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Abstract

Motivation: The combination of genomic and epidemiological data holds the potential to enable accurate pathogen
transmission history inference. However, the inference of outbreak transmission histories remains challenging due
to various factors such as within-host pathogen diversity and multi-strain infections. Current computational methods
ignore within-host diversity and/or multi-strain infections, often failing to accurately infer the transmission history.
Thus, there is a need for efficient computational methods for transmission tree inference that accommodate the
complexities of real data.

Results: We formulate the direct transmission inference (DTI) problem for inferring transmission trees that support
multi-strain infections given a timed phylogeny and additional epidemiological data. We establish hardness for the
decision and counting version of the DTl problem. We introduce Transmission Tree Uniform Sampler (TiTUS), a
method that uses SATISFIABILITY to almost uniformly sample from the space of transmission trees. We introduce
criteria that prioritize parsimonious transmission trees that we subsequently summarize using a novel consensus
tree approach. We demonstrate TiTUS’s ability to accurately reconstruct transmission trees on simulated data as

well as a documented HIV transmission chain.

Availability and implementation: https://github.com/elkebir-group/TiTUS.

Contact: melkebir@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advent of cheaper and more powerful sequencing methods,
molecular epidemiology has become an indispensable tool for infer-
ence of transmission histories of infectious disease outbreaks.
Genomic data of pathogen isolates collected from infected hosts is
used to assist with the identification of unknown infection sources
and transmission chains. Intensive field work generates crucial epi-
demiological data that provides addition information such as con-
tact history between patients and exposure times of the patients to
sources of infection. Methods that can efficiently use genomic and
epidemiological data together for accurate inference of transmission
history of outbreaks are the key to real-time outbreak management
and devising public health policies and disease control strategies for
future outbreaks (Dellicour et al., 2018).

There are several challenges that hinder the accurate inference of
the transmission history of an outbreak. Phylogeny estimation of the
pathogen isolates reveals the evolutionary history of the pathogen
during the outbreak. However, due to within-host diversity of many
pathogens, branching events in the phylogeny do not correspond to
the transmission events during the outbreak (Romero-Severson
et al., 2014). Phylogeny-based methods that assume that the trans-
mission events coincide with the branching events in the phylogeny
are therefore only applicable in the context of pathogens with low
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mutation rates, short incubation times and acute infections (Cottam
et al., 2008; Harris et al., 20105 Leitner et al., 1996; Ypma et al.,
2012). Notably, recent studies of SARS-CoV-2, the virus leading to
COVID-19, demonstrate that there are patients that exhibit within-
host diversity, i.e. the presence of multiple SARS-CoV-2 viral strains
in COVID-19 patients (Shen et al., 2020; Tang et al., 2020).
Another factor that makes outbreak transmission history infer-
ence challenging is a weak transmission bottleneck, where multiple
strains of the pathogen are transmitted from a donor to a recipient
through a non-negligibly small inoculum. Due to this, the most re-
cent common ancestor of lineages from the same host need not have
arisen in that host. A similar phenomenon of co-migration of cancer-
ous cells has been observed in metastatic cancers (El-Kebir, 2018).
Although large inocula have been observed in a number of diseases
(Leonard et al., 2017), most of the existing methods for transmission
tree inference that account for the within-host diversity do not ac-
count for the co-transmission of pathogen strains (Didelot ef al.,
2014, 2017; Hall et al., 2015; Ypma et al., 2013). That is these
methods assume a strong transmission bottleneck where a single
strain of the pathogen is transmitted in an infection. A weak trans-
mission bottleneck is considered in SCOTTI (De Maio et al., 2016)
and BadTrIP (De Maio et al., 2018), however they make the simpli-
fying assumption that all the transmissions are independent of each
other. Our previous work, SharpTNI (Sashittal and El-Kebir, 2019),
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Fig. 1. Overview of the DTI problem. (a) The input of the problem consists of a timed phylogeny T that captures the evolutionary history of the pathogen during the course of
the outbreak. Each leaf of T corresponds to a pathogen strain sampled from an infected host and is thus labelled using " (indicated by colours). Due to within-host diversity,
there may exist multiple leaves labelled by the same host. The entry and removal times [t.(s), 7,(s)] for each host s are also included in the input. The contact map C is a
directed graph between the host set indicating putative transmission pairs. (b) Our aim is to label the internal vertices of T with ¢ such that the resulting transmission edges
form a transmission tree S (as shown in Fig. 1b). Each edge (s, #) of S is weighted by the number of transmission edges from host s to host # given by the vertex labelling ¢. (c)
An alternative solution to the given DTI instance. It is easy to see that no solution exists under the strong bottleneck constraint, whereas under the weak transmission bottle-
neck, there are multiple solutions. All the feasible vertex labelling are shown in Supplementary Figure S1

considers the weak transmission bottleneck without this assump-
tion, under a parsimony-based framework for a known phylogeny.
However, SharpTNI may yield transmission histories that cannot be
represented by a tree due to multiple infections of a single host from
distinct donors. Such superinfections are unlikely for pathogens
where infected hosts acquire immunity towards further infections of
the pathogen (Wearing and Rohani, 2009; Whittle ez al., 1999).

Here, we extend our previous work on transmission network in-
ference (Sashittal and El-Kebir, 2019) in the following three ways.
First, we consider the problem of counting and sampling uniformly
from the set of possible transmission trees for a known phylogeny
and epidemiological data. As mentioned, the constraint of tree-like
transmissions between hosts is not enforced by SharpTNI (Sashittal
and El-Kebir, 2019). This constraint is enforced by Kenah et al.
(2016) where the order of infections during the outbreak is com-
pletely known, and by Hall and Colijn (2019) under the strong
transmission bottleneck constraint. In this work, we introduce
Transmission Tree Uniform Sampler (TiTUS) to approximately
count and almost uniformly sample the transmission trees under a
weak transmission bottleneck for a given timed phylogeny (Fig. 1).
We prove the hardness of the decision and counting versions of this
problem and demonstrate the efficiency and accuracy of TiTUS on
simulated data. Second, we present robust criteria for ranking or pri-
oritizing the uniformly sampled candidate transmission trees. In
addition to the simulated data, we demonstrate the performance of
the selection criteria on an HIV outbreak with a known transmission
chain (Vrancken et al., 2014). Third, in practice, the underlying
phylogeny has some uncertainty and there can be multiple candi-
dates for the transmission tree for a given phylogeny. It is therefore
desirable to have an efficient method to summarize the solution
space of transmission trees that are consistent with the genetic and
epidemiological data. To this end, we propose a consensus-based
method that summarizes a set of candidate solutions while account-
ing for the number of distinct strains transmitted in each infection
event.

2 Preliminaries

To state the problems we consider in this article, we start by intro-
ducing the required concepts and notation. Let T be a rooted tree
with vertex set V(T) and edge set E(T). The set of leaves of the tree
is given by L(T). The root of the tree is denoted by #(T). We denote
the children of a vertex u by d7(u). We write u< rv if vertex u is an-
cestral to vertex v, i.e. vertex u is present on the unique path from
7(T) to vertex v. Note that <7 is reflexive, i.e. it holds that u< ru for
all vertices u. We denote the set of 7 distinct hosts in the outbreak
by Z. In a phylogeographical setting, the set  corresponds to m dis-
tinct geographical locations.

The evolution of all strains of a pathogen in an outbreak is mod-
elled by a timed phylogeny, which we define as follows.

Definition 1 A timed phylogeny T is a rooted tree whose vertices are
labelled by time-stamps 7 : V(T) — R=° such that t(u) < t(v) for all
pairs u, v of vertices where u<v.

Thus, as we can see in the above definition, time moves forward
when traversing down a timed phylogeny T starting from the root
7(T). It is important to note that the leaves of a timed phylogeny T
may occur at distinct time-stamps, i.e. T is not necessarily
ultrametric.

Each leaf of a timed phylogeny T corresponds to a strain of
pathogen that was collected during the outbreak. As such, we know
the host from which each individual strain was isolated. This is cap-
tured by a leaf labelling, i.e. a labelling of the leaves of T by hosts X.

Definition 2 A leaf labelling of a timed phylogeny T is a function
{:L(T) — X, assigning a host £(u) € X to each leaf vertex u € L(T).

While we know the host £(u) from which each individual leaf
u of T was sampled, we do not know the hosts of the internal ver-
tices, which correspond to unsampled, ancestral strains. Here, our
goal is to determine the hosts in which these ancestral strains res-
ide. Mathematically, we wish to construct a wvertex labelling
£:V(T) — =, such £(u) = £(u) for all leaves u € L(T). Given a
vertex labelling ¢, each internal vertex # of T thus corresponds to
a strain residing within host ¢(u) at time ().

In addition to the evolutionary history of all strains in the out-
break, a timed phylogeny T combined with a vertex labelling ¢ gives
us information about the transmission history of the outbreak.
Transmissions of strains from one host to another correspond to edges
(u, v) of T labelled by distinct hosts £(u) # ¢(v). Formally, we define a
transmission edge as follows.

Definition 3 Given a timed phylogeny T and vertex labelling ¢, an edge
(u, v) of T'is a transmission edge if £(u) # £(v).

The vertex labelling that we construct for a given timed phyl-
ogeny T and leaf labelling ¢, must follow certain constraints for a
realistic reconstruction of the transmission history of the pathogen.
We will now define these epidemiological constraints.

The first constraint that we introduce is called the direct transmis-
sion constraint, which imposes the following two restrictions. First,
the outbreak begins with a single infected host. We call this initial
host the root host and it labels the root node #(T) of the timed phyl-
ogeny. The root host is not infected by any other host and therefore if
s is the root host, there cannot exist a transmission edge (u, v) such
that 4(u) # s and £(v) = s. Second, the remaining hosts have a unique
infector and are thus infected only once in the course of the outbreak.
A possible explanation for this phenomenon is diseases where infected
hosts acquire immunity towards further infections of the pathogen
(Wearing and Rohani, 2009; Whittle et al., 1999). Consequently,
there cannot exist two distinct transmission edges (u, v) and («/,7/)
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such that ¢(v) = £(¢/) and £(u) # ¢(u'). However, an infection be-
tween any two hosts s, # € ¥ may involve the transmission of multiple
strains at the same time. This is known as a weak transmission bottle-
neck. As the transmission of strains must occur concurrently, the time
intervals corresponding to any two transmission edges between the
same pair (s, #) of hosts must have a non-empty intersection. More
formally, we state the direct transmission constraint as follows.

Definition 4 For a timed phylogeny T, a vertex labelling ¢ satisfies the
direct transmission constmint if (i) there does not exist a transmission
edge (u, v) such that ¢(v) = {(r(T)), (ii) for any two distinct transmission
edges (i, v) and («',7/) w1th L(v) = L), we have (u) = {(u') and (iii)
we have [t(u), t(v)] N [t(«),1(v')] # & for any two distinct transmission
edges (1, v) and (', v') where ¢(u) = £(1') and £(v) = (V).

Under the direct transmission constraint, the set of transmission
edges induced by the vertex labelling ¢ uniquely determines the #rans-
mission tree S. More formally, the vertex set V(S) of a transmission
tree S is the host set X, and there is a directed edge froms € Ztot €
¥ if and only if there exists at least one edge (#,v) € E(T) such that
(i) s #1¢, (ii) £(u) = s and (iii) £(v) = t. As every host except the root
host has a unique infector, the directed edges necessarily form a tree.
Each directed edge (s,¢) € E(S) is given a weight w : E(S) — N such
that w(s, t) equals the number of transmission edges in T from host s
to . If w(s,#) = 1 for all edges (s, t) € E(S) then each host is infected
due to the transmission of a single pathogen strain. This phenomenon
is known as a strong transmission bottleneck.

Epidemiological data provide two additional types of informa-
tion. First, for each host s, we are given an interval [z.(s), 7,(s)] dur-
ing which the host was present in the outbreak and susceptible for
infection. Specifically, 7.(s) € R=? is the entry time at which host s
became susceptible for infection, whereas 1,(s) € R=? is the removal
time at which the host was removed from the susceptible and
infected populations and placed in treatment or recovering.

Second, there can also be documented geographical constraints
that prevent transmissions between any given pair of hosts. We ac-
count for all such constraints using a contact map. A contact map C
is a directed graph whose vertex set equals the set £ of hosts. A
directed edge (s, #) represents a possible infection event from host s
to host . If any two hosts are not connected in C then there can be
no infection event between that pair of hosts. It can clearly be seen
that (i) the contact map C is a subgraph of the interval graph
induced by the intervals [z(s), 7,(s)], Vs € Z and (ii) the transmission
tree S is a spanning arborescence of the contact map C. Thus, even
in the absence of documented contacts between hosts, a contact map
is induced by the entry and removal times of the hosts.

3 Problem statement

We focus on inferring the transmission history of an outbreak for a
known pathogen phylogeny T. In addition, we are given epidemio-
logical data, which include the contact map C, entry and removal
times [7,(s), 7,(s)] for each host s € ¥ and assume a direct transmis-
sion constraint under a weak transmission bottleneck. This leads to
the following decision problem.

Problem 1 [direct transmission inference (DTI)]. Given a timed phyl-
ogeny T with time-stamps 1:V(T)— R2°, a leaf labelling
{:L(T) — %, a contact map C and entry 7, : £ — R>® and removal
times 7, : £ — R’ find a vertex labelling ¢ that induces a transmission
tree S that is a spanning arborescence of C and t(u) € [z.(s), ,(s)] for all
hosts s and vertices # where {(u) = s.

An instance of the DTI problem is shown in Figure 1a shows an
instance of the DTI problem along a with a solution vertex labelling
¢ and induced transmission tree S, where the three hosts are indi-
cated using three colours. Importantly, a DTI problem instance may
admit multiple solutions, as shown in Figure 1b and ¢. These solu-
tions provide alternative reconstructions of the transmission history,
and thus must be considered in any downstream analysis of the

outbreak to devise policy to better manage/prevent future outbreaks.
To quantify the number of alternative reconstructions, we formulate
the following counting problem.

Problem 2 [# direct transmission inference (#DTI)]. Given a timed phyl-
ogeny T with time-stamps ©:V(T)— R=", a leaf labelling
{:L(T) — %, a contact map C and entry 7, : £ — R>® and removal
times 7, : £ — R=’, count the number of vertex labelling £ that induce a
transmission tree S that is a spanning arborescence of C and t(u) €
[te(s), t,(s)] for all hosts s and vertices # where £(u) = s.

Let £ be the set of all solutions to a given DTI problem instance.
Ideally, we would exhaustively enumerate all solutions to the prob-
lem instance. However, worst case, the number of solutions scales
exponentially with our input. Thus, to obtain a good overview of
the solution space £, we need to consider the sampling version of
#DTI problem where we wish to uniformly sample the solution
space.

In summary, we defined three versions of the DTI problem: a de-
cision, counting and sampling version. In the following, we will con-
sider a previously defined constrained version of the DTI problem as
well as a generalization.

3.1 Related transmission tree inference problems

We start by considering a version of the DTI problem with one add-
itional constraint. This additional constraint requires that only one
pathogen strain is transmitted to a new host in a transmission event,
and is known as a strong transmission bottleneck. We refer to this
problem as Directed Transmission Inference under Strong
Bottleneck (DTI-SB), and denote the space of solutions by £SB. This
problem was posed by Hall et al. (2015). In subsequent work, Hall
and Colijn (2019) introduced a polynomial time algorithm to enu-
merate and uniformly sample from the set Lsg. As the DTI-SB only
has one additional constraint over the original DTI problem, the so-
lution space of DTI-SB is a proper subset of the solution space of
DTI for the same timed phylogeny T, leaf labelling ¢ and epidemio-
logical data. More formally, we have Lsg C L.

The second problem we consider is a relaxed version of DTIL
Specifically, we relax the direct transmission constraint for a given
instance of DTI. We refer to this problem as rel-DTI and the space
of feasible solutions for a given instance by Lggr. Section 5.2.1
introduces a polynomial time dynamic programming algorithm that
enumerates, counts and uniformly samples from the set Lrgr. Since
the rel-DTI problem is a relaxation of the DTI problem, we can
use the algorithm introduced in Section 5.2.1 to uniformly sample
from the solution space of the DTI problem (£). Figure 2 shows the
relation between the solution spaces of the three transmission tree
inference problems.

3.2 Consensus tree problem

For the DTI problem described in the previous section, we start with
a given pathogen phylogeny T. However, in practice, the phylogeny
needs to be inferred from genomic sequences of the strains collected
from individual hosts X. Several methods of phylogeny inference
generate either multiple candidates for the phylogeny or a posterior
on the solution phylogeny space (Bouckaert et al., 2019; Stamatakis,
2014). Moreover, for each given timed phylogeny, we can get mul-
tiple solutions to the DTI problem, as shown for a representative in-
stance in Figure 1. Therefore, there is a need for an efficient method
to summarize the candidate transmission trees that explain the dis-
ease outbreak.

A common method to summarize the solution space of trans-
mission trees is to aggregate the information from the candidate
transmission trees to generate a single graph where each edge is
weighted by the number of candidate trees that support that edge
(De Maio et al., 2016; Didelot et al., 2014; Wymant et al.,
2018). This graph rarely represents a single coherent transmis-
sion tree among the set of all hosts in the dataset. For this rea-
son, the resulting graph is called a relationship graph (Wymant
et al., 2018) and does not provide crucial information about
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Fig. 2. Schematic of the solution spaces of transmission trees under different con-
straints for a known timed phylogeny. We have Lsp € £ C Lrgr. Lsp is the solu-
tion space of transmission trees with a strong bottleneck that is considered in
the work of Hall and Colijn (2019) where they show that counting the solutions
and sampling from this solution space can be performed in polynomial time. £
is the solution space of DTI which we show to be both NP-complete and #P-
complete. Finally, Lrgy is the relaxed solution space that is used to construct a
polynomial time rejection-based naive sampling and counting algorithm in
Section 5.2.1

co-occurrence and mutual exclusivity among edges of the candi-
date transmission trees.

Another line of method summarizes the set of candidate solu-
tions using one or more consensus trees that best represent the solu-
tion space (Jombart et al., 2017; Kendall ez al., 2018). For instance,
Jombart et al. (2017) apply pairwise distance metrics on the space S
of transmission trees, not taking into account the number w(s, t) of
transmitted strains between pairs of host (s, #). The resulting dis-
tance matrix is subsequently embedded into lower-dimensional
space that the authors then cluster. Finally, each cluster is then
assigned a single transmission tree in S as its representative (Hall
and Colijn, 2019). Kendall ez al. (2018) follow a similar embedding
approach, again not considering the number (s, #) of transmission.
Thus neither method supports a weak transmission bottleneck. To
address this limitation, we define the weighted parent—child distance
(WPCD) d(S1,S2) between any two transmission trees S; and S, as
follows.

Definition 5 Let S; = (X, E) with edge labelling w and S, = (%, E,)
with edge labelling w; be two transmission tree on the same vertex set X.
The WPCD between the two graphs denoted by d(S1,S,) is

d($1,%2) = Z wi(s,t) + Z wi (s, t)

(s,t)€Ey (s,t)€Ey

) Z min{w (s, t),wa(s,t)}.

(s,t)€E1NE;

In Supplementary Appendix A.1, we show that this distance
function induces a metric in the space S of transmission trees. Note

that transmission trees S and S’ that have the same topology but dif-
ferent edge weights w and /' will have d(S,S") > 0. As a result,
WPCD can be used to produce a consensus transmission tree while
considering an incomplete transmission bottleneck. Under the strong
transmission bottleneck, the WPCD simplifies to the size of the sym-
metric difference between the edge sets of the two transmission
trees, i.e. d(S,8') = |E' E| + |E E'|. This distance is known as the
parent—child distance, and has been used to compare tumour phy-
logenies (Aguse et al., 2019; Govek et al., 2018). Using WPCD, we
define the following consensus tree problem.

Problem 3 [Single Consensus Transmission Tree (SCTT)]. Given k dis-
tinct transmission trees S ={Si,...,S;} with edge labelling
{wi,...,w,} find a consensus transmission tree R that minimizes

d(S,R) =% d(s,,R).

4 Complexity

This section establishes hardness results for the decision and count-
ing versions of the DTI problem.

Theorem 1 DTI is NP-complete.

We show the hardness of DTI by reduction from the 1-in-3SAT
problem, which is a known NP-complete problem (Karp, 1972).
Details are in Supplementary Appendix B.

It is known that the #1-in-3SAT is a #P-complete problem
(Creignou and Hermann, 1993). To show that the #DTT is also #P-
complete, it suffices to show that there exists a polynomial-time re-
duction from #1-in-3SAT such that the number of solutions is pre-
served, which we do in Supplementary Appendix B.

Theorem 2 #DTT is #P-complete.

As the decision problem DTT is NP-complete, there does not exist
a fully polynomial randomized approximate scheme (FPRAS) for
the counting version of DTI unless NP=RP (Jerrum, 2003; Miklos,
2019).

5 Materials and methods

This section describes the methods developed to solve the decision,
counting and sampling versions of the DTI problem.

5.1 Decision problem

As the DTI is NP-complete, we propose to use SATISFIABILITY to
solve the decision problem. As such, we construct a Boolean formula
¢ for a given DTI instance (T, {,7,,1,,C), such that there is a bijec-
tion between the solutions of the DTI instance and the correspond-
ing SAT instance ¢. Solving the SAT instance will then be equivalent
to solving the corresponding DTI problem.

Vertex labelling: Decision variables x € {0,1}"*" encode a ver-
tex labelling, i.e. x;; = 1 if and only if the node {(v;) = sand x;s = 0
otherwise. We encode uniqueness of the label of each vertex with
the following formula.

nxm

onehot({x;1,...,xim}), Yvie V(T). (2)

The function onehot(X) encodes that exactly one binary variable
x € X is true, which can be accomplished by the following

constraint,
{\/ x} A {/\ (—x Vv ﬁy)} . (3)

xeX x,yeX

Transmission edges: We encode the transmission edges using var-
iables ¢, ; with s, € X and s # t. We enforce that ¢;; = 1 if and only
if the host ¢ is infected by host s, i.e.
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(xis Nxjt) = ¢sp,  V(vi,vj) € E(T)ands, t € X. (4)

Root host: To enforce that the host which labels #(T) is not
infected by any other host, we have

Xiy = €5y, Vs, t € X,s#£t, &)

where v; = r(T).

Direct transmission constraint: We enforce that any host cannot
be infected by more than one other host. For each host ¢ € =, we
have

—(css Negy), Vs,s' € Zands #s'. (6)

We require that all transmission edges from host s to host # must
have time intervals that overlap. For all edge pairs (vi,v;), (vg,v1)
that  do not have overlapping time intervals, i.e.
[t(vi), t(vj)] N [t(vr), T(v1)] = &, we impose

“(xis AXjy AXps ANXpg), Vst € X,s# L. (7)

5.2 Counting and sampling problem

5.2.1 Naive rejection-based method

For a naive rejection sampling algorithm, we relax the direct trans-
mission constraint and uniformly sample vertex labelling for the
timed phylogeny T such that for all transmission edges (#, v) we
have (¢(u),£(v)) € E(C). As described in Section 3.1, we refer to this
as the rel-DTI problem. Let the set of such vertex labelling be Lggy .
Drawing a vertex labelling ¢ € Lrgy. uniformly at random from the
set Lrgr can be done in polynomial time, as we describe in
Supplementary Appendix C. The sampled vertex labelling ¢ is
rejected unless it satisfies the direct transmission constraint, which
can be verified in polynomial time. The probability of success for
this rejection based sampling algorithm is 1 — (|£|/|Lres|)¥ after K
repetitions.

5.2.2 Approximate counting and sampling using SAT

Using the SAT formulation shown in Section 5.1, we use
ApproxMC (Chakraborty et al., 2013; Soos et al., 2019) to approxi-
mate |£| and UniGen (Chakraborty et al., 2014, 2015) to sample al-
most uniformly from £. We call the resulting method as TiTUS.
This method is available, together with our previous method
SharpTNI (Sashittal and El-Kebir, 2019), at https://github.com/elke
bir-group/TiTUS.

5.3 Consensus problem

This section introduces a polynomial time algorithm to solve the
SCTT problem. The algorithm and the proof for correctness follow
the work of Govek et al. (2018). Let S = {S1,...,S,} be a set of &
transmission trees with edge weights {w1,...,wy}. Our goal is to
find a consensus tree R that minimizes d(S,R) where d(,-) is the
WPCD. We start by considering a simpler problem, given a rooted
tree R on the set X of hosts, find nonnegative weights w* of the edges
of R so as to minimize the WPCD to S. To solve this problem, we
augment the given edge weights w; of trees S; € S to include non-
edges, yielding the function g; : £ x ¥ — N where

qi(s,t) = { gji(s, 1),

Observe that the parent—child distance between two transmission
trees S; and S; can be re-written as

d(si,S) =Y lai(s,1) = gi(s.1)l.

(s,t)€ZXX

if (s,t) € E(Sy),

otherwise.

To get the optimal weights for the given tree R, for any pair of
hosts (s, ) € E(R), we define

w*(s,t) = argmin Z |qi(s,t) — 2|
>0 §es

Intuitively, without the z > 0 constraint, the median will minim-
ize this cost. Therefore, w* (s, t) for every pair of hosts (s, #) is given
by max{med,1} where med is the median of the set
{q1(s,t),...,q(s,t)}. For the case where k is even, we define MED as
the smaller of the two middle values. Thus, we have the following
proposition.

Lemma 1 Given a set S = {S1,...,S;} of k transmission trees with edge
weights w1, ..., wy, and a transmission tree R, weights w* (s, t) for (s,#) €
E(R) will minimize the WPCD of S and R.

To identify a consensus tree R with minimum WPCD, we define
the weighted parent—child graph P as a complete graph with nodes
given by the set X and a weight function

wp(s,1) = Y _(1qi(s,2) = w" (s, 1)] = |qi(s, 1))

S,eS
Observe that the weights of the edges of P can be negative.

Theorem 3 Given a set S = {Sy,...,S;} of k transmission trees with
edge weights w1, ...,w;, a minimum weight spanning arborescence of
the corresponding weighted parent—child graph P defines a tree R that is
a solution to the SCTT problem with the distance measure used is

WPCD.

Proof. Provided in Supplementary Appendix D.

Although edge weights w,, of P can be negative, the requirement
of R to be a spanning arborescence of G means that we can solve
this problem in polynomial time with standard minimum weight
spanning arborescence algorithms.

6 Results

This section presents the results obtained by applying TiTUS to
simulated as well as a real dataset.

6.1 Simulations
We use a two-stage approach to simulate an outbreak, generalizing
Didelot et al. (2014)’s simulation framework that uses a strong
transmission bottleneck to support a weak transmission bottleneck.
First, we simulate the transmission process between the 7 hosts
using the SIR epidemic model (Allen, 2008). The epidemiological
model takes the transmission bottleneck size x and minimum num-
ber n; of strains/leaves for each host s as input. Given this input, the
model generates a transmission tree S with entry t.(s) and removal
times 7,(s) for each host s as well as the number of transmissions
w(s,t) = k between each pair (s,#) € E(S) of hosts. Given S and w,
we then simulate the evolution of the pathogens within each infected
host using a simple coalescence model with constant population size
(Kingman, 1982). This process yields a forest of timed phylogenies
for each individual host s. We construct a single timed phylogeny of
all hosts by stitching together individual timed phylogenies using the
transmission tree S. We sample all the pathogen strains present in
each infected host. This results in more samples from hosts that have
higher within-host diversity. For each combination of number 7 €
{5,7,10} of hosts and bottleneck size x € {1,2,3}, we generate five
instances, amounting to a total of 45 simulated instances. The cases
with k=1 correspond to outbreaks with a strong transmission
bottleneck. To mimic the uncertainty in epidemiological data seen in
practice, we increase the length of the entry and removal time inter-
val [t.(s) — A, 1,(s) + A] for each host s, where A equals 10% of the
total outbreak duration.

We find that increasing the number of hosts and bottleneck size
in the simulations leads to an increase in the number of vertices 7 in
the phylogenetic trees (Supplementary Fig. S6a). This leads to a
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pling frequency

sharp increase in the number of feasible solutions to the rel-DTI
(Fig. 3a). The number of solutions to DTI, on the other hand, stays
relatively constant for increasing bottleneck size. As a consequence
of this, the sampling efficiency of the naive rejection sampling
method, defined by the ratio £/|CrgL|, precipitates with increasing
number 7 of hosts and bottleneck size x proving it unsuitable for
any real applications.

For cases with simulated bottleneck size x > 1, STraTUS fails to
provide any solutions (Fig. 3a). This shows that when multi-strain
infections occur, transmission history inference with a strong bottle-
neck assumption will fail to provide the true transmission tree top-
ology. Finally, we assess the sampling accuracy of TiTUS by
comparing the sampling frequency with 1/|£| where |£| is computed
with sharpSAT (Thurley, 2006). For each unique solution that is
sampled, the expected sampling frequency 1/|L| is the same.
Figure 3¢ shows that the ratio between both the minimum and max-
imum values of the observed sampling frequencies with their
expected values is close to 1.

We evaluate the performance of TiTUS against SharpTNI
(Sashittal and El-Kebir, 2019) on simulations with partially
sampled outbreaks. That is, we only collect a fixed number of sam-
ples per host (equal to the bottleneck size k), regardless of the
within-host diversity. Partial sampling during an outbreak is com-
mon for on-going and large-scale epidemics, such as the current
COVID-19 pandemic. We ran simulations of partially sampled
outbreaks, with number of hosts m € {5,7} and bottleneck size
K € {2,3,4,5}, where the transmission history is a tree. We gener-
ated five instances for each combination of 7 and «, resulting in a
total of 40 simulated instances. We find that in 26/40 of the instan-
ces, SharpTNI fails to produce a transmission tree, whereas TiTUS
is able to sample transmission trees in all the cases (Supplementary
Fig. S7).

In summary, our simulations show that methods that assume a
strong transmission bottleneck cannot be applied to outbreaks with
a weak bottleneck. Similarly, methods that do not enforce direct
transmission, such as SharpTNI, might return transmission histories
that include complex transmission pattern such as superinfection.
Moreover, the exponentially increasing gap between the size of the
solution space of rel-DTI compared to DTI renders the rejection-
based sampling impractical. In contrast, TiTUS almost uniformly
samples from the complex solution space of DTI.

6.1.1 Criteria to prioritize candidate transmission trees

We propose several criteria for ranking the vertex labelling for a
given timed phylogeny uniformly sampled by TiTUS. The first criter-
ion is the number of transmission edges in the vertex labelling.
Based on the parsimony principle, which has been used in previous
works for both phylogeny inference (Sankoff, 1975) as well as trans-
mission tree inference (Sashittal and El-Kebir, 2019; Snitkin et al.,

2012; Wymant et al., 2018), we expect vertex labelling that have
few transmission edges to be closer to the ground truth.

The second criterion is the number of unsampled lineages, which
is the number of transmission edges (1, v) for which there does not
exist a descendant leaf v/ (i.e. v< 1¢') labelled by ¢(v). Unsampled lin-
eages are a consequence of multi-strain infections and we expect to
see fewer unsampled lineages when the within-host diversity of the
infected hosts is adequately sampled. Figure 5 illustrates this
concept.

To assess these criteria, we compare the sampled transmission
trees with the ground truth by computing the infection recall,
defined as the fraction of transmission events between pairs of
hosts that are correctly inferred. Figure 4a shows the value of the
infection recall for candidate solutions in different percentiles
based on the number of transmission edges. Clearly, as we look at
solutions with larger transmission numbers, the infection recalls
decreases. Figure 4b shows a similar negative correlation between
the infection recall and the number of unsampled lineages. We use
both the transmission number and the number of unsampled line-
ages to prioritize the uniformly sampled candidate solutions.
Specifically, for any given percentile threshold o we include all the
vertex labelling whose percentile is at most o for both the transmis-
sion number and the number of unsampled lineages. (Thus, setting
o=1 will include all sampled vertex labelling.) The selected vertex
labelling is then used to compute the consensus transmissions tree.
Figure 4c shows the infection recall of the consensus transmission
trees for increasing value of the percentile threshold o. We see that
a value of o that is either too small or too large results in a decrease
in the infection recall. Based on the simulated data, we see that
o* = 0.01 yields accurate consensus transmission tree solutions.
Hence, the two criteria enable accurate prioritization of sampled
vertex labelling.

6.2 HIV outbreak with a known transmission chain

We apply our method TiTUS to infer the transmission history of an
HIV-1 outbreak involving 11 patients with a known transmission
chain (Lemey et al., 2005; Vrancken et al., 2014). The data consist
of 212 samples collected over the span of 18years from the 11
patients. The direction of transmissions and a relatively narrow time
interval for each transmission event were inferred from epidemio-
logical information obtained by patient interviews, clinical data and
treatment histories of the patients.

The DTI problem for this HIV dataset is set up as follows. For
the timed phylogeny, we use the maximum clade credibility (MCC)
tree obtained from the partially sequenced env regions presented by
Vrancken et al. (2014) in their publication. Supplementary Table S1
shows the sampling times and transmission windows provided in the
epidemiological data for each of the hosts. The transmission win-
dow of a host is the time interval inside of which the host is expected
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H; and H, are represented by rectangular boxes, and the samples taken from the
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evolution of the pathogen, whereas dashed lines represent the transmission of strains
during infection. Two lineages L and L, entering host H; are shown. Lineage L, is
an unsampled lineage because even though two strains of L; are transmitted to host
H,, none of the samples of H; belong to the lineage L,

to have been infected. Transmission windows for host A and host D
are incongruent with the given timed phylogeny. By this, we mean
there is no vertex labelling on the given MCC phylogeny that allows
for the known transmissions to host A and host D. We exclude these
time windows, whereas the transmission windows for the remaining
hosts are used to constraint the possible vertex labelling of the MCC
tree. We restrict the infection for each host to take place in within
the transmission window provided in the epidemiological data.
Note that, while using the time window constraints, we only restrict
the time of infection and do not utilize information about the known
infectors for each infected host. Finally, for each host, the entry time
is taken as the beginning of its time window of transmission and the
removal time is the latest date of sampling (Supplementary Table
S1). We find that STraTUS fails to provide a solution on this dataset.
Indeed, a weak transmission bottleneck needs to be considered to
infer the transmission history.

For this DTI instance, using sharpSAT (Thurley, 2006), we find
that there are exactly 30 901 500 feasible vertex labelling. We gen-
erate 100 000 samples from this solution space and compute the in-
fection recall when compared to the known transmission chain.
Figure 6 shows the values the infection recall for solutions with dif-
ferent numbers of transmission edges and number of unsampled
lineages. The infection recall is close to 1 for the solutions that
have no unsampled lineages. The number of transmission edges
also has a negative, albeit weaker correlation with the infection
recall.

For any given percentile threshold «, we include all vertex label-
ling whose percentile is at most « for both the transmission number
and the number of unsampled lineages. Based on the simulations,

we focus on percentile threshold o* = 0.01. For this threshold value,
Figure 6 shows the consensus transmission tree inferred by TiTUS.
The infection recall for this tree is 0.9, i.e. we correctly infer 9/10
transmission from the known transmission chain. We incorrectly
infer the transmission B—F, whereas the known transmission to F
based on epidemiological data is A—F. Supplementary Figure S9
shows similar behaviour of the infection recall as a function of « as
observed in our simulations. Moreover, this figure shows that our
method is robust around o* = 0.01.

7 Discussion

In this article, we formulated the DTI problem of inferring transmis-
sion trees for a given timed phylogeny and epidemiological data
while supporting a weak transmission bottleneck. Weak transmis-
sion bottlenecks are common in the spread of diseases due to patho-
gens with large inoculum sizes, high mutation rates, long incubation
times and chronic infections (Leonard et al., 2017). Previous studies
of counting and sampling transmission trees for a given timed phyl-
ogeny assume a strong transmission bottleneck (Hall and Colijn,
2019; Kenah et al., 2016), and are not applicable to outbreaks of
pathogens with a weak transmission bottleneck, often failing to re-
turn any solution.

We proved that the decision version of the DTI problem is NP-
complete and the counting version #DTI is #P-complete. Leveraging
recent advances made in approximate counting and sampling of sol-
utions to SATISFIABILITY (Chakraborty et al., 2013, 2014, 2015;
Soos et al., 2009), TiTUS, which uses a SATISFIABILITY oracle to
almost uniformly sample from the solution space of DTI. In most
cases, uniformly sampled candidate solutions from the transmission
tree space will deviate considerably from the ground truth. To ad-
dress this issue, we proposed two criteria that can be used to priori-
tize the uniformly sampled transmission trees. We demonstrated the
performance and robustness of our selection criteria on both simu-
lated data and a real dataset of an HIV outbreak (Vrancken et al.,
2014).

Further, we also considered the problem of summarizing a given
set of candidate transmission tree solutions of a disease outbreak.
We defined a new distance metric WPCD on the space of transmis-
sion multi-trees that captures the transmission of multiple strains be-
tween hosts during an outbreak. This distance is an extension of the
parent—child distance which is used in previous works to summarize
cancer phylogenies (Aguse et al., 2019; Govek et al., 2018). We pre-
sented a polynomial time algorithm for finding the consensus trans-
mission tree with minimum total WPCD from the candidate
solutions. The performance of the consensus transmission tree of
recalling the transmissions that occurred during the outbreak is
demonstrated both on simulated and real datasets.

There are several avenues for future research. First, the decision
version of the DTI problem can be used to prioritize a posterior dis-
tribution of phylogenies, by checking if each phylogeny admits a ver-
tex labelling that induces a transmission tree that is compatible with
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the given epidemiological data. A similar approach is used by
Sledzieski er al. (2019) where they prioritize statistically likely timed
phylogenies that admit vertex labelling with fewer transmission
edges. By including biological relevant constraints such as a contact
map and direct transmission constraints, we expect to obtain high-
fidelity phylogenetic and transmission history reconstructions.
Second, one limitation of the proposed method is that it assumes
that all the infected hosts in the outbreak are sampled. This assump-
tion is only applicable for small outbreaks in regions with perfect
surveillance and reporting system in place. An extension of this
method to include unsampled hosts would be a useful. Third, akin
to Jombart et al. (2017), we plan to extend the SCTT to simultan-
eously cluster the set S of transmission trees and infer a representa-
tive consensus transmission tree for each cluster. Fourth, we plan to
directly include the identified prioritization criteria as constraints in
the DTI problem. Finally, we plan to apply this methodology to
study the origins of observed within-host diversity in COVID-19
patients (Shen ez al., 2020; Tang et al., 2020).
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