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ABSTRACT

A key challenge of big data analytics is how to collect a large vol-
ume of (labeled) data. Crowdsourcing aims to address this challenge
via aggregating and estimating high-quality data (e.g., sentiment
label for text) from pervasive clients/users. Existing studies on
crowdsourcing focus on designing new methods to improve the
aggregated data quality from unreliable/noisy clients. However,
the security aspects of such crowdsourcing systems remain under-
explored to date. We aim to bridge this gap in this work. Specifically,
we show that crowdsourcing is vulnerable to data poisoning attacks,
in which malicious clients provide carefully crafted data to corrupt
the aggregated data. We formulate our proposed data poisoning
attacks as an optimization problem that maximizes the error of
the aggregated data. Our evaluation results on one synthetic and
two real-world benchmark datasets demonstrate that the proposed
attacks can substantially increase the estimation errors of the ag-
gregated data. We also propose two defenses to reduce the impact
of malicious clients. Our empirical results show that the proposed
defenses can substantially reduce the estimation errors of the data
poisoning attacks.
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1 INTRODUCTION

Background and Motivation: A well-known challenge for big
data analytics is that its success highly relies on a large amount
of (labeled) data. Crowdsourcing aims to address this challenge by
significantly reducing the labeling cost. However, since individuals
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may make mistakes, a common practice is to hire multiple workers
for the same task and then obtain high-quality aggregated data.
Specifically, a data requester (called central server in this paper)
has a set of items/tasks. The server distributes the items to some
workers; each worker provides a value for each item that is allocated
to him/her; and the server estimates an aggregated value for each
item using the workers’ values. For instance, the items could be
some text documents and the server aims to estimate a numeric
value (e.g., a number between -100 and 100) for each document.

Although crowdsourcing holds a great potential to solve the
labeling challenges in big data analytics, a critical challenge that
affecting its future large-scale adoption stems from the fact that
the data provided by workers in many crowdsourcing applications
are noisy and unreliable. To extract high-quality information from
unreliable and noisy values provided by workers in crowdsourc-
ing, a widely adopted approach is the so-called truth discovery
methods [10, 12, 18, 19, 25-29, 34, 35, 40, 41, 48-50]. Generally
speaking, the truth discovery methods cover a family of algorithms
that perform weighted aggregation of worker information based
on the quality of each worker. Specifically, in many real-world
crowdsourcing applications, some workers may provide biased or
incorrect values for items due to various reasons, e.g., lack of ef-
fort, lack of expertise, etc. To handle unreliable and noisy worker
information, state-of-the-art truth discovery methods (e.g., the con-
flict resolution on heterogeneous data (CRH) [26, 29], Gaussian
truth model (GTM) [49], etc.) jointly estimate workers’ reliability
measured by certain uncertainty metrics (e.g., variance, etc.) and
use these reliability metrics as weights in aggregating the values
provided by the workers for each item. The rationale behind the
truth discovery methods is simple: if a worker does not have a large
deviation from the majority of the workers very often, then this
worker is more likely to be reliable. Further, if a piece of informa-
tion is provided by reliable workers, then this information is more
likely to be correct and should be assigned a larger weight in the
aggregation.

It is worth noting that, to date, most algorithms in the truth
discovery family are based on the assumption that all workers are
benign and the unreliable values from the workers are caused by
unavoidable randomness in the nature. Unfortunately, in the pres-
ence of malicious workers who could provide carefully crafted values
to the server (aka data poisoning attacks), recent studies have found
that existing truth discovery methods could perform rather poorly
(see, e.g., [31, 32]). We note that, although these results exposed
the vulnerability of truth discovery methods, they remain mostly
limited to crowdsourcing applications with categorical labels (i.e.,
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discrete labels in multiple-choice surveys, etc.). So far, research
results on data poisoning attacks and defense for crowdsourcing
with continuous labels are still quite limited. However, crowdsourc-
ing applications with continuous labeling are prevalent in practice
(for example, the temperature values in the crowdsourcing-based
weather reporting are continuous). In light of the growing impor-
tance of crowdsourcing applications, there is a compelling need to
investigate and understand the data poisoning attacks and defense
for continuous-labeled crowdsourcing systems.

Our work: In this paper, we aim to bridge this gap and show that
truth discovery methods are vulnerable to data poisoning attacks,
in which an attacker injects malicious workers to a crowdsourcing
system and the malicious workers provide carefully crafted values
to corrupt the truth discovery system. In particular, our data poi-
soning attacks can increase the estimation errors of the aggregated
values substantially.

Toward this end, we formulate our data poisoning attacks for
truth discovery methods as an optimization problem, whose objec-
tive function is to maximize the estimation errors of the aggregated
values for the attacker-chosen targeted items and whose variables
are the values provided by the malicious workers. In particular,
our optimization problem is bi-level, which is NP-hard and chal-
lenging to solve exactly. We address the challenge via iteratively
solving the upper-level and lower-level subproblems in our bi-level
optimization problem via a projected gradient ascent method.

We evaluate our data poisoning attacks using one synthetic
dataset and two well-known benchmark datasets in the crowd-
sourcing community. For instance, in one benchmark dataset called
Emotion, the central server aims to estimate the sentiment values
(ranging from -100 to 100) for 700 documents from 38 workers,
where each document is allocated to 10 workers. To show the ef-
fectiveness of our data poisoning attacks on the truth discovery
algorithms, we use two state-of-the-art methods from this family
called Conflict Resolution on Heterogeneous Data (CRH) and Gauss-
ian Truth Model (GTM) as examples. We show that our attacks can
substantially increase the average estimation error. For instance,
on the sentiment estimation dataset, our attack can increase the
average estimation error of the sentiment values to 93.69 when 10%
of workers are malicious under the CRH model.

We also propose two defense mechanisms to mitigate our data
poisoning attacks, namely Median-of-Weighted-Average (MWA) and
Maximize Influence of Estimation (MIE). In the MWA defense, the
server first partitions the workers who provide values for a given
item into groups, computes the weighted average in each group,
and then estimates the median of the weighted average among
the groups as the final aggregated value for the item. Note that in
MWA, we considers all workers to estimate the aggregated values,
though the impact of the malicious workers is mitigated by robust
aggregation. By contrast, in MIE, we use an influence function to
identify the potential malicious workers and remove them before
estimating the aggregated values. Our empirical results show that
our defenses can substantially reduce the estimation errors of our
data poisoning attacks.

Our contributions in this paper are summarized as follows:

e We propose data poisoning attacks to crowdsourcing, which
can be formulated as a bi-level optimization problem. Due
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to the NP-hardness of the problem, we propose an efficient
algorithm that achieves competitive results.

We evaluate our attacks on three datasets and show that our
attacks can increase the estimation errors substantially.

o We propose two defenses to mitigate our attacks. Our exper-
imental results demonstrate that the proposed defenses can
effectively reduce the estimation errors.

2 PRELIMINARIES AND RELATED WORK

In this section, we first provide an overview and some necessary
preliminaries of crowdsourcing and truth discovery methods, using
two state-of-the-art truth discovery methods called Conflict Resolu-
tion on Heterogeneous Data (CRH) [26, 29] and Gaussian Truth Model
(GTM) [49] as examples. Then, we provide an overview on data
poisoning attacks, which put our work in comparative perspectives.
Table 1 lists the key notation used in this paper.

Table 1: Summary of key notation.

Notation Definition
I/|T| Set/number of items
UuU Set of normal/malicious workers
M Set of all workers, M = U U ’FL{V
x;‘/xif‘ Value of normal/malicious worker u/# on item i
x}/x} Aggregated value for item i before/after attack
wy/wg Weight of normal/malicious worker u/i
al/ aﬁ Variance of normal/malicious worker u/u

U;/ ’il: Set of normal/malicious workers who provide values for item i

I,/ 1 Set of items rated by normal/malicious worker u/u

2.1 The Truth Discovery Methods: A Primer

In this subsection, we provide an overview on the family of truth
discovery methods for crowdsourcing. In most crowdsourcing sys-
tems, there is a central server performing data aggregation and there
are some clients called workers. We denote the set of workers as U.
The server has a set of items J and aims to estimate a certain value
for each item based on the input from the workers. In this work,
we focus on the cases where the value to be estimated is continuous.
For instance, the items could be a set of text documents and the
server aims to estimate a numeric value for each document from
the workers. The server assigns each item to a subset of workers.
We denote by 7, the set of items that are allocated to worker u.
Moreover, we denote by x¥ the value that the worker u provides
for item i, where u € Y and i € 1,,.

To find reliable information among unreliable data, a naive ap-
proach is majority voting or taking the average of the values pro-
vided by workers. A major limitation of these methods is that they
do not take the quality/reliability of workers into consideration.
In practice, the quality of different workers varies. To address this
challenge, the truth discovery approaches are proposed to auto-
matically jointly estimate the quality of workers while performing
information aggregation. The rationale behind the truth discover
methods is to characterize the reliability of a worker as a weight.
If a worker has a smaller weight, then all of its provided values
are less reliable. To illustrate the basic idea of the truth discovery
methods, in what follows, we use two state-of-the-art algorithms
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Algorithm 1 The CRH framework [26, 29].

Input: Values from workers x;‘ forueU,icl,.
Output: Aggregated values X* and worker weights W.
1: Server initializes the worker weights.
2: while the convergence condition is not satisfied do
3. Server updates the aggregated value of each item according
to Eq. (2).
4 Server updates the weight of each worker according to
Eq. (3).
5: end while
6: return X* and W.

in this family that are widely adopted in crowdsourcing systems
as concrete examples: i) conflict resolution on heterogeneous data
(CRH) [26, 29] and ii) Gaussian truth model (GTM) [49].

2.1.1  The Conflict Resolution on Heterogeneous Data Model (CRH).
CRH, a state-of-the-art truth discovery method, jointly estimates
the aggregated values of items and the weights of workers. In
particular, CRH formulates the estimations of the aggregated values
and worker weights as the following optimization problem:

: * _ u x
i FOXW) = D car ™ D e, 6t )

s.t. Zue(u exp(—wy) =1,

where X* = {xl.*}iej is the set of aggregated values for all the

1)

items, W = {wy }, cqq is the set of weights for all the workers, wy,
is weight for worker u, d(-) is a function to measure the distance
between a worker’s value of an item and the item’s aggregated
value, which reflects the reliability of this particular worker. In
our experiments, we use the square distance function. CRH solves
the optimization problem by iteratively alternating between the
following two steps:

Step 1 (Estimate the aggregated values): In this step, the work-
ers’ weights W are fixed, and the aggregated value for item i is
updated as follows:

* _ Zueﬂi Wux?

oo Sucth M @
! ZuE'Z/(i Wy

where U; is the set of workers who provide values for item i.

Step 2 (Update worker weights): Next, the aggregated values
X* are fixed, and the weight of worker u is updated as follows:

Skeu ier, dixf,x})
Lier, dxj'.x})

It can be seen from (3) that, the smaller the distance d(x}', x;*),
the larger the weight of worker u (i.e., more reliable). We can use
the block coordinate descent method [3] to iteratively update the
above two-step procedure until some convergence criterion is met.
Algorithm 1 shows the CRH framework. In this paper, we assume

that all workers are given equal initial weights in the CRH method.
2.1.2  The Gaussian Truth Model (GTM). GTM model is a Bayesian

probabilistic model designed for numeric data in truth discovery.
In GTM, the reliability of a worker are captured by a variance
parameter. Intuitively, a worker with larger variance is more likely
to provide inaccurate values that deviate more from the truth. The

®)

wy = log
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GTM model first normalizes all input values to its z-scores, then
tries to solve the following optimization problem:

. * B
)r(rllr;)f(X ,Q) o« —Zue(u (Z(a +1)logoy, + ;) -

u

(x} = po)? (xf! = x})?
Zie[ 20’5 _ZiEIZuE‘L{i lOgO’u * 20—5 ’
(4)

where Q = {aﬁ}u cqq is the set of variances for all the workers,
o2 is the variance of worker u, yig and crg are prior parameters
and a and f are hyper-parameters. The GTM model leverages
the EM algorithm [11] which contains the following expectation
step (E-step) and maximization step (M-step) to iteratively update

aggregated values and variance parameters of workers’:

E-step (Estimate the aggregated values): In this step, the work-
ers’ variances are fixed, and the aggregated value for item i is

computed by solving i—{ = 0, which yields:

H xit

O,_g + ZuE‘L{i O._LZ

* 0 u
xi = 1 + Z 1 (5)

%2 uel; o2

M-step (Update worker variances): In this step, the aggregated
values X* are fixed, and the variance of worker u can be calculated

by solving % = 0, which yields:

o 2B+ Tier, () —x})?
ok = , ©)

2@+ 1)+ |1y
where |7;,| is the number of values provided by worker u. The
EM algorithm alternates between the above two steps iteratively
until some convergence criterion is satisfied. The GTM algorithmic
framework is similar to Algorithm 1, and we omit it here for briefly.

2.2 Data Poisoning Attacks: An Overview

Generally speaking, data poisoning attacks refer to manipulating
data to corrupt certain computational results based on those data.
For instance, in machine learning, a classifier is learnt using a
training dataset; and a data poisoning attack can carefully forge the
training dataset to corrupt the learnt classifier [1, 5, 7, 22, 36, 44]. In
data poisoning attacks to recommender systems [9, 16, 17, 24, 47],
an attacker can inject fake users with carefully crafted rating values
to arecommender system such that the recommender system makes
recommendations as the attacker desires, e.g., recommending an
attacker-chosen item to many normal users. In federated learning,
an attacker can inject malicious workers with misleading training
samples to corrupt the learnt global model [2, 4, 6, 15, 46]. Different
computations (e.g., machine learning, recommender system, and
federated learning) often require different data poisoning attacks to
optimize the attack effectiveness. The most relevant to ours are [31,
32, 38], where the authors proposed efficient attack algorithms that
reduce the effectiveness of crowdsourcing systems with strategic
malicious workers. However, the proposed attack models focus on
categorical data and do not consider the potential defense deployed
by the server.
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Figure 1: Crowdsourcing systems under attack.

3 PROBLEM FORMULATION

In this section, we first introduce our threat model, including the
attacker’s goal, capability, and knowledge. Then, we formulate the
attacker’s goal mathematically.

3.1 Threat Model

Attacker’s goal: Given a targeted crowdsourcing system, the goal
of the attacker is to maximize the estimation errors of the aggre-
gated values for some attacker-chosen targeted items. This attack is
well motivated in real-world crowdsourcing systems. For instance,
an attacker may be interested in manipulating the real-time naviga-
tion crowdsourcing system such that the system provides mislead-
ing or even life-threatening directions to users. An attacker could
also attack a competitor’s system to gain competitive advantages.

Attacker’s capability and knowledge: In our threat model, we
assume the attacker is able to inject some malicious workers into
the crowdsourcing system and launch attacks by carefully crafting
their values, as shown in Figure 1. This threat model is practical
because a crowdsourcing system is essentially a distributed system
and an attacker can inject malicious workers into it, which is more
realistic than modifying existing data of normal workers.

The attacker can have different degrees of knowledge of the tar-
geted crowdsourcing system. In particular, we consider two cases,
full knowledge and partial knowledge. In the full knowledge sce-
nario, the attacker has full knowledge of the aggregation method
and all values provided by normal workers. We note that, although
appearing to be a strong assumption, the full-knowledge setting
is not uncommon in practice since all data and the sources of the
data could be public in crowdsourcing. For instance, in the weather
forecast integration task, the workers in different monitoring sta-
tions collect the local weather data and upload their data to the
crowdsourcing platform (e.g., website). These data are available to
all workers and each worker can see weather information at other
locations and know where the data comes from.

In the partial knowledge scenario, the attacker knows the ag-
gregation method but only knows the values of a subset of normal
workers. For instance, the attacker may compromise some normal
workers via bribing them, compromising their computer systems,
and/or stealing their credentials.
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3.2 Formulating Data Poisoning Attacks

We formulate our data poisoning attacks as an optimization prob-
lem, which maximizes the estimation errors of the targeted items’
aggregated values. Suppose that 7 is the set of attacker-chosen
targeted items and « fraction of workers are malicious. Specifically,
we let U and U denote the sets of normal and malicious workers,

respectively. Then, we have |%(| a\'L/\J We let xt denote the

value that a malicious worker i € U provides on item ¢ € 7. Then,
the attacker’s goal is to find an optimal value for each malicious
worker to rate each targeted item, such that after injecting those
malicious workers into the crowdsourcing system, the distance of
the aggregated values before and after our attack is maximized. We
let x} and X} denote the aggregated values for item ¢ before and
after the poisoning attack, respectively. Then, we can formulate
our attack as follows:

Maximize — Z d(x;, xf) (7)

{xt }te’}’,ue'u t€'7_

st | = V'wJ, (8)
l1-«a

where d(-) is a distance function that measures the estimation error
of an item introduced by our attack. In our experiments, we use the
square distance function. The objective function ﬁ Yrerd(Xf, x))
measures the average estimation error for the targeted items intro-
duced by the attack. Note that our problem formulation in Eq. (7)
can be applied to any truth discovery method. Solving the opti-
mization problem for a given truth discovery method (e.g., CRH,
GTM, etc.) leads to a specific data poisoning attack to this particular
method.

4 OUR ATTACKS

In this section, we introduce our data poisoning attacks in the
full-knowledge and partial-knowledge scenarios, respectively. Note
that our attacks are essentially to solve the optimization problem
in Eq. (7) under these two settings.

4.1 Full-Knowledge Attack

In the full-knowledge scenario, the attacker knows the values pro-
vided by the normal workers. Note that the attacker’s goal in Eq. (7)
is to maximize the deviation of the truth discovery’s output before
and after the attack, while the server’s goal of Eq. (1) or Eq. (4)
is to estimate the aggregated value for each item. Moreover, the
malicious workers’ values should be within the normal range to
avoid outlier detection. Considering these two goals together, we
can instantiate the optimization problem in Eq. (7) for the CRH and
GTM models as the following bi-level optimization problem for the
attacker:

1
Maximize — Z dx;, x)) (9)
xib o T

t SreT, el teT
st xl e [ min ;“ax],vaeﬂ,wefr,

{X LAY = argminf()?*,/\),
X*,A
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where x;™™ and x}*** are the minimum and maximum values of item

t provided by normal workers, respectively; A* are the after-attack
weight or variance parameters for all workers. We remind here that
Problem (9) is a general attack framework, and can be applied to any
truth discovery method. To be specific, for the CRH model, we just
substitute f()?* W) in Eq. (1) to f()?*, A)inEq. (9)andlet W = A;
for the GTM model, we substitute f (X*,Q)in Eq. (4) to f (X*,A)
in Eq. (9) and let Q = A. From Eq. (9), we can see that the upper-
level problem is to determine the optimal fake values for malicious
workers, and the lower-level problem is to estimate the aggregated
value for each item. The lower-level problem can be considered
a constraint of the upper-level problem. Bi-level optimization is
NP-hard in general [20]. In our bi-level formulation, although the
upper-level problem is relatively simple, the lower-level problem
is highly non-linear and non-convex. In this paper, we propose
the following two-step iterative method to solve the above bi-level
optimization problem:

Step 1(Update the aggregated values and worker weights/var-
iances): In this step, the attacker fixes the malicious workers’ val-
ues, then solves the lower-level optimization problem to obtain

aggregated values and worker weights/variances {X*, A*}. As we

have discussed above, this step can be done for the CRH model by

solving Egs. (2)-(3) or for the GTM model by solving Egs. (5)-(6).

Step 2 (Update malicious workers’ values): In this step, we let

X = {xt }tET eu
define the following objective function:

LX) =) .

When taking the malicious workers into consideration, we can
compute the term X in Eq. (10) as followings for the CRH model:

~— denote the values of all malicious workers, and

d(xt,xt (10)

. Duell; WuXj + Zue,u x
xX; = 5 s . (11)
uel; Wu ﬂE(ui

For the GTM model, )?; can be computed as:

Ho x!‘ xfi
= 4 . 4 4 . o~ L

. of Z“E(ul o2 Zue'lli ol

X =7 1 1 (12)
o7t Zuett o7 ¥ Lgeqy, 52

For malicious worker v € U, the gradient of the objective func-
tion £(X) with respect to x;’ can be computed as follows:

ad(x/, ad(x%, x ,) ox?,
vL(X) Z R 16 08Xy Xy) L3

= . 3] .
e S ax, ox* t, Ox;

(13)

t'eT

Here, if we adopt the square distance function d(?;,,x;) =

G - x; )2, then we have:
ad(x;,,
T 2%, - x)). (14)
v
ax*,
For the CRH model, from Eq. (11), the gradient Bitv can be
t
calculated as:
X - Wo ’_
6xt' Zuetly Wu+Zﬁe'ﬁl wi’ t t, (15)
Oxy 0, otherwise.
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Algorithm 2 Full-knowledge data poisoning attack.

Input: Values from all normal workers x;‘ forue U,icl,.
Output: Malicious workers’ values.
1: The attacker initializes the workers’ weights.
2: The attacker estimates the aggregated values before attack by
iteratively solving Egs. (2)-(3).
3. while the convergence condition is not satisfied do
4. The attacker computes the aggregated values and workers’
weights {X*, W*} by iteratively solving Eqgs. (2)-(3).
5. The attacker estimates the gradient Vo L(X) according to
Eq. (13).
6:  The attacker updates malicious workers’ values according
to Eq. (17).
7: end while
8: return x} forv € UteT.

~x

17 ’
For the GTM model, according to Eq. (12), the gradient ai% can

be calculated as:

6‘% 1 , = t
x*, ,
i Ué(ﬁJr L L+ 3 ﬁ) (16)
ax? 0 uely “u  geq, “u
0, otherwise.

After obtaining V,» L(X), we then can use the projected gradient
ascent method to update the value of malicious worker v as follows:

;JL()'Z)), 17)

where r is the r-th iteration, Proj[xmm xmax](') is the projection
t 7t

xP[r+1] = Projj min_ymax (xf[r] -V

min max]
s

operator onto the range |x [ X8|, and 7 is the step size in the r-
th iteration. In this paper, we assume that the attacker initializes the
workers with equal weights for the CRH model and equal variances
for the GTM model. Algorithm 2 summaries our full-knowledge
attack algorithm for the CRH model. The full-knowledge attack
algorithm for the GTM model is similar to Algorithm 2, and we
omit it here to avoid repetitiveness.

4.2 Partial-Knowledge Attack

In the previous section, we showed that the attacker can launch
efficient data poisoning attacks to CRH and GTM truth discovery
methods when the attacker has full knowledge of the targeted
system. However, this could be a restrictive assumption in practice.
In this section, we consider a weaker assumption that the attacker
only observes part of the values of normal workers on the targeted
items. Further, we note that in the partial-knowledge attack, the
attacker only needs access to the values of normal workers for the
targeted items, i.e., the attacker does not need to know the values
of normal workers for non-targeted items.

4.2.1 Aggregated Values Estimation with Bootstrapping. In the partial-
knowledge attack, for a given targeted item, it is hard for the at-
tacker to estimate the aggregated value accurately since he only has
access to part of the values provided by normal workers. To address
this challenge, we leverage the Bootstrapping [8, 13, 14, 21] tech-
nique to obtain more accurate before-attack estimated aggregated
values for targeted items. Bootstrapping is a classic re-sampling
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method to estimate a sample distribution. The basic idea of Boot-
strapping is to independently sample with replacement from an
observed dataset with the same sample size, and perform estimation
among these resampled data.

We let S; € U, denote the set of normal workers whose observa-
tions on the targeted item ¢ € 7~ can be accessed by the attacker. In
our attack model, once the normal workers’ weights are held fixed,
the attacker uses the Bootstrapping method to obtain B estimated
aggregated value for item ¢. To be specific, the b-th estimation J?f ,
1 < b < B, can be calculated by the following two steps:

Step 1(Workers Bootstrapping): The attacker randomly samples
a set of normal workers Sf’ from S; with replacement, such that
IS71 = 1Stl.

Step 2 (Value Estimation): The attacker computes the aggregated
value for item ¢ in the b-th estimation fﬁ’ according to Eq. (2) for
the CRH model or Eq. (5) for the GTM model based on the sampled
values provided by workers in set Stb .

After the attacker repeats the above two-step procedure B times,
the attacker obtains B estimated aggregated values for item t. Then,

the final before-attack estimated aggregated value xb oot

computed as:
=boot _ l B
X =3 E ey Xt (18)

After the attacker uses the Bootstrapping technique to estimate
the before-attack value of each item, the attacker then uses the pro-
jected gradient ascent method to update malicious workers’ value.
Algorithm 3 summaries our partial-knowledge attack algorithm
for the CRH model, and the partial-knowledge attack algorithm
for the GTM model follows a similar procedure. Note that we do
not leverage the Bootstrapping method to estimate the after-attack
value, since the majority of value of normal workers may be drawn
from a certain distribution, while value of malicious workers do
not necessarily fit the distribution.

can be

4.2.2  Convergence in Distribution. In this section, we show that for
the CRH model, the aggregated value estimated by the Bootstrap-
ping technique converges in distribution to the aggregated value
computed by all the observed values at once. We discuss it for the
targeted item ¢, and it can be applied to other targeted items. Note
that in this section, we do not assume that the values provided by
workers are independent and identically distributed.

We assume that the value of normal worker u on item ¢ follows
a normal distribution, ie., x}' ~ N (x}, 02), where the variance o2
measures the quality of values provided by worker u, u € S;. We
let X5, denote the values provided by workers in set S;, and let

0 (X S [) denote the estimator that the attacker uses. From Eq. (2),
the estimator §(XS ) of item ¢ can be computed as §(XS,) =

% Since x} ~ N(xt, ) we haveE[G (XSt)] - x;‘,

Var (g(XS,)) M . We further define Var (9 (XS,)) &f
(Zuest Wu)
5 w Dter, (xt _xbom ’
ueS; “ where 52 = MI—T# and xbo‘” can be com-
(Zuest Wu) !

puted by Eq. (18). To measure the error between §(X5t) and x},
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Algorithm 3 Partial-knowledge data poisoning attack.

Input: Part of values on the targeted items provided by normal
workers in set Sy, t € 7, B.
Output: Malicious workers’ values.
1: The attacker initializes the workers’ weights.
//Estimate the aggregated values before attack.
2: while the convergence condition is not satisfied do
3. foreacht e 7 do
4: forb=1,---,Bdo
5 The attacker first bootstraps S ;’ from S;, then computes

J?f according to Eq. (2).
6: end for
7: The attacker computes xbo‘” according to Eq. (18).
8: end for
9:  The attacker updates the weight of each normal worker

according to Eq. (3).

10: end while

//Update malicious workers’ values.

11: while the convergence condition is not satisfied do

1. The attacker computes the aggregated values and workers’
weights {(X*, W*} by iteratively solving Egs. (2)-(3).

13:  The attacker estimates the gradient Vo LX) according to
Eq. (13).

14:  The attacker updates malicious workers’ values according
to Eq. (17).

15: end while

16: return x; forv e UiteT.

we construct a statistic Q as follows:
0 (Xs,) —xF
Q=——""— : (19)
[Var (9 (Xs,))] INISA]
Since the distribution of Q is usually unknown a priori, the

attacker could leverage the Bootstrapping strategy to approximate
Q. Note that in the b-th estimation of J?f , the attacker randomly

samples a set of workers S;’ in S;. We let X g» and §(X3b) denote
t t

the values provided by workers from set Sf and the estimator
computed based on X gs, respectively. Then the attacker could
t

approximate the distribution of Q as follows:

~ 6(xgr) -0 (Xs,)

TR

(0
Note that ¢ (Xsb) and Var ( (XS”)) can be computed on values

(20)

X Sb- Theorem 1 states that Qj, converges to Q in distribution under
the CRH model.

THEOREM 1. Assume that x} ~ N(xt R ) where u € Sy. Let

O and Q be defined as (19) and (20), respectively. Then, for any real
number q, we have that:

m [F*@ < -ro<g)|=0.
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where P* stands for the probability computed based on the bootstrap-
ping sample distribution.

Proor. For the targeted item ¢, the set of workers whose values
that can be observed by the attacker is S;, with the set size |S;|.
Let Gy (+) denote the distribution of a sample x}'. Since x} follows
from a normal distribution, we have x¥ ~ N (x},02) = Gy (x¥).
As shown in [30, 45], we need to prove the following conditions to
prove Theorem 1:

I) There exists a non-lattice distribution H with mean zero and

. . ki
variance one, and a sequence ks, | with log‘l;gtl — o0, such
that k|gs,| of the population Gy, u € S, are of the form

Gy(x) = H(%) with oy, and u € S;, bounded away from

u

B

II) There exists an M; > 0 such that E [|x}‘|3+51] < Mj < oo for
some &1 > 0;
) liminf &2 > 0and <& Yyes, (uu — 2)% = o (1S:71/?);
[S;] &4ueS: Hu — H t ;

|S¢|—00
IV) H is continuous and there exists an My > 0 such that for

some 5y > 0, we have E [|x;‘|6+52] < My < o0,

— 2_ 1 2 - _ 1
where i, = X7, £ = 157 Yues, 0us 1= 135;] Zues, Fu-

Proof of I: We let H be the standard normal distribution, i.e.,
H = N(0,1). Then H is a non-lattice distribution since any contin-
uous distribution is non-lattice. If we let k| s,| = |S¢| and Gy (x) =

X~ |Se :

H(G—u), then we have ogls] — @ as |S¢| increases.
Proof of II: According to the moments of a normal distribution,
Sr(kn
|k] — UkZZF( 2 )
“ Nr

integer, I'(-) is the gamma function. If we let §; = 1, we have

5
E [|x;‘|4] = aﬁ% @ 362 = M; < oo, where (a) follows from

we have E [|x;‘ , where k is any non-negative

r (%) = %\/E, which can be shown by the Legendre duplication

formula that T'(2)['(z + §) = 2172y/xT'(2z) with z = 2.
Proof of Il: 52 > 0, py, = ji, which completes the proof.
Proof of IV: Since H = N(0, 1), then H is continuous. If we let

8
22T(3
82 = 2, then we have E [|x;‘|6+52] = aﬁ% = 10588 = M, <
0.

Since all four conditions above are satisfied, we obtain:

B 2 -1/2
PQ < q)=(q) + ———— (29" + 1) §(q) + 0 |S:] .
621811 ( ) ( )
o B3 2 -1/2
P*(Q < q) = D(q) + ——— (2% + 1) $(g) + o 1S¢|71/?),
6B4+/|St| ( ) ( )
where ®(q) = %/_qw e_tz/zdt, ¢(-) is the derivative of @(:) (ie.,
B() = OO 1= 137 Tues, Bo, | (5 - )’ | o= 1y Zues, o
Bs = 137 Zues, (X =p) Ba = 8 p = 87 Zues, 10 ¢ =
\/(1/|St|) Yues, (xF - p)z. Proof of I and III also show that f3 —
p1 — 0as |S;| — oo, so we have P*(Q < q) = P(Q < q) +
Op (|St|_1/2) 1. The proof is complete. m]

! X = Op(Yy) means Xy, /|| Yy, || is bounded in probability, where X, and Yy, are
random sequences taking values in any normed vector spaces.
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5 EXPERIMENTS
5.1 Experimental Setup

5.1.1 Datasets. We first use a synthetic dataset to demonstrate
the effectiveness of the proposed attack methods. In this synthetic
dataset, there are 50,000 values in total on 4,000 items generated by
500 workers. We assume that the value of worker u on item i follows
a normal distribution x¥ ~ N (u;, o), where y; is the ground truth
of item i, o2 is the reliability of worker u. In the experiment, y; and
oy are generated from uniform distributions Uniform(20, 30) and
Uniform(0, 30), respectively.

To further demonstrate the advantages of the proposed attack
methods, we also conduct experiments on two real-world continu-
ous datasets, which are widely used for evaluating crowdsourcing
systems. The first real-world dataset is Emotion [37], where the
workers in this dataset need to assign a value from the interval
[-100, 100] to some texts, indicating the degree of emotion (e.g.,
surprise) of the text. The second real-world dataset is Weather [42],
which contains temperature forecast information for 88 major US
cities collected from HAM weather [43], Weather Underground
(Wunderground) [39], and World Weather Online (WWO) [33]. The
statistics of the three datasets are shown in Table 2.

Table 2: Dataset statistics.

Dataset  # Workers #Items # Values
Synthetic 500 4,000 50,000
Emotion 38 700 7,000
Weather 152 7,568 936,989

5.1.2  Attack Variants. We test and compare two variants of our
proposed attack models, namely:

Full-knowledge attack: The attacker in this attack model is able
to inject a set of malicious workers into the crowdsourcing systems.
The attacker has full knowledge of the targeted system and sets
values of the injected malicious workers according to Algorithm 2.

Partial-knowledge attack: The attacker in this attack model is
able to inject a set of malicious workers into the crowdsourcing
systems. The attacker has partial knowledge of the targeted system
and sets values of malicious workers according to Algorithm 3.

5.1.3 Comparison of Attacks. To demonstrate the effectiveness of
our proposed attacks, we compare our attack methods with the
following methods.

Random attack: In this attack, for targeted item ¢, each malicious

worker randomly assigns a number from the range [x;“m, x;nax] as

the value for item ¢, where x?‘in and x"®* are the minimum and
maximum values on item t provided by normal workers, respec-
tively.

Maximum attack: In this attack model, for targeted item t, each
malicious worker provides the maximum value x;"®* as the value

for item ¢.

5.1.4  Evaluation Metric. In order to measure the effectiveness of
different attack models, we use the average estimation error defined
in Eq. (7) as our evaluation metric. Since the goal of the attack is
to maximize the error of the aggregation results after attack, the
larger the estimation error, the better the attack model.
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Figure 2: Estimation error with respect to different attack
sizes when attacking the CRH model.
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Figure 3: Estimation error with respect to different attack
sizes when attacking the GTM model.
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Figure 4: The weights of normal and malicious workers un-
der full-knowledge attack when attacking the CRH model.

5.1.5 Parameter Setting. Assume the attack size is « (i.e., the num-
ber of malicious workers is « fraction of the number of the total

LL), and we can inject {MJ malicious work-
[Ul+|U|

1-a
ers into the crowdsourcing systems. Then for a targeted item i, we

a|Ui| alU|
random select lTa’J out of [W

item i. In this setting, it is guaranteed that for each targeted item,
the majority workers are normal workers.

Unless stated otherwise, we use the following default parame-
ter setting: We randomly select some items as targeted items and
each targeted item is rated by at least 10 workers. The numbers
of targeted items are set to 400, 60 and 100 for Synthetic, Emotion
and Weather datasets, respectively. We let B = 500. We repeat each
experiment for 50 trials and report the average results. All distance
functions used in the experiments are squared distance.

workers, a =

malicious workers to attack

5.2 Full-Knowledge Attack Evaluation

For the optimization-based attack strategy, we first consider the
full-knowledge attack, where the attacker knows the aggregation
algorithm used in crowdsourcing systems (the CRH and GTM meth-
ods) and all values provided by normal workers.
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Figure 5: The variances of normal and malicious workers un-
der full-knowledge attack when attacking the GTM model.

Impacts of the attack size: Figures 2-3 show the average esti-
mation errors of different attacks as the attack size (percentage of
malicious workers) increases on three datasets, where the bar is
standard deviation. “Unif-init” in Figures 2-3 means for our full-
knowledge attack algorithm, the server initializes the CRH/GTM
model uniformly at random, and the initial weights/variances are
drawn from the uniform distribution Uniform(2, 3). The attacker
also initializes the attack model uniformly at random, but the initial
weights/variances are drawn from the uniform distribution Uni-
form(1, 3). First, we observe that our attack is effective in terms
of inducing large estimation errors. For instance, in the Emotion
dataset, the attacker increases the estimation error to 93.69 by
injecting 10% of malicious workers for the CRH model. Second,
our proposed attack outperforms the baselines. The reasons are
as follows: First, random and maximum attacks are general attack
models and not optimized for CRH-based nor GTM-based truth dis-
covery methods. Thus, their attack performance are not satisfactory.
Second, our proposed attack model takes the malicious workers’
reliability into consideration. Specifically, our attack model aban-
dons some targeted items when there is little chance to increase the
aggregation error. Thus, the malicious workers behave similarly
with the majority of normal workers. By doing so, the crowdsourc-
ing system may consider the malicious workers as normal workers
and increase/decreases their weights/variances, which indirectly
increases/decreases these malicious workers’ weights/variances
on other targeted items. We also find that our attack increases
the aggregation error significantly when we inject more malicious
workers. By contrast, random attack only slightly increases the
estimation error. Another interesting finding is that even though
the server and attacker adopt different ways to initialize the work-
ers and not all workers’ initial weights/variances are equal, it does
not affect the effectiveness of our proposed attack model. From
Figures 2-3, we observe that the standard deviations are very small,
so we report the average results in the remaining experiments.

Comparisons between weights/variances of normal workers
and malicious workers: The CRH/GTM model uses the weights
or variances to capture the workers’ quality. The key intuition of
the CRH/GTM is that a worker should be assigned with a higher
weight or lower variance if his values are closer to the estimated
results. In this experiment, we investigate the weight and variance
distributions for both normal and malicious workers, the attack size
is set to 20%. As CRH and GTM models use different ways to mea-
sure the reliability of workers, we leverage min-max normalization
technique to normalize reliability scores (weights and variances)
into the range [0, 1]. The results are shown in Figures 4-5. From
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Figure 6: Estimation error with respect to the percentage of
knowledge known by the attacker when attacking the CRH
model.
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Figure 7: Estimation error with respect to the percentage of
knowledge known by the attacker when attacking the GTM
model.

Figure 4 and Figure 5, we find that the malicious workers gener-
ated by our proposed full-knowledge attack have higher weights or
smaller variances comparing with the normal workers. This means
that the malicious workers successfully blend into normal workers
and it is hard to distinguish normal and malicious workers based
on the weights/variances under our attack strategy.

5.3 Partial-Knowledge Attack Evaluation

The amount of values can be accessed by the attacker is another
important factor in the attack. Figures 6-7 show the results when the
attacker only observes a portion of the values provided by normal
workers on targeted items, where the attack size is set to be 20%.
The percentage of knowledge in Figures 6-7 represents the fraction
of values provided by normal workers that can be observed by the
attacker given a targeted item. “No-boot” means the attacker also
sets values of malicious workers according to Algorithm 3. However,
instead of leveraging the Bootstrapping technique to estimate the
before-attack values, the attacker estimates the before-attack values
using all observed values at once (without Bootstrapping). Note that
in the partial-knowledge attack, the attacker generates the values
of malicious workers based only on the observed data. We find that
as the attacker has access to more data provided by normal workers,
the estimation error increases (i.e., better attack performance). We
also find that our method achieves better attack performance than
the baselines in most cases. The reason is that our proposed partial-
knowledge attack uses the Bootstrapping technique to combine
estimated values from multiple bootstrapped values, rather than
using all known values at once. This leads to a more accurate value
estimation that further slightly enhances the attack performance.

No-boot

No-boot
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Algorithm 4 The Median-of-Weighted-Average (MWA) defense.

Input: Values from all workers xi” forue M,ieI.
Output: Aggregated values X* and worker weights W.
1: Server initializes the workers’ weights.
2: while the convergence condition is not satisfied do
3. For each item, the server partitions workers who observe
this item into L groups, then updates the aggregated value
according to Eq. (21).
4 Server updates the weight of each worker according to
Eq. (3).
5: end while
6: return X* and W.

6 DEFENSES

In this section, we propose two defense mechanisms to mitigate the
impacts of poisoning attacks on crowdsourcing systems. The basic
idea in our defense mechanism design is to arm the crowdsourcing
systems with malicious workers detection capability.

6.1 Median-of-Weighted-Average Defense

Although the CRH and GTM models aim to provide robust ag-
gregated results by assigning a larger weight or smaller variance
to a worker if this worker’s values are closer to the aggregated
results, both the CRH and GTM models remain vulnerable to ad-
versarial attacks. To defend potential data poisoning attacks, we
design a defense strategy that satisfies two goals: 1) similar to
the CRH and GTM models, the server takes the quality of work-
ers into account, and 2) the server should be resilient to potential
poisoning attacks. To achieve these goals, we propose the Median-
of-Weighted-Average (MWA) defense. In our MWA defense, the
server is not aware whether the crowdsourcing system is being
attacked.

Since GTM model can only handle continuous labels, while CRH
model can deal with both categorical and continuous labels. Thus,
in the MWA defense, the server uses a weight parameter to capture
a worker’s reliability and updates the weights of workers the same
way as the CRH model, i.e., weights are updated according to Eq. (3).
However, instead of updating the values based on Eq. (2) directly, the
server uses the following three steps to estimate the value for each
item: 1) the server first sorts workers in ascending order according
to the values provided by workers for this item, then partitions the
workers (normal and malicious workers) who observe this item
into L groups; 2) the server then computes the weighted average
of values in each group; and 3) the server takes the median of L
values as the estimated value for this item. For each item i € I, the
estimated value X} can be computed as:

u u
Z:ue/\/(} WuX; Zue/\/({~ WuX;

X} = Median , (21

9 veey

ZueM}. Wy ZMEM{‘ Wy

where M = U U U is the set of all workers, MII l=1,..Lis
the set of workers who observe item i in the I-th group. The MWA
defense is summarized in Algorithm 4. In our proposed defense
mechanisms, we also assume that all workers are given equal initial
weights.
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Algorithm 5 Greedy influential worker selection.

Input: Values from all workers x;‘ forue M,ieI.

Output: Influential worker set A.
1: Initialize A = 0.
2: while |A| < [a|M]] do
3. Select u = argmaxye a0\ A0k, 1).
4 Ae— AU{u}.
5. end while
6: return A.

Algorithm 6 The Maximize Influence of Estimation (MIE) defense.

Input: Values from all workers x} foru € M,i € I.
Output: Aggregated values X* and worker weights W.
1: Server initializes the workers’ weights.
2: Server finds the influential worker set A according to Algo-
rithm 5.
3. Server removes workers in the set A from the crowdsourcing
systems.
4: while the convergence condition is not satisfied do
5. Server updates the aggregated value of each item with the
remaining workers according to Eq. (2).
6:  Server updates the weights of the remaining workers accord-
ing to Eq. (3).
7. end while
8: return X* and W.
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Figure 8: Estimation error of maximum attack when attack-
ing the malicious-worker-aware crowdsourcing systems.

6.2 Maximize Influence of Estimation Defense

We note that, under the MWA defense, malicious workers still exist
in the crowdsourcing systems. In this section, we propose another
defense mechanism to detect the malicious workers and remove
them from the crowdsourcing systems. However, this defense mech-
anism requires a stronger assumption that the server knows the
crowdsourcing system is being attacked and the goal of the attacker.
The server also knows there exists | @| M|] number of malicious
workers in the system, but the server does not know which items
are being attacked. Here, we propose the Maximize Influence of
Estimation (MIE) defense to detect the malicious workers in the
targeted systems.

For the MIE defense, we let I(A, 1) denote the influence of re-
moving workers in the set A on the estimation over all items in
T, where the influence here is defined as the change of estimated
value. The server wants to find a set of influential workers that have
the largest influence on all items in 7. The influence maximization

978

Minghong Fang, Minghao Sun, Qi Li, Neil Zhengiang Gong, Jin Tian, and Jia Liu

160 Synthetic 375 Emotion 60 Weather
S 128 1300} | a8}
@
5 36} !
] 24}
€
Z 12+
w

‘/
10 15 20 25 30
Attack size (%)

CRH

- - - - 0 -
10 15 20 25 30 5
Attack size (%)

—— MIE e

0 — 0
5 10 15 20 25 30 5
Attack size (%)

—— MWA

Figure 9: Estimation error of full-knowledge attack when
attacking the malicious-worker-aware crowdsourcing sys-
tems, where the malicious workers are generated by the full-
knowledge attack algorithm for the CRH model.

Synthetic Emotion Weather

4375

48}
1 36}
24}

Estimation error

12+

o e —
10 15 20 25 30 5 10 15 20 25 30
Attack size (%) Attack size (%)

—— MIE e GTM

0 —— 0
5 10 15 20 25 30 5
Attack size (%)

—— MWA

Figure 10: Estimation error of full-knowledge attack when
attacking the malicious-worker-aware crowdsourcing sys-
tems, where the malicious workers are generated by the full-
knowledge attack algorithm for the GTM model.

defense problem can be formulated as:

Maximize I(A,T), subjectto |A|=|a|M|], (22)

However, this combinatorial influence maximization problem
is NP-hard [23] in general. In order to solve Problem (22), we first
show how to quantify the influence of one worker, then we will
show how to find a subset of | @| M|| workers with the maximum
influence. We define ¢(u, I') as the influence of removing worker
u € M on the estimation over the targeted crowdsourcing system:

def 1
)= —
I =7 e

where X} (M) represents the after-attack estimated value for item i

LAGEM)L M\ {u}), (23)

computed over all workers in set M = U U, the distance function
d(-) is squared distance, |7, | is the number of items rated by worker
u. Therefore, the influence of removing workers from some set A
on the estimation over the targeted system can be defined as the
sum of the influence of individual worker in the set A:

def
= D e 0 D).

I(A,T) =

We can see that the set influence I(A, 7') can be naturally com-
puted based on the worker influence ¢(u, I'). Note that even though
the worker influence ¢(u, I') of Eq. (23) shares some similarity with
attacker’s goal of Eq. (7), they have different meanings. In Eq. (7), the
attacker computes the average estimation errors of targeted items
before and after attack, while the server in Eq. (23) measures the
change of estimated values of all items before and after removing
one worker from the crowdsourcing systems.

(29)
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6.2.1 Approximation Algorithm to Determine A. Although solving
Problem (22) is hard, we could design a greedy selection algorithm
to approximately find a solution to Eq. (22) by leveraging the sub-
modular property of influence I(A, '), which is stated in Theorem 2
as follows:

THEOREM 2. The influence (A, I') is normalized, monotonically
non-decreasing and submodular.

Proor. Define three sets £, K and Q, where X C £ and Q =
P\K. To simplify the notation, we use I(P) to denote (P, I'). When
there is no ambiguity, we let I(u) denote I({u}) for u € M. Since
I(0) = 0, the influence function is normalized. We also have I(P) —
K) = Yyep 1) - yex 1) = Syep\ s 1) = Q) > 0, which
shows that influence I(A, T') is monotonically non-decreasing. To
prove the submodular property, we define an arbitrary set C and we
have (PUC)-I(KUC) = I(PUC)\(KUC)) =I(Q\(QNCQC)) <
I(Q) = I(P) — I(K). Thus the influence I(A, 1) is submodular and
the proof is complete. O

Based on the submodular property of influence I(A, '), we pro-
pose a greedy selection method (Algorithm 5) to find an influential
worker set A with | a|M|]| workers. To be specific, we first com-
pute the influence of each worker and add the worker with the
largest influence to the set A. Then we compute the influence of
the remaining workers in the set M \ A, repeat this process un-
til we find |@|M|] workers. Theorem 3 states that Algorithm 5
finds a (1 — 1/e) approximation solution with linear running time
complexity.

THEOREM 3. Let A be an influential worker set returned by Algo-
rithm 5 and A* be the optimal influential worker set, respectively. It

then holds that (A, T) > (1= 1) 1A, T).

Proor. Let A* = {al,az, -"saLaIMH} be the optimal influen-
tial worker set, and A; be the worker set after the i-th iteration of

(@)
Algorithm 5. Thus, we have I(A*) g I(A; UAY) = [(A;)+1(A; U

() -I(AD +1(A; U{ar, az)) ~I(A; U - € IA)+ (AL
{a1}) —I(A;) +1(A; U {az}) = I(A) + - + WA U{a g m)) D) —

I(A;) (2 I(A;) + LalM]]I(Aj+1) — I(A;)), where (a) follows from

the monotonically non-decreasing property of influence I(A, t);
(b) uses the submodular property of influence; and (c) is due to
|A;i| < La| M]]. Arranging the terms, we obtain I(A*) —I(A;+1) <
(1 - m) (I(A*) — I(A;)). Recursively applying the inequal-

)l_alM

. . [ .
ity, we have I(A") — [(A | o pm|)) < (1—m I(A*) <

%]I(&ZI*). Thus, we have (1 - %) I(A*) < I(A| g m|))» Which com-
pletes the proof. O

After using the influence function I(A, I') to find the influen-
tial worker set A with || M|] workers, the server then removes
workers in set A from the crowdsourcing systems (the server views
these workers as malicious workers), and finally estimates the value
for each item with the remaining workers. In our MIE defense, we
use the CRH model to find influential workers and estimate the ag-
gregated values of items. Our MIE defense is stated in Algorithm 6.
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6.3 Defense Evaluation

Figures 8-10 show the average estimation errors of different attacks
on the CRH, GTM, MWA and MIE methods, where full-knowledge
attacks are considered. The number of groups in MWA defense
is set to 5, 4 and 5 for Synthetic, Emotion and Weather datasets,
respectively. From Figures 8-10, we observe that both MWA and
MIE defenses could mitigate the impacts of malicious workers. MIE
achieves a better defense performance compared to MWA. However,
MIE and MWA are not directly comparable since we assume the
server knows the crowdsourcing system is being attacked and the
server knows the number of malicious workers exist in the system
in MIE. For the MWA defense mechanism, the strategy of dividing
workers into groups and computing the median between different
groups can only reduce the impact of malicious workers since ma-
licious workers still exist in the system; and if the percentage of
malicious workers is high, there would be more malicious workers
in each group on average, which leads to less robust weighted aver-
age in each group. We also find that even if the server is equipped
with malicious workers detection capability, our proposed MWA
and MIE defenses may still be vulnerable to poisoning attacks if the
percentage of malicious workers is high. For example, the average
estimation error of MWA is still 14.57 on the Weather dataset when
the attacker injects 30% of malicious workers under the CRH model.

7 CONCLUSION

In this paper, we performed a systematic study on data poisoning
attacks and defenses to crowdsourcing systems. We demonstrated
that crowdsourcing systems are vulnerable to data poisoning at-
tacks. We proposed an optimization-based data poisoning attack to
blend malicious workers into normal workers and increase the esti-
mation errors of the aggregated values for attacker-chosen targeted
items. Our attacks are effective under both full-knowledge and
partial-knowledge settings. Furthermore, we designed two defense
mechanisms to mitigate the impacts of malicious workers. Our re-
sults showed that our proposed attacks can increase the estimation
errors substantially and our defenses are effective.
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