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Abstract

We propose a sparse grid-based adaptive noise reduction strategy for electro-
static particle-in-cell (PIC) simulations. By projecting the charge density onto
sparse grids we reduce the high-frequency particle noise. Thus, we exploit the
ability of sparse grids to act as a multidimensional low-pass filter in our ap-
proach. Thanks to the truncated combination technique [1, 2, 3], we can reduce
the larger grid-based error of the standard sparse grid approach for non-aligned
and non-smooth functions. The truncated approach also provides a natural
framework for minimizing the sum of grid-based and particle-based errors in
the charge density. We show that our approach is, in fact, a filtering perspec-
tive for the noise reduction obtained with the sparse PIC schemes first intro-
duced in [4]. This enables us to propose a heuristic based on the formal error
analysis in [4] for selecting the optimal truncation parameter that minimizes
the total error in charge density at each time step. Hence, unlike the physical
and Fourier domain filters typically used in PIC codes for noise reduction, our
approach automatically adapts to the mesh size, number of particles per cell,
smoothness of the density profile and the initial sampling technique. It can also
be easily integrated into high performance large-scale PIC code bases, because
we only use sparse grids for filtering the charge density. All other operations
remain on the regular grid, as in typical PIC codes. We demonstrate the ef-
ficiency and performance of our approach with two test cases: the diocotron
instability in two dimensions and the three-dimensional electron dynamics in
a Penning trap. Our run-time performance studies indicate that our approach
can provide significant speedup and memory reduction to PIC simulations for
achieving comparable accuracy in the charge density.

Keywords: PIC, Sparse grids, Filters, Adaptive noise reduction, Penning
trap, Diocotron instability
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1. Introduction

Particle-in-cell (PIC) schemes have been a popular and effective method for
the simulation of kinetic plasmas for a long period of time [5, 6, 7]. Compared
to continuum kinetic codes, PIC schemes effectively reduce the dimension from
six to three for kinetic simulations requiring three spatial dimensions and three
velocity dimensions (3D3V). On the other hand, compared to pure particle
codes with direct summation, PIC reduces the computation of self-consistent
forces from O(N?) to O(N, 4+ N.) where N, is the total number of particles
and N, < N, is the number of mesh points. Even though the fast multipole
method [8] reduces the complexity of pure particle schemes to O(N,,), such an
approach has other limitations, such as the need for overly restrictive small
time steps. Other attractive features of PIC schemes include simplicity, ease of
parallelization and robustness for a wide variety of physical scenarios [4].

The main drawback of PIC schemes as compared to deterministic continuum
kinetic schemes is the numerical error associated with particle noise [6, 9], which
decreases slowly as one increases the number of particles. Specifically, the noise
in PIC schemes decreases as 1/v/P. [6, 4] where P. = N,/N,. is the number
of particles per cell'. High fidelity large-scale 3D PIC simulations thus often
require at least O(10%) grid points and O(10'2) particles to get the desired
accuracy level [10]. These simulations require hours to complete even on large-
scale state-of-the-art supercomputers available today. Thus, noise reduction
approaches are of great interest to the PIC community to improve accuracy and
also to speed up computations and reduce memory requirements.

There have been several efforts in this area in the past and a brief overview
is given in section 3. Some of the strategies, such as the §f technique [11,
12, 13], are applicable for certain classes of plasma physics problems and give
great computational savings. Their utility, however, is limited to these specific
classes of problems. Filtering is a common noise reduction technique which
finds applications in many production-level PIC codes such as TRISTAN-MP
[14, 15], ORBS5 [16], IMPACT-T [17] and Warp-X [18], to name a few. One of
the primary reasons for this is its simplicity and ease of implementation in these
frameworks. The stencil width and number of passes in case of digital filters
and the cut-off wavenumber in case of Fourier domain filters is typically selected
based on experience and knowledge about the physical problem at hand. Thus,
these could result in scenarios where either too much signal is smoothed or the
high-frequency noise is not removed sufficiently. Even if we managed to choose
the parameters in the filter so that they are optimal for a particular mesh size,
number of particles per cell, point in time and the initial sampling technique,
they may no longer be optimal once we change any of the above and require
tuning once again.

Our objective in this work is to develop a noise reduction strategy, or fil-

Hn this paper, we define the number of particles per cell only with respect to the regular
grid.
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tering scheme for the charge density, that automatically adapts itself to the
aforementioned parameters. As with other filtering techniques, we require it
to be easily integrated into existing production-level PIC codes. Our starting
point towards that goal is the recent work [4] which combined sparse grids with
the PIC scheme. In that article, the authors showed that owing to the large
cell sizes involved in sparse grids compared to regular grids, the PIC scheme
combined with sparse grids has many more particles per cell than its regular
counterpart. This led to significant noise reduction and enormous speedups for
certain classes of problems which have smooth or axis-aligned density profiles.

Now, let us give a brief overview of the present work. We revisit and rein-
terpret the noise reduction component of the scheme introduced in [4] from a
filtering perspective, to construct a sparse grid-based noise reduction strategy
for electrostatic PIC simulations. Unlike [4], where all the operations occur on
sparse grids, in our approach the sparse grids come into play only for noise re-
duction of the charge density. Hence, for a user of PIC (who may not be familiar
with sparse grids) it exactly resembles a filtering routine - i.e., it takes as input
unfiltered charge density on the regular grid, and returns as output the filtered
charge density on the same grid. Compared to existing filtering approaches,
this sparse grid-based approach is superior for functions which are smooth or
aligned with an axis. In simple terms, this can be understood as follows: with
any filtering technique the reduction in noise comes with a price, which is an
increase in the grid-based error. The unique aspect of our sparse grid filtering is
that the resulting noise reduction can also be viewed from a Monte-Carlo per-
spective. Thanks to this property, we have maximal noise reduction, since the
sparse grid approximation involves cells with maximal size, which in the context
of PIC, for a given total number of particles, translates to a maximal number of
particles per cell. At the same time the increase in grid-based error for smooth
or axis-aligned functions is minimal. However, the same cannot be said for
all functions in general, and for these general cases the increase in grid-based
error associated with sparse grids may be high. In order to tackle that issue,
we use the so-called truncated combination technique [1, 2, 3], which reduces
the large grid-based error of standard sparse grid technique for non-aligned and
non-smooth functions. This is because the truncated combination technique
uses a different choice of coarse grids with finer mesh sizes than those used in
the standard sparse grid combination. The truncation parameter involved in
the combination technique is crucial for minimizing the sum of grid-based error
and particle noise. Hence, we propose a heuristic based on formal error analysis
to calculate the optimal truncation parameter on the fly which minimizes the
total error.

This paper is organized as follows. Section 2 introduces the PIC method
in the context of electrostatic Vlasov-Poisson equations. Section 3 briefly re-
views the existing noise reduction strategies in PIC and provides motivation
and objectives for this article. Section 4 explains in detail the components and
algorithm for a sparse grid-based adaptive noise reduction strategy. Numerical
results for the 2D diocotron test case and 3D penning trap are presented in
section 5 and section 6 presents conclusions and proposes future work.
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2. Particle-in-cell method

In this work, without loss of generality, we consider the non-relativistic elec-
trostatic Vlasov-Poisson system with a fixed magnetic field, and introduce the
PIC method in that setting. The electrons are immersed in a uniform, immobile,
neutralizing background ion population and the system is given by

of

Ge
e Vi
8t+v f+me

(E + v X Bezt) : vvf = 0, (1)

where E = E,. + E.,:, and the self-consistent field due to space charge is given
by
E,. = _V¢a _A¢ =P = Pe — Pi-

In the above equation f(x,v,t) is the electron phase-space distribution, g. and
m. are the electron charge and mass respectively. The total electron charge
in the system is given by Q. = ¢. [ [ fdxdv, the electron charge density by
pe(x) = qe [ fdv and the constant ion density by p; = ijx. Throughout this
paper we use bold letters for vectors and non-bold ones for scalars.

The particle-in-cell method discretizes the phase space distribution f(x,v,t)
in a Lagrangian way by means of macro-particles (hereafter referred to as “par-
ticles” for simplicity). At time ¢ = 0, the distribution f is sampled to get the
particles and after that a typical computational cycle in PIC consists of the
following steps:

1. Assign a shape function - e.g., cloud-in-cell [6] - to each particle p and
deposit the electron charge onto an underlying mesh.

2. Use a grid-based Poisson solver to compute ¢ by solving —A¢ = p and
differentiate ¢ to get the electric field E = —V¢ on the mesh.

3. Interpolate E from the grid points to particle locations x, using an inter-
polation function. This is typically known as field gathering.

4. By means of a time integrator advance the particle positions and velocities

using
dv q
T g BV Bear) b,
dx

The sources of different errors in the PIC simulations and their orders of
accuracy for typical choices are as follows. For simplicity, if we consider a uni-
form mesh with spacing h in all the directions then for the shape functions
used in typical PIC schemes (B-splines), the grid-based error scales as O(h?)
[19, 20]. This is a result of approximating Dirac-¢ functions in the configuration
space by shape functions of compact support. The Poisson equation is typically
solved by means of FFT solvers or by multigrid methods. In case of multigrid
solvers the equation is discretized by second-order finite difference or finite ele-
ment schemes. The field solves together with the interpolation (typically linear)
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accounts for an additional O(h?) [21]. The particle noise is the result of ap-
proximating the expected value of the shape function by an arithmetic mean
over a finite number of discrete particles. It scales as (N,h%)~1/2 [4], where d is
the spatial dimension of the problem. The initial distribution is sampled using
one of the standard sampling techniques such as the naive Monte-Carlo strategy
[12], importance sampling [12] or by means of the quiet start [20, 22, 21]. The
choice of initial sampling plays an important role in determining the constant
associated with the particle noise. Finally, for time integration, typical choices
are the second-order leap-frog scheme [6] and Runge-Kutta schemes of order
2 and higher. If we consider the leap-frog scheme then the error in the time
discretization scales as O(At?). The mesh size h, time step At and the number
of particles IV, in most PIC simulations are such that the dominant error comes
from the particle noise. Hence, high fidelity simulations typically require a large
number of particles to minimize it. The high noise associated with PIC simu-
lations has motivated researchers to develop several noise reduction strategies,
which we discuss next.

3. Noise reduction strategies in PIC

Noise reduction can be achieved in several ways in the context of PIC simu-
lations, categorized as: (i) variance reduction techniques such as the ¢ f method
[11, 12, 13] and quiet start [13]; (ii) phase space remapping [20, 22, 21]; (iii) fil-
tering in physical domain [6, 23, 14, 15, 24], Fourier domain [6, 16] and wavelet
domain [25, 17, 26]. This list is not exhaustive and there are many other con-
tributions in this area. In addition, recently a noise reduction strategy using
kernel density estimation algorithm has been proposed in [27], where the au-
thors adaptively select the shape functions in PIC which minimize the sum of
bias squared and variance of the error in the density. Also, in [4] sparse grid
techniques are used to achieve noise reduction in PIC. We discuss this method
in detail in section 4.7, since this approach has the most in common with the
present work. In this section, we focus on the filtering strategies.

The goal of filtering in PIC simulations is to smooth high frequency oscilla-
tions usually associated with noise. Filtering can be done in any field quantity,
although the most common one in electrostatic PIC is the charge density [23] as
it is the origin of noise and the potential and electric field are smoother because
of the integration inherent in solving Poisson’s equation. In case of filtering
in the physical domain, one typically selects a filter of certain stencil width -
e.g., binomial filter - and does a few passes on the field quantity. On the other
hand, for filters in the Fourier domain, a maximum wavenumber is specified by
the user and the filter eliminates all the wavenumbers higher than the specified
cut-off wavenumber [6]. In almost all the filtering strategies, the number of
passes/stencil width in the physical domain or the cut-off wavenumber in the
Fourier domain has to be chosen a prior: such that the total error, which is
the sum of grid-based error (bias) and particle noise (variance), is minimized.
However, in practice there are not many constructive strategies available to pick
these parameters and in many cases the values are chosen based on a rule of
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thumb and previous experience [28]. Even if one manages to choose these pa-
rameters so that they are optimal for a particular point in time, mesh, number
of particles per cell and sampling technique, they are unlikely to remain optimal
as the simulation evolves. Indeed, due to non-linear space-charge effects, fine
scale structures appear in the density and this changes the smoothness of the
profile continuously with time. Hence, an ideal filter should be adaptive with
respect to all aforementioned parameters to minimize the total error. Towards
this goal, we propose a sparse grid-based adaptive noise reduction strategy in
the following section.

4. Sparse grid-based noise reduction

4.1. Sparse grid combination technique

The sparse grid combination technique was first introduced in [29] as a way
to approximate smooth functions on rectangular grids efficiently by using a
specific linear combination of their approximations on different coarse grids. If
we consider linear interpolation as an example, then for a regular grid of mesh
size h we need O(h~%) grid points to get an accuracy of O(h2?). The sparse
grid combination technique on the other hand uses only O(h~![log(h)|(¢—1)
total grid points to get an accuracy of O(h?|log(h)|(*~1) for smooth functions,
which is only slightly deteriorated compared to the regular grids. More precisely,
the requirement for realizing this accuracy is the existence of an error expansion
of the form C (h;)h7 4+ Ca(hj)h5 + D1(hi, hj)hZh3 in 2D (and similar expressions
in higher dimensions), where C7, Cy and D; are appropriate coefficient functions
with a uniform upper bound independent of the mesh sizes [29, 30, 4]. Thus,
we can clearly see the advantages of sparse grids in high dimensions, where
they have found many applications [31]. The key idea is the cancellations that
happen between the error expansions in the different coarse grids, which are
called component grids in the sparse grid terminology. Also, the scalar values
that multiply each component grid involved in the combination are called the
combination coefficients. In Figure 1 an illustration is shown, where we can
see the different component grids and their combination coefficients involved
in approximating a 2% x 2% regular grid. The literature on the sparse grid
combination technique and sparse grids in general is vast and the readers can
refer to [31, 29, 32, 33, 34] and the references therein for more details. We will
now show how sparse grid combination can be used to achieve noise reduction
in the context of PIC.

4.2. Sparse grid filter

Let us consider a domain of size [0, L]?, where d is the dimension (typically

d = 2 or 3?), and for simplicity a regular grid of mesh size h = 2% in all the

2For d = 1, sparse grids are same as the regular grids, and our noise reduction will thus
not be applicable for 1D1V PIC.
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directions. In our noise reduction strategy, after step 1 in the PIC algorithm
shown in section 2 we perform a sparse grid projection of the charge density as

follows
nc
0c = Gpe = (Z cszRl> fe. (2)
1=1
Here, p. and g, are the charge densities on the regular grid before and after
the sparse grid transformation. R; and P, are the transfer operators® which
transfer the density from the regular grid to the ith component grid in the sparse
grid combination technique and vice versa, respectively. ¢; is the combination
coefficient for the Ith component grid which is a scalar value and nc is the
number of component grids involved in the combination technique. We also
denote the transfer operators and combination coefficients simply as R, P and
¢ in places where the subscript [ is not needed.
One requirement for the transfer operators P, and R; is to ensure global
charge conservation. In our approach, we use the cloud-in-cell or linear inter-
polation function, which is given by

d -
~ |37m - xm|
Wi(x — x) ml_:[1 max {O, 1 W } (3)
where x and X are the locations of the grid points in the /th component grid
and regular grid, respectively, and h,, is the mesh size of the I[th component
grid along the mth coordinate axis. The operators R; and P, in terms of this
function are given by

. h4 -
Rl(lmy) = VWl (Xi - Xj)7 (4)
1
P(j, i) =W, (x; —%;) for i=1,...,N; j=1,...,N, (5)

where V; is the volume of each cell in the [th component grid and N,., N; are
the number of points in the regular grid and /th component grid respectively.
Upon considering the standard sparse grid combination technique in [29], one
sees that the sparse grid projection or interpolation in equation (2) essentially
removes high frequency components which are coupled between the axes. This
is because the sparse grid combination corresponding to a regular grid of mesh
size h does not have the fine resolution A in all the directions. In this sense, the
sparse grid combination acts as a multi-dimensional low pass filter and keeps
only certain wavenumbers resolved by a regular grid of mesh size h. This is the
filtering point of view for the noise reduction obtained from the sparse grids.
It can also be understood from a Monte Carlo point of view as shown in [4]

3We call these operators as R and P simply because they resemble restriction and prolon-
gation operators in multigrid methods. However, we would like to note that the analogy ends
there and the requirements for the transfer operators in the current context and the multigrid
methods are different.
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by means of increased particles per cell in the sparse grids compared to the
regular grid for the same total number of particles. However, in the sparse PIC
presented in [4] the particles deposit directly onto the component grids, unlike
the strategy pursued here. These two approaches are related as stated in the
following proposition, and hence the noise reduction obtained with the sparse
grids can be understood from a Monte Carlo point of view or from a filtering
perspective. In later sections, we will leverage this equivalence to explain the
noise reduction with sparse grids depending on the context.

Proposition 1. For node-centered grids and linear interpolation shape func-
tions, the direct charge density deposition onto the component grids in the sparse
PIC approach [4] is equivalent to first depositing the charge density onto the reg-
ular grid and then transferring it to the component grids by means of the operator
R in equation (4)*. That is, the two approaches result in identical charge den-
sities. In the case of cell-centered grids, an exact equivalence between the two
approaches does not hold. There, the two-step approach can be viewed as direct
charge deposition onto the component grids with a different shape function than
the standard hat function, which is also second-order accurate.

Proof. The proof is given in appendix A. O

The advantage of the Monte Carlo point of view is that we can estimate the
grid-based error and particle noise with explicit dependence on the number of
particles and mesh size as we show in the section 4.4. From a pure filtering
perspective, this may be very difficult or not possible.

Now, we are interested in knowing how much grid-based error and parti-
cle noise are increased and decreased, respectively, by the sparse grid filter.
To answer this, we observe that for interpolation the sparse grid combination
technique is equivalent to the sparse grids based on hierarchical bases [32].
The latter is identified based on an optimization process [31] which guaran-
tees for smooth functions, the fewest degrees of freedom for maximal accuracy
of O (|log(h)|*~'h?) based on the L? or L> norm. Thanks to this, in the con-
text of PIC, the sparse grid transformation in equation (2) gives maximal noise
reduction (because of the minimal number of grid points and hence maximum
particles per cell) and at the same time the increase in grid-based error is min-
imal for smooth functions. Thus, compared to other filters, the one based on
the standard sparse grid combination technique is optimal in the sense of mini-
mizing the total error for functions which are either smooth or aligned with an
axis.

4.8. Truncated combination technique to handle non-aligned and non-smooth
functions

The optimality mentioned in the previous section for sparse grid filtering is

no longer applicable in case of non-smooth functions or functions which are not

4Let us refer this as two-step approach for simplicity.
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Figure 1: Schematic explaining the sparse grid combination technique and how the truncated
combination can be used to minimize the total error. Here, 7 = 1 corresponds to the standard
sparse grid combination technique and 7 = n corresponds to the regular grid. The +1 and
—1 are the combination coefficients ¢; in equation (2) corresponding to the component grids.

aligned with either of the axes. Here the grid-based error is significantly larger
than the regular grid because of large mixed derivatives [35], which leads the
coefficient Dy in the error expansion given in section 4.1 being much larger
than other coefficients. While the sparse grid scaling remains optimal, the
coefficient in front of that scaling can be so large as to eliminate its benefits
at practical grid resolutions. This is why in [4], the authors reported poor
performance of sparse PIC for the diocotron instability test case as it falls into
the non-aligned category when simulated with a Cartesian grid. There are a few
ways to tackle this problem, as mentioned in [4, 36]. Options include optimized
coordinate systems which evolve with the charge density, and the use of spatially
adaptive sparse grids. These strategies, which are perhaps more elegant from a
mathematical point of view and more efficient, have the drawback of requiring
significant changes to existing regular PIC code bases. Also, no detailed, robust
algorithm is known at present.

Here, we pursue another direction using the truncated combination technique
[1, 2, 3], which is much simpler and can be easily implemented in existing codes.
The truncated combination technique was originally proposed as a modification
to the standard sparse grid combination technique to tackle convergence issues
in certain types of PDEs in financial applications caused by the presence of
extremely anisotropic grids in the standard sparse grid technique.

In Figure 1, we show the different combination strategies for a 2D problem
with a regular mesh of size 28 x 28. The indices ¢ and j on the row and column
headers in Figure 1 indicate the mesh sizes of the component grids involved in
the combination technique such that the (i, 7)th component grid has mesh sizes
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h; = 2% and h; = %7 where L is the length of the domain in each direction.
The truncated combination technique [1, 2, 3] introduces a truncation parameter
75, which is a positive integer that determines the component grids involved in
the combination. Precisely, the component grids corresponding to a truncation
parameter 7 has indices (¢,5) > 7 as shown in Figure 1. Moreover, except for
T = n, there are two sets of component grids: one with ¢ + j = n 4+ 7 and
combination coefficient ¢ = 1, and the other withi+j=n+7—1 and ¢ = —1.
If we consider a 2" x 2" regular grid, then the value of 7 = 1 corresponds
to the standard combination technique in [29] and 7 = n corresponds to the
regular grid. By increasing 7, fewer component grids are used in the combination
technique, but each with finer resolution than the previous 7. This alleviates
the issue of non-aligned and non-smooth functions by controlling the error term
associated with the mixed fourth derivatives. Thus, the truncated combination
technique provides a unified framework to transition from standard sparse grid
to regular grid in terms of approximation capability by increasing 7.

Let us consider a PIC simulation with NV, total particles and a 2™ x 2"
regular grid with mesh size h = % The regular grid with 7 = n will have
the minimal grid-based error and maximal noise because it has the mesh size
h in all the directions. The standard sparse grid technique with 7 = 1, at the
other extreme, has maximal grid-based error and minimal noise as it has the
mesh size h in directions aligned with x or y axis but not in others. As we
increase 7 from 1 to n as shown in Figure 1, we decrease the grid-based error
because of the inclusion of finer mesh sizes in the component grids but at the
same time increase the particle noise due to decreased particles per cell or, from
the filtering perspective, the inclusion of higher wavenumbers in the filtering
process of equation (2). Thus depending on the smoothness and the orientation
of the function there is an optimal 7 at which the total error, which is the
sum of grid-based error and particle noise, is minimized. Hence, the truncated
combination technique provides a natural way to minimize the total error within
the framework of sparse grid-based noise reduction without much modification
to the standard sparse grid combination technique. In the following we will
present a formal error analysis and propose a heuristic approach to estimate the
optimal 7.

4.4. Formal error analysis

In [4], a formal error analysis is presented for sparse PIC quantifying the
grid-based error and particle noise. Proposition 1 states the exact equivalence
between the direct charge deposition in [4] and our new filtering approach for
the case of node-centered grids. Thus, for PIC codes based on node-centered
grids®, the formal error analysis in [4] is directly applicable. In contrast, our

5For the time being we consider the same truncation parameter 7 in all the directions for
the clarity of the exposition. We refer the readers to Remark 1 for more general cases.

6We highlight the fact that for the scheme we present in this article, only the centering
scheme of the charge density matters. The other fields do not play a role in our noise reduction
algorithm, and the analysis is therefore independent of their centerings.
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codes are based on cell-centered grids (as is the default choice in many plasma
PIC codes [37, 18]). According to Proposition 1, the direct charge deposition in
[4] and the current approach are not exactly equivalent for cell-centered grids
because of the differences in the shape functions. Nevertheless, the order of
accuracy is the same for both approaches and they differ only by constants.
Hence, we will largely follow the steps in [4] and generalize it to include the
truncated combination technique.

As shown in [4] and appendix B, approximating p. in PIC simulations con-
sists of two parts: namely, grid-based error and particle noise. In what follows
we will quantify these two components to get an estimate of the total error.

4.4.1. Grid-based error
Let us recall the different notations for charge density which will be of use
here. p. is the exact electron charge density given by

pu) = a. [ xvidv = [ [ revisee - eydcav.

The density on the regular grid before the sparse grid transformation is p. and it
is obtained from p. by first approximating delta-functions in configuration space
by shape functions of compact support (see equation (28) in appendix B) and
then approximating the expected value of the shape function by an arithmetic
mean over a finite number of discrete particles (see equation (38) in appendix
B). The density on the regular grid after the sparse grid transformation in
equation (2) is g.. We will denote the grid error component of the total error as
|| pe — 0cl| gria, where for simplicity we have denoted the L norm ||-||z by ||-||
(equivalently, we can also use the L?-norm). In our approach, the grid-based
error comes from the approximation of delta-functions in configuration space
by shape functions of compact support as well as from the transfer operators R
and P.

Towards quantifying the grid-based error, for simplicity, let us consider a 2D
PIC simulation in a periodic domain [0, L]? and a regular mesh of size 2" x 2.
Let the mesh size of the regular grid be h, = 2% and the mesh sizes of the
component grids be h; = QL and h; = 2% for the (¢, 7)th component grid in Figure
1. In our approach, we use the cloud-in-cell or linear interpolation operators
for all the grid transfer operations. Hence, from Proposition 1 and the grid-
based error derived in equation (36) of appendix B, we use an error expansion
of the form Oy (h;)hi + Ca(hj)h3 4 Dy (hi, hyj)hihi similar to [4, 29, 1, 38], where
C4,C5 and D are appropriate coefficient functions with a uniform upper bound.
The summation over the component grids in equation (2) leads to pair-wise
cancellations both in the standard sparse grid combination technique as well as
in the truncated combination technique as shown in Figure 1. After multiplying
by the combination coefficients and summing across all the component grids,
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we get

(pe - Qe)gm’d - Cl(hn)hi + CQ(hn)h?l

42 L2

227’

1

i+j=n—+T1

i,J

>T

i+j=ntr—1
6L,j>T

1 Z Dl(hi,hj) — Z Dl(hiahj) ) (6)

where we used the fact that h;h; = hol wwhen i +J7=n+r7and h;h; = ha L

27

2(1——1)

when ¢ + j = n + 7 — 1. Taking the norm of both sides of the above equation
and noting that there are n — (7 — 1) component grids with ¢ + j = n + 7 and
(n—1) — (7 — 1) component grids with ¢ + j =n + 7 — 1, we obtain

Hpe - Qe”grid < thi + thi —+

4ﬂ1h72,bL2 n

—(r=1

227’

-1 - (1)

< h2 (k14 ke + B1L*27% B(n—1) +1]).

(7)

Here, 1, k2 and By are constants corresponding to the upper bounds such that
1C1 (Al < #1, [IColha)ll < ko and [|Dy(hi, hy)l| < Br, Whishy. The same
expression for the error is also obtained in [1] for the truncated combination in
2D. Similarly one can derive the estimates in 3D and the grid-based error in

that case is given by

|lpe = Oellgria < h? (k1 + ko + k3 + (B + B2 + B3)L*27% [B(n — 1) + 1]
+ LA T f95(n — 7)2 — 5(n — 1) + 2}) :

where the upper bounds for the coefficient functions in 3D are such that ||Cq(h,)|| <

(8)

Kd, || Da(hi, hy)|| < Ba and ||F(hg, hj, hi)|| < v for d = 1,2,3 and Yhy, hy, hg.
By plugging in 7 =1 and 7 = n in (7) and (8) we recover the estimates for the
standard sparse grid combination in [29] and for regular grids respectively.

4.4.2. Particle noise

Now, we will derive estimates for the particle noise component of the total
error. The particle noise is the result of approximating the expected value of the
shape function by an arithmetic mean over a finite number of discrete particles.
As per the error analysis in [4], in 2D the particle noise in each component grid
is O (1/4/Nphih;) and as stated in the grid error estimates we have n — (7 — 1)

component grids each with h;h; =

hnL
2’1’

and (n — 1) — (1 — 1) component grids

with h;h; = 2(”;%1) Thus we can write an estimate for the particle noise as

Hpe - Qe”noise =

Oan

o[

—(r=1)

(n-1)- (-1

Nph, L
27’

20.5(7—1) [(’I”L _ T)(l + \/5) + \/ﬂ

+

Nyhn L
2(7—1)
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where o is a particle noise constant. Following the same procedure, the noise
estimate in 3D is given by

H‘e &GH ’e—o o ( ) [( \/72)(71 ) (5+f2)(n_ 7—) 4]
nors N[)h’n,L

Again, by plugging in 7 = 1 and 7 = n in equations (9), (10) we recover the
estimates shown in [4] for the standard sparse grid technique and regular grids
respectively. With the grid and particle error estimates in hand, we will show
how these can be used in practice to adaptively select the optimal 7.

4.4.8. Heuristic approach for the quantitative estimation of the coefficients in
the error analysis

In order to use the grid and particle error estimates derived in the previous
section we need to have a quantitative estimate of the coefficients. To that
end, we note that a rigorous derivation of coefficients for the current approach
in the case of cell-centered grids depends on the ratio of the mesh sizes of the
component grids to the regular grid and is more involved. Instead, in this
section we approximate the grid and particle coefficients based on heuristic
arguments and empirical observations and intend to improve these choices in
the future iterations of our algorithm. Let us first consider the grid-based error.
As explained in [4, 36] and equations (36) and (37) in appendix B, the coefficient
functions in the grid error estimates are proportional to the derivatives of the
charge density p. such that

a2pe 6296 82pe 54pe
Cl X 78582 ,CQ X ByQ ,C3 XX 622 ,Dl X 6$28y2
4 4 6
Dy o 0% pe D 0% pe 0°pe

020227 " X 929270 & 0x20y2022"

In PIC, we only have an approximation of p. on the regular grid, which we
call p. as defined in equation (38), and this also contains the particle noise. In
order to have a realistic approximation of the derivatives of the charge density
from the noisy regular PIC data p., we perform a denoising by thresholding
in the Fourier domain. Specifically, we first take the Fourier transform of the
density on the regular grid p. = F (p.) and perform a hard thresholding such

that
~ ﬁe |ﬁ6| Z 63
e = 11
Xe (Pe) {0 Pl <€ (11)

where p. is a vector and the operator x. (-) acts on it component wise. Here,
€ is the threshold for denoising and |p.| denotes the magnitude of the Fourier
transform p.. This type of denoising is common in signal processing as well as
wavelet denoising [39] techniques.

The threshold parameter € is a function of the number of particles per cell
P,., the initial sampling method and also the distribution f. It determines how
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much noise and signal is removed by the denoising process. Too low a value will
not remove much noise and too high a value may remove a significant portion
of the signal along with the noise. However, in contrast to denoising techniques
in signal processing where after applying this threshold one performs an inverse
transform to get the signal in the physical domain, we emphasize the fact that
for our scheme we only use it for selecting the truncation parameter 7 (which
performs the final filtering). Hence the threshold e does not need to be optimal,
and we only need to ensure that we do not pick up excessive noise.

At present, we use an ad-hoc strategy to select the value of € as a certain
percentage of the maximum value of |p.|, namely ¢ = amax (|p.|), where «
denotes the percentage. To determine « in our algorithm, for a certain number
of particles per cell (P.),cf (e.g., 5) we run the PIC simulation for a few different
values of a and pick the minimum value necessary for denoising. To reduce the
run time we use the coarsest mesh possible for the problem in these simulations.
Once we pick the value of « for a reference number of particles per cell (Pe)yer,
we run simulations with other values of P, by multiplying o by /(P.)res/Pe,
as we know the noise in PIC methods scales as 1//P..

To give an idea of how one can execute this process, in our numerical ex-
periments in section 5 we typically start with o = 0.01 (e is one percent of the
maximum value of |j.|) as we found it to be a good initial guess through many
experiments. In order to examine whether the selected value of « is sufficient for
denoising, we examine the theoretical error curves from the 7 estimator as shown
in the right columns of Figures 3-5 and 9-10. From these figures we can see that
when the grid based error is dominant (which is the case for low 7 values) there
is a specific shape to these curves which is dictated by the physical evolution of
the density. If on the other hand the particle noise is dominant (high 7 values),
then these curves are almost flat as the noise is insensitive to the time evolution
of the density. If the selected value of « is not large enough for denoising, then
even the theoretical error curves for low 7 cases are insensitive to the density
evolution with visible anomalies. In such a case, we increase the value of o until
we do not see this behavior any more. On the other hand, if the selected value
of « is too high, then we decrease it until we see the anomalies, and select the
value just before this behavior is observed. In addition to the theoretical error
curves, we also use the time history of optimal 7 as shown in Figures 6 and 11
to help in the detection of anomalies and guide us in the process of whether to
increase or decrease the initial value of « selected. Using this process we found
that anomalies start to occur for the values of o = 0.005, 0.025, 0.004 for the 2D
diocotron instability with Gaussian sampling, uniform sampling and 3D Pen-
ning trap respectively in section 5. We thus chose the values of o = 0.01,0.03
and 0.005 for these three cases respectively to provide enough denoising.

Currently the selection of « is intrusive and performed manually, although it
needs to be done only once for a test case. In future work, we will develop a more
systematic way to pick the threshold directly from the density data, based on
techniques similar to the ones used in wavelet denoising [39]. Machine learning
techniques can also be used for this purpose, and this is another direction we
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will pursue.

After denoising the charge density, we compute the derivatives in the Fourier
domain and perform inverse transforms. Next, in order to find the constants
in front of these derivatives in appendix B we derive the grid-based error for
regular PIC schemes. Since each component grid in the sparse grid combination
technique is a regular grid with mesh sizes h;, h; and hy, equations (36) and
(37) can be used for determining the constants involved in the upper bounds. To
that end, we note that the grid transfer operators R and P incur twice the grid-
based error of similar magnitude given in equations (36) and (37). Moreover,
the charge density p. in the regular grid adds another 1/12 in front of the second
derivative terms. Summing all these contributions we get an estimate for the
coefficients in equations (7) and (8) as

SR O Y LA Y L B
e oz2 |77 6y2 e 022 e 0220y2
1] 0*pe 0*pe 1 9°pe
P2 = 2p 2 92972 264 2 ,02 2 (12)
0y?0z 0z20x ~ 864 ||ox 0y?0z

where p, is the denoised charge density defined in equation (28).
Finally, following the particle noise estimates in equations (52) and (53) as
well as [4, 17], for our algorithm we take

(2/3)7 | Qepe| (13)

in equations (9) and (10), where d is the dimension and p. is the charge density
on the regular grid before denoising as defined in equation (38). Here, we use
the density p. instead of the denoised density p. as it helps in adjusting the
particle constant with respect to different sampling techniques.

Through numerical experiments we also found another choice for the coeffi-
cients in the grid-based error and particle noise as

o = 2] s = K2 81 = K22
| Bs = |k2k2pe|| sy = [[KZES k2 pe| o = V]| Qee (14)

where kg, k, and k. are the wavenumbers in z,y and z respectively. We do
not present detailed results, but for the numerical experiments in section 5 as
well as for other synthetic examples in the context of interpolation we found
this choice yields similar optimal 7 values as that of the constants in equations
(12) and (13). It has an added advantage that we do not need to take inverse
transform of the derivatives, which is three in 2D and seven in 3D. Thus it may
be of interest from a practical point of view, and for the numerical experiments
in section 5 we observed up to 7 times speedup in the 7 estimation part with
this choice compared to the ones in equations (12) and (13).

In Algorithm 1 we consolidate the steps in the optimal 7 estimator algorithm.
For the range of 7, we consider [1,n — 3] for 2D and [1,n — 2] for 3D where 2"
is the number of points in the regular grid in each dimension. We do not

k1 = [[k2pe
BQ - Hk Zpe
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include the extreme values of 7 ([n — 2,n] for 2D and n for 3D7) because we
observed consistent false optima in the 7 estimation due to these cases in our
numerical experiments. These false optima can be explained by the fact that the
high 7 cases are less penalized by the inaccurate upper bounds of the triangle
inequality than the low 7 ones, because fewer components grids are involved in
the combination. Currently, unless we take the specific properties of a given
simulation into account, we do not know of a general strategy which can resolve
this problem. Hence, we plan to improve this in our future work.

Remark 1. So far, for the sake of the clarity and simplicity of our presentation,
we have used the same number of grid points in all the directions to explain the
steps of the noise reduction strategy. Here, for completeness, we will briefly
outline the procedure needed for the general case of different grid resolutions
in each direction. To that end, we define a few convenient notations. We
again consider the two-dimensional case for simplicity, with the extension to
three dimensions left as a straightforward task for the reader. Let us define
n = {ny,na} as the extension of its scalar counterpart. Since we want the
target level of the sparse grid approximation space [33] to be the same as the
underlying reqular grid, we also need to use different truncation parameters in
each direction. Let us denote these by T = {T1,T2}. Let Nymqr = max (n) and
Nmin = min (n). The parameter T can now take the values 1 < 7 < Nypin, and
for each value of T we calculate the final truncation parameter T (which is only
used in the error analysis) according to [33]:

a=min(n—17-1), (15)
T=n-—a-1, (16)

where 1 = {1,1}. The component grids corresponding to parameter T now will
have i > Ty, j > To and again there are two sets of component grids: one with
T4+ J = Nmasr + 7, c=1 and the other with i + j = nyee +7—1, c=—1. The
grid and particle errors can then be derived in a similar fashion as in sections

4.4.1 and 4.4.2.

4.5. Implementation in a HPC PIC code base.

Once the optimal 7 is obtained from Algorithm 1 we need to perform sparse
grid noise reduction. In Algorithm 2 we present a matrix-free implementation
of the sparse grid filtering in equation (2). This implementation is more suitable
for large-scale high performance PIC code bases like OPAL (which are mostly
matrix-free) than the matrix version in equation (2). In these codes, the density
in the regular grid is domain-decomposed between different processors and in
Algorithm 2 each processor holds the entire component grid in the combination
technique. For moderate values of 7, each component grid has very few degrees
of freedom compared to the regular grid and this is not very expensive in terms of

"In the current sparse grids setup 7 = n — 1 is not possible for 3D.
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memory. However, for high 7, the component grids involved in the combination
have a considerable number of degrees of freedom (especially in 3D) and hence
both memory as well as the MPI_Allreduce step in Algorithm 2 could present a
bottleneck. In our future work we will also split up the component grids between
processors which would require a more complicated parallelization strategy as
shown in [40].

If the parallelization of the code base uses MPI for inter-node parallelism
and OpenMP, GPU or any other accelerator for intra-node parallelism then the
for-loop over component grids in Algorithm 2 can also be done in parallel with
the available intra-node shared memory parallelism. Algorithms 1 and 2 are
performed in between steps 1 and 2 in the regular PIC procedure outlined in

section 2. Ingredients such as the FFT, which are required for the tauEstimator

algorithm, are already available in many large-scale PIC code bases and hence

these two algorithms can be incorporated inside them very easily without any
modification to the other parts.

Algorithm 1 tauEstimator: An algorithm for estimating optimal 7.

1: Compute Fourier transform of the charge density p. = F (pe).

2: Perform denoising by hard thresholding according to equation (11).

3: Compute the constants for the grid-based error with (12) and the particle
error constant (13).

4: for 7 =1 ton — 3 for 2D and n — 2 for 3D do

5. Evaluate grid-based error and particle noise using equations (7),(9) for

2D and (8),(10) for 3D.
6: end for
7: Select the 7 with minimum total error.

Algorithm 2 transferToSparse: An algorithm for sparse grid-based noise re-
duction with a given 7.
1: for [ =1 to nc do
2:  Each processor deposits their regular grid partition of p. to the Ith com-
ponent grid using the transfer operator R; in equation (4).
3:  MPI_Allreduce to add contributions from all processors on the Ith com-
ponent grid.
4:  Each processor interpolates from the [th component grid to their regular
grid partition of p, using transfer operator P, in equation (5).
5:  Multiply by combination coeflicient ¢; and accumulate.
6: end for

Remark 2. In general the charge density o. after sparse grid transformation is
not guaranteed to be positive everywhere. This is not unique to our approach and
also happens in other noise reduction strategies such as high-order shape func-
tions [21], compensating filters [6] and wavelet-based density estimation [{1]. In
our numerical results in section 5 we do not observe any problems caused by
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this. However, we could adopt the density redistribution procedure used in [21]
to make the charge density positive everywhere after the sparse grids transfor-
mation. This will be studied in future versions of the algorithm. Also, as shown
in [28], the filtering procedures used in explicit PIC simulations improve energy
conservation but at the loss of momentum conservation. In our future study we
will investigate in detail the impact of the noise reduction strategy on energy
and momentum conservation and report the results.

4.6. Computational complexity estimates of the noise reduction strategy

Here, we provide the asymptotic serial computational complexity estimates
for the tauEstimator (Algorithm 1) and transferToSparse (Algorithm 2) parts
of the noise reduction strategy. The dominant computational components of the
tauEstimator are the FFT and inverse FFTs, each of which has a complexity of
O (N.loga(N.)). In the case of the transferToSparse algorithm, we have nc com-
ponent grids, and for each component grid we deposit the regular grid density
onto the component grid and then interpolate it back to the regular grid. The
deposition and interpolation both are of complexity O(N,), and since we do it
for nc component grids it results in O(nc- N,.). Now the number of component

grids in 2D and 3D are nc = O (loga(N.) — 7) and nc = O ({logz(Nc) — 7}2)
respectively. Thus the complexity of the transferToSparse part of the noise
reduction is O ( N, (log2(N,) — 7)*~'), where d is the dimension. Hence, sum-

ming up the contributions from both parts, the total complexity of the noise

reduction algorithm per time step is O (NC {logg(Nc) + (loga(N,) — 7)*!

The cost of typical physical domain filters such as the binomial filter is O(N,.).
Hence, the asymptotic cost of our approach is slightly more than the usual filters.
Taking into account the adaptivity of our approach, this is only a small price
to pay. In terms of additional memory requirements, for both the tauEstimator
and transferToSparse parts, they are O (N.) which is similar to other filters. In
PIC schemes, memory requirements of particles usually dominate as the num-
ber of particles is far more than N.. Additionally, each particle contains many
attributes (e.g. position, velocity, charge etc.). Thus, the additional memory
requirement caused by the noise reduction strategy is usually not significant.

4.7. Relation between sparse grid-based noise reduction strategy and sparse PIC
schemes

In this section we compare and contrast the sparse PIC scheme introduced
in [4] with the noise reduction strategy proposed in the current work. The
distinctions may be enumerated as follows.

e As mentioned in the introduction, the sparse PIC scheme in [4] performs
all the operations - e.g. charge deposition and Poisson solve - on the sparse
grids and does not introduce regular grids at all (except for visualization
purposes or post-processing). This absence of a regular grid can provide
computational and memory savings. By contrast, the current approach is
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designed to be an add-on for standard PIC schemes. We use sparse grids
only for noise reduction in the charge density, while all the operations such
as charge deposition and the Poisson solve happen on the regular grid as
in typical PIC codes.

e In [4], the noise reduction obtained from the sparse grids is viewed from a
Monte-Carlo perspective. In the current work we construct the strategy
based on a filtering perspective and use the Monte Carlo perspective for
the error analysis to find the optimal 7. This is possible because of the
equivalence between the two perspectives, as shown in Proposition 1.

e The truncated combination technique and the tauEstimator can also be
used in the context of the sparse PIC scheme in [4] - although this fact
is not noted in that work - at the expense of reintroducing regular grid
complexity. However, in the regime where particle operations dominate,
this may be a worthwhile trade-off.

e The adaptive noise reduction strategy can also be used offline as a post-
processing tool to filter the charge density (or any other grid quantity)
from regular PIC simulations.

To summarize, the sparse PIC scheme in [4] can be used as an alternative
to regular PIC, whereas the sparse grid-based noise reduction strategy is an
accessory to improve the performance of regular PIC.

5. Numerical results

In this section we will test the performance of the adaptive noise reduction
strategy on two benchmark problems in plasma physics and beam dynamics;
namely two-dimensional diocotron instability, and three-dimensional electron
dynamics in a Penning trap with a neutralizing ion background. These test
cases produce fine-scale structures during the nonlinear evolution and thus can
be used to evaluate the ability of the adaptive 7 method to capture them while
still reducing noise. Also, they are very relevant to the large-scale accelerator
simulations which we intend to perform in our future works.

In all the simulations we consider a periodic box € = [0, L]¢, where d is the
dimension and L is the length in each dimension. The charge to mass ratio
ge/m. in all our simulations is —1. In measuring the error in field quantities
we use the relative discrete L?-norm also known as the normalized root mean
squared error given by

SN (%) — e (x1))
£ =
W) SN (g, 4 (%,))2

where 1 is any field quantity, v, is the reference field which is obtained from
an ensemble average of high-resolution regular PIC simulations and x; are the

(17)
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locations of points in the domain at which we measure the error. This error
is for a particular point in time and we measure the error at few instants in
the whole simulation. In both numerical examples, we calculate the error for
regular PIC, adaptive 7 PIC and fixed 7 PIC with the range of 7 taken to be
the same as the one used in the tauEstimator Algorithm 1. By means of these
error curves we can see how well the adaptive 7 algorithm performs in terms of
picking the optimal 7 and also how the errors compare to that of the regular
PIC results with different number of particles per cell P,. We always define the
number of particles per cell P, based on the regular grid. It is given by

¢ N, T 9nd’

For the time integration we use the leap-frog method and for the Poisson
equation we use the second order cell-centered finite difference method as in
[42, 43] with single level and without any spatial adaptivity. For solving the
linear system arising from the discretized Poisson equation we use the smoothed
aggregation algebraic multigrid (SAAMG) from the second generation Trilinos
MueLu library [44]. The stopping tolerance for the iterative solver is set as 10719
multiplied by the infinity norm of the right hand side. More details on the solver
can be found in [43]. The code is written on top of a C++ miniapp based on
the particle accelerator library OPAL [37] and box structured adaptive mesh
refinement library AMReX [45]. Even though FFT solver would be the most
accurate and fastest option [46] in this context, the reason for the above choice
of field solver is in our future work we want to extend the current approach to
include adaptive mesh refinement. Also, the conclusions of the present study
will not be much affected by this choice and will be applicable for FFT solver
too.

All the computations are performed on the Merlin6 HPC cluster at the Paul
Scherrer Institut, the details of which are as follows. Each Merlin6 node consists
of 2 sockets and each socket in turn has Intel Xeon Gold 6152 processor with
22 cores at 2.1-3.7GHz. There are 2 threads in each core, however in all the
present computations we only use single thread. Each node contains 384 GB
DDR4 memory in total.

5.1. 2D diocotron instability

5.1.1. Problem description and simulation setup

As a first example, we consider the 2D diocotron instability test case as
already described in [4]. In this test case, we have electrons with a hollow
density profile immersed in a neutralizing immobile and uniform ion background
and confined by a uniform external axial magnetic field. The magnetic field is
strong enough that the electron dynamics is dominated by advection in the self-
consistent Eg. X By velocity field [47, 48, 49, 50]. The initial electron density
profile is not monotonic in the radial direction, which translates to an Eg. X By
shear flow which is unstable to what is known as the Kelvin-Helmholtz shear
layer instability [47, 51, 50] in fluid dynamics, and the diocotron instability in
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beam and plasma physics [12, 52, 47]. This instability deforms the initially
axisymmetric electron density distribution, leading, in the nonlinear phase, to
the formation of a discrete number of vortices, and eventually breakup [50, 52].
This test case has importance both from a fundamental physics point of view
[12, 52, 47] as well as in practical applications such as beam collimation [53].

The parameters for this test case are as follows and are very similar to the
ones in [4]. We apply a uniform external magnetic field B.,; = {0,0,5} along
the z—axis in a domain of length L = 22. The external electric field E¢,; = 0
for this problem. The initial distribution is given by

P CE (r—L/4)*
ft=0) = goe™ eXp{_ 2(0.03L)? }

r=\(e—L/2%+ (y— L/2)%, (18)

and the constant C' is chosen such that the total electron charge Q. = —400.
We sample the phase space using Gaussian distribution in the velocity variables
with mean 0 and standard deviation 1. For the configuration space, we use a
uniform distribution for 6 in [0, 27], and for r a Gaussian distribution with mean
L/4 and standard deviation 0.03L. From (r,6) we do the polar to Cartesian
transformation to get (zp,y,) for the particles.

For denoising in equation (11), we take € = a\/(Ps)res/ P max(|pe|) as ex-
plained in section 4.4.3, where (P.)rer = 5 and a = 0.01. This means that with
5 particles per cell, charge densities with Fourier amplitude less than 1 percent
of the maximum amplitude will be set to 0 and for other P, the threshold will be
scaled accordingly. The time step of the time integrator is chosen as At = 0.02
and the simulation is run till final time 7" = 17.5.

5.1.2. Qualitative comparison of charge density

Figure 2 shows the evolution of the electron charge density with time for
regular, 7 = 1 and adaptive 7 PIC for a 10242 mesh. For the first three rows
P. =5 and for the last row P. = 80. From the first and second rows we can
see that while the regular PIC results are dominated by noise, 7 = 1 results are
dominated by grid error due to the smearing of fine scale structures. This is
also noted in [4] in their sparse PIC studies. In contrast, the adaptive 7 results
in the third row strikes a balance between the grid-based error and noise and
are in close agreement (in visual norm) with the regular PIC results with high
P, in the fourth row.

5.1.3. Quantitative comparison of charge density

In order to make a quantitative comparison, in the left columns of Figures
3-5, the error in p, calculated using (17) at 8 different points in time is shown
for three different meshes 2562, 5122, 10242 and number of particles per cell
P, = 5,10,20. For regular PIC we also carried out simulations at higher P,
namely 40, 80, 160 in order to compare the accuracy level with adaptive 7 results.
The reference in equation (17) is computed using the average of 8 independent
regular PIC simulations each with a 10242 mesh and P. = 320. In equation (17),
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(a) time=0 (b) time=10 (c) time=17.5

(e) time=10 (f) time=17.5

(h) time=10 (i) time=17.5

(j) time=0 (k) time=10 (1) time=17.5

Figure 2: 2D diocotron instability: Evolution of the electron charge density with time for
regular PIC, P, = 5 (first row); 7 = 1, P. = 5 (second row); adaptive 7, P. = 5 (third row);
and regular PIC, P. = 80 (fourth row). The mesh considered here is 10242. The minimum
and maximum values of the charge densities for each figure are displayed in the color bars
itself.
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Figure 3: 2D diocotron instability: Electron charge density error comparison between regular
(Reg), fixed 7 and adaptive 7 PIC. The left column is the actual error calculated using equation
(17) and the right column is the estimations from the 7 estimator based on which the optimal
7 is selected. The fixed as well as adaptive 7 has the number of particles per cell P. = 5.
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Figure 5: 2D diocotron instability: Electron charge density error comparison between regular
(Reg), fixed 7 and adaptive 7 PIC. The left column is the actual error calculated using equation
(17) and the right column is the estimations from the 7 estimator based on which the optimal
7 is selected. The fixed as well as adaptive 7 has the number of particles per cell P. = 20.
The errors for regular PIC with P. = 320 and 640 are calculated from that of P. = 160 based
on the theoretical particle error scaling 1/ V/Pc. This is based on the observation that the
errors for the regular PIC are in the noise dominated regime.
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the Npoints are taken as the cell-centered points in the mesh under consideration
and the reference p. is interpolated to these points for calculating error. In
Figure 5(e), for calculating the error with regular PIC at P. = 320,640 we
divided the error for P, = 160 by v/2 and v/4 respectively as we observed the
errors are already in the noise dominated regime and follow the scaling 1/+/P..
On the right columns of Figures 3-5 are the estimations of the error for different
7 values from the 7 estimator divided by the root mean squared value of the
reference p.. It is based on these curves that the optimal 7 - i.e., the one with
minimum error - is selected at each time step during the simulation.

From the left columns of Figures 3-5, we can see that in general the adaptive
7 performs well in terms of picking one of the 7 values with the lowest error
(if not the optimal 7 at all points in time). The shapes of the error curves
for individual 7 values are also similar for the estimated and actual ones. It
demonstrates the ability of our estimator to predict correct error dynamics for
different 7 cases. While we do not have to worry about the magnitude of the
errors in the estimator, the ordering of the error curves between different 7
values is of importance as it decides the optimal 7, and we want it to be close to
the actual scenario on the left columns. To that extent, we make an observation
that in the time interval ¢ € [7.5,17.5] the difference in the magnitude of errors
between different 7 values in the estimator differs more from the actual scenario
than in the time interval ¢ € [0,7.5). More specifically, for low 7 values (7 =
1,2, 3) the estimator predicts a significantly higher error compared to the other
7 values in that regime.

One of the reasons for this behavior is for low 7 cases - e.g., 7 =1,2 and 3 -
the number of component grids in the combination technique is higher than that
for the high 7 cases. Since we use the triangle inequality to bound the errors,
both the grid and particle errors tend to be more over-estimated for the low 7
cases than those for the high 7 ones. Another reason is, in the estimates for
the grid error we use the derivatives based on the regular grid. While this is a
sharper upper bound for high 7, the derivatives seen in reality by the low 7 cases
for functions with fine scale structures will be smaller because of the larger mesh
sizes. Indeed, fine scale structures form in the time interval ¢ € [7.5,17.5] and
hence grid error dominated for the simulations with sparse grid noise reduction.

In spite of these differences, in all the cases even with the predicted sub-
optimal 7 the error values of the adaptive 7 PIC is significantly lower than that
of the regular PIC with same P,. If we use some problem specific information,
then it may be possible to reduce the over-estimations in the grid and particle
errors by introducing a correction factor for different 7 values.

5.1.4. Fvolution of T with time

In Figure 6, the time history of 7 is shown for the meshes and P, considered
in Figures 3-5. Here we can see that for the same P,, when we decrease the
mesh size - i.e., going from left to right in Figure 6 - the 7 values decrease.
This is because we are moving from the grid error dominated regime to the
particle error dominated regime. On the other hand, for the same mesh size
and increasing P, - i.e., moving from top to bottom in Figure 6 - the 7 values
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increase as we are moving from the particle error dominated regime to the grid
error dominated regime. Also, for a particular mesh size and given P, the later
points in time have higher 7 compared to the earlier ones. This is due to the
formation of fine scale structures in the problem and resolving them require a
higher 7.

5.1.5. Quantitative comparison of electric field

In Figure 7, the error in the electric field E calculated using equation (17) is
shown for the meshes® and P. considered. We can see that the adaptive T errors
at the best are similar to the regular PIC and in some cases it is higher than
regular PIC error for the same P.. We also notice that none of the fixed 7 error
levels are better than the regular PIC errors. The reason for this is as follows:
the electric field is obtained by integrating the charge density, and integration is
a smoothing operation which reduces the particle noise. Since in our adaptive 7
noise reduction algorithm we increase the grid-based error to reduce the particle
noise and minimize the total error in the density, this can result in either similar
or even an increase in the electric field error as compared to the regular PIC if
the integration itself is sufficient enough to reduce the noise. High-order shape
functions are a promising option to address this limitation as depending on
the distribution they may reduce the particle noise without increasing the grid-
based error. We will investigate the combination of high-order shape functions
with our algorithm in future work.

5.1.6. Adaptivity with initial sampling

Having studied the adaptivity of the algorithm with respect to mesh size, P,
and time, we also considered a different initial sampling technique, and evaluated
the performance of our scheme. We do not show the results here in order to
limit the already fairly large number of tables and figures in the article, but we
briefly summarize our main observations. We used a uniform distribution in all
the variables to sample f in equation (18). The range for the velocity variables
was chosen as [—6, 6] while for the configuration space it was [0, L]. Note that
unlike the Gaussian sampling described earlier, with this sampling each particle
will have a different constant charge ¢ [12] to match the distribution. Still, the
charge to mass ratio is the same for all the particles. Similar to [20], we ignored
particles with weights less than 1.0 x 1079, For this particular example, uniform
sampling is not a particularly good idea as it results in sampling particles which
have very small computational weights. Hence, for the same total number of
particles we found that this sampling has higher noise levels than the Gaussian
sampling. Uniform sampling can however be useful in scenarios where we do
not know of an importance sampling technique to sample the distribution at
hand. Due to higher noise levels, we needed a higher value of a = 0.03 for the
calculation of the denoising threshold. Except for the coarsest mesh size 2562,

8For brevity we do not show results for a 5122 mesh, as it does not contain much new and
valuable information.
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Figure 7: 2D diocotron instability: Electric field error comparison between regular (Reg),
fixed 7 and adaptive T PIC.
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the adaptive 7 algorithm performed well in this sampling - i.e., the scheme
picked a nearly optimal 7 for most cases. The optimal 7 values, as expected,
are lower than that for the Gaussian sampling, owing to higher noise levels.

5.1.7. Run time performance

Mesh P.

5 10 20
2562 | 43.7 | 47.5 55.4
5122 | 91.9 | 110.1 | 145.8

10242 | 435 | 501.5 | 653.8

Table 1: 2D diocotron instability. Adaptive 7 PIC: Total run time in seconds on 64 cores for
different mesh sizes and number of particles per cell.

Mesh Regular PIC Reg/adaptive 7
2562 | 50.9 (20) 50.9 (20) 1044 (80) | 1.2 11|10
5122 | 201.7 (40) | 364.2 (80) | 708.6 (160) | 2.2 | 3.3 | 4.9
10242 | 1544.5 (80) | 2911.6 (160) | 5857.3 (320) | 3.5 | 5.8 | 9.0

Table 2: 2D diocotron instability: Columns 2 — 4 are the total run time in seconds taken by
the regular PIC on 64 cores for different mesh sizes and number of particles per cell (within
parentheses) to reach a comparable accuracy (based on visual norm from the left columns of
Figures 3-5) in charge density that of the adaptive 7 results in Table 1 at time T" = 17.5.
Columns 5 — 7 are the ratio of time taken by regular PIC to the values in columns 2 — 4 of
Table 1 for adaptive 7 PIC.

tauEstimator transferToSparse
Mesh P. P.
5 10 20 5 10 20

2562 [ 10.1 | 10.7 [ 11.4 [ 5.9 [ 5.7 [ 4.9
5122 | 21 [ 20.2 | 18.6 || 5.4 | 4.5 3.6
10242 | 40.1 | 36.1 | 30.2 || 2.7 | 2.3 1.8

Table 3: 2D diocotron instability. Adaptive 7 PIC: Percentage of total time (which is shown in
Table 1) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy
for different mesh sizes and number of particles per cell.

Finally, we perform a preliminary run time performance study to see the
effectiveness of the current approach in comparison to the regular PIC. To that
extent, we note that we did not perform any optimization to both the regular
PIC as well as the adaptive 7 PIC routines. Optimization of different compo-
nents involved in the algorithm as well as a thorough parallel performance study
is left for future work. In Table 1 the total run time in seconds is shown for the
adaptive 7 PIC on 64 cores for the mesh sizes and P, considered before. All the
timings reported are the average of three runs performed. In Table 2, we com-
pare the adaptive 7 PIC timings with the timings for the regular PIC with the
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P, value required to reach a comparable accuracy in charge density as that of
the adaptive 7 results at final time 7' = 17.5. The approximate P, values within
parentheses are obtained from Figures 3-5 based on visual examination. Even
in this preliminary performance study, we can see that the adaptive 7 strategy
can provide significant speedups close to an order of magnitude compared to
the regular PIC for similar accuracy in charge density. In terms of memory
storage, the benefits are even more pronounced. Using the number of particles
N, as a measure of the dominant memory cost (for PIC methods this is usually
the case) we see & 2 — 16 times memory reduction with adaptive 7 PIC com-
pared to regular PIC. In Table 3, we present timings for the components of the
noise reduction only, expressed as percentage of the total time given in Table
1. Even though the percentage of time taken by the transferToSparse part is
small, the tauEstimator represents a significant fraction of the total time. One
of the reasons for this is that for the FFT parts of the tauEstimator algorithm
(Algorithm 1) we use the OPAL library. Since our other data structures are
based on the AMReX library, we have to copy between them. Since the parallel
decomposition is different for these two libraries, it can result in excessive com-
munication, especially for large numbers of grid points and for high core counts.
We are currently resolving this problem in the ongoing implementation of our
noise reduction strategy in OPAL, using only OPAL’s native data structures
and thereby avoiding the copy and excessive communication.

5.2. 3D Penning trap

5.2.1. Problem description and simulation setup

In this section we will consider a 3D Penning trap problem as the test case.
Penning traps are storage devices for charged particles, which uses a quadrupole
electric field to confine the particles axially and a homogeneous axial magnetic
field to confine the particles in the radial direction [54, 55]. The evolution of
the density in this problem (see Figure 8) is very similar to that observed in
cyclotrons [56, 57]. Thus this test case is very relevant to our ultimate goal
of high precision large-scale simulation of cyclotrons. The fine scale structures
developed in this problem pose challenges for the sparse grids similar to the
diocotron case in the previous section.

The parameters for this test case are as follows. The length of the periodic
box is L = 20. The external magnetic field is given by B¢, = {0,0,5} and the
quadrupole external electric field by

g _ [ 15 L\ 15 L\ 30 L
ext — I X 9 5 I y D) ,L z 5 .

For the initial conditions, we sample the phase space using a Gaussian distri-
bution in all the variables. The mean and standard deviation for all the velocity
variables is 0 and 1 respectively. While the mean for all the configuration space
variables is L/2 the standard deviations are 0.15L, 0.05L and 0.2L for x, y and
z respectively. The total electron charge is ). = —1562.5, and the charge of

each particle is ¢. = %’
p
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The denoising parameters are taken as (P.),c r=1and a = 0.005 for this
problem with the above mentioned sampling. The time step is chosen as At =
0.05 and the simulations are run till final time 7" = 15.

5.2.2. Qualitative comparison of charge density

Figure 8 shows the evolution of the electron charge density with time for
regular, 7 = 1 and adaptive 7 PIC. The mesh used is 256% and P, = 1 for
the first three rows and 20 for the last row. As we had seen in Figure 2 for
the diocotron test case, the adaptive 7 results, in the third row are better than
both the regular PIC and 7 = 1 results and are comparable to the results of the
regular PIC with higher P, in the last row.

5.2.3. Quantitative comparison of charge density and time history of T

In a way analogous to Figures 3-5 for the diocotron instability, in Figures 9-10
we show the errors calculated using equation (17) and the estimations from the
T estimator for meshes 643,1283,2563 and P. = 1,5. The reference in equation
(17) is the average of 5 independent computations of regular PIC with 256>
mesh and P, = 40. For the Npoints in equation (17), we select approximately
4096 random points throughout the domain and interpolate both the reference
density as well as the density under consideration at these points to measure the
error. The errors are measured at 7 different points in time in the simulation.

In general, as before, the adaptive 7 predictions are close to optimal and
most of the conclusions from the diocotron test case are applicable in this case
too. Figure 11 shows the time history of 7 for the meshes and P, considered and
the high values of 7 indicate that the total error is dominated by the grid-based
error in these cases.

5.2.4. Run time performance

In terms of run time performance comparisons, we ran the 643, 128% mesh
cases on 64 cores and the 2562 test cases on 512 cores for both the regular and
adaptive 7 PIC. For 643 mesh, at the last point in time we can see that the
regular PIC is more accurate than the adaptive 7 or any other fixed 7 PIC.

Adaptive T Regular Reg/adaptive 7
1283 [360.4 (1) | 475.4 (5) 274.8 (5) 443.7 (10) | 0.8 0.9
2563 | 825.5 (1) | 1196.4 (5) || 2352.8 (15) | 3080.8 (20) || 2.8 2.6

Table 4: 3D Penning Trap: Total run time in seconds on 64 cores for 1283 mesh and 512 cores
for 2562 mesh in case of the regular and adaptive 7 PIC. The values within the parentheses
represent the different number of particles per cell required to reach a comparable accuracy
(based on visual norm from the left columns of Figures 9-10) in the charge density for both
the schemes at final time 7' = 15. Columns 6 — 7 are the ratio of time taken by the regular
PIC to that for adaptive 7 PIC.

For 1283 and 2563 meshes, from Table 4 we can see a maximum speedup of

2.8 with adaptive 7 PIC over the regular PIC for the finest mesh size. Again
considering the number of particles as a measure for the memory cost adaptive
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(a) time=0 (b) time=10 (c) time=15

(d) time=0 (e) time=10

(g) time=0 (h) time=10 (i) time=15

(j) time=0 (k) time=10 (1) time=15

Figure 8: 3D Penning trap: Evolution of the electron charge density with time for regular
PIC, P. = 1 (first row); 7 = 1, P. = 1 (second row); adaptive 7, P. = 1 (third row); and
regular PIC, P. = 20 (fourth row). The mesh considered here is 2563. The minimum and
maximum values of the charge densities for each figure are displayed in the color bars itself.
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Figure 9: 3D Penning trap: Electron charge density error comparison between regular (Reg),
fixed T and adaptive 7 PIC. The left column is the actual error calculated using equation (17)
and the right column is the estimations from the 7 estimator based on which the optimal 7 is
selected. The fixed as well as adaptive 7 has the number of particles per cell P, = 1.
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Figure 10: 3D Penning trap: Electron charge density error comparison between regular (Reg),
fixed T and adaptive 7 PIC. The left column is the actual error calculated using equation (17)
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selected. The fixed as well as adaptive 7 has the number of particles per cell P. = 5.
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Figure 11: 3D Penning trap: Time history of 7 for different mesh sizes and number of particles
per cell P..

tauEstimator || transferToSparse
Mesh P, P,
1 5 1 5
128% [ 55.4 | 39.9 4.6 3.3
256% | 41.8 | 29.5 || 15.3 9.3

Table 5: 3D Penning Trap: Percentage of total time (which is shown in columns 2 — 3 of Table
4) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy for
different mesh sizes and number of particles per cell.

7 PIC is 2 — 15 times cheaper than the regular PIC. In order to see more
computational benefits with the adaptive 7 PIC for this problem we need to
perform runs with finer meshes and more particles per cell. These 3D large-
scale simulations are part of our future work and the results will be reported
elsewhere.

In Table 5, we show the percentage of the total time taken by the components
of the noise reduction algorithm. Similar to the diocotron instability example,
we can see that the dominant portion comes from the tauEstimator, for the
same reasons as in the two-dimensional example. In addition, transferToSparse
also exhibits an increase in percentage compared to the previous example. This
is due to the bottleneck with MPI_Allreduce for high 7 values in 3D as described
in section 4.5. In future work, we will adopt an improved parallelization strategy
as in [40], which can mitigate this problem. Furthermore, the optimal 7 does
not need to be calculated for each time step. If the time-step is small, the charge
density will not change much in a single time-step. The optimal 7, being only
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dependent on pe, is therefore also unlikely to change much. One could thus get
speed-up by only recomputing 7 every 5th or 10th time-step, for instance, while
still accurately estimating the optimal 7. This is borne out in Figures 6 and 11,
where 7 stays fixed for many consecutive time-steps. We will also investigate
this aspect in detail in future work.

6. Conclusions

We have proposed a sparse grid-based adaptive noise reduction strategy
for particle-in-cell (PIC) simulations. Unlike the typical physical or Fourier
domain filters used in PIC methods, the strategy adapts to mesh size, number
of particles per cell, smoothness of the charge density and the initial sampling
technique. In order to construct the strategy we use the key idea of increased
particles per cell in sparse grids compared to the regular grid for the same
total number of particles as proposed in [4]. The current work extends that
concept in several directions. Specifically, we present a filtering perspective for
the sparse grid-based noise reduction which helps to incorporate it with ease in
existing high performance large-scale PIC code bases and also opens the door
for sparse grid based filtering approaches. We tackle the problem of large grid-
based error of sparse grid for non-aligned and non-smooth functions by means
of the truncated combination technique [1, 2, 3]. We show in the context of
PIC simulations that the truncated combination technique provides a natural
framework to minimize the sum of grid-based error and particle noise. This
allows us to propose a heuristic based on formal error analysis to select the
optimal truncation parameter on the fly that minimizes the total error in the
charge density.

We show the performance and applicability of our strategy on two bench-
mark problems; namely the 2D diocotron instability and electron dynamics in a
3D Penning trap. In both test cases the adaptive noise reduction strategy picks a
truncation parameter which is close to optimal for all times. To achieve compa-
rable accuracy for the charge density we obtain significant speedups and memory
savings close to an order of magnitude with the noise reduction technique com-
pared to regular PIC in the 2D diocotron test case. For the 3D Penning trap
test case a maximum speedup of 2.8 and 15 times memory reduction is obtained
for the finest mesh size tested. Further speedups and memory reduction in the
3D test case require us to test the strategy for even finer resolutions and that
is part of future work.

Our strategy can be very easily integrated into existing high performance
large-scale PIC code bases and ongoing work is to integrate it into the open
source particle accelerator library OPAL [37]. In terms of future work, we plan
on investigating the applicability and performance of the noise reduction strat-
egy on large-scale high intensity particle accelerator simulations such as the
IsoDAR project [58, 59] with a particular focus on understanding the dynamics
of halo particles and efficient collimation strategies. Filtering strategies have
much more impact on the electromagnetic PIC simulations as reported in [24].
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Hence we would like to extend the current approach for Vlasov-Maxwell equa-
tions and investigate the performance in that context. Use of machine learning
approaches to tune denoising threshold in our strategy is also of interest. Cur-
rently, we are unable to use the full range of truncation parameter 7 due to the
false optima obtained when the extreme values are included. We will work on
strategies in the 7 estimation to resolve this problem. Finally, we also intend
to compare the current strategy with other filtering approaches and denoising
techniques.
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Appendix A. Proof of Proposition 1 relating the direct charge density
deposition onto the component grids and the two-step approach

Proof. Even though sparse grids make sense only for dimensions 2 and higher
we can still understand the essence of the proof in 1D. Also, since the shape
functions and transfer operators in 2D and 3D are obtained by the tensor prod-
uct of 1D linear interpolation functions the proof extends naturally to those
cases.

Consider a periodic 1D domain [0, L] and two grids with mesh sizes hy and
hi. The grid with mesh size h; is coarser than the one with hy and assume Ry
is an integer multiple of hy. Let us first consider the node-centered grids where
all the coarse grid points are also grid points in the fine grid as shown in Figure
12(a).

The particles deposit onto the fine grid with mesh size hy and the charge
density p. is given by

]\[P
eli)) = 35 S Wilay — ), (19)
[ALF e

where W (¢) = max {0, 1- \}Tifl} is the cloud-in-cell shape function and x, and

Z; are the locations of the particles and the grid points in the fine grid re-
spectively. Now, we transfer the density p. to the coarse grid by means of the
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Figure 12: Schematic showing the node-centered and cell-centered grids and the corresponding
shape functions. The nodes are marked with black circles and the cell-centers with red squares.
The domain is periodic. The shape functions W; corresponding to the coarse grid are linear
between the nodes in the fine grid in case of node-centered grids. For cell-centered grids
W, has discontinuity in derivative between some of the cell-centers in the fine grid whereas
between nodes of the fine grid it is always linear.

transfer operator R in equation (4) which gives

hy <
0c(xk) = hfj; > he(@)Wilar — &), (20)

Jj=1

where W;(¢) = max {O, 1-— Ih—Cl‘}, x are the locations of the grid points in the

coarse grid and N, is the total number of cells in the fine grid. Substituting for
Pe from equation (19) and switching the order of sums we get

j\lp J\fc

DD Wilar —&)Wi(#; — ). (21)

p=1j=1

Qe
Nyhy

Qe(xkr) =

Now, for a given particle, Wy (Z; — x,) is non-zero for exactly two values of j:
the floor of ;,/hs and the ceiling of that same quantity. Let us call these values
J and J + 1 and assume the grid points are ordered such that x; is to the left
of xy41. We have

N.
> Wilww — &) Wi (&5 — xp) = Wil — )Wy (@ — xp)
j=1

+ Wl(-%'k — .’)~;‘J+1)Wf(.'i‘J+1 — a?p). (22)

Now we note that because of the way the two grids are related (mesh sizes
are integer multiples, coincident grid points), we are guaranteed that W (zy — )
is linear on the interval Z € [Z 7, Zy4+1]. This is because the places where W; has
a discontinuity in its derivative are guaranteed to be fine grid points as shown in
Figure 12(a). So, linear interpolation is exact for W; on the interval [Z s, Z ;1]
Since z,, is in this interval, we have

i‘J+1 — Tp

Wi(ar — xp) = Wilzy, — 3.) {} + Wizg — Ty41) {1 -

.’f]+1 — l‘p:|
Tj+1 — g

Tjp1— T
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Now we notice that

z -z z hy —x Tj—x Tj—x
[fjifcﬂ - [ J+h; p} - th P th : = Wy(as =)
and a nearly identical reasoning gives
- T Wi - ),
Combining these with equation (22) we get
Nec
> Wilay, — &) Wy(&; — wp) = Wilag — ). (23)
j=1

Substituting this into equation (21) we get the density on the coarse grid as

]\]P
0ulan) = e S Wil — ). (24)
P

Comparing equation (24) with equation (19) we see this is exactly the expression
we would obtain if the particles were to deposit directly onto the coarse grid
with mesh size h;.

Now we will consider the cell-centered grids. In this case the coarse grid
points are also not the grid points in the fine grid and W; will have a discontinuity
in the derivative for some of the intervals [Z;,Z;41] as shown in Figure 12(b)
depending on the ratio h;/hy. Hence an exact equivalence between the two
approaches does not hold. However, we will now show that

N,

Wik —z) = Z Wilzy — 2;)Wy(Z; — x)
j=1

can be considered as a shape function by itself. To that end, we will show that
it satisfies the three conditions for any shape function as given in [9]. These are
listed as follows

L Wi(¢) = Wi(=0),
2. = [WiQd¢ =1,
3. %Wl(a:k —z)=1

The first condition is manifestly true as Wy which is the standard hat func-
tion is even. For the second condition we observe that

1 hy < )
E/WZ(C)dC = ITJ;ZWl(xk — ),

j=1
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w2 as Wy is a shape function and by definition integrates to hy. Now, hy Z;V:H Wi(zr—
wss &) is the midpoint rule applied for the integration | Wj(zy — Z) over the fine
s grid. From Figure 12(b) it is clear that W is linear on each integration cell and
s the midpoint rule is exact. Thus,

N,
h = . 1 N e
}TJ; E V[/l(zk—xj):h—l/Wl(:ckfx)dz:L
i=1

wss  where the last step comes from the fact that W; which is also a standard hat
ws7  function integrates to h; by definition. Finally, the third condition is related to
wss  global charge conservation and we note that since W; and W; are standard hat
ws functions they satisfy the partition of unity and hence W, also satisfies it when
w0 We carry out the summation.

1061 Now, using conditions 1 and 2 and noting that W, is bounded in [0, L] we
w2 can carry out the same set of steps shown in appendix B for a standard hat
s function. We can then see the grid-based error for W, is of O(|82p.|h?) and

we the particle noise is O(\/|Qecpe| /Nphi) as in equations (35) and (51) but with
wes the constants depending on the ratio of h; to hy. O

wss  Appendix B. Grid-based and particle errors in the charge density
ez deposition for regular PIC schemes

1068 In this section, we follow the analysis in [4] and derive in details the grid-
we  based error and noise estimates for the charge density deposition in regular PIC
wno  schemes explicitly revealing the constants. For simplicity, let us consider a 1D
wn  PIC scheme and extensions to 2D and 3D are relatively straightforward. In
w2 the following, we consider a particular point in time and hence suppress the
w3 dependence of the different quantities with respect to time.

1074 Let f(z,v) be the electron phase-space distribution under consideration and
wrs let us define f as

_ f
- [ [ fdxdo

ws  Since, f is non-negative and its phase-space integral is unity it can be interpreted
w7 as probability density. The exact charge density p.(z) is given by

f

pe(®) = 4o / / £(6,v)8(x — €)dedv, (25)

— g ( /] fd:vdv> [ [ fevste - agan, (26)

~Q. / / F(&,0)0(x — €)dedv, (27)

wis where Q. = ¢ [ [ fdzdv is the total electron charge in the system and é(z — &)
wre is the Dirac-delta function.
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In PIC, we approximate §(x — &) with the shape function S(x — &) which
for our discussion here consider it to be the cloud-in-cell or linear interpolation
function. The approximate charge density p. with the shape function S(z — &)

is given by
—qQ. [ [ fensi - o (28)
= QeEf(E,v) [S(JZ - E)] ) (29)
where E is the expected value over the probability density f.

B.1 Grid-based error estimate

This is the error due to approximating 6(z — £) with the shape function

Sz —¢)

€g = |pe - ﬁe| . (30)

Towards estimating this error, let us expand f(&,v) in equation (28) in terms
of Taylor’s series about x,

5 :Qe//(f(mv)—f—(f—x)amf(%v)

" (5 z)? ST 92 F(,v) + )5( — &)dédv, (31)

/fdv/Sx— d£+Qe/8fdv/ 2)S(z — £)de

/62fd / E= eyt (32)

where we have used the fact that the integral of the shape function S(z —§) is
a()

unity. In the above equations we have used the short hand notations 9, = 5=
2
and 02 = 6302). Taking outside the partial derivatives with respect to x in the

[ dv integrals we get

)2
o= pe+0up. (€= 050 - e+ . [ E 50— gt (3)
The cloud-in-cell shape function is given by
_1 _ld
S(¢) = I maX{O,l hm}' (34)
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Performing a change of variables with ( = £ — z in equation (33) and noting
that S(¢) has a compact support and is zero outside |(| < h, all the integrals
has to be carried only in —h, < ( < h,.

Also, S(¢) is an even function and hence ff}‘u ¢S(¢)d¢ which is the second

term in equation (33) is 0. However, the integrand in the third term of the
equation (33) is an even function and it evaluates to

(€= o) B N, R
[ se-oe=1- [ <2<1—hz)d<_12.

Thus equation (30) becomes

eg(x) S |82 Pe | )

e =0 (12 |a§pe<x>|) . (35)

Since, the cloud-in-cell shape functions in 2D and 3D are obtained by the
tensor product of 1D shape functions the analysis extends easily to these cases.
Carrying out similar steps we obtain the grid-based error for 2D and 3D as

eg =0 (112 {‘?9?; h? + ‘%Qy’f h? } + ﬁ ‘622222 hihj) in 2D,  (36)
s o(& e 25 S5}
[ e
17128 ‘81:288;;82'2 hihihg) i 3D. (37)

Note in the above equations the reason for including the only higher order terms
proportional to the mixed derivatives is because these terms will contribute to
the dominant error for the sparse grid combination. Hence, the constants in
front of these terms are of interest for estimating the coefficients of the grid-
based error in section 4.4.3.

B.2 Noise estimate

This is the error which occurs when we approximate the expected value of
the shape function by means of an arithmetic mean over the number of discrete
particles. Thus equation (29) becomes

pe() = pe(x) = ZSx—xp (38)
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ui  The error incurred by this approximation 7(z) is a random variable with mean
ws 0 and variance given by

Vars In(@)] = Ef [(p. = 5.)%] (39)

= e — 20cEs[pe] + Egpz], (40)

= Eslp7] - pz- (41)

ms Here, in equation (41) we used the fact that Ef[p.] = Ef[pe] = pe. Let us

u1r - compute Ef [ﬁg]

Ef [pZ] = Ef ]%z (Z S(x—xp)> : (42)

s Similar to [4] we assume that the initial particle states have been chosen by
mo  independent sampling from f(¢ = 0) and also they remain approximately inde-
o pendent for N, > 1. Then Ef[S(x — x,)S(z — x4)] = 0 if p # ¢ and all the
uxn  cross terms vanish giving

By 7] = o 3B (5t - )] )
) p
= N5 {(5(1’ - xp))ﬂ ) (44)

2 where, we have used the fact that each particle has same Ef [(S(x - xp))ﬂ.

1123 NOW7
2 2
ﬁ;Ef (S(z — g;p))ﬂ = %//f(mp,v) (S(x — x))* dapdv, (45)

:61\25//(f(:cm)—k(xp—x)axf(%v)

n @(ﬁﬂx, v) 4 - ) (S(x — xp))? daydv, (46)

us  and similar to the previous exercise for grid-based error the term associated
uzs  with (2, — )0, f(z,v) vanishes and the third term evaluates to O(h,). Hence
e evaluating the leading order term gives

]QVE//]F(x,v) (S(x — ) dapdv = ]%;/Qefdv/(S(x—xp))2dxp, (47)
~——

Pe
_@%2/“ Y
2 Qepe
3N Z ' (49)
pltx
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Plugging the above term in equation (44) gives

91 _ 2 Qepe
Br 7 = 53n,

L O(hy) 4+ . (50)

Omitting the p2 term in equation (41) as it is small compared to equation (50)
and substituting the above expression gives

w~ 2 Qepe
3 Nyh,

Varg[n(z)]

Defining the particle noise error e, as the standard deviation of the random
variable 1 we get
2 |Qcpe(z)|
n(x) =0 -] 51
en(®) < 3 N,h, (51)

Similarly, carrying out the same set of steps in 2D and 3D we get the esti-
mates for the particle noise as

4 |Qepel :
n=04/= 2D, 52
¢ ( 9 Nohohy | ™ (52)
8  |Qepel :
= — _eelel D.
én (’)( 27 Nyhohyh- in3 (53)
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