ 0 for i ∈ V , where γ > 0 is a bound
parameter. Next, a lemma characterizing the equilibrium x̄ =

x̄1, x̄2, . . . , x̄n]T and λ̄ = [λ̄1, λ̄2, . . . , λ̄n]
T of algorithm (10) is

resented as follows.

emma 4.1. For an equilibrium (x̄, λ̄) of algorithm (10), x̄ is the
eneralized Nash equilibrium introduced in Definition 3.1.

roof. In terms of (10b), ˙̄λi = 0 implies that

¯ i = PR+ (λ̄i + g(x̄)), i ∈ V.

f λ̄i = 0, then PR+ (g(x̄)) = 0. This implies that g(x̄) ≤ 0. If λ̄i > 0,
hen λ̄i + g(x̄) > 0. This implies that g(x̄) = 0. It thus follows that

¯ ig(x̄) = 0, g(x̄) ≤ 0, i ∈ V. (11)

ext, by considering the fact that λ̄i ≥ 0, it follows from (10a)
hat each x̄i satisfies

¯i−PΩi (x̄i − ∇xi fi(x̄)−λ̄i∇xig(x̄)) = 0, i ∈ V. (12)

y comparing (11) and (12) with (9), it is evident that equilib-
ium (x̄, λ̄) satisfies the KKT condition (9). Hence, according to
Theorem 3.1, x̄ is exactly the generalized Nash equilibrium in the
sense of Definition 3.1. ■

It is worthwhile to point out that, the seeking algorithm (10)
is feasible under a fundamental condition that each player’s de-
cision variable is accessible to every other player. In other words,
the seeking algorithm (10) is in a centralized manner. To address
the game problem introduced in Section 3 in a distributed fash-
ion, motivated by Ratliff et al. (2016) and Ye and Hu (2017), the
following distributed observer is proposed for i ∈ V:{

˙̂xij =−η

[∑
k∈Ni

aik(x̂ij−x̂kj)+aij(x̂ij−xj)
]
, j∈V\{i},

x̂ii = xi,
(13)

where x̂ij denotes the player i’s estimate on the jth decision
variable for j ∈ V , η is a positive tunable parameter, and aij
is the (i, j)-entry of the adjacency matrix A associated with the
underlying graph G. Note that the true xj is just available to the
neighbors of agent j (i.e., aij ̸= 0) in the distributed observer (13).
However, unlike Ye and Hu (2017); Ratliff et al. (2016) in terms
of an undirected topology, the distributed observer (13) is based
on a directed topology. This means that the information delivery
therein is unidirectional.

Next, define the estimate vector x̂i =[x̂i1, x̂i2, . . . , x̂in]T for i ∈ V
and introduce a closed convex set Λ = {λ ∈ R | 0 ≤ λ ≤

λmax}, where λmax is a given positive constant. By implementing x̂i
instead of the unavailable strategy profile x, the seeking algorithm
(10) is revised as

ẋi = − xi + PΩi (xi − ∇xi fi(x̂i) − λi∇xig(x̂i)), (14a)

λ̇i = − λi + PΛ(λi + g(x̂i)), i ∈ V, (14b)

where xi(0) ∈ R and λi(0) ∈ Λ. In terms of Lemma 2.2, the
seeking algorithm (14) ensures that each decision variable is
4

bounded by |xi(t)|<γ , ∀t≥0 with a bound parameter γ > 0, and
that each multiplier λi(t) ∈ Λ, ∀t ≥ 0 given λi(0) ∈ Λ. Note from
the seeking algorithm (14) that, player i updates its individual
variables xi and λi using its private information including the
cost function fi and the constrained set Ωi, as well as x̂i from the
distributed observer (13), whereas the others’ private information
is unnecessary.

4.2. Convergence analysis

In this subsection, we show that the seeking algorithm (14)
drives the strategy profile to an arbitrarily small neighborhood
of the generalized Nash equilibrium introduced in Definition 3.1
under a strong connectivity topology condition. The proof is in
terms of the time-scale separation approach. The underlying idea
behind this approach lies in that the distributed observer (13) and
the seeking algorithm (14) are considered as a composite system
with fast dynamics (13) and slow dynamics (14). By following
this idea, the analysis can be divided into two parts. The first
one focuses on the initialized time interval [0, T1]. In particular,
Theorem 4.1 shows that the distributed observer (13) guarantees
the estimated error converging to a µ-neighborhood of the origin
in finite time T1 and remaining within it afterwards. Such a
µ-neighborhood can be made arbitrarily small by sufficiently
increasing the parameter η. Using this result, Theorem 4.2 in the
second part for [T1, ∞) shows that the strategy profile x driven
by the seeking algorithm (14) converges to a small neighborhood
of the generalized Nash equilibrium of interest.

First, define the estimated error x̃i = x̂i − x for i ∈ V and
the column stack vector x̃ = col(x̃1, x̃2, . . . , x̃n). Also, define x̃∗j =

col(x̃1j, . . . , x̃(j−1)j, x̃(j+1)j, . . . , x̃nj) for j ∈ V . It follows from (13)
that it satisfies the following dynamics:

˙̃x∗j = − η(Ljx̃∗j + L̄jx̃∗j) − ẋj1n

= − ηMjx̃∗j − ẋj1n, j ∈ V, (15)

where Lj is the Laplacian matrix L of graph G without the jth row
and jth column, L̄j = diag{a1j, . . . , a(j−1)j,

a(j+1)j, . . . , anj}, and Mj = Lj + L̄j. Given j ∈ V , if graph G
is strongly connected, it is obvious that player j has a directed
path to any other player. In such a case, according to Qu (2009,
Theorem 4.25), matrix Mj, j ∈ V is non-singular, and there exists
a positive definite diagonal matrix Ξj = diag{ξ1j, . . . , ξ(j−1)j,

ξ(j+1)j, . . . , ξnj} such that matrix Υj = ΞjMj + MT
j Ξj is symmet-

ric and positive definite. Moreover, it follows from Lemma 2.2
that, by using the seeking algorithm (14), there exists a positive
constant γ̄ such that maxj∈V |ẋj(t)| < γ̄ , ∀t ≥ 0.

The following theorem shows that the estimated error x̃ can
be driven to a neighborhood of the origin in finite time and
such a neighborhood can be made arbitrarily small by choosing a
sufficiently large parameter η.

Theorem 4.1. Consider the distributed observer (13). Suppose that
Assumption 3.1–3.3 hold, and the underlying graph G is strongly
connected. Given any finite time T1 > 0, the estimated error x̃
converges to a µ-neighborhood of the origin within T1, where

µ =

√ 1
β3

[
e−

ηβ1T1
2 (

n∑
i=1

x̃∗j(0)TΞjx̃∗j(0))
1
2 +

β2

ηβ1

]
, (16)

ith
1 = minj∈V{ϑmin(Υj)}/maxj∈V{ϑmax(Ξj)}, β2 = 2

√
2γ̄ maxj∈V

{
∑n

i=1,i̸=j ξij}/minj∈V{ϑmin(Ξj)} and β3 =
√
minj∈V{ϑmin(Ξj)}.
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roof. Assign a Lyapunov function W =
∑n

j=1 x̃
T
∗jΞjx̃∗j. Its deriva-

ive along (15) satisfies

˙ = −η

n∑
j=1

x̃T
∗j(ΞjMj+MT

j Ξj)x̃∗j+2
n∑

j=1

x̃T
∗jΞjẋj1n−1

≤ − η

n∑
j=1

x̃T
∗jΥjx̃∗j + 2

n∑
j=1

( n∑
i=1,i̸=j

ξij

)
∥x̃∗j∥|ẋj|

≤ − η

n∑
j=1

ϑmin(Υj)∥x̃∗j∥
2
+2γ̄

n∑
j=1

( n∑
i=1,j̸=j

ξij

)
∥x̃∗j∥

≤ − ηβ1W + β2
√
W . (17)

hen, take V =
√
W . When W ̸= 0, it follows from (17) that

V̇ = −
ηβ1

2
V +

β2

2
. (18)

hen W = 0, the Dini derivative of V satisfies D+V ≤ β2/2.
ence, D+V satisfies (18) all the time. In terms of Comparison

Principle (Khalil, 2002), it follows that

V (t) ≤ e−
ηβ1
2 tV (0) + (1 − e−

ηβ1
2 t )

β2

ηβ1
. (19)

his implies that V (t) ≤ e−ηβ1T1/2V (0) + β2/(ηβ1), t ≥ T1 for any
T1 > 0. By considering the definition of V , this further implies
that ∥x̃(t)∥ ≤ µ, t ∈ [T1, ∞). ■

Remark 4.1. In fact, β1, β2 and β3 given in (16) are related
o the edge weights and initial decision variables x̂i(0). Hence,
iven a time-invariant network topology and the initial deci-
ion variables, β1, β2 and β3 are determined accordingly as con-
tants. It then follows from (16) that the µ-neighborhood can
be made sufficiently small if a sufficiently large parameter η is
chosen beforehand. In addition, if we extend the finite time T1
to infinity, it further follows from the analysis in Theorem 4.1
that the estimated error x̃ is bounded and ultimately converges
to set Z =

{
x̃ ∈ Rn×n

| ∥x̃∥ ≤ β2/(ηβ1β3)
}
. Note that

a sufficiently large parameter η also guarantees a sufficiently
small ultimate convergence bound. This effectively improves the
estimation accuracy.

In addition, based on Lemma 2.2, each decision variable xi,
i ∈ V driven by the seeking algorithm (14) cannot escape to
infinity. Hence, we just need to study the convergence of the
strategy profile for the time interval [T1, ∞).

Define x̂ = col(x̂1, x̂2, . . . , x̂n) and Γ = diag{λ1, λ2, . . . , λn},
and introduce

φ =

[
x
λ

]
, F̄ (φ) =

[
F (x) + Γ G(x)

−g(x)1n

]
, (20a)

Φ = Ω × Λn, H(φ) = PΦ (φ − F̄ (φ)), (20b)

where Λn
= Λ×Λ×· · ·×Λ, and F (x) and G(x) have been defined

in (7) and (8). Thus, the seeking algorithm (14) can be rewritten
in the following compact form:

φ̇ = −φ + PΦ (φ − F̄ ′(x̂, λ)), (21)

where F̄ ′(x̂, λ) is a column stack vector composed in sequence by
∇xi fi(x̂i) + λi∇xig(x̂i) and −g(x̂i), i ∈ V . We further introduce a
function:

S = (F̄ (φ) − F̄ (φ̄))T (φ − H(φ)) +
1
2
∥φ − φ̄∥

2, (22)

here φ̄ = col(x̄, λ̄), and x̄ and λ̄ have been introduced in
emma 4.1. Before presenting the main result, we propose a
roposition to indicate the positive definiteness of function S.
5

Proposition 4.1. Under Assumptions 3.1–3.3, function S in (22) is
positive definite with respect to φ − φ̄.

roof. See Appendix B. ■

In terms of Theorem 4.1 and Proposition 4.1, we next present
he convergence result of the seeking algorithm (14) in the fol-
owing theorem.

heorem 4.2. Consider the distributed observer (13) and the seek-
ing algorithm (14). Suppose that Assumptions 3.1–3.3 hold, and the
underlying graph G is strongly connected. Then the strategy profile
x ultimately converges to a µ′(µ)-neighborhood of the generalized
Nash equilibrium in the sense of Definition 3.1.

Proof. Note from the analysis of Lemma 4.1 that λ̄ conforms
o (11). It is trivial to show that there always exists a λ̄ such
hat each λ̄i ∈ Λ given λmax > 0. This implies that φ̄ = H(φ̄).
ssign a Lyapunov function in the form of (22). According to
roposition 4.1, S is positive definite with respect to φ − φ̄. Its
erivative along (21) satisfies

˙ =(F̄ (φ) − F̄ (φ̄) + J F (φ)(φ − H(φ)) + φ − φ̄)T (−φ)

+ PΦ (φ − F̄ ′(x̂, λ))

=−(F̄ (φ)−F̄ (φ̄)+J F (φ)(φ−H(φ))+φ−φ̄)T (φ

− H(φ))+(F̄ (φ)−F̄ (φ̄)+J F (φ)(φ−H(φ))+φ−φ̄)T

· H(φ) − PΦ (φ − F̄ ′(x̂, λ)). (23)

n view of Lemma 2.2, the seeking algorithm (14) guarantees
hat there exists a positive constant γ̄1 such that |x(t)| ≤ γ̄1,
t ≥ 0. This, according to Assumption 3.2, guarantees that the
onstrained function g(x), and the gradient functions ∇xi fi(x) and
xigi(x) are locally θ-Lipschitz over this domain. It then follows
rom Theorem 4.1 that ∥x̃(t)∥ ≤ µ, ∀t ≥ T1. Thus, in terms of
emma 2.1, it follows that for t ≥ T1,

∥ − H(φ) + PΦ (φ − F̄ ′(x̂, λ))∥ ≤ ∥F̄ (φ) − F̄ ′(x̂, λ)∥
n∑

i=1

(
|∇xi fi(x)−∇xi fi(x̂i)|+|λi(∇xig(x)−∇xig(x̂i))|

+ |g(x) − g(x̂i)|
)

√
2(2 + λmax)θ∥x̃∥ ≤ κµ,

here κ =
√
2(2 + λmax)θ . Moreover, by considering

ssumption 3.2 and the facts that |x| ≤ γ̄1 and λi ∈ Λ, i ∈ V ,
there exists a positive constant ϖ such that

∥(F̄ (φ) − F̄ (φ̄) + (φ − H(φ))J F (φ))T (φ − φ̄)∥ ≤ ϖ.

ccordingly, for t ≥ T1, Ṡ(t) satisfies

˙ ≤ − (F̄ (φ) − F̄ (φ̄) + J F̄ (φ)(φ − H(φ)) + φ − φ̄)T

· (φ − H(φ)) + κϖµ

= − (F̄ (φ) − F̄ (φ̄) + J F̄ (φ)(φ − H(φ)) + φ − φ̄)T

· (φ − φ̄ − H(φ) + φ̄) + κϖµ

= − (φ − H(φ))TJ F̄ (φ)(φ − H(φ)) − ∥φ − φ̄∥
2

− F̄ (φ) − F̄ (φ̄)T (φ − φ̄) − (H(φ) − φ̄)T F̄ (φ̄)

− (φ − F̄ (φ) − H(φ))T (H(φ) − φ̄)

+ (φ − H(φ) + φ − φ̄)T (H(φ) − φ+φ−φ̄)+κϖµ. (24)

ased on Assumption 3.3, it is trivial to show that the Jacobian
atrix J F̄ (φ) is positive semi-definite. This implies that −(φ −

(φ))TJ F̄ (φ)(φ − H(φ)) ≤ 0. It then follows from the analysis
n Proposition 4.1 that −(F̄ (φ) − F̄ (φ̄))T (φ − φ̄) ≤ −ω∥x − x̄∥2.
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Fig. 1. Fixed topology among players.

oreover, constrained by the variational inequality (Facchinei &
anzow, 2007), we have that −(H(φ) − φ̄)T F̄ (φ̄) ≤ 0. Further-
ore, in terms of Lemma 2.1, we have that −(φ − F̄ (φ) − H(φ))

H(φ) − φ̄) ≤ 0. It then follows that, for t ≥ T1, Ṡ(t) satisfies

˙ ≤ − ω∥x − x̄∥2
− ∥φ − H(φ)∥2

+ κϖµ

≤ − ω∥x − x̄∥2
+ κϖµ. (25)

This implies that Ṡ is negative definite provided that ∥x − x̄∥ >

κϖµ/ω. Consequently, according to Khalil (2002, Theorem
.18) it can be concluded that x − x̄ is bounded and ultimately
onverges to set Z̄ = {x ∈ Rn

| ∥x∥ ≤
√

κϖµ/ω}. Since it
as been shown in Lemma 4.1 that x̄ = x∗, it finally follows

that x ultimately converges to the µ′-neighborhood of x∗ with
µ′

=
√

κϖµ/ω. ■

emark 4.2. According to the expression of parameter µ′ in the
analysis of Theorem 4.2, the convergence accuracy of the strategy
profile x to the generalized Nash equilibrium is determined by pa-
rameter µ. As shown in Theorem 4.1, parameter µ can be driven
arbitrarily small by specifying a sufficiently large parameter η.
Towards this end, increasing parameter η enables the strategy
profile x to converge to an arbitrarily small neighborhood of the
generalized Nash equilibrium.

5. Simulations

In this section, an example is given to verify the effectiveness
of the proposed distributed seeking algorithm.

Suppose that there is a non-cooperative game consisting of six
players. The cost function fi(x) assigned to each player is fi(x) =

if (x), where m1 = 1, m2 = 5, m3 = 2, m4 = 3, m5 = 2, m6 = 4
nd

(x) =5x21 + 2x1x2 + 5x22 + x2x3 + x2x5 +
5
2
x23 + x3x4

+ x24 + 2x4x5 + 3x25 + 3x5x6 + x26 − 2x1+3x2
− 8x3 − 6x4 + 10x5 − x6.

The network topology among these six players is illustrated in
Fig. 1, which can be examined to be strongly connected. The
parameters in the seeking algorithms are chosen as η = 100
and λmax = 10. Consider that the strategy profile is subject to
a set constraint: Ωi = {|xi| ≤ 1}, i ∈ V and an inequality
constraint: g(x) =

∑6
i=1 x

2
i +

∑5
i=1 xixi+1 − 4 ≤ 0. It can

be calculated that the generalized Nash equilibrium is (x∗)1 =

[0.2708, −0.3542, 1, 0.7, −1, 1]T . Fig. 2 shows that each decision
variable driven by the seeking algorithm (14) converges to the
small neighborhood of the generalized Nash equilibrium.

6. Conclusion

This paper investigates the Nash equilibrium seeking problem
for non-cooperative games subject to set and nonlinear inequal-
ity constraints. Each player is assigned a cost function and a
 S

6

Fig. 2. Trajectories of decision variables with set and inequality constraints.

constrained set, while all the cost functions, as well as the con-
strained function, are coupled by all the decision variables. A
distributed observer is first developed such that each player
obtains all others’ decision variables. Using these estimates, we
then propose a continuous-time seeking algorithm with a projec-
tion operator. By using the time-scale separation approach, it is
proven that the proposed seeking algorithm achieves the conver-
gence of the strategy profile to an arbitrarily small neighborhood
of the generalized Nash equilibrium satisfying a KKT condition.

Appendix A. Proof of Lemma 2.2

First, we prove the invariant set of Ξ by contradiction. Sup-
pose that this is not true. In such a case, based on the continuity
of x, there exists a time t ′ such that x(t ′) = ξ1 with ẋ(t ′) < 0 or
x(t ′) = ξ2 with ẋ(t ′) > 0. Considering the projection operator, we
have that ξ1 ≤ PΞ (h(x, u)) ≤ ξ2. Hence, it follows from (3) that
there exists a constant ξ ∈ [ξ1, ξ2] such that

ẋ(t ′) = −ξ1 + ξ ≥ 0 or ẋ(t ′) = −ξ2 + ξ ≤ 0. (A.1)

his brings in contradiction. Therefore, given x(0) ∈ Ξ , it follows
hat x(t) ∈ Ξ , ∀t ≥ 0.

Next, we focus on the boundedness of xwhen x(0) /∈ Ξ . Assign
positive function W = x2/2. Its derivative along (3) satisfies

˙ ≤ −2W +
√
2W ξ̄ , (A.2)

where ξ̄ = max{|ξ1|, |ξ2|}. Take V =
√
W . It then follows that

its Dini derivative satisfies D+V ≤ −V +
√
2ξ̄ /2. According to

omparison Principle (Khalil, 2002), it follows that

(t) ≤ e−tV (0) + (1 − e−t )

√
2
2

ξ̄ ≤ γ , (A.3)

where γ =max{V (0),
√
2ξ̄ /2}. This completes the proof.

Appendix B. Proof of Proposition 4.1

Note from the analysis of Lemma 4.1 that λ̄ conforms to (11).
hen g(x̄) = 0, λ̄i > 0 can be specified arbitrarily. In such a case,

here always exists a λ̄i ∈ Λ no matter which λmax is chosen
s. When g(x̄) < 0, it follows from (11) that λ̄i = 0, making
o difference to the choice of λmax. Therefore, given λmax > 0,
here must exist λ̄ such that each λ̄i ∈ Λ. This further implies
hat φ̄ = H(φ̄). In such a case, according to Lemma 2.1, S satisfies
= S1 + S2, where

=(F̄ (φ) − F̄ (φ̄))T (φ − φ̄),
1
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2 = − (F̄ (φ) − F̄ (φ̄))T (H(φ) − φ̄) +
1
2
∥φ − φ̄∥

2.

nder Assumption 3.3, S1 satisfies

1 =(F (x) − F (x̄))T (x − x̄)

+

n∑
i=1

(
(λi∇xig(x) − λ̄i∇xig(x̄))(xi − x̄i)

+(g(x) − g(x̄))(λi − λ̄i)
)

≥ω∥x − x̄∥2
+

n∑
i=1

λi(g(x̄) − g(x) − ∇xig(x)(x̄i − xi))

+

n∑
i=1

λ̄i(g(x) − g(x̄) − ∇xig(x̄)(xi − x̄i))

≥ω∥x − x̄∥2
≥ 0. (B.1)

Next, by considering the variational inequality F̄ (φ̄)T (H(φ)
− φ̄) = F̄ (φ̄)T (H(φ) − H(φ̄)) ≥ 0, S2 satisfies

S2 ≥ − F̄ (φ)T (H(φ) − φ̄) +
1
2
∥φ − φ̄∥

2

=(φ − F̄ (φ) − H(φ))T (H(φ) − φ̄)

− (φ − H(φ))T (H(φ) − φ̄) +
1
2
∥φ − φ̄∥

2

≥ − (φ − H(φ))T (H(φ) − φ̄) +
1
2
∥φ − φ̄∥

2

=∥φ − H(φ)∥2
− (φ − H(φ))T (φ − φ̄) +

1
2
∥φ − φ̄∥

2

≥
1
4
∥φ − φ̄∥

2, (B.2)

here the second inequality follows from Lemma 2.1, and the last
nequality follows from the fact that ±aTb ≥ −

1
4∥a∥

2
− ∥b∥2

or ∀a, b ∈ Rn. Substituting (B.1) and (B.2) into S yields that
S ≥

1
4∥φ−φ̄∥

2. This implies that S is positive definite with respect
to φ − φ̄.
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