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Abstract12

We propose a sparse grid-based adaptive noise reduction strategy for electro-13

static particle-in-cell (PIC) simulations. By projecting the charge density onto14

sparse grids we reduce the high-frequency particle noise. Thus, we exploit the15

ability of sparse grids to act as a multidimensional low-pass filter in our ap-16

proach. Thanks to the truncated combination technique [1, 2, 3], we can reduce17

the larger grid-based error of the standard sparse grid approach for non-aligned18

and non-smooth functions. The truncated approach also provides a natural19

framework for minimizing the sum of grid-based and particle-based errors in20

the charge density. We show that our approach is, in fact, a filtering perspec-21

tive for the noise reduction obtained with the sparse PIC schemes first intro-22

duced in [4]. This enables us to propose a heuristic based on the formal error23

analysis in [4] for selecting the optimal truncation parameter that minimizes24

the total error in charge density at each time step. Hence, unlike the physical25

and Fourier domain filters typically used in PIC codes for noise reduction, our26

approach automatically adapts to the mesh size, number of particles per cell,27

smoothness of the density profile and the initial sampling technique. It can also28

be easily integrated into high performance large-scale PIC code bases, because29

we only use sparse grids for filtering the charge density. All other operations30

remain on the regular grid, as in typical PIC codes. We demonstrate the ef-31

ficiency and performance of our approach with two test cases: the diocotron32

instability in two dimensions and the three-dimensional electron dynamics in33

a Penning trap. Our run-time performance studies indicate that our approach34

can provide significant speedup and memory reduction to PIC simulations for35

achieving comparable accuracy in the charge density.36
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1. Introduction39

Particle-in-cell (PIC) schemes have been a popular and effective method for40

the simulation of kinetic plasmas for a long period of time [5, 6, 7]. Compared41

to continuum kinetic codes, PIC schemes effectively reduce the dimension from42

six to three for kinetic simulations requiring three spatial dimensions and three43

velocity dimensions (3D3V). On the other hand, compared to pure particle44

codes with direct summation, PIC reduces the computation of self-consistent45

forces from O(N2
p ) to O(Np + Nc) where Np is the total number of particles46

and Nc ≪ Np is the number of mesh points. Even though the fast multipole47

method [8] reduces the complexity of pure particle schemes to O(Np), such an48

approach has other limitations, such as the need for overly restrictive small49

time steps. Other attractive features of PIC schemes include simplicity, ease of50

parallelization and robustness for a wide variety of physical scenarios [4].51

The main drawback of PIC schemes as compared to deterministic continuum52

kinetic schemes is the numerical error associated with particle noise [6, 9], which53

decreases slowly as one increases the number of particles. Specifically, the noise54

in PIC schemes decreases as 1/
√
Pc [6, 4] where Pc = Np/Nc is the number55

of particles per cell1. High fidelity large-scale 3D PIC simulations thus often56

require at least O(109) grid points and O(1012) particles to get the desired57

accuracy level [10]. These simulations require hours to complete even on large-58

scale state-of-the-art supercomputers available today. Thus, noise reduction59

approaches are of great interest to the PIC community to improve accuracy and60

also to speed up computations and reduce memory requirements.61

There have been several efforts in this area in the past and a brief overview62

is given in section 3. Some of the strategies, such as the δf technique [11,63

12, 13], are applicable for certain classes of plasma physics problems and give64

great computational savings. Their utility, however, is limited to these specific65

classes of problems. Filtering is a common noise reduction technique which66

finds applications in many production-level PIC codes such as TRISTAN-MP67

[14, 15], ORB5 [16], IMPACT-T [17] and Warp-X [18], to name a few. One of68

the primary reasons for this is its simplicity and ease of implementation in these69

frameworks. The stencil width and number of passes in case of digital filters70

and the cut-off wavenumber in case of Fourier domain filters is typically selected71

based on experience and knowledge about the physical problem at hand. Thus,72

these could result in scenarios where either too much signal is smoothed or the73

high-frequency noise is not removed sufficiently. Even if we managed to choose74

the parameters in the filter so that they are optimal for a particular mesh size,75

number of particles per cell, point in time and the initial sampling technique,76

they may no longer be optimal once we change any of the above and require77

tuning once again.78

Our objective in this work is to develop a noise reduction strategy, or fil-79

1In this paper, we define the number of particles per cell only with respect to the regular
grid.
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tering scheme for the charge density, that automatically adapts itself to the80

aforementioned parameters. As with other filtering techniques, we require it81

to be easily integrated into existing production-level PIC codes. Our starting82

point towards that goal is the recent work [4] which combined sparse grids with83

the PIC scheme. In that article, the authors showed that owing to the large84

cell sizes involved in sparse grids compared to regular grids, the PIC scheme85

combined with sparse grids has many more particles per cell than its regular86

counterpart. This led to significant noise reduction and enormous speedups for87

certain classes of problems which have smooth or axis-aligned density profiles.88

Now, let us give a brief overview of the present work. We revisit and rein-89

terpret the noise reduction component of the scheme introduced in [4] from a90

filtering perspective, to construct a sparse grid-based noise reduction strategy91

for electrostatic PIC simulations. Unlike [4], where all the operations occur on92

sparse grids, in our approach the sparse grids come into play only for noise re-93

duction of the charge density. Hence, for a user of PIC (who may not be familiar94

with sparse grids) it exactly resembles a filtering routine - i.e., it takes as input95

unfiltered charge density on the regular grid, and returns as output the filtered96

charge density on the same grid. Compared to existing filtering approaches,97

this sparse grid-based approach is superior for functions which are smooth or98

aligned with an axis. In simple terms, this can be understood as follows: with99

any filtering technique the reduction in noise comes with a price, which is an100

increase in the grid-based error. The unique aspect of our sparse grid filtering is101

that the resulting noise reduction can also be viewed from a Monte-Carlo per-102

spective. Thanks to this property, we have maximal noise reduction, since the103

sparse grid approximation involves cells with maximal size, which in the context104

of PIC, for a given total number of particles, translates to a maximal number of105

particles per cell. At the same time the increase in grid-based error for smooth106

or axis-aligned functions is minimal. However, the same cannot be said for107

all functions in general, and for these general cases the increase in grid-based108

error associated with sparse grids may be high. In order to tackle that issue,109

we use the so-called truncated combination technique [1, 2, 3], which reduces110

the large grid-based error of standard sparse grid technique for non-aligned and111

non-smooth functions. This is because the truncated combination technique112

uses a different choice of coarse grids with finer mesh sizes than those used in113

the standard sparse grid combination. The truncation parameter involved in114

the combination technique is crucial for minimizing the sum of grid-based error115

and particle noise. Hence, we propose a heuristic based on formal error analysis116

to calculate the optimal truncation parameter on the fly which minimizes the117

total error.118

This paper is organized as follows. Section 2 introduces the PIC method119

in the context of electrostatic Vlasov-Poisson equations. Section 3 briefly re-120

views the existing noise reduction strategies in PIC and provides motivation121

and objectives for this article. Section 4 explains in detail the components and122

algorithm for a sparse grid-based adaptive noise reduction strategy. Numerical123

results for the 2D diocotron test case and 3D penning trap are presented in124

section 5 and section 6 presents conclusions and proposes future work.125
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2. Particle-in-cell method126

In this work, without loss of generality, we consider the non-relativistic elec-127

trostatic Vlasov-Poisson system with a fixed magnetic field, and introduce the128

PIC method in that setting. The electrons are immersed in a uniform, immobile,129

neutralizing background ion population and the system is given by130

∂f

∂t
+ v ·∇xf +

qe
me

(E+ v ×Bext) ·∇vf = 0, (1)

where E = Esc +Eext, and the self-consistent field due to space charge is given131

by132

Esc = −∇φ, −∆φ = ρ = ρe − ρi.

In the above equation f(x,v, t) is the electron phase-space distribution, qe and133

me are the electron charge and mass respectively. The total electron charge134

in the system is given by Qe = qe
∫ ∫

fdxdv, the electron charge density by135

ρe(x) = qe
∫
fdv and the constant ion density by ρi =

Qe∫
dx

. Throughout this136

paper we use bold letters for vectors and non-bold ones for scalars.137

The particle-in-cell method discretizes the phase space distribution f(x,v, t)138

in a Lagrangian way by means of macro-particles (hereafter referred to as “par-139

ticles” for simplicity). At time t = 0, the distribution f is sampled to get the140

particles and after that a typical computational cycle in PIC consists of the141

following steps:142

1. Assign a shape function - e.g., cloud-in-cell [6] - to each particle p and143

deposit the electron charge onto an underlying mesh.144

2. Use a grid-based Poisson solver to compute φ by solving −∆φ = ρ and145

differentiate φ to get the electric field E = −∇φ on the mesh.146

3. Interpolate E from the grid points to particle locations xp using an inter-147

polation function. This is typically known as field gathering.148

4. By means of a time integrator advance the particle positions and velocities149

using150

dvp

dt
=

qe
me

(E+ v ×Bext) |x=xp
,

dxp

dt
= vp.

The sources of different errors in the PIC simulations and their orders of151

accuracy for typical choices are as follows. For simplicity, if we consider a uni-152

form mesh with spacing h in all the directions then for the shape functions153

used in typical PIC schemes (B-splines), the grid-based error scales as O(h2)154

[19, 20]. This is a result of approximating Dirac-δ functions in the configuration155

space by shape functions of compact support. The Poisson equation is typically156

solved by means of FFT solvers or by multigrid methods. In case of multigrid157

solvers the equation is discretized by second-order finite difference or finite ele-158

ment schemes. The field solves together with the interpolation (typically linear)159
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accounts for an additional O(h2) [21]. The particle noise is the result of ap-160

proximating the expected value of the shape function by an arithmetic mean161

over a finite number of discrete particles. It scales as (Nph
d)−1/2 [4], where d is162

the spatial dimension of the problem. The initial distribution is sampled using163

one of the standard sampling techniques such as the naive Monte-Carlo strategy164

[12], importance sampling [12] or by means of the quiet start [20, 22, 21]. The165

choice of initial sampling plays an important role in determining the constant166

associated with the particle noise. Finally, for time integration, typical choices167

are the second-order leap-frog scheme [6] and Runge-Kutta schemes of order168

2 and higher. If we consider the leap-frog scheme then the error in the time169

discretization scales as O(∆t2). The mesh size h, time step ∆t and the number170

of particles Np in most PIC simulations are such that the dominant error comes171

from the particle noise. Hence, high fidelity simulations typically require a large172

number of particles to minimize it. The high noise associated with PIC simu-173

lations has motivated researchers to develop several noise reduction strategies,174

which we discuss next.175

3. Noise reduction strategies in PIC176

Noise reduction can be achieved in several ways in the context of PIC simu-177

lations, categorized as: (i) variance reduction techniques such as the δf method178

[11, 12, 13] and quiet start [13]; (ii) phase space remapping [20, 22, 21]; (iii) fil-179

tering in physical domain [6, 23, 14, 15, 24], Fourier domain [6, 16] and wavelet180

domain [25, 17, 26]. This list is not exhaustive and there are many other con-181

tributions in this area. In addition, recently a noise reduction strategy using182

kernel density estimation algorithm has been proposed in [27], where the au-183

thors adaptively select the shape functions in PIC which minimize the sum of184

bias squared and variance of the error in the density. Also, in [4] sparse grid185

techniques are used to achieve noise reduction in PIC. We discuss this method186

in detail in section 4.7, since this approach has the most in common with the187

present work. In this section, we focus on the filtering strategies.188

The goal of filtering in PIC simulations is to smooth high frequency oscilla-189

tions usually associated with noise. Filtering can be done in any field quantity,190

although the most common one in electrostatic PIC is the charge density [23] as191

it is the origin of noise and the potential and electric field are smoother because192

of the integration inherent in solving Poisson’s equation. In case of filtering193

in the physical domain, one typically selects a filter of certain stencil width -194

e.g., binomial filter - and does a few passes on the field quantity. On the other195

hand, for filters in the Fourier domain, a maximum wavenumber is specified by196

the user and the filter eliminates all the wavenumbers higher than the specified197

cut-off wavenumber [6]. In almost all the filtering strategies, the number of198

passes/stencil width in the physical domain or the cut-off wavenumber in the199

Fourier domain has to be chosen a priori such that the total error, which is200

the sum of grid-based error (bias) and particle noise (variance), is minimized.201

However, in practice there are not many constructive strategies available to pick202

these parameters and in many cases the values are chosen based on a rule of203
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thumb and previous experience [28]. Even if one manages to choose these pa-204

rameters so that they are optimal for a particular point in time, mesh, number205

of particles per cell and sampling technique, they are unlikely to remain optimal206

as the simulation evolves. Indeed, due to non-linear space-charge effects, fine207

scale structures appear in the density and this changes the smoothness of the208

profile continuously with time. Hence, an ideal filter should be adaptive with209

respect to all aforementioned parameters to minimize the total error. Towards210

this goal, we propose a sparse grid-based adaptive noise reduction strategy in211

the following section.212

4. Sparse grid-based noise reduction213

4.1. Sparse grid combination technique214

The sparse grid combination technique was first introduced in [29] as a way215

to approximate smooth functions on rectangular grids efficiently by using a216

specific linear combination of their approximations on different coarse grids. If217

we consider linear interpolation as an example, then for a regular grid of mesh218

size h we need O(h−d) grid points to get an accuracy of O(h2). The sparse219

grid combination technique on the other hand uses only O(h−1|log(h)|(d−1))220

total grid points to get an accuracy of O(h2|log(h)|(d−1)) for smooth functions,221

which is only slightly deteriorated compared to the regular grids. More precisely,222

the requirement for realizing this accuracy is the existence of an error expansion223

of the form C1(hi)h
2
i +C2(hj)h

2
j+D1(hi, hj)h

2
ih

2
j in 2D (and similar expressions224

in higher dimensions), where C1, C2 and D1 are appropriate coefficient functions225

with a uniform upper bound independent of the mesh sizes [29, 30, 4]. Thus,226

we can clearly see the advantages of sparse grids in high dimensions, where227

they have found many applications [31]. The key idea is the cancellations that228

happen between the error expansions in the different coarse grids, which are229

called component grids in the sparse grid terminology. Also, the scalar values230

that multiply each component grid involved in the combination are called the231

combination coefficients. In Figure 1 an illustration is shown, where we can232

see the different component grids and their combination coefficients involved233

in approximating a 28 × 28 regular grid. The literature on the sparse grid234

combination technique and sparse grids in general is vast and the readers can235

refer to [31, 29, 32, 33, 34] and the references therein for more details. We will236

now show how sparse grid combination can be used to achieve noise reduction237

in the context of PIC.238

4.2. Sparse grid filter239

Let us consider a domain of size [0, L]d, where d is the dimension (typically240

d = 2 or 32), and for simplicity a regular grid of mesh size h = L
2n in all the241

2For d = 1, sparse grids are same as the regular grids, and our noise reduction will thus
not be applicable for 1D1V PIC.
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directions. In our noise reduction strategy, after step 1 in the PIC algorithm242

shown in section 2 we perform a sparse grid projection of the charge density as243

follows244

̺e = Gρ̃e =

(
nc∑

l=1

clPlRl

)

ρ̃e. (2)

Here, ρ̃e and ̺e are the charge densities on the regular grid before and after245

the sparse grid transformation. Rl and Pl are the transfer operators3 which246

transfer the density from the regular grid to the lth component grid in the sparse247

grid combination technique and vice versa, respectively. cl is the combination248

coefficient for the lth component grid which is a scalar value and nc is the249

number of component grids involved in the combination technique. We also250

denote the transfer operators and combination coefficients simply as R, P and251

c in places where the subscript l is not needed.252

One requirement for the transfer operators Pl and Rl is to ensure global253

charge conservation. In our approach, we use the cloud-in-cell or linear inter-254

polation function, which is given by255

Wl(x− x̃) =

d∏

m=1

max

{

0, 1− |xm − x̃m|

hm

}

(3)

where x and x̃ are the locations of the grid points in the lth component grid256

and regular grid, respectively, and hm is the mesh size of the lth component257

grid along the mth coordinate axis. The operators Rl and Pl in terms of this258

function are given by259

Rl(i, j) =
hd

Vl
Wl (xi − x̃j) , (4)

Pl(j, i) = Wl (xi − x̃j) for i = 1, . . . , Nl j = 1, . . . , Nc (5)

where Vl is the volume of each cell in the lth component grid and Nc, Nl are260

the number of points in the regular grid and lth component grid respectively.261

Upon considering the standard sparse grid combination technique in [29], one262

sees that the sparse grid projection or interpolation in equation (2) essentially263

removes high frequency components which are coupled between the axes. This264

is because the sparse grid combination corresponding to a regular grid of mesh265

size h does not have the fine resolution h in all the directions. In this sense, the266

sparse grid combination acts as a multi-dimensional low pass filter and keeps267

only certain wavenumbers resolved by a regular grid of mesh size h. This is the268

filtering point of view for the noise reduction obtained from the sparse grids.269

It can also be understood from a Monte Carlo point of view as shown in [4]270

3We call these operators as R and P simply because they resemble restriction and prolon-
gation operators in multigrid methods. However, we would like to note that the analogy ends
there and the requirements for the transfer operators in the current context and the multigrid
methods are different.
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by means of increased particles per cell in the sparse grids compared to the271

regular grid for the same total number of particles. However, in the sparse PIC272

presented in [4] the particles deposit directly onto the component grids, unlike273

the strategy pursued here. These two approaches are related as stated in the274

following proposition, and hence the noise reduction obtained with the sparse275

grids can be understood from a Monte Carlo point of view or from a filtering276

perspective. In later sections, we will leverage this equivalence to explain the277

noise reduction with sparse grids depending on the context.278

Proposition 1. For node-centered grids and linear interpolation shape func-279

tions, the direct charge density deposition onto the component grids in the sparse280

PIC approach [4] is equivalent to first depositing the charge density onto the reg-281

ular grid and then transferring it to the component grids by means of the operator282

R in equation (4)4. That is, the two approaches result in identical charge den-283

sities. In the case of cell-centered grids, an exact equivalence between the two284

approaches does not hold. There, the two-step approach can be viewed as direct285

charge deposition onto the component grids with a different shape function than286

the standard hat function, which is also second-order accurate.287

Proof. The proof is given in appendix A.288

The advantage of the Monte Carlo point of view is that we can estimate the289

grid-based error and particle noise with explicit dependence on the number of290

particles and mesh size as we show in the section 4.4. From a pure filtering291

perspective, this may be very difficult or not possible.292

Now, we are interested in knowing how much grid-based error and parti-293

cle noise are increased and decreased, respectively, by the sparse grid filter.294

To answer this, we observe that for interpolation the sparse grid combination295

technique is equivalent to the sparse grids based on hierarchical bases [32].296

The latter is identified based on an optimization process [31] which guaran-297

tees for smooth functions, the fewest degrees of freedom for maximal accuracy298

of O
(
|log(h)|d−1h2

)
based on the L2 or L∞ norm. Thanks to this, in the con-299

text of PIC, the sparse grid transformation in equation (2) gives maximal noise300

reduction (because of the minimal number of grid points and hence maximum301

particles per cell) and at the same time the increase in grid-based error is min-302

imal for smooth functions. Thus, compared to other filters, the one based on303

the standard sparse grid combination technique is optimal in the sense of mini-304

mizing the total error for functions which are either smooth or aligned with an305

axis.306

4.3. Truncated combination technique to handle non-aligned and non-smooth307

functions308

The optimality mentioned in the previous section for sparse grid filtering is309

no longer applicable in case of non-smooth functions or functions which are not310

4Let us refer this as two-step approach for simplicity.
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Figure 1: Schematic explaining the sparse grid combination technique and how the truncated
combination can be used to minimize the total error. Here, τ = 1 corresponds to the standard
sparse grid combination technique and τ = n corresponds to the regular grid. The +1 and
−1 are the combination coefficients cl in equation (2) corresponding to the component grids.

aligned with either of the axes. Here the grid-based error is significantly larger311

than the regular grid because of large mixed derivatives [35], which leads the312

coefficient D1 in the error expansion given in section 4.1 being much larger313

than other coefficients. While the sparse grid scaling remains optimal, the314

coefficient in front of that scaling can be so large as to eliminate its benefits315

at practical grid resolutions. This is why in [4], the authors reported poor316

performance of sparse PIC for the diocotron instability test case as it falls into317

the non-aligned category when simulated with a Cartesian grid. There are a few318

ways to tackle this problem, as mentioned in [4, 36]. Options include optimized319

coordinate systems which evolve with the charge density, and the use of spatially320

adaptive sparse grids. These strategies, which are perhaps more elegant from a321

mathematical point of view and more efficient, have the drawback of requiring322

significant changes to existing regular PIC code bases. Also, no detailed, robust323

algorithm is known at present.324

Here, we pursue another direction using the truncated combination technique325

[1, 2, 3], which is much simpler and can be easily implemented in existing codes.326

The truncated combination technique was originally proposed as a modification327

to the standard sparse grid combination technique to tackle convergence issues328

in certain types of PDEs in financial applications caused by the presence of329

extremely anisotropic grids in the standard sparse grid technique.330

In Figure 1, we show the different combination strategies for a 2D problem331

with a regular mesh of size 28 × 28. The indices i and j on the row and column332

headers in Figure 1 indicate the mesh sizes of the component grids involved in333

the combination technique such that the (i, j)th component grid has mesh sizes334
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hi = L
2i and hj = L

2j , where L is the length of the domain in each direction.335

The truncated combination technique [1, 2, 3] introduces a truncation parameter336

τ5, which is a positive integer that determines the component grids involved in337

the combination. Precisely, the component grids corresponding to a truncation338

parameter τ has indices (i, j) ≥ τ as shown in Figure 1. Moreover, except for339

τ = n, there are two sets of component grids: one with i + j = n + τ and340

combination coefficient c = 1, and the other with i+ j = n+ τ − 1 and c = −1.341

If we consider a 2n × 2n regular grid, then the value of τ = 1 corresponds342

to the standard combination technique in [29] and τ = n corresponds to the343

regular grid. By increasing τ , fewer component grids are used in the combination344

technique, but each with finer resolution than the previous τ . This alleviates345

the issue of non-aligned and non-smooth functions by controlling the error term346

associated with the mixed fourth derivatives. Thus, the truncated combination347

technique provides a unified framework to transition from standard sparse grid348

to regular grid in terms of approximation capability by increasing τ .349

Let us consider a PIC simulation with Np total particles and a 2n × 2n350

regular grid with mesh size h = L
2n . The regular grid with τ = n will have351

the minimal grid-based error and maximal noise because it has the mesh size352

h in all the directions. The standard sparse grid technique with τ = 1, at the353

other extreme, has maximal grid-based error and minimal noise as it has the354

mesh size h in directions aligned with x or y axis but not in others. As we355

increase τ from 1 to n as shown in Figure 1, we decrease the grid-based error356

because of the inclusion of finer mesh sizes in the component grids but at the357

same time increase the particle noise due to decreased particles per cell or, from358

the filtering perspective, the inclusion of higher wavenumbers in the filtering359

process of equation (2). Thus depending on the smoothness and the orientation360

of the function there is an optimal τ at which the total error, which is the361

sum of grid-based error and particle noise, is minimized. Hence, the truncated362

combination technique provides a natural way to minimize the total error within363

the framework of sparse grid-based noise reduction without much modification364

to the standard sparse grid combination technique. In the following we will365

present a formal error analysis and propose a heuristic approach to estimate the366

optimal τ .367

4.4. Formal error analysis368

In [4], a formal error analysis is presented for sparse PIC quantifying the369

grid-based error and particle noise. Proposition 1 states the exact equivalence370

between the direct charge deposition in [4] and our new filtering approach for371

the case of node-centered grids. Thus, for PIC codes based on node-centered372

grids6, the formal error analysis in [4] is directly applicable. In contrast, our373

5For the time being we consider the same truncation parameter τ in all the directions for
the clarity of the exposition. We refer the readers to Remark 1 for more general cases.

6We highlight the fact that for the scheme we present in this article, only the centering
scheme of the charge density matters. The other fields do not play a role in our noise reduction
algorithm, and the analysis is therefore independent of their centerings.
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codes are based on cell-centered grids (as is the default choice in many plasma374

PIC codes [37, 18]). According to Proposition 1, the direct charge deposition in375

[4] and the current approach are not exactly equivalent for cell-centered grids376

because of the differences in the shape functions. Nevertheless, the order of377

accuracy is the same for both approaches and they differ only by constants.378

Hence, we will largely follow the steps in [4] and generalize it to include the379

truncated combination technique.380

As shown in [4] and appendix B, approximating ρe in PIC simulations con-381

sists of two parts: namely, grid-based error and particle noise. In what follows382

we will quantify these two components to get an estimate of the total error.383

4.4.1. Grid-based error384

Let us recall the different notations for charge density which will be of use385

here. ρe is the exact electron charge density given by386

ρe(x) = qe

∫

f(x,v)dv =

∫ ∫

f(ξ,v)δ(x− ξ)dξdv.

The density on the regular grid before the sparse grid transformation is ρ̃e and it387

is obtained from ρe by first approximating delta-functions in configuration space388

by shape functions of compact support (see equation (28) in appendix B) and389

then approximating the expected value of the shape function by an arithmetic390

mean over a finite number of discrete particles (see equation (38) in appendix391

B). The density on the regular grid after the sparse grid transformation in392

equation (2) is ̺e. We will denote the grid error component of the total error as393

||ρe−̺e||grid, where for simplicity we have denoted the L∞ norm || · ||L∞ by || · ||394

(equivalently, we can also use the L2-norm). In our approach, the grid-based395

error comes from the approximation of delta-functions in configuration space396

by shape functions of compact support as well as from the transfer operators R397

and P .398

Towards quantifying the grid-based error, for simplicity, let us consider a 2D399

PIC simulation in a periodic domain [0, L]2 and a regular mesh of size 2n × 2n.400

Let the mesh size of the regular grid be hn = L
2n and the mesh sizes of the401

component grids be hi =
L
2i and hj =

L
2j for the (i, j)th component grid in Figure402

1. In our approach, we use the cloud-in-cell or linear interpolation operators403

for all the grid transfer operations. Hence, from Proposition 1 and the grid-404

based error derived in equation (36) of appendix B, we use an error expansion405

of the form C1(hi)h
2
i +C2(hj)h

2
j +D1(hi, hj)h

2
ih

2
j similar to [4, 29, 1, 38], where406

C1, C2 andD1 are appropriate coefficient functions with a uniform upper bound.407

The summation over the component grids in equation (2) leads to pair-wise408

cancellations both in the standard sparse grid combination technique as well as409

in the truncated combination technique as shown in Figure 1. After multiplying410

by the combination coefficients and summing across all the component grids,411
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we get412

(ρe − ̺e)grid = C1(hn)h
2
n + C2(hn)h

2
n

+
4h2

nL
2

22τ







1

4

∑

i+j=n+τ
i,j≥τ

D1(hi, hj)−
∑

i+j=n+τ−1
i,j≥τ

D1(hi, hj)






, (6)

where we used the fact that hihj = hnL
2τ when i+ j = n+ τ and hihj = hnL

2(τ−1)413

when i + j = n + τ − 1. Taking the norm of both sides of the above equation414

and noting that there are n − (τ − 1) component grids with i + j = n + τ and415

(n− 1)− (τ − 1) component grids with i+ j = n+ τ − 1, we obtain416

||ρe − ̺e||grid ≤ κ1h
2
n + κ2h

2
n +

4β1h
2
nL

2

22τ

[
n− (τ − 1)

4
+ {(n− 1)− (τ − 1)}

]

≤ h2
n

(
κ1 + κ2 + β1L

22−2τ [5(n− τ) + 1]
)
. (7)

Here, κ1,κ2 and β1 are constants corresponding to the upper bounds such that417

||C1(hn)|| ≤ κ1, ||C2(hn)|| ≤ κ2 and ||D1(hi, hj)|| ≤ β1, ∀hi, hj . The same418

expression for the error is also obtained in [1] for the truncated combination in419

2D. Similarly one can derive the estimates in 3D and the grid-based error in420

that case is given by421

||ρe − ̺e||grid ≤ h2
n

(
κ1 + κ2 + κ3 + (β1 + β2 + β3)L

22−2τ [5(n− τ) + 1]

+ γL42−(4τ+1)
{
25(n− τ)2 − 5(n− τ) + 2

})

, (8)

where the upper bounds for the coefficient functions in 3D are such that ||Cd(hn)|| ≤422

κd, ||Dd(hi, hj)|| ≤ βd and ||F (hi, hj , hk)|| ≤ γ for d = 1, 2, 3 and ∀hi, hj , hk.423

By plugging in τ = 1 and τ = n in (7) and (8) we recover the estimates for the424

standard sparse grid combination in [29] and for regular grids respectively.425

4.4.2. Particle noise426

Now, we will derive estimates for the particle noise component of the total427

error. The particle noise is the result of approximating the expected value of the428

shape function by an arithmetic mean over a finite number of discrete particles.429

As per the error analysis in [4], in 2D the particle noise in each component grid430

is O
(
1/
√
Nphihj

)
and as stated in the grid error estimates we have n− (τ − 1)431

component grids each with hihj = hnL
2τ and (n− 1)− (τ − 1) component grids432

with hihj =
hnL

2(τ−1) . Thus we can write an estimate for the particle noise as433

||ρe − ̺e||noise = O



σ




n− (τ − 1)
√

NphnL
2τ

+
(n− 1)− (τ − 1)

√
NphnL

2(τ−1)









= O

(

σ

{

20.5(τ−1)
[
(n− τ)(1 +

√
2) +

√
2
]

√
NphnL

})

, (9)
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where σ is a particle noise constant. Following the same procedure, the noise434

estimate in 3D is given by435

||ρe − ̺e||noise = O

(

σ

{

2(τ−2)
[
(3 +

√
2)(n− τ)2 + (5 +

√
2)(n− τ) + 4

]

√
NphnL2

})

.

(10)
Again, by plugging in τ = 1 and τ = n in equations (9), (10) we recover the436

estimates shown in [4] for the standard sparse grid technique and regular grids437

respectively. With the grid and particle error estimates in hand, we will show438

how these can be used in practice to adaptively select the optimal τ .439

4.4.3. Heuristic approach for the quantitative estimation of the coefficients in440

the error analysis441

In order to use the grid and particle error estimates derived in the previous442

section we need to have a quantitative estimate of the coefficients. To that443

end, we note that a rigorous derivation of coefficients for the current approach444

in the case of cell-centered grids depends on the ratio of the mesh sizes of the445

component grids to the regular grid and is more involved. Instead, in this446

section we approximate the grid and particle coefficients based on heuristic447

arguments and empirical observations and intend to improve these choices in448

the future iterations of our algorithm. Let us first consider the grid-based error.449

As explained in [4, 36] and equations (36) and (37) in appendix B, the coefficient450

functions in the grid error estimates are proportional to the derivatives of the451

charge density ρe such that452

C1 ∝ ∂2ρe

∂x2
, C2 ∝ ∂2ρe

∂y2
, C3 ∝ ∂2ρe

∂z2
, D1 ∝ ∂4ρe

∂x2∂y2

D2 ∝ ∂4ρe

∂y2∂z2
, D3 ∝ ∂4ρe

∂z2∂x2
, F ∝ ∂6ρe

∂x2∂y2∂z2
.

In PIC, we only have an approximation of ρe on the regular grid, which we453

call ρ̃e as defined in equation (38), and this also contains the particle noise. In454

order to have a realistic approximation of the derivatives of the charge density455

from the noisy regular PIC data ρ̃e, we perform a denoising by thresholding456

in the Fourier domain. Specifically, we first take the Fourier transform of the457

density on the regular grid ρ̂e = F (ρ̃e) and perform a hard thresholding such458

that459

χǫ (ρ̂e) :=

{

ρ̂e |ρ̂e| ≥ ǫ,

0 |ρ̂e| < ǫ,
(11)

where ρ̂e is a vector and the operator χǫ (·) acts on it component wise. Here,460

ǫ is the threshold for denoising and |ρ̂e| denotes the magnitude of the Fourier461

transform ρ̂e. This type of denoising is common in signal processing as well as462

wavelet denoising [39] techniques.463

The threshold parameter ǫ is a function of the number of particles per cell464

Pc, the initial sampling method and also the distribution f . It determines how465
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much noise and signal is removed by the denoising process. Too low a value will466

not remove much noise and too high a value may remove a significant portion467

of the signal along with the noise. However, in contrast to denoising techniques468

in signal processing where after applying this threshold one performs an inverse469

transform to get the signal in the physical domain, we emphasize the fact that470

for our scheme we only use it for selecting the truncation parameter τ (which471

performs the final filtering). Hence the threshold ǫ does not need to be optimal,472

and we only need to ensure that we do not pick up excessive noise.473

At present, we use an ad-hoc strategy to select the value of ǫ as a certain474

percentage of the maximum value of |ρ̂e|, namely ǫ = αmax (|ρ̂e|), where α475

denotes the percentage. To determine α in our algorithm, for a certain number476

of particles per cell (Pc)ref (e.g., 5) we run the PIC simulation for a few different477

values of α and pick the minimum value necessary for denoising. To reduce the478

run time we use the coarsest mesh possible for the problem in these simulations.479

Once we pick the value of α for a reference number of particles per cell (Pc)ref ,480

we run simulations with other values of Pc by multiplying α by
√

(Pc)ref/Pc,481

as we know the noise in PIC methods scales as 1/
√
Pc.482

To give an idea of how one can execute this process, in our numerical ex-483

periments in section 5 we typically start with α = 0.01 (ǫ is one percent of the484

maximum value of |ρ̂e|) as we found it to be a good initial guess through many485

experiments. In order to examine whether the selected value of α is sufficient for486

denoising, we examine the theoretical error curves from the τ estimator as shown487

in the right columns of Figures 3-5 and 9-10. From these figures we can see that488

when the grid based error is dominant (which is the case for low τ values) there489

is a specific shape to these curves which is dictated by the physical evolution of490

the density. If on the other hand the particle noise is dominant (high τ values),491

then these curves are almost flat as the noise is insensitive to the time evolution492

of the density. If the selected value of α is not large enough for denoising, then493

even the theoretical error curves for low τ cases are insensitive to the density494

evolution with visible anomalies. In such a case, we increase the value of α until495

we do not see this behavior any more. On the other hand, if the selected value496

of α is too high, then we decrease it until we see the anomalies, and select the497

value just before this behavior is observed. In addition to the theoretical error498

curves, we also use the time history of optimal τ as shown in Figures 6 and 11499

to help in the detection of anomalies and guide us in the process of whether to500

increase or decrease the initial value of α selected. Using this process we found501

that anomalies start to occur for the values of α = 0.005, 0.025, 0.004 for the 2D502

diocotron instability with Gaussian sampling, uniform sampling and 3D Pen-503

ning trap respectively in section 5. We thus chose the values of α = 0.01, 0.03504

and 0.005 for these three cases respectively to provide enough denoising.505

Currently the selection of α is intrusive and performed manually, although it506

needs to be done only once for a test case. In future work, we will develop a more507

systematic way to pick the threshold directly from the density data, based on508

techniques similar to the ones used in wavelet denoising [39]. Machine learning509

techniques can also be used for this purpose, and this is another direction we510
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will pursue.511

After denoising the charge density, we compute the derivatives in the Fourier512

domain and perform inverse transforms. Next, in order to find the constants513

in front of these derivatives in appendix B we derive the grid-based error for514

regular PIC schemes. Since each component grid in the sparse grid combination515

technique is a regular grid with mesh sizes hi, hj and hk, equations (36) and516

(37) can be used for determining the constants involved in the upper bounds. To517

that end, we note that the grid transfer operators R and P incur twice the grid-518

based error of similar magnitude given in equations (36) and (37). Moreover,519

the charge density ρ̃e in the regular grid adds another 1/12 in front of the second520

derivative terms. Summing all these contributions we get an estimate for the521

coefficients in equations (7) and (8) as522

κ1 =
1

4

∥
∥
∥
∥

∂2ρ̄e

∂x2

∥
∥
∥
∥
,κ2 =

1

4

∥
∥
∥
∥

∂2ρ̄e

∂y2

∥
∥
∥
∥
,κ3 =

1

4

∥
∥
∥
∥

∂2ρ̄e

∂z2

∥
∥
∥
∥
,β1 =

1

72

∥
∥
∥
∥

∂4ρ̄e

∂x2∂y2

∥
∥
∥
∥

β2 =
1

72

∥
∥
∥
∥

∂4ρ̄e

∂y2∂z2

∥
∥
∥
∥
,β3 =

1

72

∥
∥
∥
∥

∂4ρ̄e

∂z2∂x2

∥
∥
∥
∥
, γ =

1

864

∥
∥
∥
∥

∂6ρ̄e

∂x2∂y2∂z2

∥
∥
∥
∥
, (12)

where ρ̄e is the denoised charge density defined in equation (28).523

Finally, following the particle noise estimates in equations (52) and (53) as524

well as [4, 17], for our algorithm we take525

σ =

√

(2/3)
d ‖Qeρ̃e‖ (13)

in equations (9) and (10), where d is the dimension and ρ̃e is the charge density526

on the regular grid before denoising as defined in equation (38). Here, we use527

the density ρ̃e instead of the denoised density ρ̄e as it helps in adjusting the528

particle constant with respect to different sampling techniques.529

Through numerical experiments we also found another choice for the coeffi-530

cients in the grid-based error and particle noise as531

κ1 =
∥
∥k2xρ̂e

∥
∥ ,κ2 =

∥
∥k2yρ̂e

∥
∥ ,κ3 =

∥
∥k2z ρ̂e

∥
∥ ,β1 =

∥
∥k2xk

2
yρ̂e

∥
∥

β2 =
∥
∥k2yk

2
z ρ̂e

∥
∥ ,β3 =

∥
∥k2xk

2
z ρ̂e

∥
∥ , γ =

∥
∥k2xk

2
yk

2
z ρ̂e

∥
∥ ,σ =

√

‖Qeρ̃e‖ (14)

where kx, ky and kz are the wavenumbers in x, y and z respectively. We do532

not present detailed results, but for the numerical experiments in section 5 as533

well as for other synthetic examples in the context of interpolation we found534

this choice yields similar optimal τ values as that of the constants in equations535

(12) and (13). It has an added advantage that we do not need to take inverse536

transform of the derivatives, which is three in 2D and seven in 3D. Thus it may537

be of interest from a practical point of view, and for the numerical experiments538

in section 5 we observed up to 7 times speedup in the τ estimation part with539

this choice compared to the ones in equations (12) and (13).540

In Algorithm 1 we consolidate the steps in the optimal τ estimator algorithm.541

For the range of τ , we consider [1, n− 3] for 2D and [1, n− 2] for 3D where 2n542

is the number of points in the regular grid in each dimension. We do not543

15



include the extreme values of τ ([n − 2, n] for 2D and n for 3D7) because we544

observed consistent false optima in the τ estimation due to these cases in our545

numerical experiments. These false optima can be explained by the fact that the546

high τ cases are less penalized by the inaccurate upper bounds of the triangle547

inequality than the low τ ones, because fewer components grids are involved in548

the combination. Currently, unless we take the specific properties of a given549

simulation into account, we do not know of a general strategy which can resolve550

this problem. Hence, we plan to improve this in our future work.551

Remark 1. So far, for the sake of the clarity and simplicity of our presentation,552

we have used the same number of grid points in all the directions to explain the553

steps of the noise reduction strategy. Here, for completeness, we will briefly554

outline the procedure needed for the general case of different grid resolutions555

in each direction. To that end, we define a few convenient notations. We556

again consider the two-dimensional case for simplicity, with the extension to557

three dimensions left as a straightforward task for the reader. Let us define558

n = {n1, n2} as the extension of its scalar counterpart. Since we want the559

target level of the sparse grid approximation space [33] to be the same as the560

underlying regular grid, we also need to use different truncation parameters in561

each direction. Let us denote these by τ = {τ1, τ2}. Let nmax = max (n) and562

nmin = min (n). The parameter τ can now take the values 1 ≤ τ ≤ nmin, and563

for each value of τ we calculate the final truncation parameter τ (which is only564

used in the error analysis) according to [33]:565

a = min (n− τ · 1) , (15)

τ = n− a · 1, (16)

where 1 = {1, 1}. The component grids corresponding to parameter τ now will566

have i ≥ τ1, j ≥ τ2 and again there are two sets of component grids: one with567

i+ j = nmax + τ , c = 1 and the other with i+ j = nmax + τ − 1, c = −1. The568

grid and particle errors can then be derived in a similar fashion as in sections569

4.4.1 and 4.4.2.570

4.5. Implementation in a HPC PIC code base.571

Once the optimal τ is obtained from Algorithm 1 we need to perform sparse572

grid noise reduction. In Algorithm 2 we present a matrix-free implementation573

of the sparse grid filtering in equation (2). This implementation is more suitable574

for large-scale high performance PIC code bases like OPAL (which are mostly575

matrix-free) than the matrix version in equation (2). In these codes, the density576

in the regular grid is domain-decomposed between different processors and in577

Algorithm 2 each processor holds the entire component grid in the combination578

technique. For moderate values of τ , each component grid has very few degrees579

of freedom compared to the regular grid and this is not very expensive in terms of580

7In the current sparse grids setup τ = n− 1 is not possible for 3D.
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memory. However, for high τ , the component grids involved in the combination581

have a considerable number of degrees of freedom (especially in 3D) and hence582

both memory as well as the MPI Allreduce step in Algorithm 2 could present a583

bottleneck. In our future work we will also split up the component grids between584

processors which would require a more complicated parallelization strategy as585

shown in [40].586

If the parallelization of the code base uses MPI for inter-node parallelism587

and OpenMP, GPU or any other accelerator for intra-node parallelism then the588

for-loop over component grids in Algorithm 2 can also be done in parallel with589

the available intra-node shared memory parallelism. Algorithms 1 and 2 are590

performed in between steps 1 and 2 in the regular PIC procedure outlined in591

section 2. Ingredients such as the FFT, which are required for the tauEstimator592

algorithm, are already available in many large-scale PIC code bases and hence593

these two algorithms can be incorporated inside them very easily without any594

modification to the other parts.595

Algorithm 1 tauEstimator: An algorithm for estimating optimal τ .

1: Compute Fourier transform of the charge density ρ̂e = F (ρ̃e).
2: Perform denoising by hard thresholding according to equation (11).
3: Compute the constants for the grid-based error with (12) and the particle

error constant (13).
4: for τ = 1 to n− 3 for 2D and n− 2 for 3D do

5: Evaluate grid-based error and particle noise using equations (7),(9) for
2D and (8),(10) for 3D.

6: end for

7: Select the τ with minimum total error.

Algorithm 2 transferToSparse: An algorithm for sparse grid-based noise re-
duction with a given τ .

1: for l = 1 to nc do

2: Each processor deposits their regular grid partition of ρ̃e to the lth com-
ponent grid using the transfer operator Rl in equation (4).

3: MPI Allreduce to add contributions from all processors on the lth com-
ponent grid.

4: Each processor interpolates from the lth component grid to their regular
grid partition of ρ̃e using transfer operator Pl in equation (5).

5: Multiply by combination coefficient cl and accumulate.
6: end for

Remark 2. In general the charge density ̺e after sparse grid transformation is596

not guaranteed to be positive everywhere. This is not unique to our approach and597

also happens in other noise reduction strategies such as high-order shape func-598

tions [21], compensating filters [6] and wavelet-based density estimation [41]. In599

our numerical results in section 5 we do not observe any problems caused by600
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this. However, we could adopt the density redistribution procedure used in [21]601

to make the charge density positive everywhere after the sparse grids transfor-602

mation. This will be studied in future versions of the algorithm. Also, as shown603

in [28], the filtering procedures used in explicit PIC simulations improve energy604

conservation but at the loss of momentum conservation. In our future study we605

will investigate in detail the impact of the noise reduction strategy on energy606

and momentum conservation and report the results.607

4.6. Computational complexity estimates of the noise reduction strategy608

Here, we provide the asymptotic serial computational complexity estimates609

for the tauEstimator (Algorithm 1) and transferToSparse (Algorithm 2) parts610

of the noise reduction strategy. The dominant computational components of the611

tauEstimator are the FFT and inverse FFTs, each of which has a complexity of612

O (Nclog2(Nc)). In the case of the transferToSparse algorithm, we have nc com-613

ponent grids, and for each component grid we deposit the regular grid density614

onto the component grid and then interpolate it back to the regular grid. The615

deposition and interpolation both are of complexity O(Nc), and since we do it616

for nc component grids it results in O(nc ·Nc). Now the number of component617

grids in 2D and 3D are nc = O (log2(Nc)− τ) and nc = O
(

{log2(Nc)− τ}
2
)

618

respectively. Thus the complexity of the transferToSparse part of the noise619

reduction is O
(

Nc (log2(Nc)− τ)
d−1

)

, where d is the dimension. Hence, sum-620

ming up the contributions from both parts, the total complexity of the noise621

reduction algorithm per time step is O
(

Nc

{

log2(Nc) + (log2(Nc)− τ)
d−1

})

.622

The cost of typical physical domain filters such as the binomial filter is O(Nc).623

Hence, the asymptotic cost of our approach is slightly more than the usual filters.624

Taking into account the adaptivity of our approach, this is only a small price625

to pay. In terms of additional memory requirements, for both the tauEstimator626

and transferToSparse parts, they are O (Nc) which is similar to other filters. In627

PIC schemes, memory requirements of particles usually dominate as the num-628

ber of particles is far more than Nc. Additionally, each particle contains many629

attributes (e.g. position, velocity, charge etc.). Thus, the additional memory630

requirement caused by the noise reduction strategy is usually not significant.631

4.7. Relation between sparse grid-based noise reduction strategy and sparse PIC632

schemes633

In this section we compare and contrast the sparse PIC scheme introduced634

in [4] with the noise reduction strategy proposed in the current work. The635

distinctions may be enumerated as follows.636

• As mentioned in the introduction, the sparse PIC scheme in [4] performs637

all the operations - e.g. charge deposition and Poisson solve - on the sparse638

grids and does not introduce regular grids at all (except for visualization639

purposes or post-processing). This absence of a regular grid can provide640

computational and memory savings. By contrast, the current approach is641
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designed to be an add-on for standard PIC schemes. We use sparse grids642

only for noise reduction in the charge density, while all the operations such643

as charge deposition and the Poisson solve happen on the regular grid as644

in typical PIC codes.645

• In [4], the noise reduction obtained from the sparse grids is viewed from a646

Monte-Carlo perspective. In the current work we construct the strategy647

based on a filtering perspective and use the Monte Carlo perspective for648

the error analysis to find the optimal τ . This is possible because of the649

equivalence between the two perspectives, as shown in Proposition 1.650

• The truncated combination technique and the tauEstimator can also be651

used in the context of the sparse PIC scheme in [4] - although this fact652

is not noted in that work - at the expense of reintroducing regular grid653

complexity. However, in the regime where particle operations dominate,654

this may be a worthwhile trade-off.655

• The adaptive noise reduction strategy can also be used offline as a post-656

processing tool to filter the charge density (or any other grid quantity)657

from regular PIC simulations.658

To summarize, the sparse PIC scheme in [4] can be used as an alternative659

to regular PIC, whereas the sparse grid-based noise reduction strategy is an660

accessory to improve the performance of regular PIC.661

5. Numerical results662

In this section we will test the performance of the adaptive noise reduction663

strategy on two benchmark problems in plasma physics and beam dynamics;664

namely two-dimensional diocotron instability, and three-dimensional electron665

dynamics in a Penning trap with a neutralizing ion background. These test666

cases produce fine-scale structures during the nonlinear evolution and thus can667

be used to evaluate the ability of the adaptive τ method to capture them while668

still reducing noise. Also, they are very relevant to the large-scale accelerator669

simulations which we intend to perform in our future works.670

In all the simulations we consider a periodic box Ω = [0, L]d, where d is the671

dimension and L is the length in each dimension. The charge to mass ratio672

qe/me in all our simulations is −1. In measuring the error in field quantities673

we use the relative discrete L2-norm also known as the normalized root mean674

squared error given by675

E(ψ) =

√
√
√
√

∑Npoints

i=1

(
ψ(xi)−ψref (xi)

)2

∑Npoints

i=1 (ψref (xi))2
, (17)

where ψ is any field quantity, ψref is the reference field which is obtained from676

an ensemble average of high-resolution regular PIC simulations and xi are the677
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locations of points in the domain at which we measure the error. This error678

is for a particular point in time and we measure the error at few instants in679

the whole simulation. In both numerical examples, we calculate the error for680

regular PIC, adaptive τ PIC and fixed τ PIC with the range of τ taken to be681

the same as the one used in the tauEstimator Algorithm 1. By means of these682

error curves we can see how well the adaptive τ algorithm performs in terms of683

picking the optimal τ and also how the errors compare to that of the regular684

PIC results with different number of particles per cell Pc. We always define the685

number of particles per cell Pc based on the regular grid. It is given by686

Pc =
Np

Nc
=

Np

2nd
.

For the time integration we use the leap-frog method and for the Poisson687

equation we use the second order cell-centered finite difference method as in688

[42, 43] with single level and without any spatial adaptivity. For solving the689

linear system arising from the discretized Poisson equation we use the smoothed690

aggregation algebraic multigrid (SAAMG) from the second generation Trilinos691

MueLu library [44]. The stopping tolerance for the iterative solver is set as 10−10
692

multiplied by the infinity norm of the right hand side. More details on the solver693

can be found in [43]. The code is written on top of a C++ miniapp based on694

the particle accelerator library OPAL [37] and box structured adaptive mesh695

refinement library AMReX [45]. Even though FFT solver would be the most696

accurate and fastest option [46] in this context, the reason for the above choice697

of field solver is in our future work we want to extend the current approach to698

include adaptive mesh refinement. Also, the conclusions of the present study699

will not be much affected by this choice and will be applicable for FFT solver700

too.701

All the computations are performed on the Merlin6 HPC cluster at the Paul702

Scherrer Institut, the details of which are as follows. Each Merlin6 node consists703

of 2 sockets and each socket in turn has Intel Xeon Gold 6152 processor with704

22 cores at 2.1-3.7GHz. There are 2 threads in each core, however in all the705

present computations we only use single thread. Each node contains 384 GB706

DDR4 memory in total.707

5.1. 2D diocotron instability708

5.1.1. Problem description and simulation setup709

As a first example, we consider the 2D diocotron instability test case as710

already described in [4]. In this test case, we have electrons with a hollow711

density profile immersed in a neutralizing immobile and uniform ion background712

and confined by a uniform external axial magnetic field. The magnetic field is713

strong enough that the electron dynamics is dominated by advection in the self-714

consistent Esc ×Bext velocity field [47, 48, 49, 50]. The initial electron density715

profile is not monotonic in the radial direction, which translates to an Esc×Bext716

shear flow which is unstable to what is known as the Kelvin-Helmholtz shear717

layer instability [47, 51, 50] in fluid dynamics, and the diocotron instability in718
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beam and plasma physics [12, 52, 47]. This instability deforms the initially719

axisymmetric electron density distribution, leading, in the nonlinear phase, to720

the formation of a discrete number of vortices, and eventually breakup [50, 52].721

This test case has importance both from a fundamental physics point of view722

[12, 52, 47] as well as in practical applications such as beam collimation [53].723

The parameters for this test case are as follows and are very similar to the724

ones in [4]. We apply a uniform external magnetic field Bext = {0, 0, 5} along725

the z−axis in a domain of length L = 22. The external electric field Eext = 0726

for this problem. The initial distribution is given by727

f(t = 0) =
C

2π
e−|v|2/2 exp

{

− (r − L/4)2

2(0.03L)2

}

,

r =
√

(x− L/2)2 + (y − L/2)2, (18)

and the constant C is chosen such that the total electron charge Qe = −400.728

We sample the phase space using Gaussian distribution in the velocity variables729

with mean 0 and standard deviation 1. For the configuration space, we use a730

uniform distribution for θ in [0, 2π], and for r a Gaussian distribution with mean731

L/4 and standard deviation 0.03L. From (r, θ) we do the polar to Cartesian732

transformation to get (xp, yp) for the particles.733

For denoising in equation (11), we take ǫ = α
√

(Pc)ref/Pc max(|ρ̂e|) as ex-734

plained in section 4.4.3, where (Pc)ref = 5 and α = 0.01. This means that with735

5 particles per cell, charge densities with Fourier amplitude less than 1 percent736

of the maximum amplitude will be set to 0 and for other Pc the threshold will be737

scaled accordingly. The time step of the time integrator is chosen as ∆t = 0.02738

and the simulation is run till final time T = 17.5.739

5.1.2. Qualitative comparison of charge density740

Figure 2 shows the evolution of the electron charge density with time for741

regular, τ = 1 and adaptive τ PIC for a 10242 mesh. For the first three rows742

Pc = 5 and for the last row Pc = 80. From the first and second rows we can743

see that while the regular PIC results are dominated by noise, τ = 1 results are744

dominated by grid error due to the smearing of fine scale structures. This is745

also noted in [4] in their sparse PIC studies. In contrast, the adaptive τ results746

in the third row strikes a balance between the grid-based error and noise and747

are in close agreement (in visual norm) with the regular PIC results with high748

Pc in the fourth row.749

5.1.3. Quantitative comparison of charge density750

In order to make a quantitative comparison, in the left columns of Figures751

3-5, the error in ρe calculated using (17) at 8 different points in time is shown752

for three different meshes 2562, 5122, 10242 and number of particles per cell753

Pc = 5, 10, 20. For regular PIC we also carried out simulations at higher Pc,754

namely 40, 80, 160 in order to compare the accuracy level with adaptive τ results.755

The reference in equation (17) is computed using the average of 8 independent756

regular PIC simulations each with a 10242 mesh and Pc = 320. In equation (17),757
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(a) time=0 (b) time=10 (c) time=17.5

(d) time=0 (e) time=10 (f) time=17.5

(g) time=0 (h) time=10 (i) time=17.5

(j) time=0 (k) time=10 (l) time=17.5

Figure 2: 2D diocotron instability: Evolution of the electron charge density with time for
regular PIC, Pc = 5 (first row); τ = 1, Pc = 5 (second row); adaptive τ , Pc = 5 (third row);
and regular PIC, Pc = 80 (fourth row). The mesh considered here is 10242. The minimum
and maximum values of the charge densities for each figure are displayed in the color bars
itself.
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(a) 2562, Pc = 5 (b) 2562, Pc = 5

(c) 5122, Pc = 5 (d) 5122, Pc = 5

(e) 10242, Pc = 5 (f) 10242, Pc = 5

Figure 3: 2D diocotron instability: Electron charge density error comparison between regular
(Reg), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation
(17) and the right column is the estimations from the τ estimator based on which the optimal
τ is selected. The fixed as well as adaptive τ has the number of particles per cell Pc = 5.
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(a) 2562, Pc = 10 (b) 2562, Pc = 10

(c) 5122, Pc = 10 (d) 5122, Pc = 10

(e) 10242, Pc = 10 (f) 10242, Pc = 10

Figure 4: 2D diocotron instability: Electron charge density error comparison between regular
(Reg), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation
(17) and the right column is the estimations from the τ estimator based on which the optimal
τ is selected. The fixed as well as adaptive τ has the number of particles per cell Pc = 10.
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(a) 2562, Pc = 20 (b) 2562, Pc = 20

(c) 5122, Pc = 20 (d) 5122, Pc = 20

(e) 10242, Pc = 20 (f) 10242, Pc = 20

Figure 5: 2D diocotron instability: Electron charge density error comparison between regular
(Reg), fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation
(17) and the right column is the estimations from the τ estimator based on which the optimal
τ is selected. The fixed as well as adaptive τ has the number of particles per cell Pc = 20.
The errors for regular PIC with Pc = 320 and 640 are calculated from that of Pc = 160 based
on the theoretical particle error scaling 1/

√

Pc. This is based on the observation that the
errors for the regular PIC are in the noise dominated regime.
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the Npoints are taken as the cell-centered points in the mesh under consideration758

and the reference ρe is interpolated to these points for calculating error. In759

Figure 5(e), for calculating the error with regular PIC at Pc = 320, 640 we760

divided the error for Pc = 160 by
√
2 and

√
4 respectively as we observed the761

errors are already in the noise dominated regime and follow the scaling 1/
√
Pc.762

On the right columns of Figures 3-5 are the estimations of the error for different763

τ values from the τ estimator divided by the root mean squared value of the764

reference ρe. It is based on these curves that the optimal τ - i.e., the one with765

minimum error - is selected at each time step during the simulation.766

From the left columns of Figures 3-5, we can see that in general the adaptive767

τ performs well in terms of picking one of the τ values with the lowest error768

(if not the optimal τ at all points in time). The shapes of the error curves769

for individual τ values are also similar for the estimated and actual ones. It770

demonstrates the ability of our estimator to predict correct error dynamics for771

different τ cases. While we do not have to worry about the magnitude of the772

errors in the estimator, the ordering of the error curves between different τ773

values is of importance as it decides the optimal τ , and we want it to be close to774

the actual scenario on the left columns. To that extent, we make an observation775

that in the time interval t ∈ [7.5, 17.5] the difference in the magnitude of errors776

between different τ values in the estimator differs more from the actual scenario777

than in the time interval t ∈ [0, 7.5). More specifically, for low τ values (τ =778

1, 2, 3) the estimator predicts a significantly higher error compared to the other779

τ values in that regime.780

One of the reasons for this behavior is for low τ cases - e.g., τ = 1, 2 and 3 -781

the number of component grids in the combination technique is higher than that782

for the high τ cases. Since we use the triangle inequality to bound the errors,783

both the grid and particle errors tend to be more over-estimated for the low τ784

cases than those for the high τ ones. Another reason is, in the estimates for785

the grid error we use the derivatives based on the regular grid. While this is a786

sharper upper bound for high τ , the derivatives seen in reality by the low τ cases787

for functions with fine scale structures will be smaller because of the larger mesh788

sizes. Indeed, fine scale structures form in the time interval t ∈ [7.5, 17.5] and789

hence grid error dominated for the simulations with sparse grid noise reduction.790

In spite of these differences, in all the cases even with the predicted sub-791

optimal τ the error values of the adaptive τ PIC is significantly lower than that792

of the regular PIC with same Pc. If we use some problem specific information,793

then it may be possible to reduce the over-estimations in the grid and particle794

errors by introducing a correction factor for different τ values.795

5.1.4. Evolution of τ with time796

In Figure 6, the time history of τ is shown for the meshes and Pc considered797

in Figures 3-5. Here we can see that for the same Pc, when we decrease the798

mesh size - i.e., going from left to right in Figure 6 - the τ values decrease.799

This is because we are moving from the grid error dominated regime to the800

particle error dominated regime. On the other hand, for the same mesh size801

and increasing Pc - i.e., moving from top to bottom in Figure 6 - the τ values802
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(a) 2562, Pc = 5 (b) 5122, Pc = 5 (c) 10242, Pc = 5

(d) 2562, Pc = 10 (e) 5122, Pc = 10 (f) 10242, Pc = 10

(g) 2562, Pc = 20 (h) 5122, Pc = 20 (i) 10242, Pc = 20

Figure 6: 2D diocotron instability: Time history of τ for different mesh sizes and number of
particles per cell Pc.

27



increase as we are moving from the particle error dominated regime to the grid803

error dominated regime. Also, for a particular mesh size and given Pc the later804

points in time have higher τ compared to the earlier ones. This is due to the805

formation of fine scale structures in the problem and resolving them require a806

higher τ .807

5.1.5. Quantitative comparison of electric field808

In Figure 7, the error in the electric field E calculated using equation (17) is809

shown for the meshes8 and Pc considered. We can see that the adaptive τ errors810

at the best are similar to the regular PIC and in some cases it is higher than811

regular PIC error for the same Pc. We also notice that none of the fixed τ error812

levels are better than the regular PIC errors. The reason for this is as follows:813

the electric field is obtained by integrating the charge density, and integration is814

a smoothing operation which reduces the particle noise. Since in our adaptive τ815

noise reduction algorithm we increase the grid-based error to reduce the particle816

noise and minimize the total error in the density, this can result in either similar817

or even an increase in the electric field error as compared to the regular PIC if818

the integration itself is sufficient enough to reduce the noise. High-order shape819

functions are a promising option to address this limitation as depending on820

the distribution they may reduce the particle noise without increasing the grid-821

based error. We will investigate the combination of high-order shape functions822

with our algorithm in future work.823

5.1.6. Adaptivity with initial sampling824

Having studied the adaptivity of the algorithm with respect to mesh size, Pc825

and time, we also considered a different initial sampling technique, and evaluated826

the performance of our scheme. We do not show the results here in order to827

limit the already fairly large number of tables and figures in the article, but we828

briefly summarize our main observations. We used a uniform distribution in all829

the variables to sample f in equation (18). The range for the velocity variables830

was chosen as [−6, 6] while for the configuration space it was [0, L]. Note that831

unlike the Gaussian sampling described earlier, with this sampling each particle832

will have a different constant charge qe [12] to match the distribution. Still, the833

charge to mass ratio is the same for all the particles. Similar to [20], we ignored834

particles with weights less than 1.0×10−9. For this particular example, uniform835

sampling is not a particularly good idea as it results in sampling particles which836

have very small computational weights. Hence, for the same total number of837

particles we found that this sampling has higher noise levels than the Gaussian838

sampling. Uniform sampling can however be useful in scenarios where we do839

not know of an importance sampling technique to sample the distribution at840

hand. Due to higher noise levels, we needed a higher value of α = 0.03 for the841

calculation of the denoising threshold. Except for the coarsest mesh size 2562,842

8For brevity we do not show results for a 5122 mesh, as it does not contain much new and
valuable information.
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(a) 2562, Pc = 5 (b) 10242, Pc = 5

(c) 2562, Pc = 10 (d) 10242, Pc = 10

(e) 2562, Pc = 20 (f) 10242, Pc = 20

Figure 7: 2D diocotron instability: Electric field error comparison between regular (Reg),
fixed τ and adaptive τ PIC.
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the adaptive τ algorithm performed well in this sampling - i.e., the scheme843

picked a nearly optimal τ for most cases. The optimal τ values, as expected,844

are lower than that for the Gaussian sampling, owing to higher noise levels.845

5.1.7. Run time performance846

Mesh Pc

5 10 20

2562 43.7 47.5 55.4
5122 91.9 110.1 145.8

10242 435 501.5 653.8

Table 1: 2D diocotron instability. Adaptive τ PIC: Total run time in seconds on 64 cores for
different mesh sizes and number of particles per cell.

Mesh Regular PIC Reg/adaptive τ

2562 50.9 (20) 50.9 (20) 104.4 (80) 1.2 1.1 1.9
5122 201.7 (40) 364.2 (80) 708.6 (160) 2.2 3.3 4.9
10242 1544.5 (80) 2911.6 (160) 5857.3 (320) 3.5 5.8 9.0

Table 2: 2D diocotron instability: Columns 2− 4 are the total run time in seconds taken by
the regular PIC on 64 cores for different mesh sizes and number of particles per cell (within
parentheses) to reach a comparable accuracy (based on visual norm from the left columns of
Figures 3-5) in charge density that of the adaptive τ results in Table 1 at time T = 17.5.
Columns 5 − 7 are the ratio of time taken by regular PIC to the values in columns 2 − 4 of
Table 1 for adaptive τ PIC.

tauEstimator transferToSparse
Mesh Pc Pc

5 10 20 5 10 20

2562 10.1 10.7 11.4 5.9 5.7 4.9
5122 21 20.2 18.6 5.4 4.5 3.6
10242 40.1 36.1 30.2 2.7 2.3 1.8

Table 3: 2D diocotron instability. Adaptive τ PIC: Percentage of total time (which is shown in
Table 1) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy
for different mesh sizes and number of particles per cell.

Finally, we perform a preliminary run time performance study to see the847

effectiveness of the current approach in comparison to the regular PIC. To that848

extent, we note that we did not perform any optimization to both the regular849

PIC as well as the adaptive τ PIC routines. Optimization of different compo-850

nents involved in the algorithm as well as a thorough parallel performance study851

is left for future work. In Table 1 the total run time in seconds is shown for the852

adaptive τ PIC on 64 cores for the mesh sizes and Pc considered before. All the853

timings reported are the average of three runs performed. In Table 2, we com-854

pare the adaptive τ PIC timings with the timings for the regular PIC with the855
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Pc value required to reach a comparable accuracy in charge density as that of856

the adaptive τ results at final time T = 17.5. The approximate Pc values within857

parentheses are obtained from Figures 3-5 based on visual examination. Even858

in this preliminary performance study, we can see that the adaptive τ strategy859

can provide significant speedups close to an order of magnitude compared to860

the regular PIC for similar accuracy in charge density. In terms of memory861

storage, the benefits are even more pronounced. Using the number of particles862

Np as a measure of the dominant memory cost (for PIC methods this is usually863

the case) we see ≈ 2 − 16 times memory reduction with adaptive τ PIC com-864

pared to regular PIC. In Table 3, we present timings for the components of the865

noise reduction only, expressed as percentage of the total time given in Table866

1. Even though the percentage of time taken by the transferToSparse part is867

small, the tauEstimator represents a significant fraction of the total time. One868

of the reasons for this is that for the FFT parts of the tauEstimator algorithm869

(Algorithm 1) we use the OPAL library. Since our other data structures are870

based on the AMReX library, we have to copy between them. Since the parallel871

decomposition is different for these two libraries, it can result in excessive com-872

munication, especially for large numbers of grid points and for high core counts.873

We are currently resolving this problem in the ongoing implementation of our874

noise reduction strategy in OPAL, using only OPAL’s native data structures875

and thereby avoiding the copy and excessive communication.876

5.2. 3D Penning trap877

5.2.1. Problem description and simulation setup878

In this section we will consider a 3D Penning trap problem as the test case.879

Penning traps are storage devices for charged particles, which uses a quadrupole880

electric field to confine the particles axially and a homogeneous axial magnetic881

field to confine the particles in the radial direction [54, 55]. The evolution of882

the density in this problem (see Figure 8) is very similar to that observed in883

cyclotrons [56, 57]. Thus this test case is very relevant to our ultimate goal884

of high precision large-scale simulation of cyclotrons. The fine scale structures885

developed in this problem pose challenges for the sparse grids similar to the886

diocotron case in the previous section.887

The parameters for this test case are as follows. The length of the periodic888

box is L = 20. The external magnetic field is given by Bext = {0, 0, 5} and the889

quadrupole external electric field by890

Eext =

{

−15

L

(

x− L

2

)

,−15

L

(

y − L

2

)

,
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.

For the initial conditions, we sample the phase space using a Gaussian distri-891

bution in all the variables. The mean and standard deviation for all the velocity892

variables is 0 and 1 respectively. While the mean for all the configuration space893

variables is L/2 the standard deviations are 0.15L, 0.05L and 0.2L for x, y and894

z respectively. The total electron charge is Qe = −1562.5, and the charge of895

each particle is qe =
Qe

Np
.896
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The denoising parameters are taken as (Pc)ref = 1 and α = 0.005 for this897

problem with the above mentioned sampling. The time step is chosen as ∆t =898

0.05 and the simulations are run till final time T = 15.899

5.2.2. Qualitative comparison of charge density900

Figure 8 shows the evolution of the electron charge density with time for901

regular, τ = 1 and adaptive τ PIC. The mesh used is 2563 and Pc = 1 for902

the first three rows and 20 for the last row. As we had seen in Figure 2 for903

the diocotron test case, the adaptive τ results, in the third row are better than904

both the regular PIC and τ = 1 results and are comparable to the results of the905

regular PIC with higher Pc in the last row.906

5.2.3. Quantitative comparison of charge density and time history of τ907

In a way analogous to Figures 3-5 for the diocotron instability, in Figures 9-10908

we show the errors calculated using equation (17) and the estimations from the909

τ estimator for meshes 643, 1283, 2563 and Pc = 1, 5. The reference in equation910

(17) is the average of 5 independent computations of regular PIC with 2563911

mesh and Pc = 40. For the Npoints in equation (17), we select approximately912

4096 random points throughout the domain and interpolate both the reference913

density as well as the density under consideration at these points to measure the914

error. The errors are measured at 7 different points in time in the simulation.915

In general, as before, the adaptive τ predictions are close to optimal and916

most of the conclusions from the diocotron test case are applicable in this case917

too. Figure 11 shows the time history of τ for the meshes and Pc considered and918

the high values of τ indicate that the total error is dominated by the grid-based919

error in these cases.920

5.2.4. Run time performance921

In terms of run time performance comparisons, we ran the 643, 1283 mesh922

cases on 64 cores and the 2563 test cases on 512 cores for both the regular and923

adaptive τ PIC. For 643 mesh, at the last point in time we can see that the924

regular PIC is more accurate than the adaptive τ or any other fixed τ PIC.925

Adaptive τ Regular Reg/adaptive τ

1283 360.4 (1) 475.4 (5) 274.8 (5) 443.7 (10) 0.8 0.9
2563 825.5 (1) 1196.4 (5) 2352.8 (15) 3080.8 (20) 2.8 2.6

Table 4: 3D Penning Trap: Total run time in seconds on 64 cores for 1283 mesh and 512 cores
for 2563 mesh in case of the regular and adaptive τ PIC. The values within the parentheses
represent the different number of particles per cell required to reach a comparable accuracy
(based on visual norm from the left columns of Figures 9-10) in the charge density for both
the schemes at final time T = 15. Columns 6 − 7 are the ratio of time taken by the regular
PIC to that for adaptive τ PIC.

For 1283 and 2563 meshes, from Table 4 we can see a maximum speedup of926

2.8 with adaptive τ PIC over the regular PIC for the finest mesh size. Again927

considering the number of particles as a measure for the memory cost adaptive928
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(a) time=0 (b) time=10 (c) time=15

(d) time=0 (e) time=10 (f) time=15

(g) time=0 (h) time=10 (i) time=15

(j) time=0 (k) time=10 (l) time=15

Figure 8: 3D Penning trap: Evolution of the electron charge density with time for regular
PIC, Pc = 1 (first row); τ = 1, Pc = 1 (second row); adaptive τ , Pc = 1 (third row); and
regular PIC, Pc = 20 (fourth row). The mesh considered here is 2563. The minimum and
maximum values of the charge densities for each figure are displayed in the color bars itself.
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(a) 643, Pc = 1 (b) 643, Pc = 1

(c) 1283, Pc = 1 (d) 1283, Pc = 1

(e) 2563, Pc = 1 (f) 2563, Pc = 1

Figure 9: 3D Penning trap: Electron charge density error comparison between regular (Reg),
fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17)
and the right column is the estimations from the τ estimator based on which the optimal τ is
selected. The fixed as well as adaptive τ has the number of particles per cell Pc = 1.
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(a) 643, Pc = 5 (b) 643, Pc = 5

(c) 1283, Pc = 5 (d) 1283, Pc = 5

(e) 2563, Pc = 5 (f) 2563, Pc = 5

Figure 10: 3D Penning trap: Electron charge density error comparison between regular (Reg),
fixed τ and adaptive τ PIC. The left column is the actual error calculated using equation (17)
and the right column is the estimations from the τ estimator based on which the optimal τ is
selected. The fixed as well as adaptive τ has the number of particles per cell Pc = 5.
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(a) 643, Pc = 1 (b) 1283, Pc = 1 (c) 2563, Pc = 1

(d) 643, Pc = 5 (e) 1283, Pc = 5 (f) 2563, Pc = 5

Figure 11: 3D Penning trap: Time history of τ for different mesh sizes and number of particles
per cell Pc.

tauEstimator transferToSparse
Mesh Pc Pc

1 5 1 5

1283 55.4 39.9 4.6 3.3
2563 41.8 29.5 15.3 9.3

Table 5: 3D Penning Trap: Percentage of total time (which is shown in columns 2−3 of Table
4) taken by the tauEstimator and transferToSparse parts of the noise reduction strategy for
different mesh sizes and number of particles per cell.

τ PIC is 2 − 15 times cheaper than the regular PIC. In order to see more929

computational benefits with the adaptive τ PIC for this problem we need to930

perform runs with finer meshes and more particles per cell. These 3D large-931

scale simulations are part of our future work and the results will be reported932

elsewhere.933

In Table 5, we show the percentage of the total time taken by the components934

of the noise reduction algorithm. Similar to the diocotron instability example,935

we can see that the dominant portion comes from the tauEstimator, for the936

same reasons as in the two-dimensional example. In addition, transferToSparse937

also exhibits an increase in percentage compared to the previous example. This938

is due to the bottleneck with MPI Allreduce for high τ values in 3D as described939

in section 4.5. In future work, we will adopt an improved parallelization strategy940

as in [40], which can mitigate this problem. Furthermore, the optimal τ does941

not need to be calculated for each time step. If the time-step is small, the charge942

density will not change much in a single time-step. The optimal τ , being only943
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dependent on ρe, is therefore also unlikely to change much. One could thus get944

speed-up by only recomputing τ every 5th or 10th time-step, for instance, while945

still accurately estimating the optimal τ . This is borne out in Figures 6 and 11,946

where τ stays fixed for many consecutive time-steps. We will also investigate947

this aspect in detail in future work.948

6. Conclusions949

We have proposed a sparse grid-based adaptive noise reduction strategy950

for particle-in-cell (PIC) simulations. Unlike the typical physical or Fourier951

domain filters used in PIC methods, the strategy adapts to mesh size, number952

of particles per cell, smoothness of the charge density and the initial sampling953

technique. In order to construct the strategy we use the key idea of increased954

particles per cell in sparse grids compared to the regular grid for the same955

total number of particles as proposed in [4]. The current work extends that956

concept in several directions. Specifically, we present a filtering perspective for957

the sparse grid-based noise reduction which helps to incorporate it with ease in958

existing high performance large-scale PIC code bases and also opens the door959

for sparse grid based filtering approaches. We tackle the problem of large grid-960

based error of sparse grid for non-aligned and non-smooth functions by means961

of the truncated combination technique [1, 2, 3]. We show in the context of962

PIC simulations that the truncated combination technique provides a natural963

framework to minimize the sum of grid-based error and particle noise. This964

allows us to propose a heuristic based on formal error analysis to select the965

optimal truncation parameter on the fly that minimizes the total error in the966

charge density.967

We show the performance and applicability of our strategy on two bench-968

mark problems; namely the 2D diocotron instability and electron dynamics in a969

3D Penning trap. In both test cases the adaptive noise reduction strategy picks a970

truncation parameter which is close to optimal for all times. To achieve compa-971

rable accuracy for the charge density we obtain significant speedups and memory972

savings close to an order of magnitude with the noise reduction technique com-973

pared to regular PIC in the 2D diocotron test case. For the 3D Penning trap974

test case a maximum speedup of 2.8 and 15 times memory reduction is obtained975

for the finest mesh size tested. Further speedups and memory reduction in the976

3D test case require us to test the strategy for even finer resolutions and that977

is part of future work.978

Our strategy can be very easily integrated into existing high performance979

large-scale PIC code bases and ongoing work is to integrate it into the open980

source particle accelerator library OPAL [37]. In terms of future work, we plan981

on investigating the applicability and performance of the noise reduction strat-982

egy on large-scale high intensity particle accelerator simulations such as the983

IsoDAR project [58, 59] with a particular focus on understanding the dynamics984

of halo particles and efficient collimation strategies. Filtering strategies have985

much more impact on the electromagnetic PIC simulations as reported in [24].986
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Hence we would like to extend the current approach for Vlasov-Maxwell equa-987

tions and investigate the performance in that context. Use of machine learning988

approaches to tune denoising threshold in our strategy is also of interest. Cur-989

rently, we are unable to use the full range of truncation parameter τ due to the990

false optima obtained when the extreme values are included. We will work on991

strategies in the τ estimation to resolve this problem. Finally, we also intend992

to compare the current strategy with other filtering approaches and denoising993

techniques.994
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Appendix A. Proof of Proposition 1 relating the direct charge density1006

deposition onto the component grids and the two-step approach1007

Proof. Even though sparse grids make sense only for dimensions 2 and higher1008

we can still understand the essence of the proof in 1D. Also, since the shape1009

functions and transfer operators in 2D and 3D are obtained by the tensor prod-1010

uct of 1D linear interpolation functions the proof extends naturally to those1011

cases.1012

Consider a periodic 1D domain [0, L] and two grids with mesh sizes hf and1013

hl. The grid with mesh size hl is coarser than the one with hf and assume hl1014

is an integer multiple of hf . Let us first consider the node-centered grids where1015

all the coarse grid points are also grid points in the fine grid as shown in Figure1016

12(a).1017

The particles deposit onto the fine grid with mesh size hf and the charge1018

density ρ̃e is given by1019

ρ̃e(x̃j) =
Qe

Nphf

Np∑

p=1

Wf (x̃j − xp), (19)

where Wf (ζ) = max
{

0, 1− |ζ|
hf

}

is the cloud-in-cell shape function and xp and1020

x̃j are the locations of the particles and the grid points in the fine grid re-1021

spectively. Now, we transfer the density ρ̃e to the coarse grid by means of the1022
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1 2 3 4 5 6 1

1 2 3 1

(a) Node-centered grid

1 2 3 4 5 6

1 2 3

(b) Cell-centered grid

Figure 12: Schematic showing the node-centered and cell-centered grids and the corresponding
shape functions. The nodes are marked with black circles and the cell-centers with red squares.
The domain is periodic. The shape functions Wl corresponding to the coarse grid are linear
between the nodes in the fine grid in case of node-centered grids. For cell-centered grids
Wl has discontinuity in derivative between some of the cell-centers in the fine grid whereas
between nodes of the fine grid it is always linear.

transfer operator R in equation (4) which gives1023

̺e(xk) =
hf

hl

Nc∑

j=1

ρ̃e(x̃j)Wl(xk − x̃j), (20)

where Wl(ζ) = max
{

0, 1− |ζ|
hl

}

, xk are the locations of the grid points in the1024

coarse grid and Nc is the total number of cells in the fine grid. Substituting for1025

ρ̃e from equation (19) and switching the order of sums we get1026

̺e(xk) =
Qe

Nphl

Np∑

p=1

Nc∑

j=1

Wl(xk − x̃j)Wf (x̃j − xp). (21)

Now, for a given particle, Wf (x̃j − xp) is non-zero for exactly two values of j:1027

the floor of xp/hf and the ceiling of that same quantity. Let us call these values1028

J and J + 1 and assume the grid points are ordered such that xJ is to the left1029

of xJ+1. We have1030

Nc∑

j=1

Wl(xk − x̃j)Wf (x̃j − xp) = Wl(xk − x̃J)Wf (x̃J − xp)

+Wl(xk − x̃J+1)Wf (x̃J+1 − xp). (22)

Now we note that because of the way the two grids are related (mesh sizes1031

are integer multiples, coincident grid points), we are guaranteed that Wl(xk− x̃)1032

is linear on the interval x̃ ∈ [x̃J , x̃J+1]. This is because the places where Wl has1033

a discontinuity in its derivative are guaranteed to be fine grid points as shown in1034

Figure 12(a). So, linear interpolation is exact for Wl on the interval [x̃J , x̃J+1].1035

Since xp is in this interval, we have1036

Wl(xk − xp) = Wl(xk − x̃J)

[
x̃J+1 − xp

x̃J+1 − x̃J

]

+Wl(xk − x̃J+1)

[

1− x̃J+1 − xp

x̃J+1 − x̃J

]

.
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Now we notice that1037

[
x̃J+1 − xp

x̃J+1 − x̃J

]

=

[
x̃J + hf − xp

hf

]

= 1+
x̃J − xp

hf
= 1− |x̃J − xp|

hf
= Wf (x̃J−xp),

and a nearly identical reasoning gives1038

[

1− x̃J+1 − xp

x̃J+1 − x̃J

]

= Wf (x̃J+1 − xp).

Combining these with equation (22) we get1039

Nc∑

j=1

Wl(xk − x̃j)Wf (x̃j − xp) = Wl(xk − xp). (23)

Substituting this into equation (21) we get the density on the coarse grid as1040

̺e(xk) =
Qe

Nphl

Np∑

p=1

Wl(xk − xp). (24)

Comparing equation (24) with equation (19) we see this is exactly the expression1041

we would obtain if the particles were to deposit directly onto the coarse grid1042

with mesh size hl.1043

Now we will consider the cell-centered grids. In this case the coarse grid
points are also not the grid points in the fine grid andWl will have a discontinuity
in the derivative for some of the intervals [x̃j , x̃j+1] as shown in Figure 12(b)
depending on the ratio hl/hf . Hence an exact equivalence between the two
approaches does not hold. However, we will now show that

Wl(xk − x) =

Nc∑

j=1

Wl(xk − x̃j)Wf (x̃j − x)

can be considered as a shape function by itself. To that end, we will show that1044

it satisfies the three conditions for any shape function as given in [9]. These are1045

listed as follows1046

1. Wl(ζ) = Wl(−ζ),1047

2. 1
hl

∫
Wl(ζ)dζ = 1,1048

3.
∑

k

Wl(xk − x) = 1.1049

The first condition is manifestly true as Wf which is the standard hat func-1050

tion is even. For the second condition we observe that1051

1

hl

∫

Wl(ζ)dζ =
hf

hl

Nc∑

j=1

Wl(xk − x̃j),
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asWf is a shape function and by definition integrates to hf . Now, hf

∑Nc

j=1 Wl(xk−1052

x̃j) is the midpoint rule applied for the integration
∫
Wl(xk − x̃) over the fine1053

grid. From Figure 12(b) it is clear that Wl is linear on each integration cell and1054

the midpoint rule is exact. Thus,1055

hf

hl

Nc∑

j=1

Wl(xk − x̃j) =
1

hl

∫

Wl(xk − x̃)dx̃ = 1,

where the last step comes from the fact that Wl which is also a standard hat1056

function integrates to hl by definition. Finally, the third condition is related to1057

global charge conservation and we note that since Wl and Wf are standard hat1058

functions they satisfy the partition of unity and hence Wl also satisfies it when1059

we carry out the summation.1060

Now, using conditions 1 and 2 and noting that Wl is bounded in [0, L] we1061

can carry out the same set of steps shown in appendix B for a standard hat1062

function. We can then see the grid-based error for Wl is of O(
∣
∣∂2

xρe
∣
∣h2

l ) and1063

the particle noise is O(
√

|Qeρe| /Nphl) as in equations (35) and (51) but with1064

the constants depending on the ratio of hl to hf .1065

Appendix B. Grid-based and particle errors in the charge density1066

deposition for regular PIC schemes1067

In this section, we follow the analysis in [4] and derive in details the grid-1068

based error and noise estimates for the charge density deposition in regular PIC1069

schemes explicitly revealing the constants. For simplicity, let us consider a 1D1070

PIC scheme and extensions to 2D and 3D are relatively straightforward. In1071

the following, we consider a particular point in time and hence suppress the1072

dependence of the different quantities with respect to time.1073

Let f(x, v) be the electron phase-space distribution under consideration and1074

let us define f̄ as1075

f̄ =
f

∫ ∫
fdxdv

.

Since, f̄ is non-negative and its phase-space integral is unity it can be interpreted1076

as probability density. The exact charge density ρe(x) is given by1077

ρe(x) = qe

∫ ∫

f(ξ, v)δ(x− ξ)dξdv, (25)

= qe

(∫ ∫

fdxdv

)∫ ∫

f̄(ξ, v)δ(x− ξ)dξdv, (26)

= Qe

∫ ∫

f̄(ξ, v)δ(x− ξ)dξdv, (27)

where Qe = qe
∫ ∫

fdxdv is the total electron charge in the system and δ(x− ξ)1078

is the Dirac-delta function.1079
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In PIC, we approximate δ(x − ξ) with the shape function S(x − ξ) which1080

for our discussion here consider it to be the cloud-in-cell or linear interpolation1081

function. The approximate charge density ρ̄e with the shape function S(x− ξ)1082

is given by1083

ρ̄e(x) = Qe

∫ ∫

f̄(ξ, v)S(x− ξ)dξdv, (28)

= QeEf̄(ξ,v) [S(x− ξ)] , (29)

where E is the expected value over the probability density f̄ .1084

B.1 Grid-based error estimate1085

This is the error due to approximating δ(x − ξ) with the shape function1086

S(x− ξ)1087

eg = |ρe − ρ̄e| . (30)

Towards estimating this error, let us expand f̄(ξ, v) in equation (28) in terms1088

of Taylor’s series about x,1089

ρ̄e = Qe

∫ ∫
(
f̄(x, v) + (ξ − x)∂xf̄(x, v)

+
(ξ − x)2

2
∂2
xf̄(x, v) + · · ·

)

S(x− ξ)dξdv, (31)

= Qe

∫

f̄dv

︸ ︷︷ ︸

ρe

∫

S(x− ξ)dξ

︸ ︷︷ ︸

1

+Qe

∫

∂xf̄dv

∫

(ξ − x)S(x− ξ)dξ

+Qe

∫

∂2
xf̄dv

∫
(ξ − x)2

2
S(x− ξ)dξ + · · · , (32)

where we have used the fact that the integral of the shape function S(x− ξ) is1090

unity. In the above equations we have used the short hand notations ∂x = ∂(.)
∂x1091

and ∂2
x = ∂2(.)

∂x2 . Taking outside the partial derivatives with respect to x in the1092
∫
dv integrals we get1093

ρ̄e = ρe + ∂xρe

∫

(ξ − x)S(x− ξ)dξ + ∂2
xρe

∫
(ξ − x)2

2
S(x− ξ)dξ + · · · . (33)

The cloud-in-cell shape function is given by1094

S(ζ) =
1

hx
max

{

0, 1− |ζ|

hx

}

. (34)
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Performing a change of variables with ζ = ξ − x in equation (33) and noting1095

that S(ζ) has a compact support and is zero outside |ζ| ≤ hx all the integrals1096

has to be carried only in −hx ≤ ζ ≤ hx.1097

Also, S(ζ) is an even function and hence
∫ hx

−hx
ζS(ζ)dζ which is the second1098

term in equation (33) is 0. However, the integrand in the third term of the1099

equation (33) is an even function and it evaluates to1100

∫
(ξ − x)2

2
S(x− ξ)dξ =

1

hx

∫ hx

0

ζ2
(

1− ζ

hx

)

dζ =
h2
x

12
.

Thus equation (30) becomes1101

eg(x) ≤
h2
x

12

∣
∣∂2

xρe(x)
∣
∣+ · · · ,

eg = O

(
h2
x

12

∣
∣∂2

xρe(x)
∣
∣

)

. (35)

Since, the cloud-in-cell shape functions in 2D and 3D are obtained by the1102

tensor product of 1D shape functions the analysis extends easily to these cases.1103

Carrying out similar steps we obtain the grid-based error for 2D and 3D as1104

eg = O

(
1

12

{∣
∣
∣
∣

∂2ρe

∂x2

∣
∣
∣
∣
h2
x +

∣
∣
∣
∣

∂2ρe

∂y2

∣
∣
∣
∣
h2
y

}

+
1

144

∣
∣
∣
∣

∂4ρe

∂x2∂y2

∣
∣
∣
∣
h2
xh

2
y

)

in 2D, (36)

eg = O

(
1

12

{∣
∣
∣
∣

∂2ρe

∂x2

∣
∣
∣
∣
h2
x +

∣
∣
∣
∣

∂2ρe

∂y2

∣
∣
∣
∣
h2
y +

∣
∣
∣
∣

∂2ρe

∂z2

∣
∣
∣
∣
h2
z

}

+
1

144

{∣
∣
∣
∣

∂4ρe

∂x2∂y2

∣
∣
∣
∣
h2
xh

2
y +

∣
∣
∣
∣

∂4ρe

∂y2∂z2

∣
∣
∣
∣
h2
yh

2
z +

∣
∣
∣
∣

∂4ρe

∂z2∂x2

∣
∣
∣
∣
h2
zh

2
x

}

+
1

1728

∣
∣
∣
∣

∂6ρe

∂x2∂y2∂z2

∣
∣
∣
∣
h2
xh

2
yh

2
z

)

in 3D. (37)

Note in the above equations the reason for including the only higher order terms1105

proportional to the mixed derivatives is because these terms will contribute to1106

the dominant error for the sparse grid combination. Hence, the constants in1107

front of these terms are of interest for estimating the coefficients of the grid-1108

based error in section 4.4.3.1109

B.2 Noise estimate1110

This is the error which occurs when we approximate the expected value of1111

the shape function by means of an arithmetic mean over the number of discrete1112

particles. Thus equation (29) becomes1113

ρ̄e(x) ≈ ρ̃e(x) =
Qe

Np

∑

p

S(x− xp). (38)
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The error incurred by this approximation η(x) is a random variable with mean1114

0 and variance given by1115

V arf̄ [η(x)] = Ef̄

[

(ρ̄e − ρ̃e)
2
]

, (39)

= ρ̄2e − 2ρ̄eEf̄ [ρ̃e] + Ef̄ [ρ̃
2
e], (40)

= Ef̄ [ρ̃
2
e]− ρ̄2e. (41)

Here, in equation (41) we used the fact that Ef̄ [ρ̃e] = Ef̄ [ρ̄e] = ρ̄e. Let us1116

compute Ef̄

[
ρ̃2e
]

1117

Ef̄

[
ρ̃2e
]
= Ef̄




Q2

e

Np
2

(
∑

p

S(x− xp)

)2


 . (42)

Similar to [4] we assume that the initial particle states have been chosen by1118

independent sampling from f̄(t = 0) and also they remain approximately inde-1119

pendent for Np ≫ 1. Then Ef̄ [S(x− xp)S(x− xq)] = 0 if p 
= q and all the1120

cross terms vanish giving1121

Ef̄

[
ρ̃2e
]
=

Q2
e

Np
2

∑

p

Ef̄

[

(S(x− xp))
2
]

, (43)

=
Q2

e

Np
Ef̄

[

(S(x− xp))
2
]

, (44)

where, we have used the fact that each particle has same Ef̄

[

(S(x− xp))
2
]

.1122

Now,1123

Q2
e

Np
Ef̄

[

(S(x− xp))
2
]

=
Q2

e

Np

∫ ∫

f̄(xp, v) (S(x− xp))
2
dxpdv, (45)

=
Q2

e

Np

∫ ∫
(
f̄(x, v) + (xp − x)∂xf̄(x, v)

+
(xp − x)2

2
∂2
xf̄(x, v) + · · ·

)

(S(x− xp))
2
dxpdv, (46)

and similar to the previous exercise for grid-based error the term associated1124

with (xp − x)∂xf̄(x, v) vanishes and the third term evaluates to O(hx). Hence1125

evaluating the leading order term gives1126

Q2
e

Np

∫ ∫

f̄(x, v) (S(x− xp))
2
dxpdv =

Qe

Np

∫

Qef̄dv

︸ ︷︷ ︸

ρe

∫

(S(x− xp))
2
dxp, (47)

=
Qeρe

Np

2

h2
x

∫ hx

0

(

1− ζ

hx

)2

dζ, (48)

=
2

3

Qeρe

Nphx
. (49)
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Plugging the above term in equation (44) gives1127

Ef̄

[
ρ̃2e
]
=

2

3

Qeρe

Nphx
+O(hx) + · · · . (50)

Omitting the ρ̄2e term in equation (41) as it is small compared to equation (50)1128

and substituting the above expression gives1129

V arf̄ [η(x)] ≈
2

3

Qeρe

Nphx
.

Defining the particle noise error en as the standard deviation of the random1130

variable η we get1131

en(x) = O

(√

2

3

|Qeρe(x)|

Nphx

)

. (51)

Similarly, carrying out the same set of steps in 2D and 3D we get the esti-1132

mates for the particle noise as1133

en = O

(√

4

9

|Qeρe|

Nphxhy

)

in 2D, (52)

en = O

(√

8

27

|Qeρe|

Nphxhyhz

)

in 3D. (53)
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[25] S. Gassama, É. Sonnendrücker, K. Schneider, M. Farge, M. O. Domingues,1205

Wavelet denoising for postprocessing of a 2d particle-in-cell code, in:1206

ESAIM: Proceedings, Vol. 16, EDP Sciences, 2007, pp. 195–210.1207

[26] B. Terzić, G. Bassi, New density estimation methods for charged parti-1208

cle beams with applications to microbunching instability, Physical Review1209

Special Topics-Accelerators and Beams 14 (7) (2011) 070701.1210

[27] W. Wu, H. Qin, Reducing noise for PIC simulations using kernel density1211

estimation algorithm, Physics of Plasmas 25 (10) (2018) 102107.1212

[28] M. Shalaby, A. E. Broderick, P. Chang, C. Pfrommer, A. Lamberts,1213

E. Puchwein, SHARP: A spatially higher-order, relativistic particle-in-cell1214

code, The Astrophysical Journal 841 (1) (2017) 52.1215

[29] M. Griebel, M. Schneider, C. Zenger, A combination technique for the1216

solution of sparse grid problems, in: Iterative Methods in Linear Algebra,1217

eds. R. Bequwens and P. de Groen (Amsterdam: Elsevier), 1990, pp. 263–1218

281.1219
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