

1 Sparse grid-based Adaptive Noise Reduction strategy 2 for Particle-In-Cell schemes

3 Sriramkrishnan Muralikrishnan^a, Antoine J. Cerfon^b, Matthias Frey^d, Lee F.
4 Ricketson^c, Andreas Adelmann^a

⁵ *^aPaul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.*

⁶ *Courant Institute of Mathematical Sciences, New York University, New York NY 10012,
7 USA.*

⁸ Lawrence Livermore National Laboratory, Livermore, USA.

⁹ *Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.*

10 *Current affiliation: Mathematical Institute, University of St Andrews, St Andrews KY16
11 9SS, UK.*

12 Abstract

We propose a sparse grid-based adaptive noise reduction strategy for electrostatic particle-in-cell (PIC) simulations. By projecting the charge density onto sparse grids we reduce the high-frequency particle noise. Thus, we exploit the ability of sparse grids to act as a multidimensional low-pass filter in our approach. Thanks to the truncated combination technique [1, 2, 3], we can reduce the larger grid-based error of the standard sparse grid approach for non-aligned and non-smooth functions. The truncated approach also provides a natural framework for minimizing the sum of grid-based and particle-based errors in the charge density. We show that our approach is, in fact, a filtering perspective for the noise reduction obtained with the sparse PIC schemes first introduced in [4]. This enables us to propose a heuristic based on the formal error analysis in [4] for selecting the optimal truncation parameter that minimizes the total error in charge density at each time step. Hence, unlike the physical and Fourier domain filters typically used in PIC codes for noise reduction, our approach automatically adapts to the mesh size, number of particles per cell, smoothness of the density profile and the initial sampling technique. It can also be easily integrated into high performance large-scale PIC code bases, because we only use sparse grids for filtering the charge density. All other operations remain on the regular grid, as in typical PIC codes. We demonstrate the efficiency and performance of our approach with two test cases: the diocotron instability in two dimensions and the three-dimensional electron dynamics in a Penning trap. Our run-time performance studies indicate that our approach can provide significant speedup and memory reduction to PIC simulations for achieving comparable accuracy in the charge density.

37 *Keywords:* PIC, Sparse grids, Filters, Adaptive noise reduction, Penning
38 trap, Diocotron instability

39 **1. Introduction**

40 Particle-in-cell (PIC) schemes have been a popular and effective method for
41 the simulation of kinetic plasmas for a long period of time [5, 6, 7]. Compared
42 to continuum kinetic codes, PIC schemes effectively reduce the dimension from
43 six to three for kinetic simulations requiring three spatial dimensions and three
44 velocity dimensions (3D3V). On the other hand, compared to pure particle
45 codes with direct summation, PIC reduces the computation of self-consistent
46 forces from $\mathcal{O}(N_p^2)$ to $\mathcal{O}(N_p + N_c)$ where N_p is the total number of particles
47 and $N_c \ll N_p$ is the number of mesh points. Even though the fast multipole
48 method [8] reduces the complexity of pure particle schemes to $\mathcal{O}(N_p)$, such an
49 approach has other limitations, such as the need for overly restrictive small
50 time steps. Other attractive features of PIC schemes include simplicity, ease of
51 parallelization and robustness for a wide variety of physical scenarios [4].

52 The main drawback of PIC schemes as compared to deterministic continuum
53 kinetic schemes is the numerical error associated with particle noise [6, 9], which
54 decreases slowly as one increases the number of particles. Specifically, the noise
55 in PIC schemes decreases as $1/\sqrt{P_c}$ [6, 4] where $P_c = N_p/N_c$ is the number
56 of particles per cell¹. High fidelity large-scale 3D PIC simulations thus often
57 require at least $\mathcal{O}(10^9)$ grid points and $\mathcal{O}(10^{12})$ particles to get the desired
58 accuracy level [10]. These simulations require hours to complete even on large-
59 scale state-of-the-art supercomputers available today. Thus, noise reduction
60 approaches are of great interest to the PIC community to improve accuracy and
61 also to speed up computations and reduce memory requirements.

62 There have been several efforts in this area in the past and a brief overview
63 is given in section 3. Some of the strategies, such as the δf technique [11,
64 12, 13], are applicable for certain classes of plasma physics problems and give
65 great computational savings. Their utility, however, is limited to these specific
66 classes of problems. Filtering is a common noise reduction technique which
67 finds applications in many production-level PIC codes such as TRISTAN-MP
68 [14, 15], ORB5 [16], IMPACT-T [17] and Warp-X [18], to name a few. One of
69 the primary reasons for this is its simplicity and ease of implementation in these
70 frameworks. The stencil width and number of passes in case of digital filters
71 and the cut-off wavenumber in case of Fourier domain filters is typically selected
72 based on experience and knowledge about the physical problem at hand. Thus,
73 these could result in scenarios where either too much signal is smoothed or the
74 high-frequency noise is not removed sufficiently. Even if we managed to choose
75 the parameters in the filter so that they are optimal for a particular mesh size,
76 number of particles per cell, point in time and the initial sampling technique,
77 they may no longer be optimal once we change any of the above and require
78 tuning once again.

79 Our objective in this work is to develop a noise reduction strategy, or fil-

¹In this paper, we define the number of particles per cell only with respect to the regular grid.

tering scheme for the charge density, that automatically adapts itself to the aforementioned parameters. As with other filtering techniques, we require it to be easily integrated into existing production-level PIC codes. Our starting point towards that goal is the recent work [4] which combined sparse grids with the PIC scheme. In that article, the authors showed that owing to the large cell sizes involved in sparse grids compared to regular grids, the PIC scheme combined with sparse grids has many more particles per cell than its regular counterpart. This led to significant noise reduction and enormous speedups for certain classes of problems which have smooth or axis-aligned density profiles.

Now, let us give a brief overview of the present work. We revisit and reinterpret the noise reduction component of the scheme introduced in [4] from a filtering perspective, to construct a sparse grid-based noise reduction strategy for electrostatic PIC simulations. Unlike [4], where all the operations occur on sparse grids, in our approach the sparse grids come into play only for noise reduction of the charge density. Hence, for a user of PIC (who may not be familiar with sparse grids) it exactly resembles a filtering routine - i.e., it takes as input unfiltered charge density on the regular grid, and returns as output the filtered charge density on the same grid. Compared to existing filtering approaches, this sparse grid-based approach is superior for functions which are smooth or aligned with an axis. In simple terms, this can be understood as follows: with any filtering technique the reduction in noise comes with a price, which is an increase in the grid-based error. The unique aspect of our sparse grid filtering is that the resulting noise reduction can also be viewed from a Monte-Carlo perspective. Thanks to this property, we have maximal noise reduction, since the sparse grid approximation involves cells with maximal size, which in the context of PIC, for a given total number of particles, translates to a maximal number of particles per cell. At the same time the increase in grid-based error for smooth or axis-aligned functions is minimal. However, the same cannot be said for all functions in general, and for these general cases the increase in grid-based error associated with sparse grids may be high. In order to tackle that issue, we use the so-called truncated combination technique [1, 2, 3], which reduces the large grid-based error of standard sparse grid technique for non-aligned and non-smooth functions. This is because the truncated combination technique uses a different choice of coarse grids with finer mesh sizes than those used in the standard sparse grid combination. The truncation parameter involved in the combination technique is crucial for minimizing the sum of grid-based error and particle noise. Hence, we propose a heuristic based on formal error analysis to calculate the optimal truncation parameter on the fly which minimizes the total error.

This paper is organized as follows. Section 2 introduces the PIC method in the context of electrostatic Vlasov-Poisson equations. Section 3 briefly reviews the existing noise reduction strategies in PIC and provides motivation and objectives for this article. Section 4 explains in detail the components and algorithm for a sparse grid-based adaptive noise reduction strategy. Numerical results for the 2D diocotron test case and 3D penning trap are presented in section 5 and section 6 presents conclusions and proposes future work.

126 **2. Particle-in-cell method**

127 In this work, without loss of generality, we consider the non-relativistic elec-
 128 trostatic Vlasov-Poisson system with a fixed magnetic field, and introduce the
 129 PIC method in that setting. The electrons are immersed in a uniform, immobile,
 130 neutralizing background ion population and the system is given by

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \frac{q_e}{m_e} (\mathbf{E} + \mathbf{v} \times \mathbf{B}_{ext}) \cdot \nabla_{\mathbf{v}} f = 0, \quad (1)$$

131 where $\mathbf{E} = \mathbf{E}_{sc} + \mathbf{E}_{ext}$, and the self-consistent field due to space charge is given
 132 by

$$\mathbf{E}_{sc} = -\nabla\phi, \quad -\Delta\phi = \rho = \rho_e - \rho_i.$$

133 In the above equation $f(\mathbf{x}, \mathbf{v}, t)$ is the electron phase-space distribution, q_e and
 134 m_e are the electron charge and mass respectively. The total electron charge
 135 in the system is given by $Q_e = q_e \int \int f d\mathbf{x} d\mathbf{v}$, the electron charge density by
 136 $\rho_e(\mathbf{x}) = q_e \int f d\mathbf{v}$ and the constant ion density by $\rho_i = \frac{Q_e}{\int d\mathbf{x}}$. Throughout this
 137 paper we use bold letters for vectors and non-bold ones for scalars.

138 The particle-in-cell method discretizes the phase space distribution $f(\mathbf{x}, \mathbf{v}, t)$
 139 in a Lagrangian way by means of macro-particles (hereafter referred to as “par-
 140 ticles” for simplicity). At time $t = 0$, the distribution f is sampled to get the
 141 particles and after that a typical computational cycle in PIC consists of the
 142 following steps:

- 143 1. Assign a shape function - e.g., cloud-in-cell [6] - to each particle p and
 144 deposit the electron charge onto an underlying mesh.
- 145 2. Use a grid-based Poisson solver to compute ϕ by solving $-\Delta\phi = \rho$ and
 146 differentiate ϕ to get the electric field $\mathbf{E} = -\nabla\phi$ on the mesh.
- 147 3. Interpolate \mathbf{E} from the grid points to particle locations \mathbf{x}_p using an inter-
 148 polation function. This is typically known as field gathering.
- 149 4. By means of a time integrator advance the particle positions and velocities
 150 using

$$\begin{aligned} \frac{d\mathbf{v}_p}{dt} &= \frac{q_e}{m_e} (\mathbf{E} + \mathbf{v} \times \mathbf{B}_{ext}) |_{\mathbf{x}=\mathbf{x}_p}, \\ \frac{d\mathbf{x}_p}{dt} &= \mathbf{v}_p. \end{aligned}$$

151 The sources of different errors in the PIC simulations and their orders of
 152 accuracy for typical choices are as follows. For simplicity, if we consider a uni-
 153 form mesh with spacing h in all the directions then for the shape functions
 154 used in typical PIC schemes (B-splines), the grid-based error scales as $\mathcal{O}(h^2)$
 155 [19, 20]. This is a result of approximating Dirac- δ functions in the configuration
 156 space by shape functions of compact support. The Poisson equation is typically
 157 solved by means of FFT solvers or by multigrid methods. In case of multigrid
 158 solvers the equation is discretized by second-order finite difference or finite ele-
 159 ment schemes. The field solves together with the interpolation (typically linear)

160 accounts for an additional $\mathcal{O}(h^2)$ [21]. The particle noise is the result of approximating the expected value of the shape function by an arithmetic mean
161 over a finite number of discrete particles. It scales as $(N_p h^d)^{-1/2}$ [4], where d is
162 the spatial dimension of the problem. The initial distribution is sampled using
163 one of the standard sampling techniques such as the naive Monte-Carlo strategy
164 [12], importance sampling [12] or by means of the quiet start [20, 22, 21]. The
165 choice of initial sampling plays an important role in determining the constant
166 associated with the particle noise. Finally, for time integration, typical choices
167 are the second-order leap-frog scheme [6] and Runge-Kutta schemes of order
168 2 and higher. If we consider the leap-frog scheme then the error in the time
169 discretization scales as $\mathcal{O}(\Delta t^2)$. The mesh size h , time step Δt and the number
170 of particles N_p in most PIC simulations are such that the dominant error comes
171 from the particle noise. Hence, high fidelity simulations typically require a large
172 number of particles to minimize it. The high noise associated with PIC simu-
173 lations has motivated researchers to develop several noise reduction strategies,
174 which we discuss next.
175

176 3. Noise reduction strategies in PIC

177 Noise reduction can be achieved in several ways in the context of PIC simu-
178 lations, categorized as: (i) variance reduction techniques such as the δf method
179 [11, 12, 13] and quiet start [13]; (ii) phase space remapping [20, 22, 21]; (iii) fil-
180 tering in physical domain [6, 23, 14, 15, 24], Fourier domain [6, 16] and wavelet
181 domain [25, 17, 26]. This list is not exhaustive and there are many other con-
182 tributions in this area. In addition, recently a noise reduction strategy using
183 kernel density estimation algorithm has been proposed in [27], where the au-
184 thors adaptively select the shape functions in PIC which minimize the sum of
185 bias squared and variance of the error in the density. Also, in [4] sparse grid
186 techniques are used to achieve noise reduction in PIC. We discuss this method
187 in detail in section 4.7, since this approach has the most in common with the
188 present work. In this section, we focus on the filtering strategies.

189 The goal of filtering in PIC simulations is to smooth high frequency oscilla-
190 tions usually associated with noise. Filtering can be done in any field quantity,
191 although the most common one in electrostatic PIC is the charge density [23] as
192 it is the origin of noise and the potential and electric field are smoother because
193 of the integration inherent in solving Poisson's equation. In case of filtering
194 in the physical domain, one typically selects a filter of certain stencil width -
195 e.g., binomial filter - and does a few passes on the field quantity. On the other
196 hand, for filters in the Fourier domain, a maximum wavenumber is specified by
197 the user and the filter eliminates all the wavenumbers higher than the specified
198 cut-off wavenumber [6]. In almost all the filtering strategies, the number of
199 passes/stencil width in the physical domain or the cut-off wavenumber in the
200 Fourier domain has to be chosen *a priori* such that the total error, which is
201 the sum of grid-based error (bias) and particle noise (variance), is minimized.
202 However, in practice there are not many constructive strategies available to pick
203 these parameters and in many cases the values are chosen based on a rule of

204 thumb and previous experience [28]. Even if one manages to choose these pa-
 205 rameters so that they are optimal for a particular point in time, mesh, number
 206 of particles per cell and sampling technique, they are unlikely to remain optimal
 207 as the simulation evolves. Indeed, due to non-linear space-charge effects, fine
 208 scale structures appear in the density and this changes the smoothness of the
 209 profile continuously with time. Hence, an ideal filter should be adaptive with
 210 respect to all aforementioned parameters to minimize the total error. Towards
 211 this goal, we propose a sparse grid-based adaptive noise reduction strategy in
 212 the following section.

213 **4. Sparse grid-based noise reduction**

214 *4.1. Sparse grid combination technique*

215 The sparse grid combination technique was first introduced in [29] as a way
 216 to approximate smooth functions on rectangular grids efficiently by using a
 217 specific linear combination of their approximations on different coarse grids. If
 218 we consider linear interpolation as an example, then for a regular grid of mesh
 219 size h we need $\mathcal{O}(h^{-d})$ grid points to get an accuracy of $\mathcal{O}(h^2)$. The sparse
 220 grid combination technique on the other hand uses only $\mathcal{O}(h^{-1}|\log(h)|^{(d-1)})$
 221 total grid points to get an accuracy of $\mathcal{O}(h^2|\log(h)|^{(d-1)})$ for smooth functions,
 222 which is only slightly deteriorated compared to the regular grids. More precisely,
 223 the requirement for realizing this accuracy is the existence of an error expansion
 224 of the form $C_1(h_i)h_i^2 + C_2(h_j)h_j^2 + D_1(h_i, h_j)h_i^2h_j^2$ in 2D (and similar expressions
 225 in higher dimensions), where C_1, C_2 and D_1 are appropriate coefficient functions
 226 with a uniform upper bound independent of the mesh sizes [29, 30, 4]. Thus,
 227 we can clearly see the advantages of sparse grids in high dimensions, where
 228 they have found many applications [31]. The key idea is the cancellations that
 229 happen between the error expansions in the different coarse grids, which are
 230 called component grids in the sparse grid terminology. Also, the scalar values
 231 that multiply each component grid involved in the combination are called the
 232 combination coefficients. In Figure 1 an illustration is shown, where we can
 233 see the different component grids and their combination coefficients involved
 234 in approximating a $2^8 \times 2^8$ regular grid. The literature on the sparse grid
 235 combination technique and sparse grids in general is vast and the readers can
 236 refer to [31, 29, 32, 33, 34] and the references therein for more details. We will
 237 now show how sparse grid combination can be used to achieve noise reduction
 238 in the context of PIC.

239 *4.2. Sparse grid filter*

240 Let us consider a domain of size $[0, L]^d$, where d is the dimension (typically
 241 $d = 2$ or 3^2), and for simplicity a regular grid of mesh size $h = \frac{L}{2^n}$ in all the

²For $d = 1$, sparse grids are same as the regular grids, and our noise reduction will thus not be applicable for 1D1V PIC.

242 directions. In our noise reduction strategy, after step 1 in the PIC algorithm
 243 shown in section 2 we perform a sparse grid projection of the charge density as
 244 follows

$$\varrho_e = G\tilde{\varrho}_e = \left(\sum_{l=1}^{nc} c_l P_l R_l \right) \tilde{\varrho}_e. \quad (2)$$

245 Here, $\tilde{\varrho}_e$ and ϱ_e are the charge densities on the regular grid before and after
 246 the sparse grid transformation. R_l and P_l are the transfer operators³ which
 247 transfer the density from the regular grid to the l th component grid in the sparse
 248 grid combination technique and vice versa, respectively. c_l is the combination
 249 coefficient for the l th component grid which is a scalar value and nc is the
 250 number of component grids involved in the combination technique. We also
 251 denote the transfer operators and combination coefficients simply as R , P and
 252 c in places where the subscript l is not needed.

253 One requirement for the transfer operators P_l and R_l is to ensure global
 254 charge conservation. In our approach, we use the cloud-in-cell or linear inter-
 255 polation function, which is given by

$$W_l(\mathbf{x} - \tilde{\mathbf{x}}) = \prod_{m=1}^d \max \left\{ 0, 1 - \frac{|x_m - \tilde{x}_m|}{h_m} \right\} \quad (3)$$

256 where \mathbf{x} and $\tilde{\mathbf{x}}$ are the locations of the grid points in the l th component grid
 257 and regular grid, respectively, and h_m is the mesh size of the l th component
 258 grid along the m th coordinate axis. The operators R_l and P_l in terms of this
 259 function are given by

$$R_l(i, j) = \frac{h^d}{V_l} W_l(\mathbf{x}_i - \tilde{\mathbf{x}}_j), \quad (4)$$

$$P_l(j, i) = W_l(\mathbf{x}_i - \tilde{\mathbf{x}}_j) \quad \text{for } i = 1, \dots, N_l \quad j = 1, \dots, N_c \quad (5)$$

260 where V_l is the volume of each cell in the l th component grid and N_c , N_l are
 261 the number of points in the regular grid and l th component grid respectively.

262 Upon considering the standard sparse grid combination technique in [29], one
 263 sees that the sparse grid projection or interpolation in equation (2) essentially
 264 removes high frequency components which are coupled between the axes. This
 265 is because the sparse grid combination corresponding to a regular grid of mesh
 266 size h does not have the fine resolution h in all the directions. In this sense, the
 267 sparse grid combination acts as a multi-dimensional low pass filter and keeps
 268 only certain wavenumbers resolved by a regular grid of mesh size h . This is the
 269 filtering point of view for the noise reduction obtained from the sparse grids.
 270 It can also be understood from a Monte Carlo point of view as shown in [4]

³We call these operators as R and P simply because they resemble restriction and prolongation operators in multigrid methods. However, we would like to note that the analogy ends there and the requirements for the transfer operators in the current context and the multigrid methods are different.

271 by means of increased particles per cell in the sparse grids compared to the
 272 regular grid for the same total number of particles. However, in the sparse PIC
 273 presented in [4] the particles deposit directly onto the component grids, unlike
 274 the strategy pursued here. These two approaches are related as stated in the
 275 following proposition, and hence the noise reduction obtained with the sparse
 276 grids can be understood from a Monte Carlo point of view *or* from a filtering
 277 perspective. In later sections, we will leverage this equivalence to explain the
 278 noise reduction with sparse grids depending on the context.

279 **Proposition 1.** *For node-centered grids and linear interpolation shape func-
 280 tions, the direct charge density deposition onto the component grids in the sparse
 281 PIC approach [4] is equivalent to first depositing the charge density onto the reg-
 282 ular grid and then transferring it to the component grids by means of the operator
 283 R in equation (4)⁴. That is, the two approaches result in identical charge den-
 284 sities. In the case of cell-centered grids, an exact equivalence between the two
 285 approaches does not hold. There, the two-step approach can be viewed as direct
 286 charge deposition onto the component grids with a different shape function than
 287 the standard hat function, which is also second-order accurate.*

288 *Proof.* The proof is given in appendix A. \square

289 The advantage of the Monte Carlo point of view is that we can estimate the
 290 grid-based error and particle noise with explicit dependence on the number of
 291 particles and mesh size as we show in the section 4.4. From a pure filtering
 292 perspective, this may be very difficult or not possible.

293 Now, we are interested in knowing how much grid-based error and parti-
 294 cle noise are increased and decreased, respectively, by the sparse grid filter.
 295 To answer this, we observe that for interpolation the sparse grid combination
 296 technique is equivalent to the sparse grids based on hierarchical bases [32].
 297 The latter is identified based on an optimization process [31] which guaran-
 298 tees for smooth functions, the fewest degrees of freedom for maximal accuracy
 299 of $\mathcal{O}(|\log(h)|^{d-1}h^2)$ based on the L^2 or L^∞ norm. Thanks to this, in the con-
 300 text of PIC, the sparse grid transformation in equation (2) gives maximal noise
 301 reduction (because of the minimal number of grid points and hence maximum
 302 particles per cell) and at the same time the increase in grid-based error is min-
 303 imal for smooth functions. Thus, compared to other filters, the one based on
 304 the standard sparse grid combination technique is optimal in the sense of mini-
 305 mizing the total error for functions which are either smooth or aligned with an
 306 axis.

307 4.3. *Truncated combination technique to handle non-aligned and non-smooth
 308 functions*

309 The optimality mentioned in the previous section for sparse grid filtering is
 310 no longer applicable in case of non-smooth functions or functions which are not

⁴Let us refer this as two-step approach for simplicity.

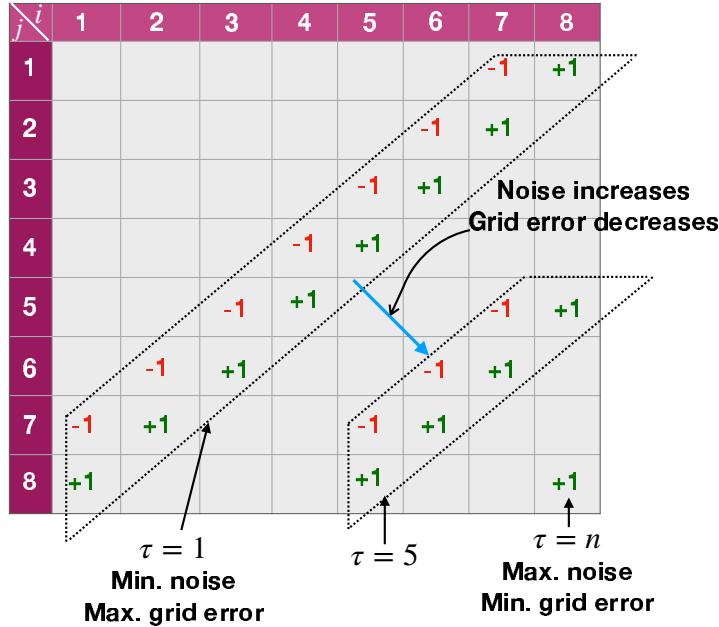


Figure 1: Schematic explaining the sparse grid combination technique and how the truncated combination can be used to minimize the total error. Here, $\tau = 1$ corresponds to the standard sparse grid combination technique and $\tau = n$ corresponds to the regular grid. The $+1$ and -1 are the combination coefficients c_l in equation (2) corresponding to the component grids.

311 aligned with either of the axes. Here the grid-based error is significantly larger
 312 than the regular grid because of large mixed derivatives [35], which leads the
 313 coefficient D_1 in the error expansion given in section 4.1 being much larger
 314 than other coefficients. While the sparse grid scaling remains optimal, the
 315 coefficient in front of that scaling can be so large as to eliminate its benefits
 316 at practical grid resolutions. This is why in [4], the authors reported poor
 317 performance of sparse PIC for the diocotron instability test case as it falls into
 318 the non-aligned category when simulated with a Cartesian grid. There are a few
 319 ways to tackle this problem, as mentioned in [4, 36]. Options include optimized
 320 coordinate systems which evolve with the charge density, and the use of spatially
 321 adaptive sparse grids. These strategies, which are perhaps more elegant from a
 322 mathematical point of view and more efficient, have the drawback of requiring
 323 significant changes to existing regular PIC code bases. Also, no detailed, robust
 324 algorithm is known at present.

325 Here, we pursue another direction using the truncated combination technique
 326 [1, 2, 3], which is much simpler and can be easily implemented in existing codes.
 327 The truncated combination technique was originally proposed as a modification
 328 to the standard sparse grid combination technique to tackle convergence issues
 329 in certain types of PDEs in financial applications caused by the presence of
 330 extremely anisotropic grids in the standard sparse grid technique.

331 In Figure 1, we show the different combination strategies for a 2D problem
 332 with a regular mesh of size $2^8 \times 2^8$. The indices i and j on the row and column
 333 headers in Figure 1 indicate the mesh sizes of the component grids involved in
 334 the combination technique such that the (i, j) th component grid has mesh sizes

335 $h_i = \frac{L}{2^i}$ and $h_j = \frac{L}{2^j}$, where L is the length of the domain in each direction.
 336 The truncated combination technique [1, 2, 3] introduces a truncation parameter
 337 τ^5 , which is a positive integer that determines the component grids involved in
 338 the combination. Precisely, the component grids corresponding to a truncation
 339 parameter τ has indices $(i, j) \geq \tau$ as shown in Figure 1. Moreover, except for
 340 $\tau = n$, there are two sets of component grids: one with $i + j = n + \tau$ and
 341 combination coefficient $c = 1$, and the other with $i + j = n + \tau - 1$ and $c = -1$.
 342 If we consider a $2^n \times 2^n$ regular grid, then the value of $\tau = 1$ corresponds
 343 to the standard combination technique in [29] and $\tau = n$ corresponds to the
 344 regular grid. By increasing τ , fewer component grids are used in the combination
 345 technique, but each with finer resolution than the previous τ . This alleviates
 346 the issue of non-aligned and non-smooth functions by controlling the error term
 347 associated with the mixed fourth derivatives. Thus, the truncated combination
 348 technique provides a unified framework to transition from standard sparse grid
 349 to regular grid in terms of approximation capability by increasing τ .

350 Let us consider a PIC simulation with N_p total particles and a $2^n \times 2^n$
 351 regular grid with mesh size $h = \frac{L}{2^n}$. The regular grid with $\tau = n$ will have
 352 the minimal grid-based error and maximal noise because it has the mesh size
 353 h in all the directions. The standard sparse grid technique with $\tau = 1$, at the
 354 other extreme, has maximal grid-based error and minimal noise as it has the
 355 mesh size h in directions aligned with x or y axis but not in others. As we
 356 increase τ from 1 to n as shown in Figure 1, we decrease the grid-based error
 357 because of the inclusion of finer mesh sizes in the component grids but at the
 358 same time increase the particle noise due to decreased particles per cell or, from
 359 the filtering perspective, the inclusion of higher wavenumbers in the filtering
 360 process of equation (2). Thus depending on the smoothness and the orientation
 361 of the function there is an optimal τ at which the total error, which is the
 362 sum of grid-based error and particle noise, is minimized. Hence, the truncated
 363 combination technique provides a natural way to minimize the total error within
 364 the framework of sparse grid-based noise reduction without much modification
 365 to the standard sparse grid combination technique. In the following we will
 366 present a formal error analysis and propose a heuristic approach to estimate the
 367 optimal τ .

368 4.4. Formal error analysis

369 In [4], a formal error analysis is presented for sparse PIC quantifying the
 370 grid-based error and particle noise. Proposition 1 states the exact equivalence
 371 between the direct charge deposition in [4] and our new filtering approach for
 372 the case of node-centered grids. Thus, for PIC codes based on node-centered
 373 grids⁶, the formal error analysis in [4] is directly applicable. In contrast, our

⁵For the time being we consider the same truncation parameter τ in all the directions for the clarity of the exposition. We refer the readers to Remark 1 for more general cases.

⁶We highlight the fact that for the scheme we present in this article, only the centering scheme of the charge density matters. The other fields do not play a role in our noise reduction algorithm, and the analysis is therefore independent of their centerings.

374 codes are based on cell-centered grids (as is the default choice in many plasma
 375 PIC codes [37, 18]). According to Proposition 1, the direct charge deposition in
 376 [4] and the current approach are not exactly equivalent for cell-centered grids
 377 because of the differences in the shape functions. Nevertheless, the order of
 378 accuracy is the same for both approaches and they differ only by constants.
 379 Hence, we will largely follow the steps in [4] and generalize it to include the
 380 truncated combination technique.

381 As shown in [4] and appendix B, approximating ρ_e in PIC simulations con-
 382 sists of two parts: namely, grid-based error and particle noise. In what follows
 383 we will quantify these two components to get an estimate of the total error.

384 *4.4.1. Grid-based error*

385 Let us recall the different notations for charge density which will be of use
 386 here. ρ_e is the exact electron charge density given by

$$\rho_e(\mathbf{x}) = q_e \int f(\mathbf{x}, \mathbf{v}) d\mathbf{v} = \int \int f(\xi, \mathbf{v}) \delta(\mathbf{x} - \xi) d\xi d\mathbf{v}.$$

387 The density on the regular grid before the sparse grid transformation is $\tilde{\rho}_e$ and it
 388 is obtained from ρ_e by first approximating delta-functions in configuration space
 389 by shape functions of compact support (see equation (28) in appendix B) and
 390 then approximating the expected value of the shape function by an arithmetic
 391 mean over a finite number of discrete particles (see equation (38) in appendix
 392 B). The density on the regular grid after the sparse grid transformation in
 393 equation (2) is ϱ_e . We will denote the grid error component of the total error as
 394 $\|\rho_e - \varrho_e\|_{grid}$, where for simplicity we have denoted the L^∞ norm $\|\cdot\|_{L^\infty}$ by $\|\cdot\|$
 395 (equivalently, we can also use the L^2 -norm). In our approach, the grid-based
 396 error comes from the approximation of delta-functions in configuration space
 397 by shape functions of compact support as well as from the transfer operators R
 398 and P .

399 Towards quantifying the grid-based error, for simplicity, let us consider a 2D
 400 PIC simulation in a periodic domain $[0, L]^2$ and a regular mesh of size $2^n \times 2^n$.
 401 Let the mesh size of the regular grid be $h_n = \frac{L}{2^n}$ and the mesh sizes of the
 402 component grids be $h_i = \frac{L}{2^i}$ and $h_j = \frac{L}{2^j}$ for the (i, j) th component grid in Figure
 403 1. In our approach, we use the cloud-in-cell or linear interpolation operators
 404 for all the grid transfer operations. Hence, from Proposition 1 and the grid-
 405 based error derived in equation (36) of appendix B, we use an error expansion
 406 of the form $C_1(h_i)h_i^2 + C_2(h_j)h_j^2 + D_1(h_i, h_j)h_i^2h_j^2$ similar to [4, 29, 1, 38], where
 407 C_1, C_2 and D_1 are appropriate coefficient functions with a uniform upper bound.
 408 The summation over the component grids in equation (2) leads to pair-wise
 409 cancellations both in the standard sparse grid combination technique as well as
 410 in the truncated combination technique as shown in Figure 1. After multiplying
 411 by the combination coefficients and summing across all the component grids,

⁴¹² we get

$$(\rho_e - \varrho_e)_{grid} = C_1(h_n)h_n^2 + C_2(h_n)h_n^2 + \frac{4h_n^2L^2}{2^{2\tau}} \left[\frac{1}{4} \sum_{\substack{i+j=n+\tau \\ i,j \geq \tau}} D_1(h_i, h_j) - \sum_{\substack{i+j=n+\tau-1 \\ i,j \geq \tau}} D_1(h_i, h_j) \right], \quad (6)$$

⁴¹³ where we used the fact that $h_i h_j = \frac{h_n L}{2^\tau}$ when $i + j = n + \tau$ and $h_i h_j = \frac{h_n L}{2^{(\tau-1)}}$ when $i + j = n + \tau - 1$. Taking the norm of both sides of the above equation and noting that there are $n - (\tau - 1)$ component grids with $i + j = n + \tau$ and $(n - 1) - (\tau - 1)$ component grids with $i + j = n + \tau - 1$, we obtain

$$\begin{aligned} \|\rho_e - \varrho_e\|_{grid} &\leq \kappa_1 h_n^2 + \kappa_2 h_n^2 + \frac{4\beta_1 h_n^2 L^2}{2^{2\tau}} \left[\frac{n - (\tau - 1)}{4} + \{(n - 1) - (\tau - 1)\} \right] \\ &\leq h_n^2 (\kappa_1 + \kappa_2 + \beta_1 L^2 2^{-2\tau} [5(n - \tau) + 1]). \end{aligned} \quad (7)$$

⁴¹⁷ Here, κ_1, κ_2 and β_1 are constants corresponding to the upper bounds such that ⁴¹⁸ $\|C_1(h_n)\| \leq \kappa_1$, $\|C_2(h_n)\| \leq \kappa_2$ and $\|D_1(h_i, h_j)\| \leq \beta_1$, $\forall h_i, h_j$. The same ⁴¹⁹ expression for the error is also obtained in [1] for the truncated combination in ⁴²⁰ 2D. Similarly one can derive the estimates in 3D and the grid-based error in ⁴²¹ that case is given by

$$\begin{aligned} \|\rho_e - \varrho_e\|_{grid} &\leq h_n^2 (\kappa_1 + \kappa_2 + \kappa_3 + (\beta_1 + \beta_2 + \beta_3) L^2 2^{-2\tau} [5(n - \tau) + 1] \\ &\quad + \gamma L^4 2^{-(4\tau+1)} \{25(n - \tau)^2 - 5(n - \tau) + 2\}), \end{aligned} \quad (8)$$

⁴²² where the upper bounds for the coefficient functions in 3D are such that $\|C_d(h_n)\| \leq$ ⁴²³ κ_d , $\|D_d(h_i, h_j)\| \leq \beta_d$ and $\|F(h_i, h_j, h_k)\| \leq \gamma$ for $d = 1, 2, 3$ and $\forall h_i, h_j, h_k$. ⁴²⁴ By plugging in $\tau = 1$ and $\tau = n$ in (7) and (8) we recover the estimates for the ⁴²⁵ standard sparse grid combination in [29] and for regular grids respectively.

⁴²⁶ 4.4.2. Particle noise

⁴²⁷ Now, we will derive estimates for the particle noise component of the total ⁴²⁸ error. The particle noise is the result of approximating the expected value of the ⁴²⁹ shape function by an arithmetic mean over a finite number of discrete particles. ⁴³⁰ As per the error analysis in [4], in 2D the particle noise in each component grid ⁴³¹ is $\mathcal{O}(1/\sqrt{N_p h_i h_j})$ and as stated in the grid error estimates we have $n - (\tau - 1)$ ⁴³² component grids each with $h_i h_j = \frac{h_n L}{2^\tau}$ and $(n - 1) - (\tau - 1)$ component grids ⁴³³ with $h_i h_j = \frac{h_n L}{2^{(\tau-1)}}$. Thus we can write an estimate for the particle noise as

$$\begin{aligned} \|\rho_e - \varrho_e\|_{noise} &= \mathcal{O} \left(\sigma \left[\frac{n - (\tau - 1)}{\sqrt{\frac{N_p h_n L}{2^\tau}}} + \frac{(n - 1) - (\tau - 1)}{\sqrt{\frac{N_p h_n L}{2^{(\tau-1)}}}} \right] \right) \\ &= \mathcal{O} \left(\sigma \left\{ \frac{2^{0.5(\tau-1)} [(n - \tau)(1 + \sqrt{2}) + \sqrt{2}]}{\sqrt{N_p h_n L}} \right\} \right), \end{aligned} \quad (9)$$

434 where σ is a particle noise constant. Following the same procedure, the noise
 435 estimate in 3D is given by

$$||\rho_e - \varrho_e||_{noise} = \mathcal{O} \left(\sigma \left\{ \frac{2^{(\tau-2)} [(3 + \sqrt{2})(n - \tau)^2 + (5 + \sqrt{2})(n - \tau) + 4]}{\sqrt{N_p h_n L^2}} \right\} \right). \quad (10)$$

436 Again, by plugging in $\tau = 1$ and $\tau = n$ in equations (9), (10) we recover the
 437 estimates shown in [4] for the standard sparse grid technique and regular grids
 438 respectively. With the grid and particle error estimates in hand, we will show
 439 how these can be used in practice to adaptively select the optimal τ .

440 *4.4.3. Heuristic approach for the quantitative estimation of the coefficients in
 441 the error analysis*

442 In order to use the grid and particle error estimates derived in the previous
 443 section we need to have a quantitative estimate of the coefficients. To that
 444 end, we note that a rigorous derivation of coefficients for the current approach
 445 in the case of cell-centered grids depends on the ratio of the mesh sizes of the
 446 component grids to the regular grid and is more involved. Instead, in this
 447 section we approximate the grid and particle coefficients based on heuristic
 448 arguments and empirical observations and intend to improve these choices in
 449 the future iterations of our algorithm. Let us first consider the grid-based error.
 450 As explained in [4, 36] and equations (36) and (37) in appendix B, the coefficient
 451 functions in the grid error estimates are proportional to the derivatives of the
 452 charge density ρ_e such that

$$\begin{aligned} C_1 &\propto \frac{\partial^2 \rho_e}{\partial x^2}, C_2 \propto \frac{\partial^2 \rho_e}{\partial y^2}, C_3 \propto \frac{\partial^2 \rho_e}{\partial z^2}, D_1 \propto \frac{\partial^4 \rho_e}{\partial x^2 \partial y^2} \\ D_2 &\propto \frac{\partial^4 \rho_e}{\partial y^2 \partial z^2}, D_3 \propto \frac{\partial^4 \rho_e}{\partial z^2 \partial x^2}, F \propto \frac{\partial^6 \rho_e}{\partial x^2 \partial y^2 \partial z^2}. \end{aligned}$$

453 In PIC, we only have an approximation of ρ_e on the regular grid, which we
 454 call $\tilde{\rho}_e$ as defined in equation (38), and this also contains the particle noise. In
 455 order to have a realistic approximation of the derivatives of the charge density
 456 from the noisy regular PIC data $\tilde{\rho}_e$, we perform a denoising by thresholding
 457 in the Fourier domain. Specifically, we first take the Fourier transform of the
 458 density on the regular grid $\hat{\rho}_e = \mathcal{F}(\tilde{\rho}_e)$ and perform a hard thresholding such
 459 that

$$\chi_\epsilon(\hat{\rho}_e) := \begin{cases} \hat{\rho}_e & |\hat{\rho}_e| \geq \epsilon, \\ 0 & |\hat{\rho}_e| < \epsilon, \end{cases} \quad (11)$$

460 where $\hat{\rho}_e$ is a vector and the operator $\chi_\epsilon(\cdot)$ acts on it component wise. Here,
 461 ϵ is the threshold for denoising and $|\hat{\rho}_e|$ denotes the magnitude of the Fourier
 462 transform $\hat{\rho}_e$. This type of denoising is common in signal processing as well as
 463 wavelet denoising [39] techniques.

464 The threshold parameter ϵ is a function of the number of particles per cell
 465 P_c , the initial sampling method and also the distribution f . It determines how

466 much noise and signal is removed by the denoising process. Too low a value will
 467 not remove much noise and too high a value may remove a significant portion
 468 of the signal along with the noise. However, in contrast to denoising techniques
 469 in signal processing where after applying this threshold one performs an inverse
 470 transform to get the signal in the physical domain, we emphasize the fact that
 471 for our scheme we only use it for selecting the truncation parameter τ (which
 472 performs the final filtering). Hence the threshold ϵ does not need to be optimal,
 473 and we only need to ensure that we do not pick up excessive noise.

474 At present, we use an ad-hoc strategy to select the value of ϵ as a certain
 475 percentage of the maximum value of $|\hat{\rho}_e|$, namely $\epsilon = \alpha \max(|\hat{\rho}_e|)$, where α
 476 denotes the percentage. To determine α in our algorithm, for a certain number
 477 of particles per cell $(P_c)_{ref}$ (e.g., 5) we run the PIC simulation for a few different
 478 values of α and pick the minimum value necessary for denoising. To reduce the
 479 run time we use the coarsest mesh possible for the problem in these simulations.
 480 Once we pick the value of α for a reference number of particles per cell $(P_c)_{ref}$,
 481 we run simulations with other values of P_c by multiplying α by $\sqrt{(P_c)_{ref}/P_c}$,
 482 as we know the noise in PIC methods scales as $1/\sqrt{P_c}$.

483 To give an idea of how one can execute this process, in our numerical ex-
 484 periments in section 5 we typically start with $\alpha = 0.01$ (ϵ is one percent of the
 485 maximum value of $|\hat{\rho}_e|$) as we found it to be a good initial guess through many
 486 experiments. In order to examine whether the selected value of α is sufficient for
 487 denoising, we examine the theoretical error curves from the τ estimator as shown
 488 in the right columns of Figures 3-5 and 9-10. From these figures we can see that
 489 when the grid based error is dominant (which is the case for low τ values) there
 490 is a specific shape to these curves which is dictated by the physical evolution of
 491 the density. If on the other hand the particle noise is dominant (high τ values),
 492 then these curves are almost flat as the noise is insensitive to the time evolution
 493 of the density. If the selected value of α is not large enough for denoising, then
 494 even the theoretical error curves for low τ cases are insensitive to the density
 495 evolution with visible anomalies. In such a case, we increase the value of α until
 496 we do not see this behavior any more. On the other hand, if the selected value
 497 of α is too high, then we decrease it until we see the anomalies, and select the
 498 value just before this behavior is observed. In addition to the theoretical error
 499 curves, we also use the time history of optimal τ as shown in Figures 6 and 11
 500 to help in the detection of anomalies and guide us in the process of whether to
 501 increase or decrease the initial value of α selected. Using this process we found
 502 that anomalies start to occur for the values of $\alpha = 0.005, 0.025, 0.004$ for the 2D
 503 diocotron instability with Gaussian sampling, uniform sampling and 3D Pen-
 504 ning trap respectively in section 5. We thus chose the values of $\alpha = 0.01, 0.03$
 505 and 0.005 for these three cases respectively to provide enough denoising.

506 Currently the selection of α is intrusive and performed manually, although it
 507 needs to be done only once for a test case. In future work, we will develop a more
 508 systematic way to pick the threshold directly from the density data, based on
 509 techniques similar to the ones used in wavelet denoising [39]. Machine learning
 510 techniques can also be used for this purpose, and this is another direction we

511 will pursue.

512 After denoising the charge density, we compute the derivatives in the Fourier
 513 domain and perform inverse transforms. Next, in order to find the constants
 514 in front of these derivatives in appendix B we derive the grid-based error for
 515 regular PIC schemes. Since each component grid in the sparse grid combination
 516 technique is a regular grid with mesh sizes h_i , h_j and h_k , equations (36) and
 517 (37) can be used for determining the constants involved in the upper bounds. To
 518 that end, we note that the grid transfer operators R and P incur twice the grid-
 519 based error of similar magnitude given in equations (36) and (37). Moreover,
 520 the charge density $\tilde{\rho}_e$ in the regular grid adds another $1/12$ in front of the second
 521 derivative terms. Summing all these contributions we get an estimate for the
 522 coefficients in equations (7) and (8) as

$$\begin{aligned}\kappa_1 &= \frac{1}{4} \left\| \frac{\partial^2 \tilde{\rho}_e}{\partial x^2} \right\|, \kappa_2 = \frac{1}{4} \left\| \frac{\partial^2 \tilde{\rho}_e}{\partial y^2} \right\|, \kappa_3 = \frac{1}{4} \left\| \frac{\partial^2 \tilde{\rho}_e}{\partial z^2} \right\|, \beta_1 = \frac{1}{72} \left\| \frac{\partial^4 \tilde{\rho}_e}{\partial x^2 \partial y^2} \right\| \\ \beta_2 &= \frac{1}{72} \left\| \frac{\partial^4 \tilde{\rho}_e}{\partial y^2 \partial z^2} \right\|, \beta_3 = \frac{1}{72} \left\| \frac{\partial^4 \tilde{\rho}_e}{\partial z^2 \partial x^2} \right\|, \gamma = \frac{1}{864} \left\| \frac{\partial^6 \tilde{\rho}_e}{\partial x^2 \partial y^2 \partial z^2} \right\|,\end{aligned}\quad (12)$$

523 where $\tilde{\rho}_e$ is the denoised charge density defined in equation (28).

524 Finally, following the particle noise estimates in equations (52) and (53) as
 525 well as [4, 17], for our algorithm we take

$$\sigma = \sqrt{(2/3)^d \|Q_e \tilde{\rho}_e\|} \quad (13)$$

526 in equations (9) and (10), where d is the dimension and $\tilde{\rho}_e$ is the charge density
 527 on the regular grid before denoising as defined in equation (38). Here, we use
 528 the density $\tilde{\rho}_e$ instead of the denoised density $\bar{\rho}_e$ as it helps in adjusting the
 529 particle constant with respect to different sampling techniques.

530 Through numerical experiments we also found another choice for the coefficients
 531 in the grid-based error and particle noise as

$$\begin{aligned}\kappa_1 &= \|k_x^2 \hat{\rho}_e\|, \kappa_2 = \|k_y^2 \hat{\rho}_e\|, \kappa_3 = \|k_z^2 \hat{\rho}_e\|, \beta_1 = \|k_x^2 k_y^2 \hat{\rho}_e\| \\ \beta_2 &= \|k_y^2 k_z^2 \hat{\rho}_e\|, \beta_3 = \|k_x^2 k_z^2 \hat{\rho}_e\|, \gamma = \|k_x^2 k_y^2 k_z^2 \hat{\rho}_e\|, \sigma = \sqrt{\|Q_e \tilde{\rho}_e\|}\end{aligned}\quad (14)$$

532 where k_x , k_y and k_z are the wavenumbers in x , y and z respectively. We do
 533 not present detailed results, but for the numerical experiments in section 5 as
 534 well as for other synthetic examples in the context of interpolation we found
 535 this choice yields similar optimal τ values as that of the constants in equations
 536 (12) and (13). It has an added advantage that we do not need to take inverse
 537 transform of the derivatives, which is three in 2D and seven in 3D. Thus it may
 538 be of interest from a practical point of view, and for the numerical experiments
 539 in section 5 we observed up to 7 times speedup in the τ estimation part with
 540 this choice compared to the ones in equations (12) and (13).

541 In Algorithm 1 we consolidate the steps in the optimal τ estimator algorithm.
 542 For the range of τ , we consider $[1, n - 3]$ for 2D and $[1, n - 2]$ for 3D where 2^n
 543 is the number of points in the regular grid in each dimension. We do not

544 include the extreme values of τ ($[n-2, n]$ for 2D and n for 3D⁷) because we
 545 observed consistent false optima in the τ estimation due to these cases in our
 546 numerical experiments. These false optima can be explained by the fact that the
 547 high τ cases are less penalized by the inaccurate upper bounds of the triangle
 548 inequality than the low τ ones, because fewer components grids are involved in
 549 the combination. Currently, unless we take the specific properties of a given
 550 simulation into account, we do not know of a general strategy which can resolve
 551 this problem. Hence, we plan to improve this in our future work.

552 **Remark 1.** *So far, for the sake of the clarity and simplicity of our presentation,
 553 we have used the same number of grid points in all the directions to explain the
 554 steps of the noise reduction strategy. Here, for completeness, we will briefly
 555 outline the procedure needed for the general case of different grid resolutions
 556 in each direction. To that end, we define a few convenient notations. We
 557 again consider the two-dimensional case for simplicity, with the extension to
 558 three dimensions left as a straightforward task for the reader. Let us define
 559 $\mathbf{n} = \{n_1, n_2\}$ as the extension of its scalar counterpart. Since we want the
 560 target level of the sparse grid approximation space [33] to be the same as the
 561 underlying regular grid, we also need to use different truncation parameters in
 562 each direction. Let us denote these by $\boldsymbol{\tau} = \{\tau_1, \tau_2\}$. Let $n_{\max} = \max(\mathbf{n})$ and
 563 $n_{\min} = \min(\mathbf{n})$. The parameter τ can now take the values $1 \leq \tau \leq n_{\min}$, and
 564 for each value of τ we calculate the final truncation parameter $\boldsymbol{\tau}$ (which is only
 565 used in the error analysis) according to [33]:*

$$a = \min(\mathbf{n} - \boldsymbol{\tau} \cdot \mathbf{1}), \quad (15)$$

$$\boldsymbol{\tau} = \mathbf{n} - a \cdot \mathbf{1}, \quad (16)$$

566 where $\mathbf{1} = \{1, 1\}$. The component grids corresponding to parameter τ now will
 567 have $i \geq \tau_1$, $j \geq \tau_2$ and again there are two sets of component grids: one with
 568 $i + j = n_{\max} + \tau$, $c = 1$ and the other with $i + j = n_{\max} + \tau - 1$, $c = -1$. The
 569 grid and particle errors can then be derived in a similar fashion as in sections
 570 4.4.1 and 4.4.2.

571 4.5. *Implementation in a HPC PIC code base.*

572 Once the optimal τ is obtained from Algorithm 1 we need to perform sparse
 573 grid noise reduction. In Algorithm 2 we present a matrix-free implementation
 574 of the sparse grid filtering in equation (2). This implementation is more suitable
 575 for large-scale high performance PIC code bases like OPAL (which are mostly
 576 matrix-free) than the matrix version in equation (2). In these codes, the density
 577 in the regular grid is domain-decomposed between different processors and in
 578 Algorithm 2 each processor holds the entire component grid in the combination
 579 technique. For moderate values of τ , each component grid has very few degrees
 580 of freedom compared to the regular grid and this is not very expensive in terms of

⁷In the current sparse grids setup $\tau = n - 1$ is not possible for 3D.

581 memory. However, for high τ , the component grids involved in the combination
 582 have a considerable number of degrees of freedom (especially in 3D) and hence
 583 both memory as well as the MPI_Allreduce step in Algorithm 2 could present a
 584 bottleneck. In our future work we will also split up the component grids between
 585 processors which would require a more complicated parallelization strategy as
 586 shown in [40].

587 If the parallelization of the code base uses MPI for inter-node parallelism
 588 and OpenMP, GPU or any other accelerator for intra-node parallelism then the
 589 for-loop over component grids in Algorithm 2 can also be done in parallel with
 590 the available intra-node shared memory parallelism. Algorithms 1 and 2 are
 591 performed in between steps 1 and 2 in the regular PIC procedure outlined in
 592 section 2. Ingredients such as the FFT, which are required for the tauEstimator
 593 algorithm, are already available in many large-scale PIC code bases and hence
 594 these two algorithms can be incorporated inside them very easily without any
 595 modification to the other parts.

Algorithm 1 tauEstimator: An algorithm for estimating optimal τ .

- 1: Compute Fourier transform of the charge density $\hat{\rho}_e = \mathcal{F}(\tilde{\rho}_e)$.
- 2: Perform denoising by hard thresholding according to equation (11).
- 3: Compute the constants for the grid-based error with (12) and the particle
 error constant (13).
- 4: **for** $\tau = 1$ **to** $n - 3$ for 2D and $n - 2$ for 3D **do**
- 5: Evaluate grid-based error and particle noise using equations (7),(9) for
 2D and (8),(10) for 3D.
- 6: **end for**
- 7: Select the τ with minimum total error.

Algorithm 2 transferToSparse: An algorithm for sparse grid-based noise
 reduction with a given τ .

- 1: **for** $l = 1$ **to** nc **do**
- 2: Each processor deposits their regular grid partition of $\tilde{\rho}_e$ to the l th com-
 ponent grid using the transfer operator R_l in equation (4).
- 3: MPI_Allreduce to add contributions from all processors on the l th com-
 ponent grid.
- 4: Each processor interpolates from the l th component grid to their regular
 grid partition of $\tilde{\rho}_e$ using transfer operator P_l in equation (5).
- 5: Multiply by combination coefficient c_l and accumulate.
- 6: **end for**

596 **Remark 2.** In general the charge density ϱ_e after sparse grid transformation is
 597 not guaranteed to be positive everywhere. This is not unique to our approach and
 598 also happens in other noise reduction strategies such as high-order shape func-
 599 tions [21], compensating filters [6] and wavelet-based density estimation [41]. In
 600 our numerical results in section 5 we do not observe any problems caused by

601 *this. However, we could adopt the density redistribution procedure used in [21]*
 602 *to make the charge density positive everywhere after the sparse grids transfor-*
 603 *mination. This will be studied in future versions of the algorithm. Also, as shown*
 604 *in [28], the filtering procedures used in explicit PIC simulations improve energy*
 605 *conservation but at the loss of momentum conservation. In our future study we*
 606 *will investigate in detail the impact of the noise reduction strategy on energy*
 607 *and momentum conservation and report the results.*

608 *4.6. Computational complexity estimates of the noise reduction strategy*

609 Here, we provide the asymptotic serial computational complexity estimates
 610 for the tauEstimator (Algorithm 1) and transferToSparse (Algorithm 2) parts
 611 of the noise reduction strategy. The dominant computational components of the
 612 tauEstimator are the FFT and inverse FFTs, each of which has a complexity of
 613 $\mathcal{O}(N_c \log_2(N_c))$. In the case of the transferToSparse algorithm, we have nc com-
 614 ponent grids, and for each component grid we deposit the regular grid density
 615 onto the component grid and then interpolate it back to the regular grid. The
 616 deposition and interpolation both are of complexity $\mathcal{O}(N_c)$, and since we do it
 617 for nc component grids it results in $\mathcal{O}(nc \cdot N_c)$. Now the number of component
 618 grids in 2D and 3D are $nc = \mathcal{O}(\log_2(N_c) - \tau)$ and $nc = \mathcal{O}(\{\log_2(N_c) - \tau\}^2)$
 619 respectively. Thus the complexity of the transferToSparse part of the noise
 620 reduction is $\mathcal{O}(N_c (\log_2(N_c) - \tau)^{d-1})$, where d is the dimension. Hence, sum-
 621 ming up the contributions from both parts, the total complexity of the noise
 622 reduction algorithm per time step is $\mathcal{O}(N_c \{\log_2(N_c) + (\log_2(N_c) - \tau)^{d-1}\})$.
 623 The cost of typical physical domain filters such as the binomial filter is $\mathcal{O}(N_c)$.
 624 Hence, the asymptotic cost of our approach is slightly more than the usual filters.
 625 Taking into account the adaptivity of our approach, this is only a small price
 626 to pay. In terms of additional memory requirements, for both the tauEstimator
 627 and transferToSparse parts, they are $\mathcal{O}(N_c)$ which is similar to other filters. In
 628 PIC schemes, memory requirements of particles usually dominate as the num-
 629 ber of particles is far more than N_c . Additionally, each particle contains many
 630 attributes (e.g. position, velocity, charge etc.). Thus, the additional memory
 631 requirement caused by the noise reduction strategy is usually not significant.

632 *4.7. Relation between sparse grid-based noise reduction strategy and sparse PIC*
 633 *schemes*

634 In this section we compare and contrast the sparse PIC scheme introduced
 635 in [4] with the noise reduction strategy proposed in the current work. The
 636 distinctions may be enumerated as follows.

- 637 • As mentioned in the introduction, the sparse PIC scheme in [4] performs
 638 all the operations - e.g. charge deposition and Poisson solve - on the sparse
 639 grids and does not introduce regular grids at all (except for visualization
 640 purposes or post-processing). This absence of a regular grid can provide
 641 computational and memory savings. By contrast, the current approach is

642 designed to be an add-on for standard PIC schemes. We use sparse grids
 643 only for noise reduction in the charge density, while all the operations such
 644 as charge deposition and the Poisson solve happen on the regular grid as
 645 in typical PIC codes.

- 646 • In [4], the noise reduction obtained from the sparse grids is viewed from a
 647 Monte-Carlo perspective. In the current work we construct the strategy
 648 based on a filtering perspective and use the Monte Carlo perspective for
 649 the error analysis to find the optimal τ . This is possible because of the
 650 equivalence between the two perspectives, as shown in Proposition 1.
- 651 • The truncated combination technique and the tauEstimator can also be
 652 used in the context of the sparse PIC scheme in [4] - although this fact
 653 is not noted in that work - at the expense of reintroducing regular grid
 654 complexity. However, in the regime where particle operations dominate,
 655 this may be a worthwhile trade-off.
- 656 • The adaptive noise reduction strategy can also be used offline as a post-
 657 processing tool to filter the charge density (or any other grid quantity)
 658 from regular PIC simulations.

659 To summarize, the sparse PIC scheme in [4] can be used as an alternative
 660 to regular PIC, whereas the sparse grid-based noise reduction strategy is an
 661 accessory to improve the performance of regular PIC.

662 5. Numerical results

663 In this section we will test the performance of the adaptive noise reduction
 664 strategy on two benchmark problems in plasma physics and beam dynamics;
 665 namely two-dimensional diocotron instability, and three-dimensional electron
 666 dynamics in a Penning trap with a neutralizing ion background. These test
 667 cases produce fine-scale structures during the nonlinear evolution and thus can
 668 be used to evaluate the ability of the adaptive τ method to capture them while
 669 still reducing noise. Also, they are very relevant to the large-scale accelerator
 670 simulations which we intend to perform in our future works.

671 In all the simulations we consider a periodic box $\Omega = [0, L]^d$, where d is the
 672 dimension and L is the length in each dimension. The charge to mass ratio
 673 q_e/m_e in all our simulations is -1 . In measuring the error in field quantities
 674 we use the relative discrete L^2 -norm also known as the normalized root mean
 675 squared error given by

$$\mathcal{E}(\psi) = \sqrt{\frac{\sum_{i=1}^{N_{points}} (\psi(\mathbf{x}_i) - \psi_{ref}(\mathbf{x}_i))^2}{\sum_{i=1}^{N_{points}} (\psi_{ref}(\mathbf{x}_i))^2}}, \quad (17)$$

676 where ψ is any field quantity, ψ_{ref} is the reference field which is obtained from
 677 an ensemble average of high-resolution regular PIC simulations and \mathbf{x}_i are the

678 locations of points in the domain at which we measure the error. This error
 679 is for a particular point in time and we measure the error at few instants in
 680 the whole simulation. In both numerical examples, we calculate the error for
 681 regular PIC, adaptive τ PIC and fixed τ PIC with the range of τ taken to be
 682 the same as the one used in the tauEstimator Algorithm 1. By means of these
 683 error curves we can see how well the adaptive τ algorithm performs in terms of
 684 picking the optimal τ and also how the errors compare to that of the regular
 685 PIC results with different number of particles per cell P_c . We always define the
 686 number of particles per cell P_c based on the regular grid. It is given by

$$P_c = \frac{N_p}{N_c} = \frac{N_p}{2^{nd}}.$$

687 For the time integration we use the leap-frog method and for the Poisson
 688 equation we use the second order cell-centered finite difference method as in
 689 [42, 43] with single level and without any spatial adaptivity. For solving the
 690 linear system arising from the discretized Poisson equation we use the smoothed
 691 aggregation algebraic multigrid (SAAMG) from the second generation Trilinos
 692 MueLu library [44]. The stopping tolerance for the iterative solver is set as 10^{-10}
 693 multiplied by the infinity norm of the right hand side. More details on the solver
 694 can be found in [43]. The code is written on top of a C++ miniapp based on
 695 the particle accelerator library OPAL [37] and box structured adaptive mesh
 696 refinement library AMReX [45]. Even though FFT solver would be the most
 697 accurate and fastest option [46] in this context, the reason for the above choice
 698 of field solver is in our future work we want to extend the current approach to
 699 include adaptive mesh refinement. Also, the conclusions of the present study
 700 will not be much affected by this choice and will be applicable for FFT solver
 701 too.

702 All the computations are performed on the Merlin6 HPC cluster at the Paul
 703 Scherrer Institut, the details of which are as follows. Each Merlin6 node consists
 704 of 2 sockets and each socket in turn has Intel Xeon Gold 6152 processor with
 705 22 cores at 2.1-3.7GHz. There are 2 threads in each core, however in all the
 706 present computations we only use single thread. Each node contains 384 GB
 707 DDR4 memory in total.

708 5.1. 2D diocotron instability

709 5.1.1. Problem description and simulation setup

710 As a first example, we consider the 2D diocotron instability test case as
 711 already described in [4]. In this test case, we have electrons with a hollow
 712 density profile immersed in a neutralizing immobile and uniform ion background
 713 and confined by a uniform external axial magnetic field. The magnetic field is
 714 strong enough that the electron dynamics is dominated by advection in the self-
 715 consistent $\mathbf{E}_{sc} \times \mathbf{B}_{ext}$ velocity field [47, 48, 49, 50]. The initial electron density
 716 profile is not monotonic in the radial direction, which translates to an $\mathbf{E}_{sc} \times \mathbf{B}_{ext}$
 717 shear flow which is unstable to what is known as the Kelvin-Helmholtz shear
 718 layer instability [47, 51, 50] in fluid dynamics, and the diocotron instability in

719 beam and plasma physics [12, 52, 47]. This instability deforms the initially
 720 axisymmetric electron density distribution, leading, in the nonlinear phase, to
 721 the formation of a discrete number of vortices, and eventually breakup [50, 52].
 722 This test case has importance both from a fundamental physics point of view
 723 [12, 52, 47] as well as in practical applications such as beam collimation [53].

724 The parameters for this test case are as follows and are very similar to the
 725 ones in [4]. We apply a uniform external magnetic field $\mathbf{B}_{ext} = \{0, 0, 5\}$ along
 726 the z -axis in a domain of length $L = 22$. The external electric field $\mathbf{E}_{ext} = \mathbf{0}$
 727 for this problem. The initial distribution is given by

$$f(t=0) = \frac{C}{2\pi} e^{-|\mathbf{v}|^2/2} \exp \left\{ -\frac{(r - L/4)^2}{2(0.03L)^2} \right\},$$

$$r = \sqrt{(x - L/2)^2 + (y - L/2)^2}, \quad (18)$$

728 and the constant C is chosen such that the total electron charge $Q_e = -400$.
 729 We sample the phase space using Gaussian distribution in the velocity variables
 730 with mean 0 and standard deviation 1. For the configuration space, we use a
 731 uniform distribution for θ in $[0, 2\pi]$, and for r a Gaussian distribution with mean
 732 $L/4$ and standard deviation $0.03L$. From (r, θ) we do the polar to Cartesian
 733 transformation to get (x_p, y_p) for the particles.

734 For denoising in equation (11), we take $\epsilon = \alpha \sqrt{(P_c)_{ref}/P_c} \max(|\hat{\rho}_e|)$ as ex-
 735 plained in section 4.4.3, where $(P_c)_{ref} = 5$ and $\alpha = 0.01$. This means that with
 736 5 particles per cell, charge densities with Fourier amplitude less than 1 percent
 737 of the maximum amplitude will be set to 0 and for other P_c the threshold will be
 738 scaled accordingly. The time step of the time integrator is chosen as $\Delta t = 0.02$
 739 and the simulation is run till final time $T = 17.5$.

740 5.1.2. Qualitative comparison of charge density

741 Figure 2 shows the evolution of the electron charge density with time for
 742 regular, $\tau = 1$ and adaptive τ PIC for a 1024^2 mesh. For the first three rows
 743 $P_c = 5$ and for the last row $P_c = 80$. From the first and second rows we can
 744 see that while the regular PIC results are dominated by noise, $\tau = 1$ results are
 745 dominated by grid error due to the smearing of fine scale structures. This is
 746 also noted in [4] in their sparse PIC studies. In contrast, the adaptive τ results
 747 in the third row strikes a balance between the grid-based error and noise and
 748 are in close agreement (in visual norm) with the regular PIC results with high
 749 P_c in the fourth row.

750 5.1.3. Quantitative comparison of charge density

751 In order to make a quantitative comparison, in the left columns of Figures
 752 3-5, the error in ρ_e calculated using (17) at 8 different points in time is shown
 753 for three different meshes $256^2, 512^2, 1024^2$ and number of particles per cell
 754 $P_c = 5, 10, 20$. For regular PIC we also carried out simulations at higher P_c ,
 755 namely 40, 80, 160 in order to compare the accuracy level with adaptive τ results.
 756 The reference in equation (17) is computed using the average of 8 independent
 757 regular PIC simulations each with a 1024^2 mesh and $P_c = 320$. In equation (17),

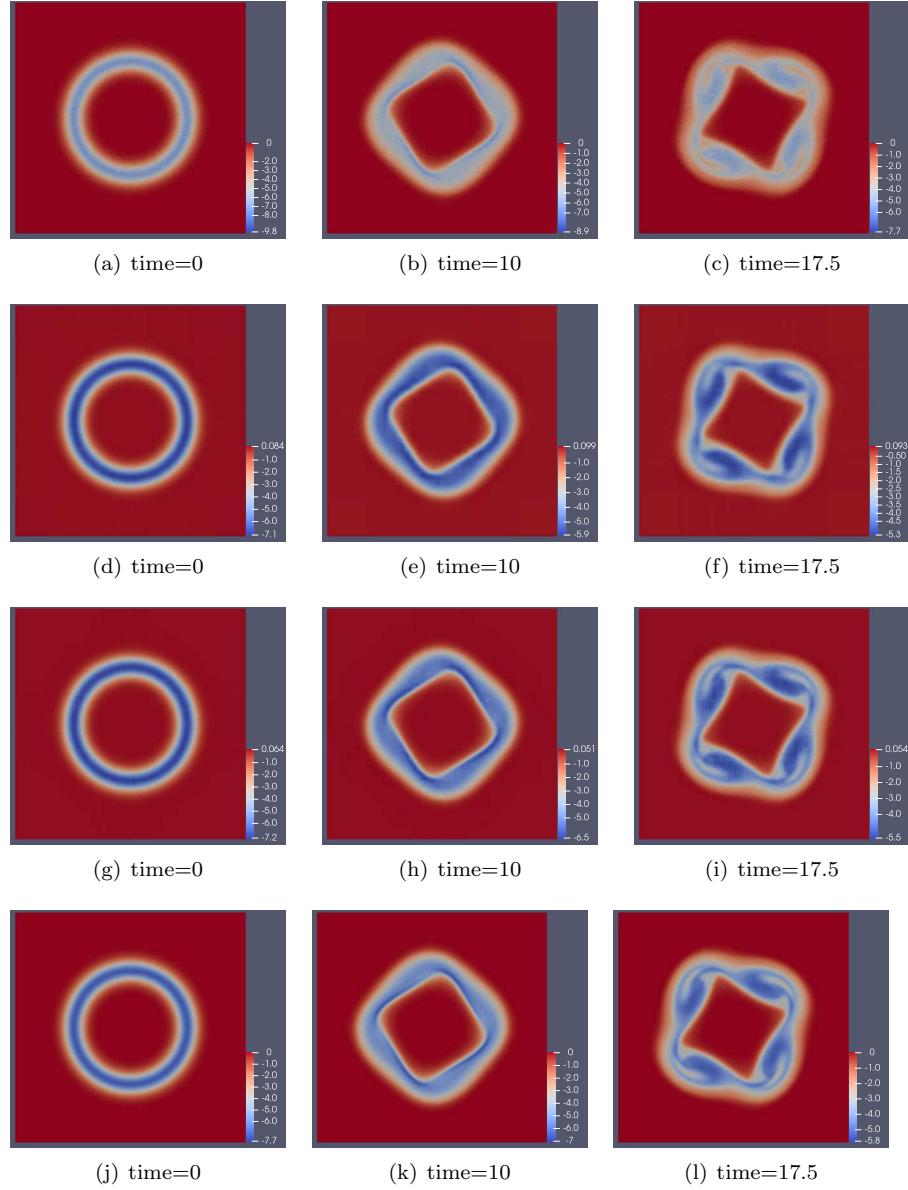


Figure 2: 2D diocotron instability: Evolution of the electron charge density with time for regular PIC, $P_c = 5$ (first row); $\tau = 1$, $P_c = 5$ (second row); adaptive τ , $P_c = 5$ (third row); and regular PIC, $P_c = 80$ (fourth row). The mesh considered here is 1024^2 . The minimum and maximum values of the charge densities for each figure are displayed in the color bars itself.

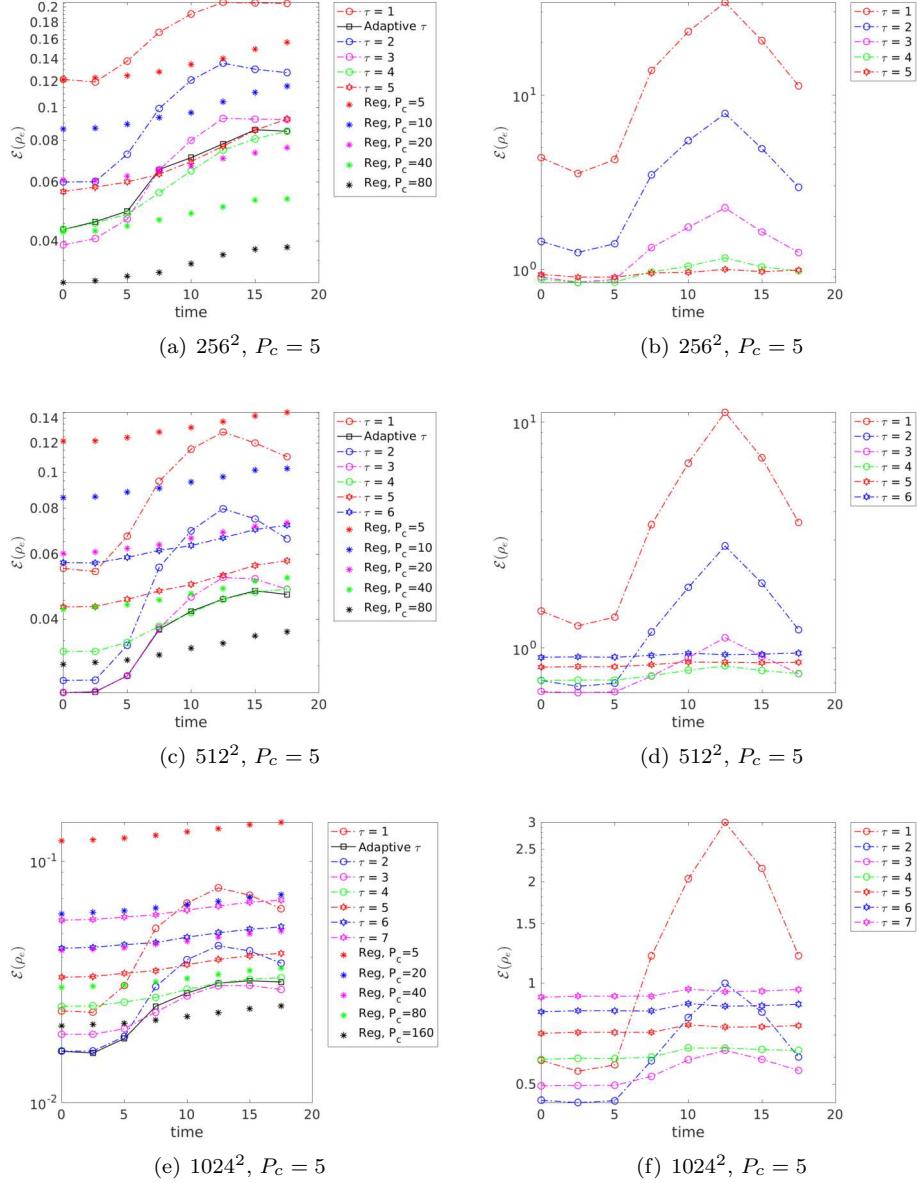


Figure 3: 2D diocotron instability: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as adaptive τ has the number of particles per cell $P_c = 5$.

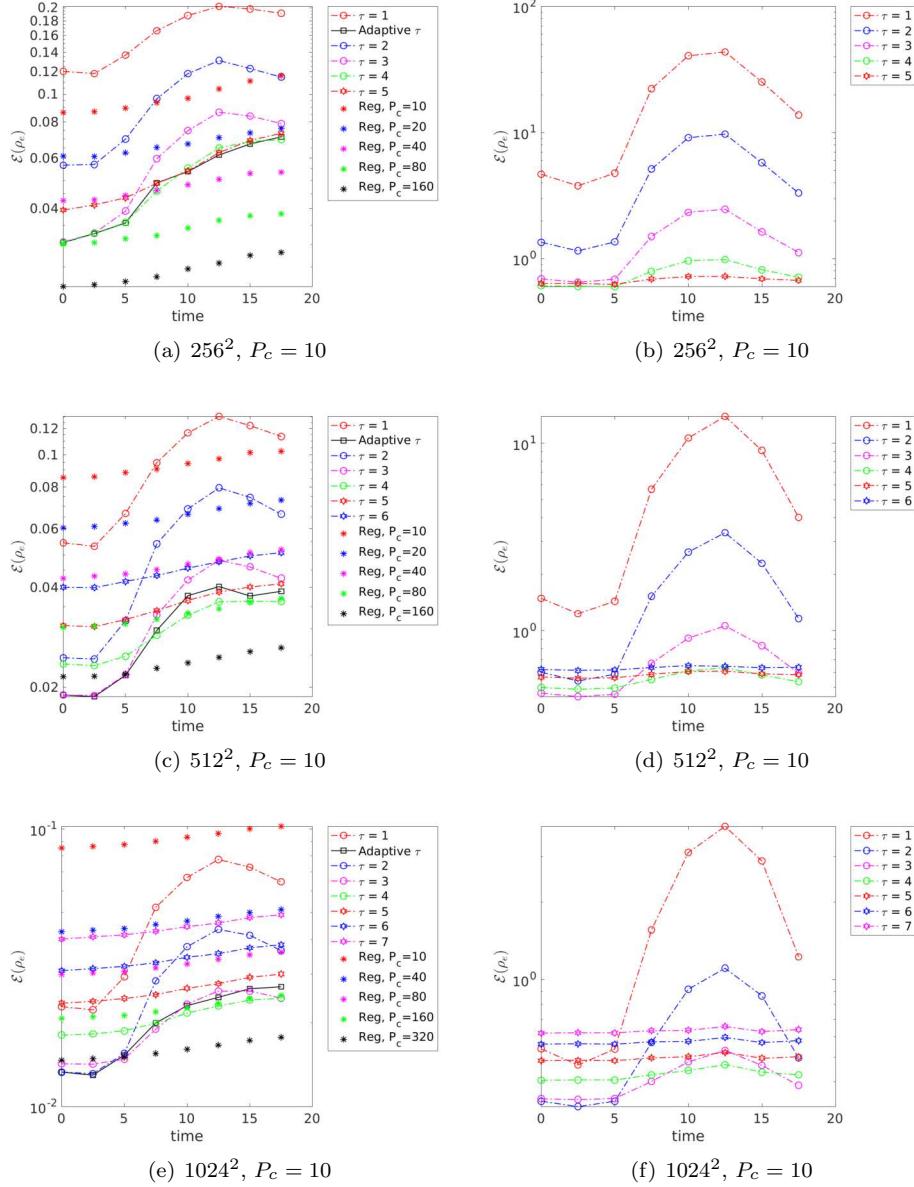


Figure 4: 2D diocotron instability: Electron charge density error comparison between regular (Reg), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as adaptive τ has the number of particles per cell $P_c = 10$.

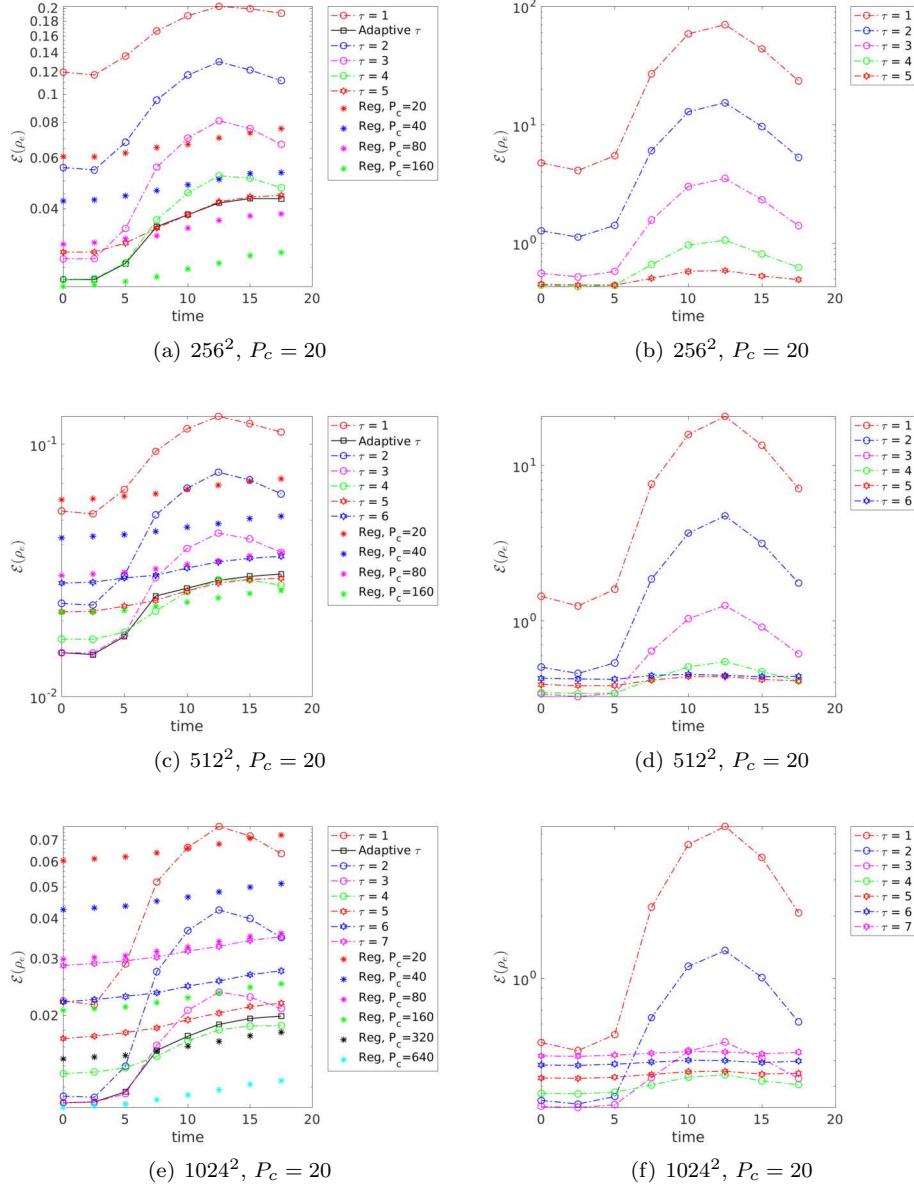


Figure 5: 2D diocotron instability: Electron charge density error comparison between regular (Reg.), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as adaptive τ has the number of particles per cell $P_c = 20$. The errors for regular PIC with $P_c = 320$ and 640 are calculated from that of $P_c = 160$ based on the theoretical particle error scaling $1/\sqrt{P_c}$. This is based on the observation that the errors for the regular PIC are in the noise dominated regime.

758 the N_{points} are taken as the cell-centered points in the mesh under consideration
 759 and the reference ρ_e is interpolated to these points for calculating error. In
 760 Figure 5(e), for calculating the error with regular PIC at $P_c = 320,640$ we
 761 divided the error for $P_c = 160$ by $\sqrt{2}$ and $\sqrt{4}$ respectively as we observed the
 762 errors are already in the noise dominated regime and follow the scaling $1/\sqrt{P_c}$.
 763 On the right columns of Figures 3-5 are the estimations of the error for different
 764 τ values from the τ estimator divided by the root mean squared value of the
 765 reference ρ_e . It is based on these curves that the optimal τ - i.e., the one with
 766 minimum error - is selected at each time step during the simulation.

767 From the left columns of Figures 3-5, we can see that in general the adaptive
 768 τ performs well in terms of picking one of the τ values with the lowest error
 769 (if not the optimal τ at all points in time). The shapes of the error curves
 770 for individual τ values are also similar for the estimated and actual ones. It
 771 demonstrates the ability of our estimator to predict correct error dynamics for
 772 different τ cases. While we do not have to worry about the magnitude of the
 773 errors in the estimator, the ordering of the error curves between different τ
 774 values is of importance as it decides the optimal τ , and we want it to be close to
 775 the actual scenario on the left columns. To that extent, we make an observation
 776 that in the time interval $t \in [7.5, 17.5]$ the difference in the magnitude of errors
 777 between different τ values in the estimator differs more from the actual scenario
 778 than in the time interval $t \in [0, 7.5]$. More specifically, for low τ values ($\tau =$
 779 1, 2, 3) the estimator predicts a significantly higher error compared to the other
 780 τ values in that regime.

781 One of the reasons for this behavior is for low τ cases - e.g., $\tau = 1, 2$ and 3 -
 782 the number of component grids in the combination technique is higher than that
 783 for the high τ cases. Since we use the triangle inequality to bound the errors,
 784 both the grid and particle errors tend to be more over-estimated for the low τ
 785 cases than those for the high τ ones. Another reason is, in the estimates for
 786 the grid error we use the derivatives based on the regular grid. While this is a
 787 sharper upper bound for high τ , the derivatives seen in reality by the low τ cases
 788 for functions with fine scale structures will be smaller because of the larger mesh
 789 sizes. Indeed, fine scale structures form in the time interval $t \in [7.5, 17.5]$ and
 790 hence grid error dominated for the simulations with sparse grid noise reduction.

791 In spite of these differences, in all the cases even with the predicted sub-
 792 optimal τ the error values of the adaptive τ PIC is significantly lower than that
 793 of the regular PIC with same P_c . If we use some problem specific information,
 794 then it may be possible to reduce the over-estimations in the grid and particle
 795 errors by introducing a correction factor for different τ values.

796 5.1.4. Evolution of τ with time

797 In Figure 6, the time history of τ is shown for the meshes and P_c considered
 798 in Figures 3-5. Here we can see that for the same P_c , when we decrease the
 799 mesh size - i.e., going from left to right in Figure 6 - the τ values decrease.
 800 This is because we are moving from the grid error dominated regime to the
 801 particle error dominated regime. On the other hand, for the same mesh size
 802 and increasing P_c - i.e., moving from top to bottom in Figure 6 - the τ values

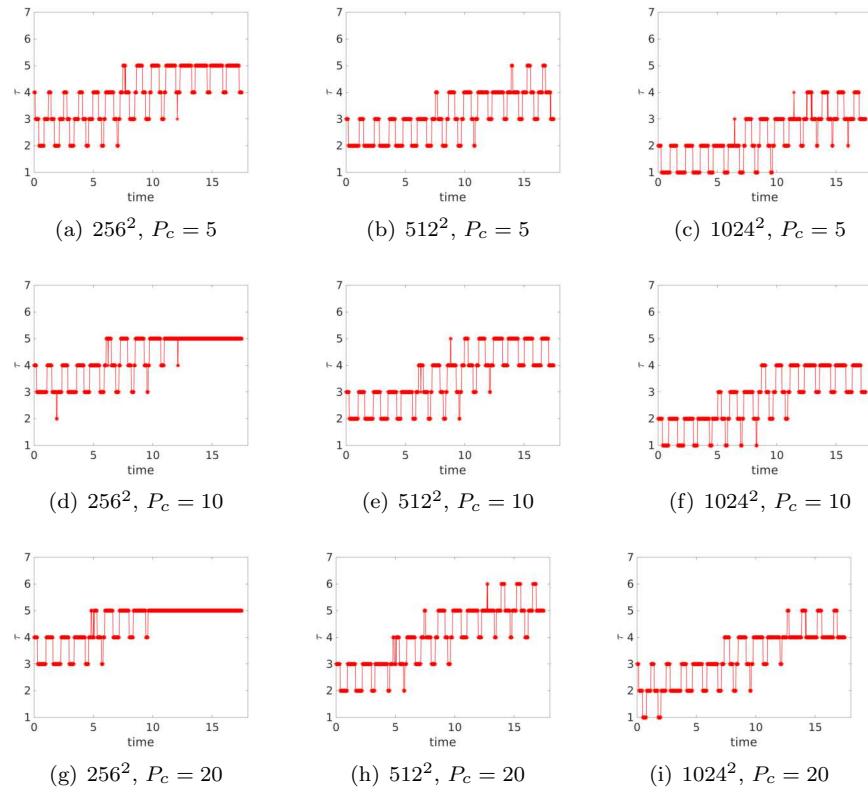


Figure 6: 2D diocotron instability: Time history of τ for different mesh sizes and number of particles per cell P_c .

803 increase as we are moving from the particle error dominated regime to the grid
 804 error dominated regime. Also, for a particular mesh size and given P_c the later
 805 points in time have higher τ compared to the earlier ones. This is due to the
 806 formation of fine scale structures in the problem and resolving them require a
 807 higher τ .

808 *5.1.5. Quantitative comparison of electric field*

809 In Figure 7, the error in the electric field \mathbf{E} calculated using equation (17) is
 810 shown for the meshes⁸ and P_c considered. We can see that the adaptive τ errors
 811 at the best are similar to the regular PIC and in some cases it is higher than
 812 regular PIC error for the same P_c . We also notice that none of the fixed τ error
 813 levels are better than the regular PIC errors. The reason for this is as follows:
 814 the electric field is obtained by integrating the charge density, and integration is
 815 a smoothing operation which reduces the particle noise. Since in our adaptive τ
 816 noise reduction algorithm we increase the grid-based error to reduce the particle
 817 noise and minimize the total error in the density, this can result in either similar
 818 or even an increase in the electric field error as compared to the regular PIC if
 819 the integration itself is sufficient enough to reduce the noise. High-order shape
 820 functions are a promising option to address this limitation as depending on
 821 the distribution they may reduce the particle noise without increasing the grid-
 822 based error. We will investigate the combination of high-order shape functions
 823 with our algorithm in future work.

824 *5.1.6. Adaptivity with initial sampling*

825 Having studied the adaptivity of the algorithm with respect to mesh size, P_c
 826 and time, we also considered a different initial sampling technique, and evaluated
 827 the performance of our scheme. We do not show the results here in order to
 828 limit the already fairly large number of tables and figures in the article, but we
 829 briefly summarize our main observations. We used a uniform distribution in all
 830 the variables to sample f in equation (18). The range for the velocity variables
 831 was chosen as $[-6, 6]$ while for the configuration space it was $[0, L]$. Note that
 832 unlike the Gaussian sampling described earlier, with this sampling each particle
 833 will have a different constant charge q_e [12] to match the distribution. Still, the
 834 charge to mass ratio is the same for all the particles. Similar to [20], we ignored
 835 particles with weights less than 1.0×10^{-9} . For this particular example, uniform
 836 sampling is not a particularly good idea as it results in sampling particles which
 837 have very small computational weights. Hence, for the same total number of
 838 particles we found that this sampling has higher noise levels than the Gaussian
 839 sampling. Uniform sampling can however be useful in scenarios where we do
 840 not know of an importance sampling technique to sample the distribution at
 841 hand. Due to higher noise levels, we needed a higher value of $\alpha = 0.03$ for the
 842 calculation of the denoising threshold. Except for the coarsest mesh size 256^2 ,

⁸For brevity we do not show results for a 512^2 mesh, as it does not contain much new and valuable information.

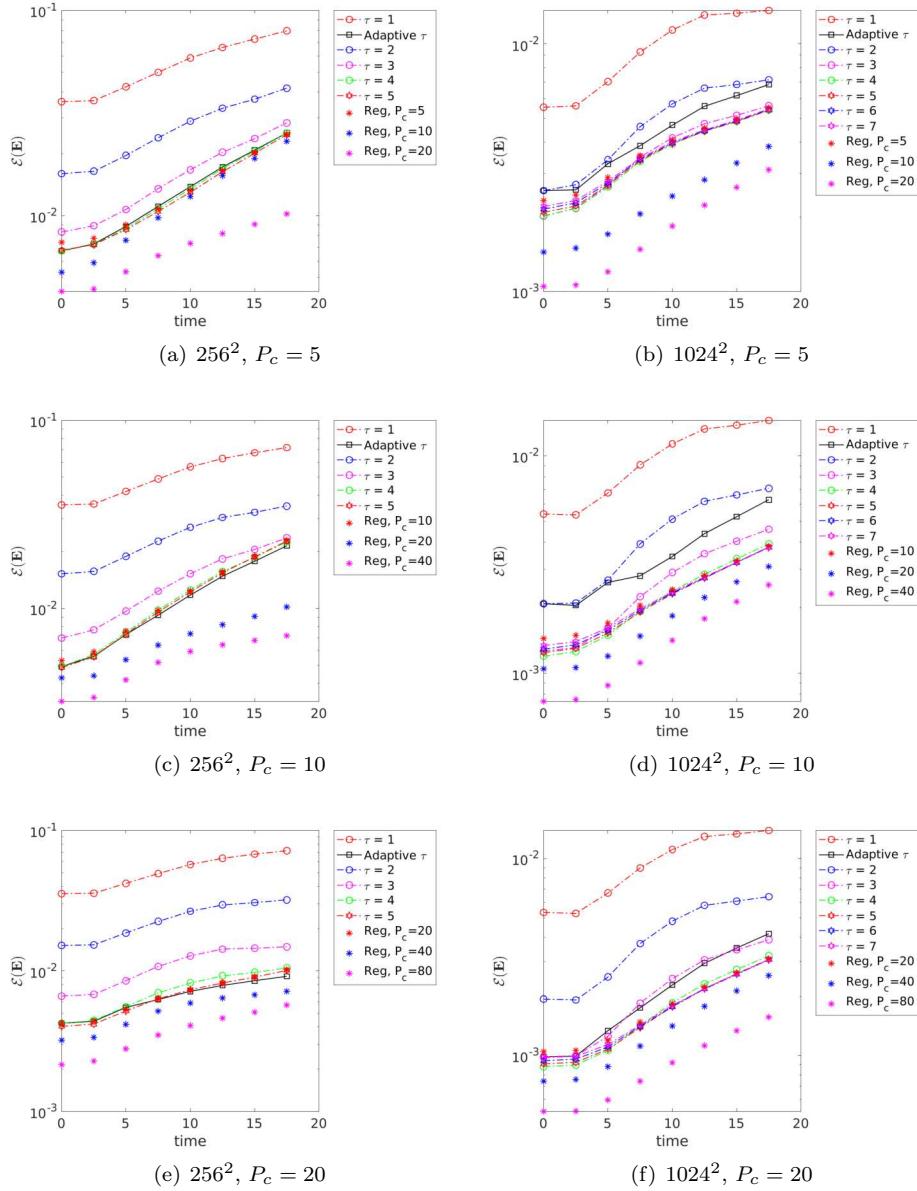


Figure 7: 2D diocotron instability: Electric field error comparison between regular (Reg), fixed τ and adaptive τ PIC.

843 the adaptive τ algorithm performed well in this sampling - i.e., the scheme
 844 picked a nearly optimal τ for most cases. The optimal τ values, as expected,
 845 are lower than that for the Gaussian sampling, owing to higher noise levels.

846 *5.1.7. Run time performance*

Mesh	P_c		
	5	10	20
256^2	43.7	47.5	55.4
512^2	91.9	110.1	145.8
1024^2	435	501.5	653.8

Table 1: 2D diocotron instability. Adaptive τ PIC: Total run time in seconds on 64 cores for different mesh sizes and number of particles per cell.

Mesh	Regular PIC			Reg/adaptive τ		
	50.9 (20)	50.9 (20)	104.4 (80)	1.2	1.1	1.9
256^2	50.9 (20)	50.9 (20)	104.4 (80)	1.2	1.1	1.9
512^2	201.7 (40)	364.2 (80)	708.6 (160)	2.2	3.3	4.9
1024^2	1544.5 (80)	2911.6 (160)	5857.3 (320)	3.5	5.8	9.0

Table 2: 2D diocotron instability: Columns 2 – 4 are the total run time in seconds taken by the regular PIC on 64 cores for different mesh sizes and number of particles per cell (within parentheses) to reach a comparable accuracy (based on visual norm from the left columns of Figures 3–5) in charge density that of the adaptive τ results in Table 1 at time $T = 17.5$. Columns 5 – 7 are the ratio of time taken by regular PIC to the values in columns 2 – 4 of Table 1 for adaptive τ PIC.

Mesh	tauEstimator			transferToSparse		
	P_c			P_c		
	5	10	20	5	10	20
256^2	10.1	10.7	11.4	5.9	5.7	4.9
512^2	21	20.2	18.6	5.4	4.5	3.6
1024^2	40.1	36.1	30.2	2.7	2.3	1.8

Table 3: 2D diocotron instability. Adaptive τ PIC: Percentage of total time (which is shown in Table 1) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy for different mesh sizes and number of particles per cell.

847 Finally, we perform a preliminary run time performance study to see the
 848 effectiveness of the current approach in comparison to the regular PIC. To that
 849 extent, we note that we did not perform any optimization to both the regular
 850 PIC as well as the adaptive τ PIC routines. Optimization of different compo-
 851 nents involved in the algorithm as well as a thorough parallel performance study
 852 is left for future work. In Table 1 the total run time in seconds is shown for the
 853 adaptive τ PIC on 64 cores for the mesh sizes and P_c considered before. All the
 854 timings reported are the average of three runs performed. In Table 2, we com-
 855 pare the adaptive τ PIC timings with the timings for the regular PIC with the

856 P_c value required to reach a comparable accuracy in charge density as that of
 857 the adaptive τ results at final time $T = 17.5$. The approximate P_c values within
 858 parentheses are obtained from Figures 3–5 based on visual examination. Even
 859 in this preliminary performance study, we can see that the adaptive τ strategy
 860 can provide significant speedups close to an order of magnitude compared to
 861 the regular PIC for similar accuracy in charge density. In terms of memory
 862 storage, the benefits are even more pronounced. Using the number of particles
 863 N_p as a measure of the dominant memory cost (for PIC methods this is usually
 864 the case) we see $\approx 2 - 16$ times memory reduction with adaptive τ PIC com-
 865 pared to regular PIC. In Table 3, we present timings for the components of the
 866 noise reduction only, expressed as percentage of the total time given in Table
 867 1. Even though the percentage of time taken by the transferToSparse part is
 868 small, the tauEstimator represents a significant fraction of the total time. One
 869 of the reasons for this is that for the FFT parts of the tauEstimator algorithm
 870 (Algorithm 1) we use the OPAL library. Since our other data structures are
 871 based on the AMReX library, we have to copy between them. Since the parallel
 872 decomposition is different for these two libraries, it can result in excessive com-
 873 munication, especially for large numbers of grid points and for high core counts.
 874 We are currently resolving this problem in the ongoing implementation of our
 875 noise reduction strategy in OPAL, using only OPAL’s native data structures
 876 and thereby avoiding the copy and excessive communication.

877 *5.2. 3D Penning trap*

878 *5.2.1. Problem description and simulation setup*

879 In this section we will consider a 3D Penning trap problem as the test case.
 880 Penning traps are storage devices for charged particles, which uses a quadrupole
 881 electric field to confine the particles axially and a homogeneous axial magnetic
 882 field to confine the particles in the radial direction [54, 55]. The evolution of
 883 the density in this problem (see Figure 8) is very similar to that observed in
 884 cyclotrons [56, 57]. Thus this test case is very relevant to our ultimate goal
 885 of high precision large-scale simulation of cyclotrons. The fine scale structures
 886 developed in this problem pose challenges for the sparse grids similar to the
 887 diocotron case in the previous section.

888 The parameters for this test case are as follows. The length of the periodic
 889 box is $L = 20$. The external magnetic field is given by $\mathbf{B}_{ext} = \{0, 0, 5\}$ and the
 890 quadrupole external electric field by

$$\mathbf{E}_{ext} = \left\{ -\frac{15}{L} \left(x - \frac{L}{2} \right), -\frac{15}{L} \left(y - \frac{L}{2} \right), \frac{30}{L} \left(z - \frac{L}{2} \right) \right\}.$$

891 For the initial conditions, we sample the phase space using a Gaussian distri-
 892 bution in all the variables. The mean and standard deviation for all the velocity
 893 variables is 0 and 1 respectively. While the mean for all the configuration space
 894 variables is $L/2$ the standard deviations are $0.15L$, $0.05L$ and $0.2L$ for x , y and
 895 z respectively. The total electron charge is $Q_e = -1562.5$, and the charge of
 896 each particle is $q_e = \frac{Q_e}{N_p}$.

897 The denoising parameters are taken as $(P_c)_{ref} = 1$ and $\alpha = 0.005$ for this
 898 problem with the above mentioned sampling. The time step is chosen as $\Delta t =$
 899 0.05 and the simulations are run till final time $T = 15$.

900 *5.2.2. Qualitative comparison of charge density*

901 Figure 8 shows the evolution of the electron charge density with time for
 902 regular, $\tau = 1$ and adaptive τ PIC. The mesh used is 256^3 and $P_c = 1$ for
 903 the first three rows and 20 for the last row. As we had seen in Figure 2 for
 904 the diocotron test case, the adaptive τ results, in the third row are better than
 905 both the regular PIC and $\tau = 1$ results and are comparable to the results of the
 906 regular PIC with higher P_c in the last row.

907 *5.2.3. Quantitative comparison of charge density and time history of τ*

908 In a way analogous to Figures 3-5 for the diocotron instability, in Figures 9-10
 909 we show the errors calculated using equation (17) and the estimations from the
 910 τ estimator for meshes $64^3, 128^3, 256^3$ and $P_c = 1, 5$. The reference in equation
 911 (17) is the average of 5 independent computations of regular PIC with 256^3
 912 mesh and $P_c = 40$. For the N_{points} in equation (17), we select approximately
 913 4096 random points throughout the domain and interpolate both the reference
 914 density as well as the density under consideration at these points to measure the
 915 error. The errors are measured at 7 different points in time in the simulation.

916 In general, as before, the adaptive τ predictions are close to optimal and
 917 most of the conclusions from the diocotron test case are applicable in this case
 918 too. Figure 11 shows the time history of τ for the meshes and P_c considered and
 919 the high values of τ indicate that the total error is dominated by the grid-based
 920 error in these cases.

921 *5.2.4. Run time performance*

922 In terms of run time performance comparisons, we ran the $64^3, 128^3$ mesh
 923 cases on 64 cores and the 256^3 test cases on 512 cores for both the regular and
 924 adaptive τ PIC. For 64^3 mesh, at the last point in time we can see that the
 925 regular PIC is more accurate than the adaptive τ or any other fixed τ PIC.

	Adaptive τ		Regular		Reg/adaptive τ	
128^3	360.4 (1)	475.4 (5)	274.8 (5)	443.7 (10)	0.8	0.9
256^3	825.5 (1)	1196.4 (5)	2352.8 (15)	3080.8 (20)	2.8	2.6

Table 4: 3D Penning Trap: Total run time in seconds on 64 cores for 128^3 mesh and 512 cores
 for 256^3 mesh in case of the regular and adaptive τ PIC. The values within the parentheses
 represent the different number of particles per cell required to reach a comparable accuracy
 (based on visual norm from the left columns of Figures 9-10) in the charge density for both
 the schemes at final time $T = 15$. Columns 6 – 7 are the ratio of time taken by the regular
 PIC to that for adaptive τ PIC.

926 For 128^3 and 256^3 meshes, from Table 4 we can see a maximum speedup of
 927 2.8 with adaptive τ PIC over the regular PIC for the finest mesh size. Again
 928 considering the number of particles as a measure for the memory cost adaptive

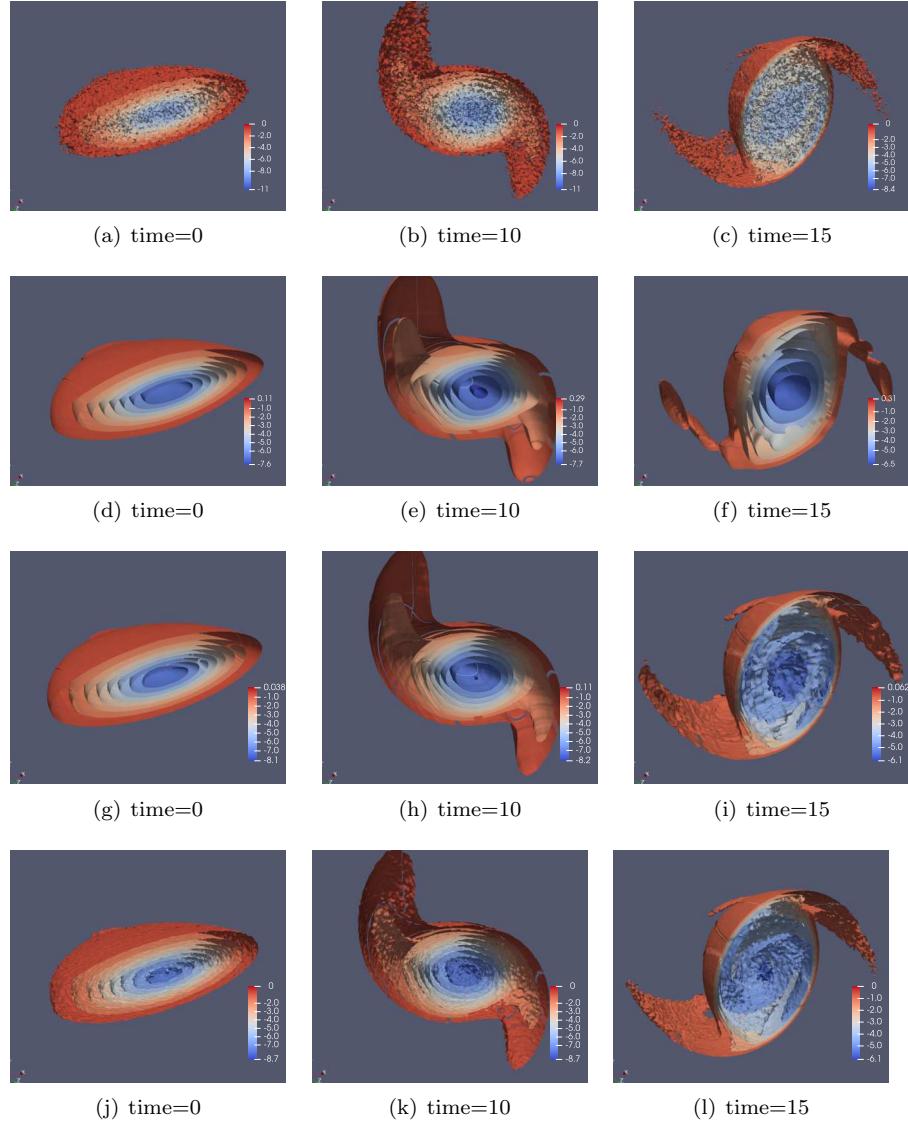


Figure 8: 3D Penning trap: Evolution of the electron charge density with time for regular PIC, $P_c = 1$ (first row); $\tau = 1$, $P_c = 1$ (second row); adaptive τ , $P_c = 1$ (third row); and regular PIC, $P_c = 20$ (fourth row). The mesh considered here is 256^3 . The minimum and maximum values of the charge densities for each figure are displayed in the color bars itself.

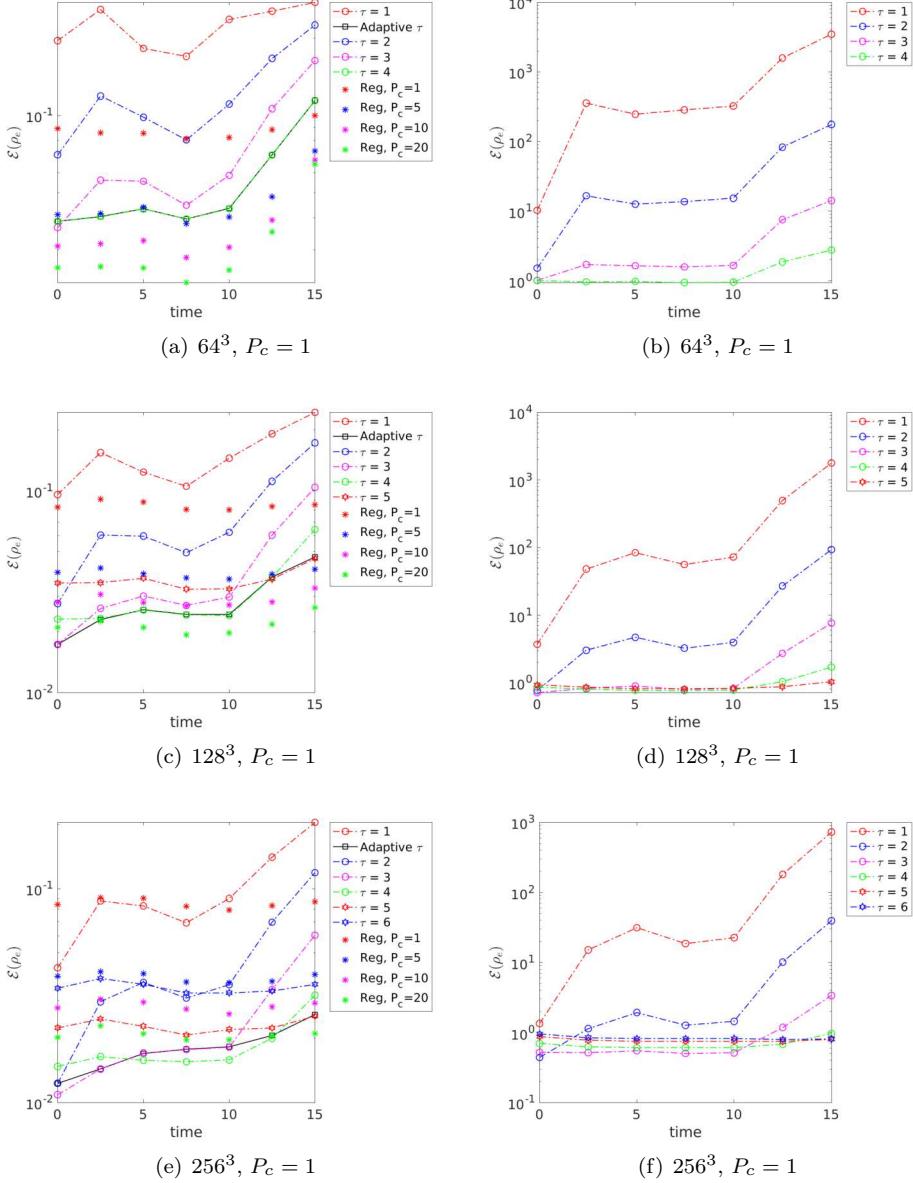


Figure 9: 3D Penning trap: Electron charge density error comparison between regular (Reg.), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as adaptive τ has the number of particles per cell $P_c = 1$.

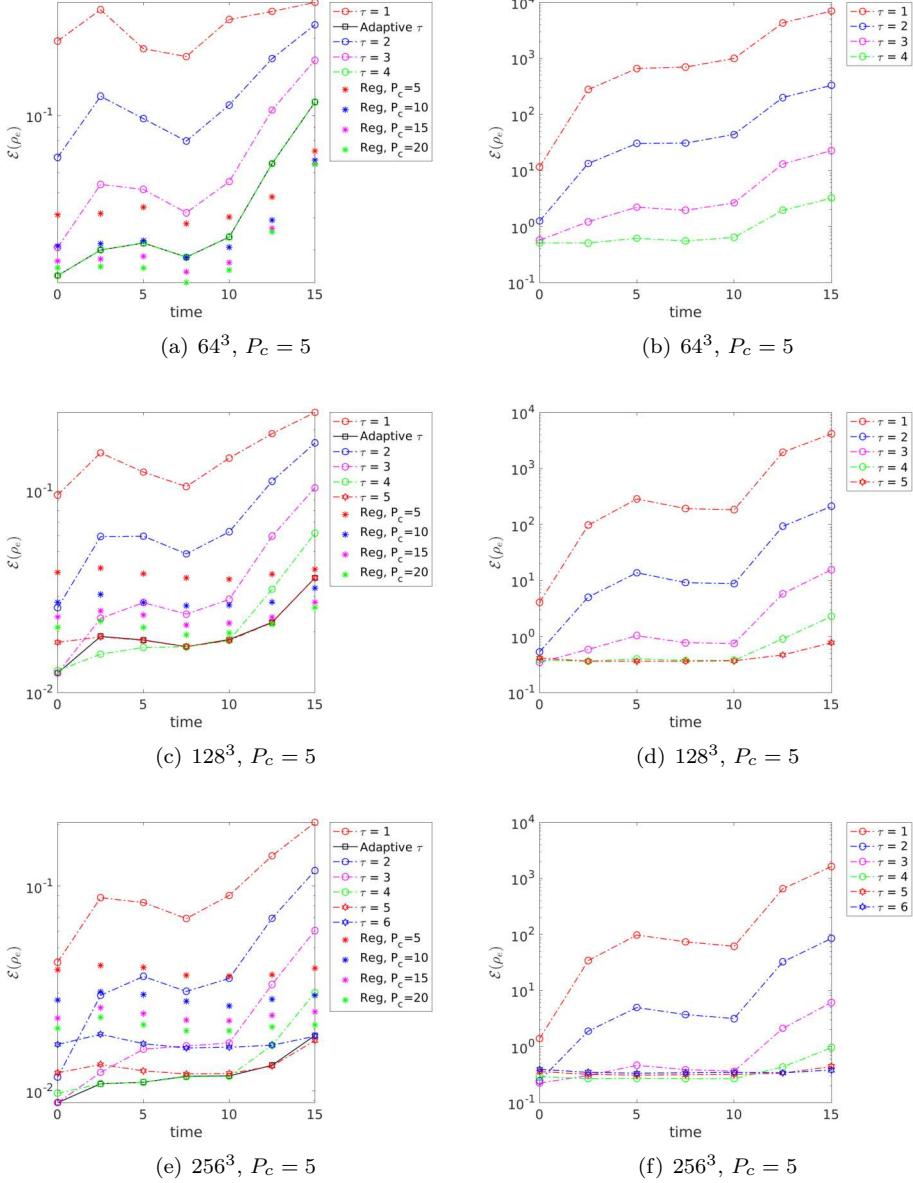


Figure 10: 3D Penning trap: Electron charge density error comparison between regular (Reg.), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17) and the right column is the estimations from the τ estimator based on which the optimal τ is selected. The fixed as well as adaptive τ has the number of particles per cell $P_c = 5$.

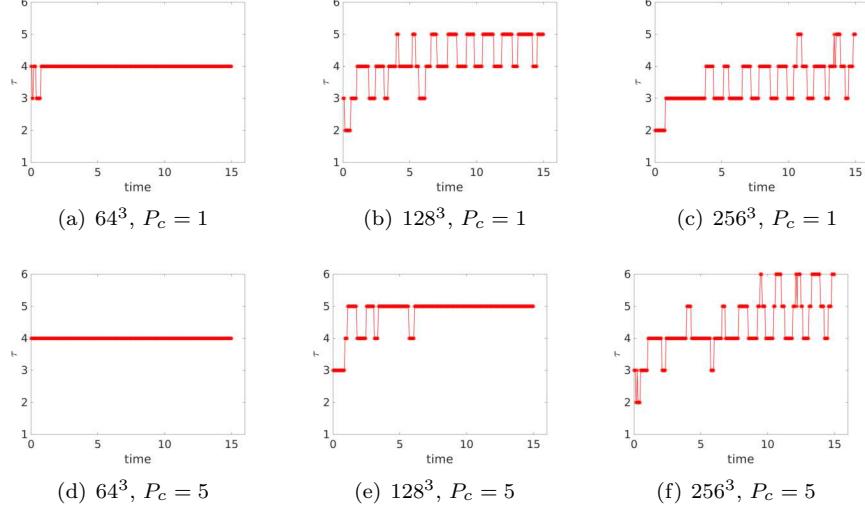


Figure 11: 3D Penning trap: Time history of τ for different mesh sizes and number of particles per cell P_c .

Mesh	tauEstimator		transferToSparse	
	P_c		P_c	
	1	5	1	5
128^3	55.4	39.9	4.6	3.3
256^3	41.8	29.5	15.3	9.3

Table 5: 3D Penning Trap: Percentage of total time (which is shown in columns 2 – 3 of Table 4) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy for different mesh sizes and number of particles per cell.

929 τ PIC is 2 – 15 times cheaper than the regular PIC. In order to see more
 930 computational benefits with the adaptive τ PIC for this problem we need to
 931 perform runs with finer meshes and more particles per cell. These 3D large-
 932 scale simulations are part of our future work and the results will be reported
 933 elsewhere.

934 In Table 5, we show the percentage of the total time taken by the components
 935 of the noise reduction algorithm. Similar to the diocotron instability example,
 936 we can see that the dominant portion comes from the tauEstimator, for the
 937 same reasons as in the two-dimensional example. In addition, transferToSparse
 938 also exhibits an increase in percentage compared to the previous example. This
 939 is due to the bottleneck with MPI_Allreduce for high τ values in 3D as described
 940 in section 4.5. In future work, we will adopt an improved parallelization strategy
 941 as in [40], which can mitigate this problem. Furthermore, the optimal τ does
 942 not need to be calculated for each time step. If the time-step is small, the charge
 943 density will not change much in a single time-step. The optimal τ , being only

944 dependent on ρ_e , is therefore also unlikely to change much. One could thus get
945 speed-up by only recomputing τ every 5th or 10th time-step, for instance, while
946 still accurately estimating the optimal τ . This is borne out in Figures 6 and 11,
947 where τ stays fixed for many consecutive time-steps. We will also investigate
948 this aspect in detail in future work.

949 **6. Conclusions**

950 We have proposed a sparse grid-based adaptive noise reduction strategy
951 for particle-in-cell (PIC) simulations. Unlike the typical physical or Fourier
952 domain filters used in PIC methods, the strategy adapts to mesh size, number
953 of particles per cell, smoothness of the charge density and the initial sampling
954 technique. In order to construct the strategy we use the key idea of increased
955 particles per cell in sparse grids compared to the regular grid for the same
956 total number of particles as proposed in [4]. The current work extends that
957 concept in several directions. Specifically, we present a filtering perspective for
958 the sparse grid-based noise reduction which helps to incorporate it with ease in
959 existing high performance large-scale PIC code bases and also opens the door
960 for sparse grid based filtering approaches. We tackle the problem of large grid-
961 based error of sparse grid for non-aligned and non-smooth functions by means
962 of the truncated combination technique [1, 2, 3]. We show in the context of
963 PIC simulations that the truncated combination technique provides a natural
964 framework to minimize the sum of grid-based error and particle noise. This
965 allows us to propose a heuristic based on formal error analysis to select the
966 optimal truncation parameter on the fly that minimizes the total error in the
967 charge density.

968 We show the performance and applicability of our strategy on two bench-
969 mark problems; namely the 2D diocotron instability and electron dynamics in a
970 3D Penning trap. In both test cases the adaptive noise reduction strategy picks a
971 truncation parameter which is close to optimal for all times. To achieve compa-
972 rable accuracy for the charge density we obtain significant speedups and memory
973 savings close to an order of magnitude with the noise reduction technique com-
974 pared to regular PIC in the 2D diocotron test case. For the 3D Penning trap
975 test case a maximum speedup of 2.8 and 15 times memory reduction is obtained
976 for the finest mesh size tested. Further speedups and memory reduction in the
977 3D test case require us to test the strategy for even finer resolutions and that
978 is part of future work.

979 Our strategy can be very easily integrated into existing high performance
980 large-scale PIC code bases and ongoing work is to integrate it into the open
981 source particle accelerator library OPAL [37]. In terms of future work, we plan
982 on investigating the applicability and performance of the noise reduction strat-
983 egy on large-scale high intensity particle accelerator simulations such as the
984 IsoDAR project [58, 59] with a particular focus on understanding the dynamics
985 of halo particles and efficient collimation strategies. Filtering strategies have
986 much more impact on the electromagnetic PIC simulations as reported in [24].

987 Hence we would like to extend the current approach for Vlasov-Maxwell equa-
 988 tions and investigate the performance in that context. Use of machine learning
 989 approaches to tune denoising threshold in our strategy is also of interest. Cur-
 990 rently, we are unable to use the full range of truncation parameter τ due to the
 991 false optima obtained when the extreme values are included. We will work on
 992 strategies in the τ estimation to resolve this problem. Finally, we also intend
 993 to compare the current strategy with other filtering approaches and denoising
 994 techniques.

995 **Acknowledgments**

996 This project has received funding from the European Union’s Horizon 2020
 997 research and innovation program under the Marie Skłodowska-Curie grant agree-
 998 ment No. 701647 and from the United States National Science Foundation under
 999 Grant No. PHY-1820852. L.F. Ricketson’s work was performed under the
 1000 auspices of the U.S. Department of Energy by Lawrence Livermore National
 1001 Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore Na-
 1002 tional Security, LLC. We are grateful for the support. The first author would
 1003 like to thank Dr. Weiqun Zhang for help with the AMReX related queries. We
 1004 thank the anonymous referees for their useful comments which improved this
 1005 paper substantially.

1006 **Appendix A. Proof of Proposition 1 relating the direct charge density
 1007 deposition onto the component grids and the two-step approach**

1008 *Proof.* Even though sparse grids make sense only for dimensions 2 and higher
 1009 we can still understand the essence of the proof in 1D. Also, since the shape
 1010 functions and transfer operators in 2D and 3D are obtained by the tensor prod-
 1011 uct of 1D linear interpolation functions the proof extends naturally to those
 1012 cases.

1013 Consider a periodic 1D domain $[0, L]$ and two grids with mesh sizes h_f and
 1014 h_l . The grid with mesh size h_l is coarser than the one with h_f and assume h_l
 1015 is an integer multiple of h_f . Let us first consider the node-centered grids where
 1016 all the coarse grid points are also grid points in the fine grid as shown in Figure
 1017 12(a).

1018 The particles deposit onto the fine grid with mesh size h_f and the charge
 1019 density $\tilde{\rho}_e$ is given by

$$1013 \tilde{\rho}_e(\tilde{x}_j) = \frac{Q_e}{N_p h_f} \sum_{p=1}^{N_p} W_f(\tilde{x}_j - x_p), \quad (19)$$

1020 where $W_f(\zeta) = \max \left\{ 0, 1 - \frac{|\zeta|}{h_f} \right\}$ is the cloud-in-cell shape function and x_p and
 1021 \tilde{x}_j are the locations of the particles and the grid points in the fine grid re-
 1022 spectively. Now, we transfer the density $\tilde{\rho}_e$ to the coarse grid by means of the

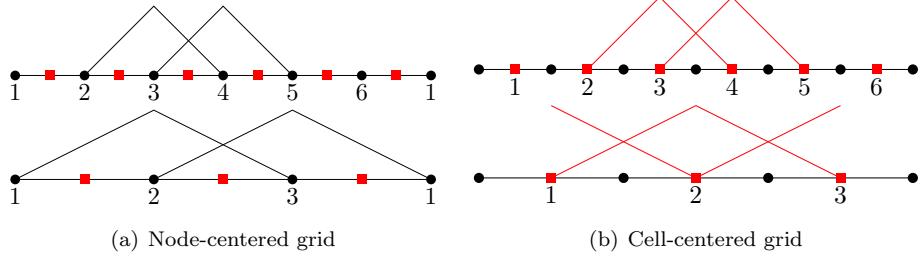


Figure 12: Schematic showing the node-centered and cell-centered grids and the corresponding shape functions. The nodes are marked with black circles and the cell-centers with red squares. The domain is periodic. The shape functions W_l corresponding to the coarse grid are linear between the nodes in the fine grid in case of node-centered grids. For cell-centered grids W_l has discontinuity in derivative between some of the cell-centers in the fine grid whereas between nodes of the fine grid it is always linear.

1023 transfer operator R in equation (4) which gives

$$\varrho_e(x_k) = \frac{h_f}{h_l} \sum_{j=1}^{N_c} \tilde{\rho}_e(\tilde{x}_j) W_l(x_k - \tilde{x}_j), \quad (20)$$

1024 where $W_l(\zeta) = \max \left\{ 0, 1 - \frac{|\zeta|}{h_l} \right\}$, x_k are the locations of the grid points in the
1025 coarse grid and N_c is the total number of cells in the fine grid. Substituting for
1026 $\tilde{\rho}_e$ from equation (19) and switching the order of sums we get

$$\varrho_e(x_k) = \frac{Q_e}{N_p h_l} \sum_{p=1}^{N_p} \sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j) W_f(\tilde{x}_j - x_p). \quad (21)$$

1027 Now, for a given particle, $W_f(\tilde{x}_j - x_p)$ is non-zero for exactly two values of j :
1028 the floor of x_p/h_f and the ceiling of that same quantity. Let us call these values
1029 J and $J+1$ and assume the grid points are ordered such that x_J is to the left
1030 of x_{J+1} . We have

$$\begin{aligned} \sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j) W_f(\tilde{x}_j - x_p) &= W_l(x_k - \tilde{x}_J) W_f(\tilde{x}_J - x_p) \\ &\quad + W_l(x_k - \tilde{x}_{J+1}) W_f(\tilde{x}_{J+1} - x_p). \end{aligned} \quad (22)$$

1031 Now we note that because of the way the two grids are related (mesh sizes
1032 are integer multiples, coincident grid points), we are guaranteed that $W_l(x_k - \tilde{x})$
1033 is linear on the interval $\tilde{x} \in [\tilde{x}_J, \tilde{x}_{J+1}]$. This is because the places where W_l has
1034 a discontinuity in its derivative are guaranteed to be fine grid points as shown in
1035 Figure 12(a). So, linear interpolation is exact for W_l on the interval $[\tilde{x}_J, \tilde{x}_{J+1}]$.
1036 Since x_p is in this interval, we have

$$W_l(x_k - x_p) = W_l(x_k - \tilde{x}_J) \left[\frac{\tilde{x}_{J+1} - x_p}{\tilde{x}_{J+1} - \tilde{x}_J} \right] + W_l(x_k - \tilde{x}_{J+1}) \left[1 - \frac{\tilde{x}_{J+1} - x_p}{\tilde{x}_{J+1} - \tilde{x}_J} \right].$$

¹⁰³⁷ Now we notice that

$$\left[\frac{\tilde{x}_{J+1} - x_p}{\tilde{x}_{J+1} - \tilde{x}_J} \right] = \left[\frac{\tilde{x}_J + h_f - x_p}{h_f} \right] = 1 + \frac{\tilde{x}_J - x_p}{h_f} = 1 - \frac{|\tilde{x}_J - x_p|}{h_f} = W_f(\tilde{x}_J - x_p),$$

¹⁰³⁸ and a nearly identical reasoning gives

$$\left[1 - \frac{\tilde{x}_{J+1} - x_p}{\tilde{x}_{J+1} - \tilde{x}_J} \right] = W_f(\tilde{x}_{J+1} - x_p).$$

¹⁰³⁹ Combining these with equation (22) we get

$$\sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j) W_f(\tilde{x}_j - x_p) = W_l(x_k - x_p). \quad (23)$$

¹⁰⁴⁰ Substituting this into equation (21) we get the density on the coarse grid as

$$\varrho_e(x_k) = \frac{Q_e}{N_p h_l} \sum_{p=1}^{N_p} W_l(x_k - x_p). \quad (24)$$

¹⁰⁴¹ Comparing equation (24) with equation (19) we see this is exactly the expression
¹⁰⁴² we would obtain if the particles were to deposit directly onto the coarse grid
¹⁰⁴³ with mesh size h_l .

Now we will consider the cell-centered grids. In this case the coarse grid points are also not the grid points in the fine grid and W_l will have a discontinuity in the derivative for some of the intervals $[\tilde{x}_j, \tilde{x}_{j+1}]$ as shown in Figure 12(b) depending on the ratio h_l/h_f . Hence an exact equivalence between the two approaches does not hold. However, we will now show that

$$\mathcal{W}_l(x_k - x) = \sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j) W_f(\tilde{x}_j - x)$$

¹⁰⁴⁴ can be considered as a shape function by itself. To that end, we will show that
¹⁰⁴⁵ it satisfies the three conditions for any shape function as given in [9]. These are
¹⁰⁴⁶ listed as follows

- ¹⁰⁴⁷ 1. $\mathcal{W}_l(\zeta) = \mathcal{W}_l(-\zeta)$,
- ¹⁰⁴⁸ 2. $\frac{1}{h_l} \int \mathcal{W}_l(\zeta) d\zeta = 1$,
- ¹⁰⁴⁹ 3. $\sum_k \mathcal{W}_l(x_k - x) = 1$.

¹⁰⁵⁰ The first condition is manifestly true as W_f which is the standard hat function is even. For the second condition we observe that

$$\frac{1}{h_l} \int \mathcal{W}_l(\zeta) d\zeta = \frac{h_f}{h_l} \sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j),$$

1052 as W_f is a shape function and by definition integrates to h_f . Now, $h_f \sum_{j=1}^{N_c} W_l(x_k -$
 1053 $\tilde{x}_j)$ is the midpoint rule applied for the integration $\int W_l(x_k - \tilde{x})$ over the fine
 1054 grid. From Figure 12(b) it is clear that W_l is linear on each integration cell and
 1055 the midpoint rule is exact. Thus,

$$\frac{h_f}{h_l} \sum_{j=1}^{N_c} W_l(x_k - \tilde{x}_j) = \frac{1}{h_l} \int W_l(x_k - \tilde{x}) d\tilde{x} = 1,$$

1056 where the last step comes from the fact that W_l which is also a standard hat
 1057 function integrates to h_l by definition. Finally, the third condition is related to
 1058 global charge conservation and we note that since W_l and W_f are standard hat
 1059 functions they satisfy the partition of unity and hence \mathcal{W}_l also satisfies it when
 1060 we carry out the summation.

1061 Now, using conditions 1 and 2 and noting that \mathcal{W}_l is bounded in $[0, L]$ we
 1062 can carry out the same set of steps shown in appendix B for a standard hat
 1063 function. We can then see the grid-based error for \mathcal{W}_l is of $\mathcal{O}(|\partial_x^2 \rho_e| h_l^2)$ and
 1064 the particle noise is $\mathcal{O}(\sqrt{|Q_e \rho_e| / N_p h_l})$ as in equations (35) and (51) but with
 1065 the constants depending on the ratio of h_l to h_f . \square

1066 **Appendix B. Grid-based and particle errors in the charge density
 1067 deposition for regular PIC schemes**

1068 In this section, we follow the analysis in [4] and derive in details the grid-
 1069 based error and noise estimates for the charge density deposition in regular PIC
 1070 schemes explicitly revealing the constants. For simplicity, let us consider a 1D
 1071 PIC scheme and extensions to 2D and 3D are relatively straightforward. In
 1072 the following, we consider a particular point in time and hence suppress the
 1073 dependence of the different quantities with respect to time.

1074 Let $f(x, v)$ be the electron phase-space distribution under consideration and
 1075 let us define \bar{f} as

$$\bar{f} = \frac{f}{\int \int f dx dv}.$$

1076 Since, \bar{f} is non-negative and its phase-space integral is unity it can be interpreted
 1077 as probability density. The exact charge density $\rho_e(x)$ is given by

$$\rho_e(x) = q_e \int \int f(\xi, v) \delta(x - \xi) d\xi dv, \quad (25)$$

$$= q_e \left(\int \int f dx dv \right) \int \int \bar{f}(\xi, v) \delta(x - \xi) d\xi dv, \quad (26)$$

$$= Q_e \int \int \bar{f}(\xi, v) \delta(x - \xi) d\xi dv, \quad (27)$$

1078 where $Q_e = q_e \int \int f dx dv$ is the total electron charge in the system and $\delta(x - \xi)$
 1079 is the Dirac-delta function.

1080 In PIC, we approximate $\delta(x - \xi)$ with the shape function $S(x - \xi)$ which
 1081 for our discussion here consider it to be the cloud-in-cell or linear interpolation
 1082 function. The approximate charge density $\bar{\rho}_e$ with the shape function $S(x - \xi)$
 1083 is given by

$$\bar{\rho}_e(x) = Q_e \int \int \bar{f}(\xi, v) S(x - \xi) d\xi dv, \quad (28)$$

$$= Q_e \mathbb{E}_{\bar{f}(\xi, v)} [S(x - \xi)], \quad (29)$$

1084 where \mathbb{E} is the expected value over the probability density \bar{f} .

1085 *B.1 Grid-based error estimate*

1086 This is the error due to approximating $\delta(x - \xi)$ with the shape function
 1087 $S(x - \xi)$

$$e_g = |\rho_e - \bar{\rho}_e|. \quad (30)$$

1088 Towards estimating this error, let us expand $\bar{f}(\xi, v)$ in equation (28) in terms
 1089 of Taylor's series about x ,

$$\begin{aligned} \bar{\rho}_e &= Q_e \int \int (\bar{f}(x, v) + (\xi - x) \partial_x \bar{f}(x, v) \\ &\quad + \frac{(\xi - x)^2}{2} \partial_x^2 \bar{f}(x, v) + \dots) S(x - \xi) d\xi dv, \end{aligned} \quad (31)$$

$$\begin{aligned} &= \underbrace{Q_e \int \bar{f} dv}_{\rho_e} \underbrace{\int S(x - \xi) d\xi}_{1} + Q_e \int \partial_x \bar{f} dv \int (\xi - x) S(x - \xi) d\xi \\ &\quad + Q_e \int \partial_x^2 \bar{f} dv \int \frac{(\xi - x)^2}{2} S(x - \xi) d\xi + \dots, \end{aligned} \quad (32)$$

1090 where we have used the fact that the integral of the shape function $S(x - \xi)$ is
 1091 unity. In the above equations we have used the short hand notations $\partial_x = \frac{\partial(\cdot)}{\partial x}$
 1092 and $\partial_x^2 = \frac{\partial^2(\cdot)}{\partial x^2}$. Taking outside the partial derivatives with respect to x in the
 1093 $\int dv$ integrals we get

$$\bar{\rho}_e = \rho_e + \partial_x \rho_e \int (\xi - x) S(x - \xi) d\xi + \partial_x^2 \rho_e \int \frac{(\xi - x)^2}{2} S(x - \xi) d\xi + \dots. \quad (33)$$

1094 The cloud-in-cell shape function is given by

$$S(\zeta) = \frac{1}{h_x} \max \left\{ 0, 1 - \frac{|\zeta|}{h_x} \right\}. \quad (34)$$

1095 Performing a change of variables with $\zeta = \xi - x$ in equation (33) and noting
 1096 that $S(\zeta)$ has a compact support and is zero outside $|\zeta| \leq h_x$ all the integrals
 1097 has to be carried only in $-h_x \leq \zeta \leq h_x$.

1098 Also, $S(\zeta)$ is an even function and hence $\int_{-h_x}^{h_x} \zeta S(\zeta) d\zeta$ which is the second
 1099 term in equation (33) is 0. However, the integrand in the third term of the
 1100 equation (33) is an even function and it evaluates to

$$\int \frac{(\xi - x)^2}{2} S(x - \xi) d\xi = \frac{1}{h_x} \int_0^{h_x} \zeta^2 \left(1 - \frac{\zeta}{h_x}\right) d\zeta = \frac{h_x^2}{12}.$$

1101 Thus equation (30) becomes

$$\begin{aligned} e_g(x) &\leq \frac{h_x^2}{12} |\partial_x^2 \rho_e(x)| + \dots, \\ e_g &= \mathcal{O}\left(\frac{h_x^2}{12} |\partial_x^2 \rho_e(x)|\right). \end{aligned} \quad (35)$$

1102 Since, the cloud-in-cell shape functions in 2D and 3D are obtained by the
 1103 tensor product of 1D shape functions the analysis extends easily to these cases.
 1104 Carrying out similar steps we obtain the grid-based error for 2D and 3D as

$$e_g = \mathcal{O}\left(\frac{1}{12} \left\{ \left| \frac{\partial^2 \rho_e}{\partial x^2} \right| h_x^2 + \left| \frac{\partial^2 \rho_e}{\partial y^2} \right| h_y^2 \right\} + \frac{1}{144} \left| \frac{\partial^4 \rho_e}{\partial x^2 \partial y^2} \right| h_x^2 h_y^2\right) \quad \text{in 2D}, \quad (36)$$

$$\begin{aligned} e_g &= \mathcal{O}\left(\frac{1}{12} \left\{ \left| \frac{\partial^2 \rho_e}{\partial x^2} \right| h_x^2 + \left| \frac{\partial^2 \rho_e}{\partial y^2} \right| h_y^2 + \left| \frac{\partial^2 \rho_e}{\partial z^2} \right| h_z^2 \right\} \right. \\ &\quad \left. + \frac{1}{144} \left\{ \left| \frac{\partial^4 \rho_e}{\partial x^2 \partial y^2} \right| h_x^2 h_y^2 + \left| \frac{\partial^4 \rho_e}{\partial y^2 \partial z^2} \right| h_y^2 h_z^2 + \left| \frac{\partial^4 \rho_e}{\partial z^2 \partial x^2} \right| h_z^2 h_x^2 \right\} \right. \\ &\quad \left. + \frac{1}{1728} \left| \frac{\partial^6 \rho_e}{\partial x^2 \partial y^2 \partial z^2} \right| h_x^2 h_y^2 h_z^2 \right) \quad \text{in 3D}. \end{aligned} \quad (37)$$

1105 Note in the above equations the reason for including the only higher order terms
 1106 proportional to the mixed derivatives is because these terms will contribute to
 1107 the dominant error for the sparse grid combination. Hence, the constants in
 1108 front of these terms are of interest for estimating the coefficients of the grid-
 1109 based error in section 4.4.3.

1110 *B.2 Noise estimate*

1111 This is the error which occurs when we approximate the expected value of
 1112 the shape function by means of an arithmetic mean over the number of discrete
 1113 particles. Thus equation (29) becomes

$$\bar{\rho}_e(x) \approx \tilde{\rho}_e(x) = \frac{Q_e}{N_p} \sum_p S(x - x_p). \quad (38)$$

1114 The error incurred by this approximation $\eta(x)$ is a random variable with mean
 1115 0 and variance given by

$$Var_{\bar{f}}[\eta(x)] = \mathbb{E}_{\bar{f}}[(\bar{\rho}_e - \tilde{\rho}_e)^2], \quad (39)$$

$$= \bar{\rho}_e^2 - 2\bar{\rho}_e \mathbb{E}_{\bar{f}}[\tilde{\rho}_e] + \mathbb{E}_{\bar{f}}[\tilde{\rho}_e^2], \quad (40)$$

$$= \mathbb{E}_{\bar{f}}[\tilde{\rho}_e^2] - \bar{\rho}_e^2. \quad (41)$$

1116 Here, in equation (41) we used the fact that $\mathbb{E}_{\bar{f}}[\tilde{\rho}_e] = \mathbb{E}_{\bar{f}}[\bar{\rho}_e] = \bar{\rho}_e$. Let us
 1117 compute $\mathbb{E}_{\bar{f}}[\tilde{\rho}_e^2]$

$$\mathbb{E}_{\bar{f}}[\tilde{\rho}_e^2] = \mathbb{E}_{\bar{f}}\left[\frac{Q_e^2}{N_p^2} \left(\sum_p S(x - x_p)\right)^2\right]. \quad (42)$$

1118 Similar to [4] we assume that the initial particle states have been chosen by
 1119 independent sampling from $\bar{f}(t=0)$ and also they remain approximately inde-
 1120 pendent for $N_p \gg 1$. Then $\mathbb{E}_{\bar{f}}[S(x - x_p)S(x - x_q)] = 0$ if $p \neq q$ and all the
 1121 cross terms vanish giving

$$\mathbb{E}_{\bar{f}}[\tilde{\rho}_e^2] = \frac{Q_e^2}{N_p^2} \sum_p \mathbb{E}_{\bar{f}}[(S(x - x_p))^2], \quad (43)$$

$$= \frac{Q_e^2}{N_p} \mathbb{E}_{\bar{f}}[(S(x - x_p))^2], \quad (44)$$

1122 where, we have used the fact that each particle has same $\mathbb{E}_{\bar{f}}[(S(x - x_p))^2]$.
 1123 Now,

$$\frac{Q_e^2}{N_p} \mathbb{E}_{\bar{f}}[(S(x - x_p))^2] = \frac{Q_e^2}{N_p} \int \int \bar{f}(x_p, v) (S(x - x_p))^2 dx_p dv, \quad (45)$$

$$= \frac{Q_e^2}{N_p} \int \int (\bar{f}(x, v) + (x_p - x) \partial_x \bar{f}(x, v) + \frac{(x_p - x)^2}{2} \partial_x^2 \bar{f}(x, v) + \dots) (S(x - x_p))^2 dx_p dv, \quad (46)$$

1124 and similar to the previous exercise for grid-based error the term associated
 1125 with $(x_p - x) \partial_x \bar{f}(x, v)$ vanishes and the third term evaluates to $\mathcal{O}(h_x)$. Hence
 1126 evaluating the leading order term gives

$$\frac{Q_e^2}{N_p} \int \int \bar{f}(x, v) (S(x - x_p))^2 dx_p dv = \frac{Q_e}{N_p} \underbrace{\int Q_e \bar{f} dv}_{\rho_e} \int (S(x - x_p))^2 dx_p, \quad (47)$$

$$= \frac{Q_e \rho_e}{N_p} \frac{2}{h_x^2} \int_0^{h_x} \left(1 - \frac{\zeta}{h_x}\right)^2 d\zeta, \quad (48)$$

$$= \frac{2}{3} \frac{Q_e \rho_e}{N_p h_x}. \quad (49)$$

¹¹²⁷ Plugging the above term in equation (44) gives

$$\mathbb{E}_{\bar{f}} [\tilde{\rho}_e^2] = \frac{2}{3} \frac{Q_e \rho_e}{N_p h_x} + \mathcal{O}(h_x) + \dots \quad (50)$$

¹¹²⁸ Omitting the $\tilde{\rho}_e^2$ term in equation (41) as it is small compared to equation (50)
¹¹²⁹ and substituting the above expression gives

$$Var_{\bar{f}} [\eta(x)] \approx \frac{2}{3} \frac{Q_e \rho_e}{N_p h_x}.$$

¹¹³⁰ Defining the particle noise error e_n as the standard deviation of the random
¹¹³¹ variable η we get

$$e_n(x) = \mathcal{O} \left(\sqrt{\frac{2}{3} \frac{|Q_e \rho_e(x)|}{N_p h_x}} \right). \quad (51)$$

¹¹³² Similarly, carrying out the same set of steps in 2D and 3D we get the esti-
¹¹³³ mates for the particle noise as

$$e_n = \mathcal{O} \left(\sqrt{\frac{4}{9} \frac{|Q_e \rho_e|}{N_p h_x h_y}} \right) \quad \text{in 2D}, \quad (52)$$

$$e_n = \mathcal{O} \left(\sqrt{\frac{8}{27} \frac{|Q_e \rho_e|}{N_p h_x h_y h_z}} \right) \quad \text{in 3D}. \quad (53)$$

¹¹³⁴ References

- ¹¹³⁵ [1] C. C. W. Leentvaar, Pricing multi-asset options with sparse grids, Ph.D.
¹¹³⁶ thesis, Technische Universiteit Delft (2008).
- ¹¹³⁷ [2] J. Benk, D. Pflüger, Hybrid parallel solutions of the Black-Scholes PDE
¹¹³⁸ with the truncated combination technique, in: 2012 International Confer-
¹¹³⁹ ence on High Performance Computing & Simulation (HPCS), IEEE, 2012,
¹¹⁴⁰ pp. 678–683.
- ¹¹⁴¹ [3] J. Benk, H.-J. Bungartz, A.-E. Nagy, S. Schraufstetter, Variants of the
¹¹⁴² combination technique for multi-dimensional option pricing, in: Progress
¹¹⁴³ in Industrial Mathematics at ECMI 2010, Springer, 2012, pp. 231–237.
- ¹¹⁴⁴ [4] L. F. Ricketson, A. J. Cerfon, Sparse grid techniques for particle-in-cell
¹¹⁴⁵ schemes, Plasma Physics and Controlled Fusion 59 (2) (2016) 024002.
- ¹¹⁴⁶ [5] R. W. Hockney, J. W. Eastwood, Computer simulation using particles,
¹¹⁴⁷ CRC Press, 1988.
- ¹¹⁴⁸ [6] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation,
¹¹⁴⁹ CRC press, 2004.

1150 [7] J. M. Dawson, Particle simulation of plasmas, *Reviews of modern physics*
 1151 55 (2) (1983) 403.

1152 [8] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, *Journal*
 1153 of computational physics 73 (2) (1987) 325–348.

1154 [9] F. Filbet, E. Sonnendrücker, Numerical methods for the Vlasov equation,
 1155 in: *Numerical mathematics and advanced applications*, Springer, 2003, pp.
 1156 459–468.

1157 [10] H. Nakashima, Y. Summura, K. Kikura, Y. Miyake, Large scale manycore-
 1158 aware PIC simulation with efficient particle binning, in: *2017 IEEE Interna-*
 1159 *tional Parallel and Distributed Processing Symposium (IPDPS)*, IEEE,
 1160 2017, pp. 202–212.

1161 [11] R. E. Denton, M. Kotschenreuther, δf Algorithm, *Journal of Computational*
 1162 *Physics* 119 (2) (1995) 283–294.

1163 [12] A. Y. Aydemir, A unified monte carlo interpretation of particle simulations
 1164 and applications to non-neutral plasmas, *Physics of Plasmas* 1 (4) (1994)
 1165 822–831.

1166 [13] R. Sydora, Low-noise electromagnetic and relativistic particle-in-cell
 1167 plasma simulation models, *Journal of computational and applied mathematics* 109 (1-2) (1999) 243–259.

1168 [14] A. Spitkovsky, Simulations of relativistic collisionless shocks: shock struc-
 1169 ture and particle acceleration, in: *AIP Conference Proceedings*, Vol. 801,
 1170 American Institute of Physics, 2005, pp. 345–350.

1171 [15] O. Buneman, Computer space plasma physics, simulation techniques and
 1172 softwares, ed, H. Matsumoto and Y. Omura (Terra Scientific, Tokyo, 1993)
 1173 p 67.

1174 [16] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.-M. Tran, B. Mcmillan,
 1175 O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC
 1176 code in magnetic coordinates, *Computer Physics Communications* 177 (5)
 1177 (2007) 409–425.

1178 [17] B. Terzić, I. V. Pogorelov, C. L. Bohn, Particle-in-cell beam dynamics
 1179 simulations with a wavelet-based poisson solver, *Physical Review Special*
 1180 *Topics-Accelerators and Beams* 10 (3) (2007) 034201.

1181 [18] J.-L. Vay, A. Almgren, J. Bell, L. Ge, D. Grote, M. Hogan, O. Kononenko,
 1182 R. Lehe, A. Myers, C. Ng, et al., Warp-x: A new exascale computing
 1183 platform for beam–plasma simulations, *Nuclear Instruments and Methods*
 1184 in *Physics Research Section A: Accelerators, Spectrometers, Detectors and*
 1185 *Associated Equipment* 909 (2018) 476–479.

1187 [19] G.-H. Cottet, P.-A. Raviart, Particle methods for the one-dimensional
 1188 Vlasov–Poisson equations, *SIAM journal on numerical analysis* 21 (1)
 1189 (1984) 52–76.

1190 [20] B. Wang, G. H. Miller, P. Colella, A particle-in-cell method with adaptive
 1191 phase-space remapping for kinetic plasmas, *SIAM Journal on Scientific
 1192 Computing* 33 (6) (2011) 3509–3537.

1193 [21] A. Myers, P. Colella, B. V. Straalen, A 4th-order particle-in-cell method
 1194 with phase-space remapping for the Vlasov–Poisson equation, *SIAM Jour-
 1195 nal on Scientific Computing* 39 (3) (2017) B467–B485.

1196 [22] B. Wang, G. Miller, P. Colella, An adaptive, high-order phase-space remap-
 1197 ping for the two dimensional Vlasov–Poisson equations, *SIAM Journal on
 1198 Scientific Computing* 34 (6) (2012) B909–B924.

1199 [23] J. P. Verboncoeur, Particle simulation of plasmas: review and advances,
 1200 *Plasma Physics and Controlled Fusion* 47 (5A) (2005) A231.

1201 [24] J.-L. Vay, C. G. Geddes, E. Cormier-Michel, D. P. Grote, Numerical meth-
 1202 ods for instability mitigation in the modeling of laser wakefield accelera-
 1203 tors in a lorentz-boosted frame, *Journal of Computational Physics* 230 (15)
 1204 (2011) 5908–5929.

1205 [25] S. Gassama, É. Sonnendrücker, K. Schneider, M. Farge, M. O. Domingues,
 1206 Wavelet denoising for postprocessing of a 2d particle-in-cell code, in:
 1207 *ESAIM: Proceedings*, Vol. 16, EDP Sciences, 2007, pp. 195–210.

1208 [26] B. Terzić, G. Bassi, New density estimation methods for charged parti-
 1209 cle beams with applications to microbunching instability, *Physical Review
 1210 Special Topics-Accelerators and Beams* 14 (7) (2011) 070701.

1211 [27] W. Wu, H. Qin, Reducing noise for PIC simulations using kernel density
 1212 estimation algorithm, *Physics of Plasmas* 25 (10) (2018) 102107.

1213 [28] M. Shalaby, A. E. Broderick, P. Chang, C. Pfrommer, A. Lamberts,
 1214 E. Puchwein, SHARP: A spatially higher-order, relativistic particle-in-cell
 1215 code, *The Astrophysical Journal* 841 (1) (2017) 52.

1216 [29] M. Griebel, M. Schneider, C. Zenger, A combination technique for the
 1217 solution of sparse grid problems, in: *Iterative Methods in Linear Algebra*,
 1218 eds. R. Bequwens and P. de Groen (Amsterdam: Elsevier), 1990, pp. 263–
 1219 281.

1220 [30] H.-J. Bungartz, M. Griebel, D. Röschke, C. Zenger, Pointwise convergence
 1221 of the combination technique for Laplace’s equation, *East-West J. Numer.
 1222 Math* 2 (1994) 21–45.

1223 [31] H.-J. Bungartz, M. Griebel, Sparse grids, *Acta numerica* 13 (2004) 147–269.

1224 [32] D. M. Pflüger, Spatially adaptive sparse grids for high-dimensional prob-
1225 lems, Ph.D. thesis, Technische Universität München (2010).

1226 [33] M. Heene, A massively parallel combination technique for the solution of
1227 high-dimensional PDEs, Ph.D. thesis, Universität Stuttgart (2018).

1228 [34] M. Griebel, V. Thurner, The efficient solution of fluid dynamics problems
1229 by the combination technique, International Journal of Numerical Methods
1230 for Heat & Fluid Flow 5 (3) (1995) 251–269.

1231 [35] L. N. Trefethen, Cubature, approximation, and isotropy in the hypercube,
1232 SIAM Review 59 (3) (2017) 469–491.

1233 [36] A. Cerfon, L. Ricketson, Sparse grid particle-in-cell scheme for noise reduc-
1234 tion in beam simulations, in: 13th Int. Computational Accelerator Physics
1235 Conf.(ICAP’18), Key West, FL, USA, 20-24 October 2018, JACOW Pub-
1236 lishing, Geneva, Switzerland, 2019, pp. 71–75.

1237 [37] A. Adelmann, P. Calvo, M. Frey, A. Gsell, U. Locans, C. Metzger-Kraus,
1238 N. Neveu, C. Rogers, S. Russell, S. Sheehy, J. Snuvernik, D. Winklehner,
1239 OPAL a versatile tool for charged particle accelerator simulations, arXiv
1240 preprint arXiv:1905.06654.

1241 [38] B. Lastdrager, B. Koren, Error analysis for function representation by the
1242 sparse-grid combination technique, Journal of Computational and Applied
1243 Mathematics.

1244 [39] D. L. Donoho, I. M. Johnstone, Adapting to unknown smoothness via
1245 wavelet shrinkage, Journal of the american statistical association 90 (432)
1246 (1995) 1200–1224.

1247 [40] P. E. Strazdins, M. M. Ali, B. Harding, Highly scalable algorithms for the
1248 sparse grid combination technique, in: 2015 IEEE International Parallel
1249 and Distributed Processing Symposium Workshop, IEEE, 2015, pp. 941–
1250 950.

1251 [41] D. del Castillo-Negrete, K. Schneider, M. Farge, G. Chen, et al., Wavelet-
1252 based density estimation for noise reduction in plasma simulations using
1253 particles, Journal of Computational Physics 229 (8) (2010) 2821–2839.

1254 [42] D. F. Martin, P. Colella, A cell-centered adaptive projection method for the
1255 incompressible Euler equations, Journal of computational Physics 163 (2)
1256 (2000) 271–312.

1257 [43] M. Frey, A. Adelmann, U. Locans, On architecture and performance of
1258 adaptive mesh refinement in an electrostatics particle-in-cell code, Com-
1259 puter Physics Communications (2019) 106912.

1260 [44] L. Berger-Vergiat, C. A. Glusa, J. J. Hu, C. Siefert, R. S. Tuminaro,
1261 M. Matthias, P. Andrey, W. Tobias, Muelu user’s guide., Tech. rep., Sandia
1262 National Lab.(SNL-NM), Albuquerque, NM (United States) (2019).

1263 [45] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan, M. Day,
 1264 B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen, A. Non-
 1265 aka, M. Rosso, S. Williams, M. Zingale, AMReX: a framework for block-
 1266 structured adaptive mesh refinement, *Journal of Open Source Software*
 1267 4 (37) (2019) 1370.

1268 [46] A. Gholami, D. Malhotra, H. Sundar, G. Biros, FFT, FMM, or multigrid?
 1269 A comparative study of state-of-the-art poisson solvers for uniform and
 1270 nonuniform grids in the unit cube, *SIAM Journal on Scientific Computing*
 1271 38 (3) (2016) C280–C306.

1272 [47] C. Driscoll, K. Fine, Experiments on vortex dynamics in pure electron
 1273 plasmas, *Physics of Fluids B: Plasma Physics* 2 (6) (1990) 1359–1366.

1274 [48] K. S. Fine, C. F. Driscoll, J. H. Malmberg, T. B. Mitchell, Measurements
 1275 of symmetric vortex merger, *Phys. Rev. Lett.* 67 (1991) 588–591.

1276 [49] A. J. Cerfon, J. P. Freidberg, F. I. Parra, T. A. Antaya, Analytic fluid
 1277 theory of beam spiraling in high-intensity cyclotrons, *Phys. Rev. ST Accel.*
 1278 *Beams* 16 (2013) 024202.

1279 [50] A. J. Cerfon, Vortex dynamics and shear-layer instability in high-intensity
 1280 cyclotrons, *Phys. Rev. Lett.* 116 (2016) 174801.

1281 [51] P. G. Drazin, W. H. Reid, *Hydrodynamic Stability*, Cambridge University
 1282 Press, 2004.

1283 [52] R. C. Davidson, *Physics of nonneutral plasmas*, Imperial College Press
 1284 London, 2001.

1285 [53] Y. Jo, J. Kim, G. Stancari, M. Chung, H. J. Lee, Control of the diocotron
 1286 instability of a hollow electron beam with periodic dipole magnets, *Physics*
 1287 *of Plasmas* 25 (1) (2018) 011607.

1288 [54] L. S. Brown, G. Gabrielse, Geonium theory: Physics of a single electron or
 1289 ion in a penning trap, *Reviews of Modern Physics* 58 (1) (1986) 233.

1290 [55] K. Blaum, Y. N. Novikov, G. Werth, Penning traps as a versatile tool for
 1291 precise experiments in fundamental physics, *Contemporary Physics* 51 (2)
 1292 (2010) 149–175.

1293 [56] S. Adam, Space charge effects in cyclotrons-from simulations to insights, in:
 1294 *Proc. of the 14th Int. Conf. on Cyclotrons and their Applications*, (World
 1295 Scientific, Singapore, 1996), Vol. 446, 1995.

1296 [57] J. Yang, A. Adelmann, M. H umbel, M. Seidel, T. Zhang, et al., Beam
 1297 dynamics in high intensity cyclotrons including neighboring bunch effects:
 1298 Model, implementation, and application, *Physical Review Special Topics-
 Accelerators and Beams* 13 (6) (2010) 064201.

1300 [58] A. Bungau, A. Adelmann, J. Alonso, W. Barletta, R. Barlow, L. Bartoszek,
1301 L. Calabretta, A. Calanna, D. Campo, J. Conrad, et al., Proposal for an
1302 electron antineutrino disappearance search using high-rate li 8 production
1303 and decay, *Physical Review Letters* 109 (14) (2012) 141802.

1304 [59] J. Yang, A. Adelmann, W. Barletta, L. Calabretta, A. Calanna, D. Campo,
1305 J. Conrad, Beam dynamics simulation for the high intensity daeδalus cy-
1306 clotrons, *Nuclear Instruments and Methods in Physics Research Section*
1307 *A: Accelerators, Spectrometers, Detectors and Associated Equipment* 704
1308 (2013) 84–91.