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ABSTRACT: The transformative potential of pattern-based
sensing techniques is often hampered by their difficulty in dealing
with mixtures of analytes, a drawback that severely limits the
applications of this sensing approach (the “problem of mixtures”).
We show here that this is not an intrinsic limitation of the pattern
sensing method. Indeed, we developed general guidelines for the
design of the sensing, signal detection, and data interpretation
methods to avoid this constraint, which resulted in chemical
fingerprinting systems capable of recognizing unknown mixtures of
analytes in a single experiment, without separation or pre-
treatment before data acquisition. In support of these design
principles, we report their successful application to an important
analytical problem, metal ion discrimination and quantitation, by
constructing a sensor array that provided a linear colorimetric response over a wide range of analyte concentrations. The resulting
data set was interpreted using common multivariate data processing algorithms to achieve quantitative identification and
concentration determination for pure and mixture samples, with excellent predictive ability on unknowns. Separation and detection
methods for analyte mixtures, normally envisioned as independent processes, were successfully integrated in a single system.

Pattern-based array sensing techniques have gained wide-
spread interest as an analytical tool. In particular,

colorimetric and fluorometric sensing arrays have been
recognized as an optical analogue to biological sensory systems
that allow fast, on-site chemical detection through inexpensive
protocols that untrained personnel can carry out on a large
number of samples.1,2 Optical sensing arrays have been studied
extensively by our group and others for the detection of a wide
variety of analytes including metal ions,3−7 small organic
molecules,8−18 gases,19−21 proteins,22−24 nanoparticles,25 and
bacteria species in biofilm matrices.26 Moreover, researchers
have even used array sensing methods to identify chemical
processes, such as molecular aggregation27 and enzyme
activity.28 Effective cross-reactive arrays are made up of
promiscuous receptors, i.e., capable of interacting with multiple
(ideally, all) analytes of interest, with significant variations
either in the qualitative response or in the observed affinity.29

They offer a wider scope than the more frequently used
selective receptors to detect an assortment of similar analytes
that would not be easily distinguished otherwise. By capturing
the wealth of information available in the analytes’ differential
response to the array components, cross-reactive sensing
systems often achieve selectivity to lock-and-key-style selective
receptors while requiring lower design and synthesis effort and
wider scope.30,31

Despite their significant successes, array sensing systems
often fail upon exposure to mixtures of analytes. This can be

typically ascribed to the fact that the analytical response of the
underlying chemical sensors is nonlinear, either because they
are operating in the nonlinear portion of their response curve
or because the chosen signal transduction method responds
nonlinearly. Using a scores plot as an example, a common way
of presenting results from pattern-based array sensing
techniques, this issue is visually summarized in Figure 1. For
instance, one can train a pattern detection system to recognize
pure substances A and B; one might then assume that the
response from a 1:1 mixture of the two would fall halfway
between them (a linear response, green section), but that is
almost invariably not the case (red section) because of
inherent nonlinearities. Therefore, training for the components
of a mixture often does not help to recognize the mixture. We
refer to this behavior as “the problem of mixtures”: sensing
arrays are often ineffective at recognizing mixtures, even when
they can recognize the individual components.
Researchers have aimed to address this issue, e.g., for

mixtures of metal ions,32−35 proteins,36−39 and small organic
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molecules,40−43 employing linear discriminant analysis (LDA),
principal component analysis (PCA), or hierarchical cluster
analysis (HCA) for data interpretation. While these systems
were proficient for their specific endeavors, there has been
limited success addressing the source of this problem.
Overcoming the “problem of mixtures” for pattern recognition
systems will have a profound impact on the detection of
multiple similar analytes occurring as mixtures, a recurring
problem in analytical science.
In this work, we demonstrate that, by restricting ourselves to

using only analytical detection methods that have a rigorously
linear response44,45 and by taking precautions to operate in the
regime in which the underlying chemical interactions also
respond linearly to changes in concentration, we can then use
linear multivariate analytical tools such as LDA and PCA to
discriminate mixtures as well as pure analytes. The resulting
system would naturally be responsive to changes in analyte
concentration in a simple and predictable way, opening a path
to the quali-quantitative determination of analytes; calibration
plots can be generated to accurately predict the nature and
concentration of an unknown mixture of our analytes of choice
in a single experiment, without previous separation.
Using metal ion detection as a valuable proof of principle,

we introduce here a set of general conditions on the strength of
the chemical interaction involved, on the signal transduction
method, and on the data interpretation algorithms to ensure
that the resulting pattern-based recognition system can identify
the composition of analyte mixtures.

■ EXPERIMENTAL SECTION
Materials. Xylenol orange (XO) and methylthymol blue

(MTB) were purchased from Sigma-Aldrich and used as
received. 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic
acid (HEPES) was purchased from ICI Scientific. All metal
chloride salts were bought from Fluka. For consistency, all
stock solutions for dyes and metal chloride salts were prepared
fresh before each experiment. All experiments were carried out
in a 50 mM HEPES aqueous solution buffered to pH 7.4,
prepared by adding an appropriate amount of HEPES free acid
to deionized (DI) water; the pH was then adjusted to 7.4 by
adding 1.0 M NaOH as needed, monitoring with a combined

glass electrode, and then bringing up to volume. Stock
solutions of XO and MTB were prepared in this buffer, taking
into consideration the manufacturer specified dye content
(90% and 70% for XO and MTB, respectively). All metal
chloride salt stock solutions (except PbCl2) were prepared by
adding an appropriate amount of salt to 10 mL of buffer.
Lead(II) chloride solutions were prepared by dissolving a
minimal amount of salt in DI water and diluting an appropriate
aliquot of this solution in buffer. To avoid unwanted
absorption of water over time, any hygroscopic salts (ZnCl2,
CdCl2, MgCl2, and BaCl2) were dried to constant weight in an
oven set to 110 °C and stored in a desiccator before use.

Instrumentation. Benchtop UV−vis measurements were
performed on a Hewlett-Packard 8452A diode array UV−vis
spectrophotometer. The experimental sample temperature was
thermostatted to 25 °C using an external circulating water
bath. Multivariate data was acquired on a BioTek Synergy II
microwell plate reader equipped with a monochromator to
measure absorbance spectra. The sample compartment was
electrically thermostatted. Experiments were laid out by hand
using Eppendorf Research multichannel pipettors and
disposable plastic tips into Greiner BioOne nontreated
polystyrene 384-well microplates with clear flat bottoms.
Each well was filled with 100 μL of solution. Plates were read
immediately after preparation. Reading time was 10−15 min
per plate during which no evaporation was observed so the
plates were not sealed.

■ RESULTS AND DISCUSSION

Design of Sensing Array for Mixtures. We chose UV−
vis absorbance spectroscopy for analytical signal transduction
due to the linear dependence of signal intensity (absorbance)
on concentration when conditions are chosen appropriately.
We also chose the detection of divalent metal cations and their
mixtures as a testbed for our design principles. Since these
analytes can form stable complexes with many well-known,
readily available dyes, complex formation is nearly quantitative
under practically relevant conditions, and the corresponding
change in the dye’s electronic absorption is linear over a wide
range of metal concentrations.
Sifting through the literature on colorimetric metal ion

determination provided several metal-binding dye candidates.
Our screening results, shown in Figure S1 in the Supporting
Information, found two excellent candidates for inclusion in a
cross-reactive array, xylenol orange (XO) and methylthymol
blue (MTB), which are shown in Figure 2. The sodium salts of
these anionic dyes are remarkably water-soluble and
commercially available in adequate purity, and they have
long been known to form strong coordination complexes with
a multitude of metal ions.46,47

Figure 1. Depictions of the linear (green) vs nonlinear (red)
relationship between a 1:1 mixture of analytes A and B and the
response of its pure components.

Figure 2. Chemical structures of xylenol orange (XO) and
methylthymol blue (MTB) in their protonation state in neutral
water solution (pH = 7.4).
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To ascertain their cross-reactive behavior and linear
response, we conducted titrations of each dye with aliquots
of metal(II) chloride in neutral water. As metal cations were
added, the absorption spectrum varied depending on both the
concentration and nature of the metal. The cross-reactive,
differential responses of both dyes to several divalent metal
ions are shown in Figure 3.

With increasing metal ion concentration, clear differences in
behavior were observed. For example, at an M(II)/XO ratio of
2:1, very marked differences in the absorbance of the XO/
metal complex were apparent at 578 nm; comparison of ZnII vs
CuII vs NiII also shows remarkable variability. This varied
behavior reflects the underlying differences in binding modes
(e.g., geometry and stoichiometry) for those metal ions. On
the other hand, both dyes were much less responsive to s-block
divalent metal cations (see Figure S11) and to Na+. Since Na+

is a ubiquitous interferent in the determination of other metal
ions in any matrix of practical relevance, insensitivity to Na+ is
actually welcome for the current application.
Working at relatively low dye concentrations ([dye] = 5 and

7.5 μM for XO and MTB, respectively), formation constants
for the metal−dye complexes could be determined for most
metal cations with XO and MTB dyes from absorption profiles
such as those presented in Figure 3 (see Table S1and Figure S4
in the Supporting Information). The 1:1 formation constants
for the dye/metal complexes ranged from 105 to 1010,
indicating wide variability in binding affinity and yet strong
binding throughout.
In addition to those observed at 578 nm (for XO) and 604

nm (for MTB) in Figure 3, further differences were also
evident in other parts of the absorption spectrum of each

metal−dye complex (see Figures S2 and S3 in the Supporting
Information). Taken together, such features may allow one to
identify the metal to which the dye is responding by careful
comparison of the absorbance spectra at a relatively high
concentration of metal. However, distinguishing metals at
lower concentrations would become increasingly difficult:
instead, the spectroscopic information was interpreted using
pattern recognition-based methods. The varied response to the
metal ions under test, the high signal intensity, and the
excellent dynamic range make these dyes compelling
promiscuous chemical sensors. The strength of these
complexes allowed us to find conditions for the analytical
response to be linear with the mixture’s composition. Indeed,
all isotherms shown in Figure 3 display a distinct linear region
at low metal concentration where the spectral response varies
linearly with the concentration of metal cation, providing an
ideal testbed for our design hypothesis.

Metal Ion Discrimination. For repeatable acquisition of
absorption data at multiple wavelengths on many analytes,
samples were laid out on 384-well microplates and experiments
were conducted on an automated plate reader. Plates
contained enough space for multiple replicates of each metal
sample, together with dye reference standards and buffer
blanks. For our initial qualitative experiment, the sensing array
was exposed to 11 divalent metal chloride salts: BaII, MgII, FeII,
MnII, CoII, NiII, CuII, HgII, CdII, ZnII, and PbII; each salt was
dissolved in H2O containing 50 mM HEPES buffer (2-[4-(2-
hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) adjusted to
pH 7.4. Biasing effects stemming from the metals’ counterion
were avoided by using chloride salts throughout since Cl− is a
well-solvated, relatively inert anion in neutral water.48 Sodium
chloride was also added to the analyte panel as a negative
control since neither dye was expected to respond to it
according to the preliminary work described above. Fur-
thermore, selected transition metal complexes from our panel
are susceptible to pH-dependent hydrolysis, so the pH of all
solutions was carefully controlled. For instance, FeII may be
oxidized to FeIII by dissolved oxygen in water;49 the resulting
acidic FeIII aqua complex can then hydrolyze to form insoluble
precipitates, leading to inconsistent metal concentration.50

Therefore, all stock solutions were prepared fresh before each
experiment and were kept at constant pH and temperature.
For all qualitative experiments, absorbance was monitored at

334, 342, 360, 380, 400, 436, 442, 450, 482, 500, 520, 540,
560, 578, 590, 604, and 614 nm, the positions of prominent
features in the absorbance spectra of the metal complexes of
XO and MTB found during binding titrations (see Figure S6 in
the Supporting Information). For differentiation work, metal
concentrations were kept constant at 5 μM and dye
concentrations were set to the same used in the benchtop
binding titrations mentioned previously, namely, 5 μM and 7.5
μM for XO and MTB, respectively. Fifteen replicates were
prepared for each metal sample, which generated a large data
set (2 dyes × 12 analytes × 15 replicates = 360 samples, each
described by the 17 measured absorbance values listed above).
A detailed layout of the microwell plate containing these
solutions and a picture of the completed plate that showcases
the highly differential colorimetric response are shown in
Figure S5.
Linear discriminant analysis (LDA) was then used to aid in

data analysis and dimensionality reduction. The LDA
algorithm generates a new data set whose descriptor variables
are linear combinations of the original instrumental measure-

Figure 3. Isotherms from the titration of aliquots of eight metal(II)
chlorides into solutions of xylenol orange (XO, 5.0 μM, top) and
methylthymol blue (MTB, 7.5 μM, bottom) in buffered water (pH
7.4, 50 mM HEPES).
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ments, constructed so that maximum separation between
samples is achieved while at the same time minimizing
separation between replicate measurements for the same
analyte to give tight, well-separated clusters.51 These
descriptors, called factors, are returned in decreasing order of
information content, allowing for straightforward dimension-
ality reduction: one can drastically reduce the size of the data
set by retaining only the first few important factors, with
minimal loss of information. We chose to retain two factors, so
each sample in the transformed data set was associated with a
pair of numbers, its factor scores, which could be used as
coordinates to plot the transformed data points in a two-
dimensional graph, the scores plot. The factor loadings
obtained from the LDA analysis, i.e., the contributions of
each measurement to the LDA factors, indicate that some of
them contributed very little to the performance of the array in
separating metal ions. These superfluous instrumental
measurements introduce noise and require extra acquisition
time so, in a process referred to as “variable reduction”, we
optimized the sensing system by removing instrumental
measurements from the original data set. The details of the
“variable reduction” process for the [MII] = 5 μM qualitative
data set are described further in the Supporting Information
(Figure S8).
The plots of LDA scores and loadings for the qualitative

discrimination of divalent metal cations, obtained after variable
reduction, are presented in Figure S9 in the Supporting
Information. The tight clustering and good separation in the
scores plot indicate excellent repeatability and strong
discriminatory power, respectively; in short, they show that
this cross-reactive sensor array was very effective in
discriminating all metal cations of analytical interest.
Furthermore, analysis of the loadings plot (Figure S9) showed
that the two dyes are both contributing meaningfully to the
differentiation, indeed in almost equal proportions, an ideal
situation for pattern-based sensing procedures. Further details
on the qualitative results can be found in the Supporting
Information. Having shown that the system responds linearly
to changes in concentration of metal ions, we moved to quali-
quantitative analytical determinations.
Quantitative Analysis. Quantitative work would hinge

critically on retaining a linear response from the dye/metal
complex formation system. However, Figure 3 above shows
that the system responds linearly only over a specific range of
metal concentrations. In pursuing quantitative response,
therefore, we redesigned the array to include multiple solutions
of each dye, each at a different concentration: this guaranteed
that, for any practically relevant concentration of metal ions,
one of these dye solutions would exhibit the sought after linear
response to the metal concentration, and the others would “fall
silent”, having no significant response: they would be either too
concentrated and therefore give off a constant, high saturated
signal or too dilute and insensitive, giving off a constant, low
signal. The LDA analysis would then automatically discard
these contributions from the out-of-range dye solutions due to
their low variance, i.e., no information content useful for
sample discrimination.
We selected four divalent metal ions to run our test (CdII,

HgII, PbII, and CuII) for their biological and environmental
importance. On a 384-well microplate, our sensing array
comprised three concentrations for each dye (5, 20, and 40 μM
for XO and 10, 30, and 60 μM for MTB). We laid out a series
of samples at five concentrations for each metal cation (1, 2.5,

5, 7.5, and 10 μM). Using LDA analysis and the reduced
variable set obtained previously, the array was able to
differentiate all concentrations of these metal ions with clear
linear characteristics. In this case, 54 total instrumental
measurements for each dye concentration were reduced to
18 (see Figure S14 for the loadings plot). The resulting LDA
scores plot (Figure 4) displays excellent separation between
clusters of replicates.

These results clearly show that the system is capable of
quantitative and qualitative differentiation of these metal
cations: in other words, if one were to process an unknown in
the same way as these training samples, the unknown’s position
on the plot would not only indicate which metal was present
but also at what concentration. This is a remarkable result for
such a simple system at relatively low concentration in neutral
water.

Analysis of Mixtures. The remarkably good discrim-
inatory power coupled with linearity in concentration response
obtained above provided the necessary foundation to confront
the “problem of mixtures” to which we referred before. We
therefore challenged the array with a series of mixtures of metal
cations, intending to use its response as a 2D calibration curve.
In the following work, we examined binary and ternary

mixtures of NiCl2, HgCl2, and PbCl2. On a 384-well
microplate, three solutions containing pure metal ions (30
μM), one equimolar ternary mixture (10 μM each), and six
stock solutions containing 2:1 binary mixture combinations of
each metal ([metal] =20 and 10 μM) were added to the array.
Higher dye concentrations offered better overall signal-to-noise
ratios in this case ([MTB] = 30 μM, [XO] = 20 μM; see the
Supporting Information for comparison). After LDA analysis,
dimensionality reduction, and retention of the nine most
important instrumental measurements (out of the 24
collected), the resulting LDA scores plot, which retained
98.7% of the original information, is shown in Figure 5.
Encouragingly, the three pure metals and mixture samples

were found distributed along the edges of a triangle, with the
pure metal samples at each vertex. For each pair of metal ions,
the corresponding 1:2 and 2:1 mixtures were found where

Figure 4. LDA scores plot for the quali-quantitative differentiation of
CdII, HgII, PbII, and CuII at five concentrations (1, 2.5, 5, 7.5, and 10
μM; [XO] = 5, 20, and 40 μM and [MTB] = 10, 30, and 60 μM).
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expected, namely, one third and two thirds of the way along
the triangle’s corresponding edge, respectively. Furthermore,
replicates from the equimolar ternary mixture clustered very
close to the center of the triangle identified by the pure metal
clusters. To highlight the quality of the positional response, we
calculated best-fit trendlines for each of the triangle’s sides; for
instance, the trendline on the top left of Figure 5 was obtained
by drawing a best-fit line through the centroids of the clusters
for PbII, 2PbII:NiII, PbII:2NiII, and NiII. The replicate clusters
also remained very tight (excellent reproducibility) and widely
spaced (high discriminatory power).
To further support the generality of this approach, the same

array was exposed to metal ion mixtures composed of three
different metal cations. Thus, the same binary and ternary
mixtures used previously for NiII, PbII, and HgII were prepared
using CoCl2, CuCl2, and CdCl2 and added to a 384-well
microplate under the conditions described previously. After
LDA analysis, dimensionality reduction, and retention of the
eight most important variables, a two-dimensional plot of LDA
scores was generated, shown in Figure 6. These results appear
nearly identical to those shown previously for NiII, PbII, and
HgII (Figure 5): the three pure metal clusters make up the
vertices of a triangle, the 2:1 binary mixtures are distributed
appropriately along its edges, and the equimolar ternary
mixture replicates are positioned near the center of the triangle.
Once again, all replicate clusters display tight intra-cluster
spacing (indicating high reproducibility), with large inter-
cluster distances (high discriminatory power). These results,
obtained using a second set of metal cations, confirm that our
previous success was not due to the specific analytes chosen
but due to the choice of conditions, which should therefore
allow for discrimination of any mixture of metal cations, as
long as they display appreciable affinity toward these dyes.
Because most transition and heavy metals do, this bodes well
for the generality of this method.
Identification of Binary Mixtures of Unknown

Composition. Knowing that the system responds linearly to
variations in relative composition of these mixtures, we used

the results in Figure 5 as a training set to identify mixtures of
unknown composition, some among which were not included
in the original training set (e.g., 1:1 binary mixtures). We asked
a colleague to prepare eight metal ion solutions whose
composition was unknown to us and exposed the array to
each of them under the same conditions as the training set.
The measurements obtained from this test set were trans-
formed using the LDA eigenvectors (transformation rules)
generated from the training set. As a result, the test set data
could be projected onto the training set scores plot from
Figure 5. The results, displayed in Figure 7, accurately predict
the composition of unknown samples in the challenge set.

Figure 5. Two-dimensional LDA scores plot for the separation of
metal ion mixtures. The plot was obtained using only the nine most
important instrumental measurements and captures 98.7% of the total
information content from the original data set ([XO] = 20 μM and
[MTB] = 30 μM, total [MII] = 30 μM).

Figure 6. Two-dimensional LDA scores plot for the separation of a
metal ion mixtures (CoII, CuII, and CdII). The plot was obtained using
the eight most important instrumental measurements and captures
99.7% of the total information content from the original data set
([XO] = 20 μM and [MTB] = 30 μM, total [MII] = 30 μM).

Figure 7. LDA scores plot for the test set of eight unknown metal ion
mixtures (UKn) onto the training set from Figure 5, generated using
the same conditions. 98.7% of the information content in the raw set
was retained. UK1: 5:1 Hg/Ni, UK2: 1:1:1 Ni/Pb/Hg, UK3: 1:1 Ni/
Pb, UK4: 2:1 Hg/Ni, UK5: 2:1 Ni/Pb, UK6: 1:1 Pb/Hg, UK7: 2:1
Pb/Hg, and UK8: 1:1 Ni/Hg.
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Included in the challenge set was also an equimolar ternary
mixture, found to overlap with the same cluster from the
training set. Additionally, all binary mixtures from the
challenge set were found in the predicted positions along the
trend lines obtained from the training set. Notably, this
included four binary mixtures that had not been present in the
training data (three 1:1 binary mixtures and a 5:1 HgII/NiII),
and yet the system was able to place them in appropriate
positions on the calibration plot. Thus, enforcement of a
strictly linear behavior provided a predictable response capable
of identifying features for which the system had not been
trained.
Identification of Ternary and Quaternary Mixtures.

We then attempted to identify four unequal ternary mixtures of
the same three metal cations; none of these mixtures was
present in the training set. We prepared three solutions
containing 20 μM of one metal and 5 μM of the other two as
well as a 3:2:1 mixture, containing 15 μM NiII, 10 μM PbII, and
5 μM HgII. After taking the same nine instrumental
measurements as the training set, Figure 8 shows the results

obtained when this ternary challenge set was projected onto
the training set previously shown in Figure 5. As expected, all
ternary mixtures fall inside the triangle delineated in the
training set. The array’s ability to distinguish the most
abundant metal ion in the 4:1:1 mixtures was particularly
impressive. Moreover, the position of the 3:2:1 ternary mixture
cluster is correctly placed relative to the equimolar ternary
mixture cluster from the training set. In short, the system was
very successful in identifying the relative composition of four
ternary mixtures that had not been included in the initial
training set.
Pushing further, the same sensing array ([XO] = 20 μM,

[MTB] = 30 μM) was then exposed to a series of mixtures
composed of four metal chlorides (total [MII] = 36 μM, CuCl2,
PbCl2, HgCl2, and CdCl2). For this study, the analyte panel
included an equimolar quaternary mixture, all 12 possible 2:1
binary mixtures, and the four pure metal samples. In this case,
three factor scores were retained for each sample resulting in

the 3D plot displayed in Figure 9, in which the equimolar
quaternary mixture was positioned at the center of a

tetrahedron whose vertices correspond to the four pure
metal samples. Moreover, the most abundant metal in each
2:1 binary mixture combination was positioned nearest to the
respective pure metal vertex, between the pure metal and
equimolar mixture points within the confines of the
tetrahedron. These results further highlight that carefully
ensuring a linear response translated in the system’s predictable
behavior when exposed to mixtures of analytes.

Response to Total Metal Ion Concentration. Finally,
we examined the array’s response to variations of total metal
concentrations. Up to this point, all mixtures contained a total
metal ion concentration of 30 μM. Using the same array setup,
we explored how the response changed as a function of total
metal concentration. We acquired a second training set at a
lower total [metal ion], namely, 15 μM. Assuming that the
response of the array scales linearly with total metal
concentration, one would then be able to determine the
nature and concentration of the metal ions under study and
their mixtures in a single experiment.
We repeated the procedure used to generate the training set

for mixture analysis but with total metal ion concentration cut
in half to 15 μM. The 2D scores plot obtained for metal ion
mixtures at 15 μM was comparable to the one obtained for the
30 μM systems shown in Figure 5 and Figure 6 (see Figure S16
in the Supporting Information).
Combining the 30 μM and 15 μM data sets generated a 3D

scores plot displaying very clear separation of the two
concentration data sets (Figure 10). The data set correspond-
ing to each concentration retained a roughly triangular shape;
within each triangle, whose vertices corresponded to the pure
metal samples, mixtures were positioned at the appropriate
intermediate positions along each edge. Furthermore, the two
triangular ensembles corresponding to the two total metal
concentration values stacked up well in 3D “factor space”,
highlighting the relationship between the two data sets.
Connecting the vertices of the triangles obtained from each

metal ion concentration for the same metal ion also allowed us
to extrapolate the array’s behavior at infinite sample dilution
(i.e. [MII] ≈ 0 μM). We found that the extrapolated behavior

Figure 8. Two-dimensional plot of the LDA scores for the “ternary
test set”, projecting four unequal ternary metal ion mixtures onto the
training set from Figure 5 ([XO] = 20 μM and [MTB] = 30 μM, total
[MII] = 30 μM).

Figure 9. Discrimination of quaternary mixtures of metal ions by
LDA. For clarity, 2:1 binary mixtures are not explicitly labeled and
only cluster centroids are shown ([XO] = 20 μM, [MTB] = 30 μM,
total [MII] = 36 μM in H2O solution buffered to pH 7.4 with 50 mM
HEPES).
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matched well with the one observed experimentally for samples
containing the dyes alone (i.e. [MII] = 0 μM, black dots in
Figure 9), further confirming that the sensor array’s response
scales linearly with the concentration of the metal analytes.
This is an important result that demonstrates the array’s ability
to determine the concentration of these analytes, in addition to
their identity: the array can determine the identity and
concentration of a sample containing any mixture of NiII, PbII,
and HgII over a range of concentrations between 0 and 30 μM.
In fact, it should be possible to extend the effective
concentration range, if all components of the analytical system
respond linearly.

■ CONCLUSIONS
We developed a cross-reactive, multivariate sensing array
consisting of two well-known, commercially available dyes that
were selected to form strong coordination complexes with a
variety of divalent metal cations in neutral buffered water. On
this simple basis, we constructed a robust approach for direct
quantitative multivariate sensing of analytes in a mixture based
on specific criteria for the detection of analytically relevant
metal ion targets, removing the need for chemical separation
prior to detection. The design principles presented in this
paper are general and can be applied to other array-based
systems: once response linearity is achieved, the results can be
used as effective and simple multidimensional “calibration
plots” to identify the makeup of analyte mixtures of unknown
composition. Separation and detection methods for analyte
mixtures, normally envisioned as independent processes, were
integrated in a single system.
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