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Abstract
Obtaining an objective measurement of the pain level of a patient has always been challenging for health care providers. The
most common method of pain assessment in the hospital setting is asking the patients’ verbal ratings, which is considered
to be a subjective approach. In order to get an objective pain level of a patient, we propose measuring pain level objectively
using the pupillary response and machine learning algorithms. Thirty-two healthy subjects were enrolled in this study at
Northeastern University. A painful stimulus was applied to healthy subjects by asking them to place their hands inside
a bucket filled with iced water. We extracted 11 features from the pupil diameter data. To get the optimal subset of the
features, a genetic algorithm (GA) was used to select features for the artificial neural network (ANN) classifier. Before
feature selection, the f1-score of ANN was 54.0 ± 0.25% with all 11 features. After feature selection, ANN had the best
performance with an accuracy of 81.0% using the selected feature subset, namely the Mean, the Root Mean Square (RMS),
and the Pupillary Area Under Curve (PAUC). The experimental results suggested that pupillary response together with
machine learning algorithms could be a promising method of objective pain level assessment. The outcomes of this study
could improve patients’ experience of pain measurement in telehealthcare, especially during a pandemic when most people
had to stay at home.

Keywords Objective pain measurement · Pupillary response · Genetic algorithm · Artificial neural network ·
Machine learning algorithm

1 Introduction

Pain is an unpleasant and harmful feeling for human
beings. It can be divided into chronic pain (long-lasting)
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and acute pain (short-lasting) [1]. Knowing the pain level
of patients is crucial. Thus, a patient’s pain level is the
fundamental information observed by the medical staff
before providing medical treatment. Most hospitals in the
United States obtain a patient’s pain level through a survey
based on patients’ perception of their pain. Several common
surveys are the numeric rating scale (NRS), the visual
analogue scale (VAS), the verbal rating scale (VRS), among
others [2–4]. Obviously, the pain level derived from a
survey is subjective. There has been significant research
showing the drawbacks of these pain measurement methods.
Ekblom and Hansson pointed out that VRS had a low
correlation with other pain measurement methods and it
might be less sensitive [5]. Bergh et al. concluded that
the probability of accomplishing pain rating decreased for
patients with higher age, especially with VAS [6]. NRS and
VAS were compared in Carpenter’s study, demonstrating
that more than three quarters of pain ratings derived
from NRS and VAS were not equivalent. It concluded
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that scale ratings varied considerably for both patients’
pain level reports and the nurses’ usage of medications
depending on the pain scale used [7]. Another disadvantage
of taking pain measurements via surveys is that patients
need to be conscious, cognitively intact, and able to speak
to report their pain levels. It’s impossible to get the
pain levels of unconscious patients and new-born babies
by using the survey methods. There have been studies
trying to use physiological signals and machine learning
algorithms to assess pain states [8–10]. To overcome these
challenges, we propose to use the pupillary response to
predict a patient’s pain level based on machine learning
algorithms.

1.1 Pupillary response

As an effective physiological signal, the pupillary response
has been used extensively among a variety of fields
[11–13]. Pain measurement by pupillary response has been
researched actively for decades since the 1950s [14–16].
Rubin et al. [14] conducted a study on children with
abdominal pain in 1967. In their study, pupil dilation
in darkness was measured from both healthy children
and children with abdominal pain. This study found that
there was a significant reduction of pupillary dilation in
children with abdominal pain after being exposed to stress.
In the study of Constant et al. [15], pupillary diameter
(PD) was recorded from children undergoing sevoflurane
anesthesia. PD increased significantly in all children after
noxious stimulation. The study concluded that, for noxious
stimulation, PD was more sensitive than the commonly used
factors, such as heart rate, arterial blood pressure, etc. In
2012, Aissou et al. [16] measured pupillary dilatation reflex
(PDR) from postoperative patients. The results showed that
PDRwas highly correlated to patients’ pain levels. PDRwas
proved to be valuable for guiding morphine administration
for patients in the immediate postoperative period. A few
commonly used pupillary features are PD, PDR, variation
coefficient of the pupillary diameter (VCPD), pupillary light
reflex (PLR), etc [17, 18]. Table 1 shows some studies using
pupillary features to assess the pain level of different kinds
of patients.

1.2 Machine learning algorithms

The genetic algorithm (GA) was first developed by John
Holland in the 1960s [19]. After GA was introduced,
numerous studies have utilized it as a feature selection tool
when there were quantities of features to analyze. Recently,
Nakisa et al. [20] extracted 30 optimal features out of 1440
features from 32 channels of brain wave signals. Goswami
et al. [21] achieved an improvement of 12% in classification
performance by using GA. Among all of these studies,
a few of them were about pain measurement [22, 23].
Brahnam et al. [22] conducted research to diagnose neonatal
pain from neonatal facial images. In their study, GA was
employed to search for a parsimonious network, which was
shown to be successful in finding the optimal solutions
for the neural network. In a childhood abdominal pain
estimation study [23], GA was used to prune the artificial
neural network (ANN) architecture and minimize the
number of diagnostic factors. GA is shown to be a promising
tool for feature selection and improving classification
performance. ANN [22–24] has been actively used as a
machine learning classifier for pain measurement. The ANN
had a good performance as a pain measurement classifier.
To our knowledge, no research team has used pupillary
response coupled with GA and ANN to measure the pain
level.

1.3 Scope

The motivation of this work was to overcome the
challenges of survey-based pain measurement methods.
This study aimed to find a way to measure the pain
level objectively through pupillary response and machine
learning algorithms. Towards this objective, we first filtered
the noisy pupillary response data using pupil velocity.
Eleven features were extracted from the cleaned pupillary
diameter data. ANN was utilized to classify the pupillary
features extracted by GA. The main contribution of this
study was integrating machine learning techniques to
achieve an objective pain level assessment. The remaining
parts of this paper are organized as follows: Section 2
represents the methodology of this study. Section 3 shows

Table 1 Studies using pupillary features to predict the pain level of different types of patients

Year Subject population Pain trigger Pupillary feature Pain assessment method

2019 [18] 345 postoperative patients Postoperative pain PLR, VCPD, PD Statistical analysis

2017 [17] 40 patients during labor Obstetrical labor pain VCPD Statistical analysis

2012 [16] 100 postoperative patients (42 males,
58 females)

Postoperative pain PDR Statistical analysis

2006 [15] 24 children Standardized skin incision PD Statistical analysis

1967 [14] 25 children Cold water PD Statistical analysis
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the experimental results in the present study. In Section 4,
we discuss the findings and results of this paper. Section 5
concludes the paper and states the future work for this topic.

2Methodology

2.1 Participants

Thirty-two subjects (6 females and 26 males), aged from 18
to 24 (mean = 21.25, SD = 1.64) took part in this experiment
in the Intelligent Human-Machine System(IHMS) labora-
tory at Northeastern University. Among all the subjects,
87.5% (n=28) reported they were Caucasian, 6.25% (n=2)
Hispanic/Latino, 3.125% (n=1) Asian/ Pacific Islander,
3.125% (n=1) African American. All subjects were healthy,
fluent in English, and none of them had any experience of
chronic pain. This study was approved by the Northeastern
University Institutional Review Board (IRB #: 17-01-25).
All subjects read and signed the consent form before the
experiment. The subjects were informed that they could stop
this experiment at any time.

2.2 Apparatus

Tobii Pro Glasses 2 (Tobii Technology, Danderyd, Sweden)
was used to measure subjects’ pupillary response at a
sampling rate of 50 Hz. Robust pupil diameter measurement
was ensured by Tobii Glasses’ four embedded infrared
cameras and a unique 3D eye model. The Tobii Pro Glasses
2 data recording system is shown in Fig. 1. A bucket filled
with iced water (temperature ≈ 0 ◦C) was used to trigger
pain from the cold temperature. A Dell monitor was used to
display guidelines during the experiment.

Fig. 1 Tobii Pro Glasses 2. (Glasses and data recorder)

2.3 Experimental design and procedures

The experimental design of this study was based on the cold
pressor test [25–27], a widely used protocol for quantitative
sensory testing (QST). The subjects were asked to read and
sign the consent form upon their arrival at the experiment
site. Prior to experimental data collection, the subjects were
asked to place their hands inside the iced water bucket
for 5 to 10 seconds to get familiar with the stimulation of
cold pain. Data collection was conducted in the following
steps: Step 1, the subject sat in a comfortable armchair and
wore the Tobii Pro Glasses 2. Tobii Glasses calibration was
completed. The environmental light condition during the
experiment was controlled at a constant level. Step 2, to
minimize the eye movements, the subject was asked to look
at a green dot on a monitor in front of him/her at a distance
of about 30 cm. Step 3, 20 seconds of baseline data were
collected. Step 4, the subject was asked to put his/her right
hand in a bucket filled with iced water. The subject was
asked to report his/her pain level on a scale from 0 (No pain)
to 10 (Excruciating pain) every 20 seconds, according to the
NRS. The reported pain level was recorded. Step 5, for each
subject, the experiment ended after 10 pain ratings were
obtained or when the subject asked to stop the experiment.
Fig. 2 shows the experimental setting of the present study.

2.4 Data description

The pupillary diameter data of both eyes were recorded
in Tobii Pro Glasses 2 with a sampling rate of 50 Hz.

Fig. 2 Schematic diagram of the experimental settings (a subject
wearing the Tobii Glasses, sitting in front of a laptop and dipping his
hand into iced water)
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The raw data were saved in .csv files, containing two
columns (left pupil diameter and right pupil diameter).
The pupillary data were segmented into 10-second epochs.
There were 660 data samples/epochs in total since some
subjects withdrew from the experiment before 10 pain levels
were recorded. The data samples were labeled based on
their corresponding reported pain ratings in the following
way: Level 0 (No-pain/Baseline), Level 1-5 (Low-pain),
and Level 6-10 (High-pain). The 660 pupil data samples
were randomly assigned to training data (80%) and test
data (20%).

2.5 Data preprocessing

After visual inspection, it was found that a small proportion
of the raw data had missing values and they were
contaminated by the subject’s eye blinks during the
experiment, as shown in Fig. 3a. The artifacts in the
pupillary data were removed by using the pupil diameter
velocity method.

Pupil diameter signal was designated by x(i) and
corresponding time stamp was t (i), where i = 1, 2, 3..., N
and N was the data length. Pupil diameter velocity (mm/s)
meant the changing rate of pupil diameter [28]. Absolute
pupil diameter velocity, x′(i), was used to detect blinking
noise:

x′(i) =
∣
∣
∣
∣

x(i) − x(i − 1)

t (i) − t (i − 1)

∣
∣
∣
∣

(1)

Absolute pupil diameter velocity is shown in Fig. 3b.
Absolute pupil velocity threshold was set at 2 mm/s, which
means the pupil diameter data with a corresponding velocity
greater than 2 mm/s were considered as blinking noise and
were removed from the raw data. The detected blinking
noise was marked in red in Fig. 3c. After blinking noise
was removed, an interpolation package in SciPy [29] was
exploited to fill the missing data points in the raw pupil
diameter data. The filtered pupil diameter is shown in
Fig. 3d. Since normal pupil diameter varies among people
in different ages and genders [30], the pupil diameter data
were scaled to a 0-1 range:

xs(i) = x(i) − min(X)

max(X) − min(X)
(2)

Studies [31, 32] suggested that the left and right pupil
diameters were highly correlated. The mean of the filtered
left and right pupillary data was utilized in the following
computation.

2.6 Pupillary features

Eleven features were extracted from each of the 660
pupillary data epochs, as follows:

(I) the maximum value of pupil diameter data:

Max = max
(

X
)

(3)

Fig. 3 Filtering process for pupil diameter data. a Raw pupil diameter data with blinking noise, marked in red circles. b Pupil diameter velocity.
c Raw pupil diameter data with detected blinking noise, highlighted in red. d Pupil diameter data filtered by a velocity filter
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(II) the minimum value of pupil diameter data:

Min = min
(

X
)

(4)

(III) the range of pupil diameter data:

Range = Max − Min (5)

(IV) the mean value of pupil diameter data:

μ = 1

N

N
∑

i=1

x(i) (6)

(V) the standard deviation (SD) of pupil diameter data:

σ =
(

1

N − 1

N
∑

i=1

(

x(i) − u
)2

)1/2

(7)

(VI) the interquartile range (IQR) value of pupil
diameter data (Q3 and Q1 mean the third and first
quartile respectively):

IQR = Q3

(

X
)

− Q1

(

X
)

(8)

(VII) the root mean square (RMS) of pupil diameter data:

RMS =
(

1

N

N
∑

i=1

x(i)2

)1/2

(9)

(VIII) the skewness of pupil diameter data:

Skewness = 1

N − 1

N
∑

i=1

(
x(i) − μ

σ

)3

(10)

(IX) the kurtosis of pupil diameter data:

Kurtosis = 1

N − 1

N
∑

i=1

(
x(i) − μ

σ

)4

(11)

(X) the variation coefficient of the pupillary diameter
(VCPD):

V CPD =
1
N

N∑

i=1
|x(i) − median|
median

(12)

(XI) the pupillary area under the curve (PAUC):
PAUC was calculated by transforming the pupillary

data from time-domain to frequency-domain using
the multitaper method [33]. As suggested in [34],
the Area Under Curve (AUC) between 0.3 Hz
and 3 Hz was effective to detect the pain states
on patients. PAUC is the AUC of the pupillary
spectrum between 0.3 Hz and 3 Hz.

PAUC =
∫ 3

0.3
multitaper

(

x(t)
)

dω (13)

where multitaper was the power spectral density
estimation method and ω represented the frequency
domain of the transformed data.

2.7 Machine learningmodeling

Our pain assessment system consisted of three major parts,
namely data acquisition, feature extraction, and GA & Grid
search. The overview of the system framework is shown in
Fig. 4. The data acquisition part was conducted by using a
wearable eye-tracking device with a sampling rate of 50 Hz.
The feature extraction part was achieved by extracting 11
features (Section 2.6) from the pre-processed pupil diameter
data. The GA & Grid search part was accomplished by
integrating GA and grid search to search for the optimal
feature set and hyperparameters. The first step was to
initialize a set of random features for the first iteration of
GA. Next, GA evaluated the fitness score of the system
using the ANN hyperparameters in Table 2. GA proceeded
to the Selection step, the Crossover step, and the Mutation
step. And the second iteration of GA started. The grid
search of hyperparameters updated each time when GA
finished one full cycle. The stop criteria were when all ANN
hyperparameters were searched and the max generation
number of GA was reached. When the stop criteria were
satisfied, the system output the best classification accuracy
with the optimal feature set and ANN hyperparameters.

2.7.1 Feature selection

As previously mentioned, eleven features (Max, Min,
Range, Mean, SD, IQR, RMS, Skewness, Kurtosis, VCPD,

Fig. 4 The overview of the pain
assessment system framework,
including data acquisition,
feature extraction, and GA &
Grid search
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Table 2 The settings for the ANN hyperparameter tuning, including
activation function, alpha penalty, and tolerance

Hyperparameter Settings

Activation function ‘logistic’, ‘tanh’, ‘relu’

Alpha penalty 0.0001, 0.001, 0.01

Tolerance 0.0001, 0.001, 0.01

and PAUC) were extracted from the pre-processed raw
data. To get the optimal combination of features for
the machine algorithms, GA was used to select features.
GA was inspired by Darwin’s Theory of Evolution by
Natural Selection [35]. GA mimicked the evolution theory
by considering individuals as chromosomes. To use GA
as a feature selection tool, a string of binary digits
represented an individual (chromosome), in which 0 meant
the feature at that digit was not selected and 1 meant the
feature was selected. For example, in an eight-digit binary
string, 00111011, the first, second, and sixth features were
not selected, while the third, fourth, fifth, seventh, and
eighth features were selected. The crossover and mutation
processes of GA are shown in Fig. 5. The evaluation process
of GA was performed by using ANN with grid search.

2.7.2 Hyperparameter tuning

ANN is a non-linear classifier that is inspired by the
biological neural network of human beings [36]. ANN was
used as the classifier for pain assessment in this study. A
grid search method was utilized to tune the hyperparameters
for ANN, as shown in ‘GA & Grid search’ section of Fig. 4.
Three kinds of hyperparameters (activation function, alpha
penalty, and tolerance) were tuned in this study, as shown in
Table 2.

2.7.3 Evaluation

Since our data set had an unbalanced number of samples
in each class, a stratified 5-fold cross-validation was
utilized to evaluate the classifier. In the stratified 5-fold
cross-validation, each training or testing set contained
approximately the same proportion of samples of each class
as the entire data set (class ‘B’: 62 samples, class ‘L’: 236
samples, and class ‘H’: 362 samples). The stratified 5-fold
cross-validation on our data set is shown in Fig. 6. The

Fig. 5 Simple illustration of
GA’s crossover and mutation
processes. a crossover b
mutation

Fig. 6 A stratified 5-fold cross-validation. The testing set and the
training set of each iteration are shown with different colors in the first
five rows. The size of each class (Baseline, Low-pain, High-pain) is
shown in the bottom row

performance of the classifier was measured by f1-score, as
shown in equation (16).

Precision = T ruePositive

T ruePositive + FalsePositive
(14)

Recall = T ruePositive

T ruePositive + FalseNegtive
(15)

F1 = 2

Precision−1 + Recall−1
(16)

3 Experimental results

3.1 Subjective pain level ratings

Iced water was used in numerous pain measurement studies
[27, 37–39], and it proved to be an effective tool to simulate
pain. In the present study, a bucket of iced water was used to
introduce cold pain for the subjects. As mentioned before,
the subjects could terminate the experiment whenever they
wished. Thirty subjects out of thirty-two made it to the
end of the experiment. Based on the survey, none of the
subjects suffered from acute or chronic pain at the time of
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Fig. 7 Average reported pain ratings with standard deviation from 32
subjects. Subjects put their hands in the iced water at the time of 0 s

this experiment. The baseline pain level of all subjects was
zero. The average reported pain levels of all subjects are
shown in Fig. 7. The pain ratings rose very quickly in the
first minute of the experiment and kept at a constant level
after around the middle of the experiment.

3.2 Frequency domain analysis

Pupillary unrest is the fluctuation of the subjects’ pupillary
diameter. It has been utilized to detect patients’ pain states
in prior studies [34, 40]. We utilized the multitaper method
to transform the pupillary responses from time-domain to
frequency-domain. After the transformation, the width of
the frequency bin was 0.1 Hz. The PAUC was obtained by

calculating the AUC of the pupillary responses spectrum
from 0.3 Hz to 3 Hz [34]. Figure 8a shows three samples of
pupillary responses in three different pain states (Baseline,
Low pain, and High pain). The data sample in the high
pain state demonstrated more fierce oscillation than the
data samples in low pain and baseline states. Figure 8b
illustrates the power spectra of their corresponding pupillary
responses. The power spectrum of the high pain data had
higher values than the low pain and baseline data in the
lower frequency range, which suggested that there was more
pupillary unrest in the high pain state. A post-hoc analysis
was carried out by using the Tukey’s Honestly Significant
Difference (HSD) test on the PAUC from all the subjects.
Figure 8c shows the statistical results of the PAUC in three
pain states from all participants. The PAUC differences were
significant in Baseline vs. High pain (p < 0.01) and Low
vs. High pain (p < 0.01).

3.3 Classification performance

Eleven pupillary features were extracted from the pupillary
responses. GA was used to select an optimal subset of
features for the ANN. Grid search was utilized to tune the
hyperparameters of the ANN. The final parameter settings
for GA and ANN are as follows:

– GA: crossover possibility (0.5), mutation possibility
(0.4), and population size (20). GA was evaluated with
a generation number of 50, 100, 200 respectively.

– ANN: activation function (relu), solver (lbfgs), alpha
penalty parameter (0.0001), tolerance (0.0001). Two
hidden layers were used in this Multi-layer Perceptron
classifier.

Table 3 presents the performance of the ANN based on
training data using the above parameters. The ANN was

Fig. 8 a Pupillary responses in three pain states. b The power spectra of the pupillary response from 0 Hz to 3 Hz. c The boxplot of the PAUC in
three pain states from all participants (* p < 0.01, One-way ANOVA with Tukey’s HSD)
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Table 3 Classification results on the training data. Features in “GA feature selection” column follow the order: Max, Min, Range, Mean, SD,
IQR, RMS, Skewness, Kurtosis, VCPD, and PAUC (1: the feature is selected; 0: the feature is not selected)

Classifier F1-score with all features (%) No. of generation GA feature selection F1-score (%)

ANN 54.0 ± 0.25

50 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1 75.6 ± 2.6

100 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1 82.57 ± 3.1

200 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1 82.57 ± 3.1

firstly evaluated with all 11 features using a stratified five-
fold cross-validation. The f1-score with all features is shown
in the second column of Table 3. With all 11 features, the
ANN achieved an accuracy of 54.0 ± 0.25%. After feature
selection by GA, the performance of ANN climbed from
54.0±0.25% to 82.57±3.1%. ANN’s performance achieved
the optimal rate with a generation number of 100. ANN’s
performance increased from 75.6 ± 2.6% to 82.57 ± 3.1%
with the growing of generation number from 50 to 200. For
ANN, the optimal feature set was Mean, RMS, and PAUC.

The final accuracy of the ANN using selected features
on the test data set was 81.0%. Table 4 shows the precision,
recall, and f1-score of ANN’s performance on the test data
set. The f1-scores of Baseline, Low pain, and High pain
classes were 0.88, 0.65, and 0.87, respectively.

The Receiver Operating Characteristic (ROC) curves of
three pain states using ANN classifier are shown in Fig. 9.
The straight dashed diagonal line from (0, 0) to (1, 1)
represents the ROC curve of a random-guessing classifier.
The ROC curve of class B was the closest to the upper left
corner, which meant the classifier had both good sensitivity
and good specificity over class ‘B’. The ROC curve of
class ‘H’ was closer to the straight diagonal line, which
meant the performance was worse on class ‘H’ than on
class ‘B’. The performance on class ‘L’ was worse than
random guessing, as the ROC curve of class ‘L’ was under
the straight diagonal line. Class ’B’ had the highest AUC of
0.94. The AUCs of class ‘L’ and class ‘H’ were 0.40 and
0.75, respectively.

The confusion matrix of classification results of the ANN
using selected features is shown in Fig. 10. The ANN
classifier had a good performance for data labeled as “B”
(baseline) and “H” (high-pain). Among class ‘B’, 79% were
classified correctly and 21% were classified as class ‘L’.

Table 4 Classification performance using selected features on the test
data, showing precision, recall, f1-score, and number of samples in
each class

Precision Recall F1-score Number of samples

Baseline 1.00 0.79 0.88 14

Low pain 0.77 0.56 0.65 41

High pain 0.8 0.95 0.87 77

Among class ‘H’, 95% were classified correctly and only
5% were classified as class ‘L’. However, the ANN had
a bad performance for “L” (low-pain) data. Among class
‘L’, only about half were classified correctly and 44% were
classified as class ‘H’, which meant the classifier was not
sensitive to the “L” data. It could also be seen in Fig. 9,
the ROC curve of class ‘L’ was below the random-classifier
ROC curve. The confusion matrix also suggested that the
type 1 error (false positive) and type 2 error (false negative)
for class ‘B’ were 0 and 3 respectively. The type 1 and type
2 errors for class ‘L’ were 7 and 18 respectively. The type 1
and type 2 errors for class ‘H’ were 18 and 4 respectively.

4 Discussions

This study presented a method to predict the pain level
of healthy subjects using pupillary responses based on
machine learning algorithms. The subjects’ pain levels were
categorized into three classes (No-pain/baseline, Low-pain,
High-pain). GA and ANN were utilized to classify the
pupillary response data.

Iced water was widely used in cold pressor pain tests.
In our experiment, the most common feedback from the
subjects was that their hands became numb after a while
when placed in the iced water bucket [41]. The reason that

Fig. 9 The ROC curve for all three classes in ANN (the AUC of each
class shown in the lower-right corner)
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Fig. 10 Confusion matrix of classification results from ANN with
selected features (Mean, RMS, and PAUC). (B: baseline, L: low-pain,
H: high-pain)

subjects’ hands became numb was probably that pain was
introduced to subjects by using the mixture of ice and water,
in which the temperature was technically 0 ◦C and 0 ◦C
might be too cold for some of our subjects. In some other
studies, a higher temperature of cold water was utilized to
trigger pain for subjects. In a study by Dowman et al. the
temperature of cold water was 4.3 ± 0.8 ◦C [42]. In future
experiments, it’s recommended to use cold water with a
higher temperature to introduce pain.

Since we had a small number of data samples (660
samples in total), we used “lbfgs” as ANN’s solver for better
performance. We used two hidden layers for ANN and each
hidden layer had 5 and 3 nodes respectively. ANN had an
f1-score of 54.0% while using all 11 features. However, we
found that ANN classified all data samples into one class
(High). While using the selected features (Mean, RMS,
and PAUC) by GA, ANN’s performance improved from
54.0% to 82.57%. The problem that ANN classifies all
instances into the same class was called “dying ReLU”.
During the training process of ANN, parts of the training
data went to a hard zero zone of ReLU [43]. Using the
features selected by GA, ANN’s classification performance

improved by 28.57% and the “dying ReLU” problem was
solved.

Some pain assessment studies used machine learning
techniques with other physiological signals, but without
pupillary response [44–46]. A few other common physi-
ological parameters for pain measurement are Electrocar-
diogram (ECG) [44], Electromyography (EMG) [44], Skin
Conductance (SC) [44, 45], Functional Magnetic Resonance
Imaging (fMRI) [46], etc. Table 5 compares different stud-
ies using bio-signals to predict pain states. It is worth noting
that the compared studies performed two-class classifica-
tion tasks, while our study did three-class classification
tasks. It suggested that Random Forest (RF) achieved the
best accuracy of 79% by classifying baseline and level
1 pain data using ECG, EMG, and SC [44]. In a study
by Lopez and Picard [45], ECG and SC were utilized to
predict heat pain using multi-task neural networks (NN).
The best performance was 82.75% by classifying the base-
line and the highest pain data in this study. Brown et al.
used Support Vector Machine (SVM) and fMRI to clas-
sify pain triggered by thermal stimuli [46]. They obtained
an accuracy of 84% from SVM on classifying painful and
non-painful data. Some of the parameters need at least
one electrode attached to the patients/subjects’ skin, like
ECG, SC, etc. Some of the parameters need overly com-
plex devices to complete the signal collection, like fMRI.
However, assessing pain levels through the pupil diameter
has two advantages over the other signals. First, measur-
ing pupil response can be non-invasive by using a camera.
There is not any invasive contact between the data collection
device and the subjects, which minimizes the uncomfortable
feeling of the subjects. Second, it can be accomplished by
using a simple and portal device (a camera), which allows
pain level measurement to be taken in an easy and fast
manner.

There have been some studies using pupillary response
for pain assessment with statistical analysis methods
instead of machine algorithms [17, 47, 48]. All of the
aforementioned studies proved the correlation between
pupillary response and the pain level of patients. However,
one limitation of their methods is that it’s impossible to
build a real-time pain measurement system using statistical
methods. Our work can be extended to build a real-time
system for objective pain measurement.

Table 5 The comparison of similar studies using bio-signals to predict pain states

Method Signal # of classes Accuracy

This study GA, ANN Pupillary responses 3 81.0%

[44] (2019) RF ECG, EMG, and SC 2 87%

[45] (2017) Multi-task NN ECG and SC 2 82.75%

[46] (2011) SVM fMRI 2 84%



L. Wang et al.

5 Conclusion and future work

In this study, we proposed an objective way to measure pain
levels based on pupillary response using machine learning
algorithms. Pupillary response data were collected from 32
subjects and preprocessed using a “pupil velocity” method.
Eleven features were extracted from raw pupillary data. GA
was used to select the optimal subset of features. We used
ANN to perform data classification. ANN achieved the best
performance using the three selected features (Mean, RMS,
and PAUC) with an accuracy of 81.0%. GA improved the
performance of the ANN and reduced the amount of data
for ANN to deal with, proving itself to be a valuable tool
for feature selection. As a non-invasive measurement, the
pupillary response was implied to be an effective way for
objective pain assessment.

A major limitation of this work was the limited number
of data samples that we collected in this experiment. With
more data samples, we could have a more balanced number
of samples in each class. Although we received promising
experimental results, there were still a few improvements
that need to be accomplished in the future. For instance,
the next step of this work should target real patients and
collect clinical pain data. Also, the current study was based
on a dataset we collected already. In the future, a real-time
objective pain assessment system should be developed.
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