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A Concentration of Measure Approach to
Correlated Graph Matching

Farhad Shirani

Abstract—The graph matching problem emerges naturally
in various applications such as Web privacy, image process-
ing and computational biology. In this article, graph matching
is considered under a stochastic model, where a pair of ran-
domly generated graphs with pairwise correlated edges are to
be matched such that given the labeling of the vertices in the
first graph, the labels in the second graph are recovered by
leveraging the correlation among their edges. The problem is
considered under various settings and graph models. In the first
step, the Correlated Erdos-Rényi (CER) graph model is studied,
where all edge pairs whose vertices have similar labels are gener-
ated based on identical distributions and independently of other
edges. A matching scheme called the typicality matching scheme
is introduced. The scheme operates by investigating the joint typ-
icality of the adjacency matrices of the two graphs. New results
on the typicality of permutations of sequences lead to necessary
and sufficient conditions for successful matching based on the
parameters of the CER model. In the next step, the results are
extended to graphs with community structure generated based
on the Stochastic Block Model (SBM). The SBM model is a gen-
eralization of the CER model where each vertex in the graph is
associated with a community label, which affects its edge statis-
tics. The results are further extended to matching of ensembles of
more than two correlated graphs. Lastly, the problem of seeded
graph matching is investigated where a subset of the labels in
the second graph are known prior to matching. In this scenario,
in addition to obtaining necessary and sufficient conditions for
successful matching, a polynomial time matching algorithm is
proposed.

Index Terms—Network theory, graph theory, data privacy,
information theory, graph matching, graph alignment, attributed
graphs, typicality matching, permuted sequences, correlated
graphs.

I. INTRODUCTION

NLINE social networks store large quantities of personal
data from their users. As a result, social network privacy
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Fig. 1. An instance of the graph matching problem where the anonymized
graph on the right is to be matched to the de-anonymized graph on the left.

has become an issue of significant concern. Social network
data is often released to third-parties in an anonymized
and obfuscated form for various purposes including tar-
geted advertising, developing new applications, and academic
research [1], [2]. However, it has been pointed out that
anonymizing social network data through removing user IDs
before publishing the data is far from enough to protect users’
privacy [3], [4]. To elaborate, it has been shown through real-
world implementation of privacy attacks that an attacker can
potentially recover the user IDs by aligning the user profiles in
the anonymized social network graph with the public profiles
of users in other social networks on the Web. In other words,
the attacker can ‘match’ the anonymized social network pro-
files of users with their public profiles in other social networks.
Graph Matching — also known as network alignment —
describes the problem of detecting node correspondence across
graphs. In addition to social network deanonymization [5]-[7],
the need for matching two or more graphs arises naturally in a
variety of other applications of interest such as pattern recog-
nition [8], cross-lingual knowledge alignment [9], and protein
interaction network alignment [10]. The significant increase in
the ability to store, share, and analyze large graphs has led to a
growing need to develop low complexity algorithms for graph
matching, and derive theoretical guarantees for their success,
that is, to study how and when is it possible to perform fast
and efficient network alignment.

In the simplest form of graph matching scenarios, an agent
is given a correlated pair of randomly generated graphs: i) an
‘anonymized’ unlabeled graph, and ii) a ‘de-anonymized’
labeled graph as shown in Figure 1. The objective is to lever-
age the correlation among the edges of the graphs to recover
the canonical labeling of the vertices in the anonymized graph.
The fundamental limits of graph matching, i.e., characterizing
the necessary and sufficient conditions on graph parameters
for successful matching, has been considered under various
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probabilistic models capturing the correlation among the graph
edges. In the Correlated Erdos-Rényi (CER) model the edges
in the two graphs are pairwise correlated and are generated
independently, based on identical distributions. More precisely,
in this model, edges whose vertices are labeled identically are
correlated through an arbitrary joint probability distribution
and are generated independently of all other edges. In its sim-
plest form — where the edges of the two graphs are exactly
equal — graph matching is called graph isomorphism. Tight
necessary and sufficient conditions for successful matching in
the graph isomorphism scenario were derived in [11], [12] and
polynomial time algorithms were proposed in [13]-[15]. The
problem of matching non-identical pairs of CER graphs was
studied in [16]-[22] and conditions for successful matching
were derived.

The CER model assumes the existence of statistical correla-
tion among edge pairs connecting matching vertices in the two
graphs, where the correlation model is based on an identical
distribution among all matching edge pairs. Consequently, it
does not model the community structure among the graph nodes
which manifests in many applications [23], [24]. As an exam-
ple, in social networks, users may be divided into communities
based on various factors such as age-group, profession, and
racial background. The users’ community memberships affects
the probability that they are connected with each other. A match-
ing algorithm may potentially use the community membership
information to enhance its performance. In order to take the
users’ community memberships into account, an extension to
the CER model is considered which is called the Stochastic
Block Model (SBM) model. In this model, the edge probabilities
depend on their corresponding vertices’ community member-
ships. There have been several works studying the necessary
and sufficient conditions for graph matching and the design of
practical matching schemes under the SBM model [25]-[28].
However, characterizing tight necessary and sufficient condi-
tions for successful matching and designing polynomial time
algorithms which are reliable under these conditions remains
an open problem both in the CER and SBM settings.

A further extension of the problem, called ‘seeded
graph matching’ has also been investigated in the litera-
ture [6], [29]-[37]. Seeded graph matching models appli-
cations where the matching agent has access to additional
side-information in the form of pre-matched seeds. A seed
vertex is one whose correct label in both graphs is known
prior to the start of the matching process. One pertinent appli-
cation of seeded graph matching is de-anonymization of users
over multiple social networks. Many Web users are mem-
bers of multiple online social networks such as Facebook,
Twitter, Google+, LinkedIn, etc. Each online network rep-
resents a subset of the users’ “real” ego-networks. Graph
matching provides algorithms to de-anonymize the users by
reconciling these online network graphs, that is, to identify all
the accounts belonging to the same individual. In this context,
the availability of seeds is justified by the fact that a small
fraction of individuals explicitly link their accounts across
multiple networks. In this case, these linked accounts can be
used as seeds in the matching algorithm. It turns out, that in
many cases, these connections may be leveraged to identify a

very large fraction of the users in the network [30]-[34]. In
parallel to the study of fundamental limits of graph match-
ing described above, the design of practical low complexity
matching algorithms has also been studied in [38]-[40], where
reliable matching of real-world networks with up to millions
of nodes have been performed.

In this work, we construct an information theoretic frame-
work based on concentration of measure theorems in order to
investigate the fundamental limits of graph matching. We pro-
pose the ‘typicality matching’ (TM) strategy which operates
based on the concept of typicality of sequences of random
variables [41], and is applicable under a wide range of graph
models including CER, SBM and seeded graph matching. The
strategy considers the pair of adjacency matrices correspond-
ing to the two graphs. Each n x n adjacency matrix may be
viewed as an n>-length sequence of random variables, where
n is the number of vertices in the graph. Consequently, one
may naturally extend the notion of typicality of sequences of
random variables to that of random adjacency matrices. The
TM strategy finds a labeling for the vertices in the anonymized
graph which results in a pair of jointly typical adjacency matri-
ces for the two graphs, where typicality is defined with respect
to the underlying joint edge distribution. The success of the
matching algorithm is investigated as the graph size grows
asymptotically large. The matching algorithm is said to suc-
ceed if the fraction of correctly matched vertices approaches
one as the number of vertices goes to infinity. As a result,
the TM algorithm is successful as long as any labeling which
leads to a pair of jointly typical adjacency matrices assigns
an incorrect label to a negligible fraction of size o(n) vertices
in the anonymized graph.' In order to study the conditions
for the success of the TM strategy, we derive several new
bounds on the probability of joint typicality of permutations
of sequences of random variables. The bounds may be of
independent interest in other research areas as well.

The generality of the information theoretic approach allows
us to investigate matching under a wide range of statistical
models. The contributions of this work can be summarized as
follows.

« We build upon the ideas in [7], [25] to develop a gen-
eral framework based on TM which allows for derivation
of necessary and sufficient conditions under which graph
matching is possible in a wide range of statistical mod-
els. The framework is applicable in matching graphs with
weighted edges as well as simultaneous matching of more
than two graphs in seeded and seedless matching.

o« We apply the TM framework to graph matching under
the CER, SBM and seeded graph matching models and
to derive theoretical guarantees for successful matching.

o« We derive converse results which characterize condi-
tions under which matching is not possible in the CER
model as well as simultaneous matching of more than
two graphs.

o We investigate the approach proposed in [35], which
builds upon the TM framework to propose a polynomial

'We write £(x) = 0(g(x) if limy—so0 L& = 0.
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TABLE I
NOTATION TABLE: RANDOM GRAPHS

g: unlabeled graph | V:

vertex set &E:

edge set

o labeling g:

labeled graph | G,

adjacency matrix

U,: upper-triangle ¢

# of attributes | &%

relabeled graph

time matching algorithm for the seeded graph matching
scenario.

The rest of this article is organized as follows: Section II
describes the notation. Section III provides the problem formu-
lation. Section IV develops the necessary tools for analyzing
the performance of the TM algorithm. Section V studies
matching under the CER model. Section VI considers the SBM
model. Section VII investigates matching collections of more
than two graphs. In Section VIII, necessary conditions and
converse results for matching of pairs of graphs are investi-
gated. Section IX studies seeded graph matching. Section X
concludes this article.

II. NOTATION

We represent random variables by capital letters such as
X, U and their realizations by small letters such as x, u. Sets are
denoted by calligraphic letters such as X, Y. The set of natural
numbers, and the real numbers are represented by N, and R
respectively. The random variable 1g is the indicator function
of the event &. The set of numbers {n,n+1,...,m},n,m e N
is represented by [n, m]. Furthermore, for the interval [1, m],
we sometimes use the shorthand notation [m] for brevity. For
a given n € N, the n-length vector (x1, x2, ..., x;,) is written
as x". We write a = b+ e todenote b —€ < a < b+e,
where a, b, e € R. We define |a|t £ max(0, a). The notation
exp,(«) is used to represent 2% to help readability.

III. PROBLEM FORMULATION

A graph g = (V, &) is characterized by the vertex set
YV = {vi,va2,...,v,}, and the edge set & We consider
weighted graphs, where each edge is assigned an attribute
x € [0,/ — 1] and / > 2. Consequently, the edge set & is
a subset of the set {(x,v;,v)li # j,x € [0,]— 1]}, where
for each pair (v;, v;) there is a unique attribute x for which
(x, vi,vj) € &. For instance, an unlabeled graph with binary
valued edges is a graph for which [ = 2. In this case, if the
pair v, ; and v, ; are not connected, we write (0, v, ;, vnj) € &,
otherwise (1,vy,;, vs;j) € & The edge attribute models the
nature of the connection between the corresponding vertices.
For instance in social network graphs, where vertices rep-
resent the members of the network and edges capture their
connections, an edge may take different attributes depending
on whether the members are family members, close friends, or
acquaintances. A labeled graph g = (g, o) is a graph equipped
with a bijective labeling function o : V — [n]. The labeling
represents the identity of the members in the social network.
For a labeled graph g, the adjacency matrix is defined as
Gs = lgo,ijlijel1,n, Where go;; is the unique value such
that (gs,ij, vk, Vi) € &, where (v, v) = (07 1(i), 071 (j)). The

adjacency matrix captures the edge attributes of the graph.
The upper triangle (UT) corresponding to g is the structure
Us = [go,ijli<j- The subscript ‘o’ is dropped when there is
no ambiguity. The notation is summarized in Table 1.

We consider graphs whose edges are generated stochasti-
cally. Under the CER and SBM models, we consider special
instances of the following random graph model.

Definition 1 (Random Graph): A random graph g gener-
ated based on [[;c(,) ;-; Px;; is an undirected labeled graph,
where the edge between v;,i € [n] and v;,j < i is gener-
ated according to Py, ., independently of the other edges.
Alternatively,

P((x, Vi, vj) € 8) =P

o0y @)s X € [0,1—11,4,j € [n].

In the graph matching problem, we are given a pair corre-
lated graphs (g', 3%), where only the labeling for the vertices
of the first graph is available. The objective is to recover the
labeling of the vertices in the second graph by leveraging the
correlation among their edges. A pair of correlated random
graphs is defined below.

Definition 2 (Correlated Random Graph): A pair  of
correlated random graphs (', %%) generated based on
nielnl,j<iPX,-j,X,-2j is a pair of undirected labeled graphs. Let

vl w!l and v2, w? be two pairs of vertices with the same

label in ' and g2, respectively, ie., o!(v!)) = 62(v?) = 51
and o' (w!) = 62(W?) = 5,. Then, the pair of edges between
o', wh) and (v?, w?) are generated according to PXYI DX -
Alternatively, e

P((xl, vil, w}) c&l, (xz, viz, WJZ) € 82)

— Py (xl,x2),x1,x2e[0,1—1],i,je[n].

51552705152

Remark 1: In Definition 2, the pair (gl, gz) are said to be
a correlated pair of Erdos-Rényi (CPER) graphs if there exists
a distribution Py1 y2 such that szll .
sy € [n].

A graph matching strategy takes (3!, g?) as its input and
outputs (3!, g%), where g2 is the graph 22 with its labels o2
removed, and g2 is the relabeled graph after matching. The
matching strategy is said to succeed if the fraction of correctly
matched vertices approaches one as the number of vertices is
increased asymptotically. This is formalized below.

Definition 3 (Matching Strategy): For a family of pairs
of correlated random graphs g! = (gl,0!) and g2 =
(g2,02),n € N, generated based on [lictnyj<i Px . x2,n € N
where n is the number of vertices. A matching é’{ra%]egy is a
sequence of functions f;, : (g,l,, g,%) — (g}l, gﬁ), n € N, where
g2 = (¢2,672) and 62 is the reconstruction of 2. Let I, be

X, = Px1 x2 Vs1,
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distributed uniformly over [n#]. The matching strategy is said
to succeed if P(oz(v%n) = &z(v%n)> — lasn— oo.

Note that in the above definition, for f;, to succeed, the frac-
tion of vertices whose labels are matched incorrectly must
vanish as n approaches infinity. This is a relaxation of the cri-
teria considered in [16]-[21], [35] where all of the vertices
are required to be matched correctly simultaneously with van-
ishing probability of error as n — oo0. As observed in the
next sections, this relaxation leads to a significant simplifica-
tion in the performance analysis of the proposed matching
strategies and allows us to use the concentration of mea-
sure theorems and results from information theory to derive
theoretical guarantees on the performance of the TM strategy.

Definition 4 (Achievable Region): A family of sets of dis-
tributions P = (Pn)nen is in the achievable region if for every
sequence of distributions [ P , € P, there

X! o X2
exists a successful matching strategy. Théy lf;%axsilrislzell achievable
family of sets of distributions is denoted by P*.

In social network deanonymization, among other applica-
tions, often the correct label of a fraction of the vertices in the
anonymized graph are known beforehand. This is due to a frac-
tion of members having used the same user IDs across graphs,
or having linked their accounts externally. In these scenar-
ios, the matching strategy may use these pre-matched vertices
as ‘seeds’ to recover the labels of the rest of the vertices.
Such matching strategies, which are called seeded matching
strategies, are defined rigorously and studied in Section IX.

s1€[n],s2<s1

IV. PERMUTATIONS OF TYPICAL SEQUENCES

In the previous section, we described correlated pairs of
random graphs, where the graph edges are generated ran-
domly based on an underlying joint distribution. Alternatively,
the adjacency matrices of the graphs are generated accord-
ing to a joint distribution. Furthermore, as explained in
Definition 2, we assume that each edge pair connecting two
similarly labeled vertices in the two graphs is generated
independently of all other edges based on the distribution
PXI-",-’X,-Z,,-’ where i,j are the vertex labels. Consequently, it
is expected, given large enough graph sizes, that the adja-
cency matrices of the graphs look ‘typical’ with respect to
the joint edge distribution. Roughly speaking, this requires the
frequency of joint occurrence of symbols (x!, x%) to be close to
niz Y Z}Ll PXi{j’X%j(xl ,x%), where x!, x2 € [0, 1—1]. Based
on this observation, in the next sections we propose the typi-
cality matching strategy which operates by finding the labeling
for the second graph which results in a jointly typical pair of
adjacency matrices.

This is analogous to typicality decoding in the channel cod-
ing problem in information theory, where the decoder finds
the transmitted sequence by searching for a codeword which
is jointly typical with the received sequence. In this analogy
which is shown in Figure 2, the labeled graph g* is passed
through a ‘channel’ which outputs the graph g2 whose labels
have undergone a randomly and uniformly chosen permuta-
tion, and the matching algorithm acting as a ‘decoder’ wants to
recover g% using g2 and the side-information g'. Changing the

: 4
! ~1 =2
! Matching 99°)
Source f=== eSS, T
~2 5 Strategy
g g
Fig. 2. The pair of correlated graphs @', 32 are generated as described

in Definition 2. The labels in g72 undergo a random permutation IT chosen
uniformly among the set of all possible permutations of n-length sequences
Sn. The matching strategy uses g! as side information to recover gz from g~.

labeling of g2 leads to a permutation of its adjacency matrix.
Hence, we need to search over permutations of the adjacency
matrix and find the one which leads to a typical pair of adja-
cency matrices. The error analysis of the TM strategy requires
investigating the probability of joint typicality of permutations
of pairs of correlated sequences.

In this section, we analyze the joint typicality of per-
mutations of collections of correlated sequences of random
variables. While the analysis is used in the subsequent sections
to derive the necessary and sufficient conditions for successful
matching in various graph matching scenarios, it may also be
of independent interest in other research areas as well.

We follow the notation used in [42] in our study of
permutation groups summarized below.

Definition 5 (Set Permutation): A permutation on the set of
numbers [1, n] is a bijection 7 : [1, n] — [1, n]. The set of all
permutations on the set of numbers [1, n] is denoted by S,,.

Definition 6 (Cycle and Fixed Point): A permutation mw €
S,,n € N is called a cycle if there exists k € [1,n] and
o1, a2, ...,0 € [1,n] such that i) m (o) = i1, € [1, k—1],
il) (o) = a1, and iii) 7(B) = B if B # «;, Vi € [1,k].
The variable k is the length of the cycle. The element g is a
fixed point of the permutation if 7(8) = B. We write m =
(o1, @2, ...,ar). The cycle m is non-trivial if k > 2.

Lemma 1 [42]: Every permutation 7 € S,,n € N has a
unique decomposition into disjoint non-trivial cycles.

Definition 7: For a given n,m,c € N, and 1 < i <ip <

- <i. <nsuchthatn = Z]‘-':l ij+m, an (m,c, iy, i, ..., ic)-
permutation is a permutation in S,, which has m fixed points
and c disjoint cycles with lengths iy, i3, ..., i., respectively.

Example 1: Consider the permutation which maps the vec-
tor (1,2,3,4,5) to (5,1,4,3,2). The permutation can be
written as a decomposition of disjoint cycles in the follow-
ing way m = (1,2,5)(3,4), where (1,2,5) and (3,4) are
cycles with lengths 3 and 2, respectively. The permutation
is a (0, 2, 2, 3)-permutation.

Definition 8 (Sequence Permutation): For a given sequence
y" € R" and permutation 7w € S, the sequence 7" = 7 (y") is
defined as 2" = (Vr(i))ie[1.n]->

Definition 9 (Derangement): A permutation on vectors of
length 7 is a derangement if it has no fixed points. The number
of distinct derangements of n-length vectors is denoted by !n.
In our analysis, we make extensive use of the standard
permutations defined below.

2Note that in Definitions 5 and 8 we have used 7 to denote both a scalar
function which operates on the set [1, n] as well as a function which operates
on the vector space R”.
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Definition 10 (Standard Permutation): Let m, c, iy, i, ...,
i be as in Definition 7. The (m,c,iy, i2,...,ic)-
standard permutation is defined as the (m c, i, o, .. zc)
permutation consisting of the cycles (Z 1 i+ 1, ZJ L+

2, ...,ZF i),k € [l,c]l. Alternatively, the (m,c,ii,
iz, ..., 1Ic)-standard permutation is defined as:
r=0,2,...,iD0E+1,i1+2,...,i1+1i) -
c—1 c—1 c
Zz,+ 1,21}4—2, .,Zi/

m—m+1)(n—m+4+2)---(n).

Example 2: The (2,2, 3, 2)-standard permutation is a per-
mutation which has m = 2 fixed points and ¢ = 2 cycles.
The first cycle has length ij = 3 and the second cycle has
length i, = 2. It is a permutation on sequences of length
no= 3. jij+m=3+2+2 =7 The permutation is
given by m = (123)(45)(6)(7). For an arbitrary sequence
o = (o1, a2, ...,07), we have:

m(a) =

A. Typicality of Permutations of Pairs of Correlated
Sequences

(a3, a1, a2, a5, 04, A6, C07).

Definition 11 (Type of Sequences): For a sequence x" €
X", the corgesponding type vector ¢ = (#(x)),cx is defined
as t(x) = M,x € X. For the pair (x"*,y") € X" x Y",
the corresponding joint type s = (s(x, y)), yexxy is defined
as s(x,y) = w,x,ye)(xy.

Definition 12 (Strong Typicality) [41]: Let the pair of ran-
dom variables (X,Y) be defined on the probability space
(X x Y, Pxy), where X and Y are finite alphabets. The
e-typical set of sequences of length n with respect to Pxy
is defined as:

ALX,Y) = {(x"

Y i1 y) =Pxy(x,y) e, V(x,y)

€ X x Y & 1(x,y) = 0 if Pxy(x.) =0},

where ¢ is the joint type of (x"*,y"), € > 0, and n € N.

For a correlated pair of independent and identically dis-
tributed (i.i.d) sequences (X", Y") and an arbitrary permutation
T € S, we are interested in bounding the probability
P((X", m(Y")) € AXX, Y)). The following proposition shows
that in order to find bounds on the probability of joint typ-
icality of permutations of correlated sequences, it suffices to
study standard permutations.

Proposition 1: Let (X", Y") be a pair of i.i.d sequences
defined on finite alphabets. We have:

i) For an arbitrary permutation = € S,,

P((w (X").

ii) Following the notation in Definition 10, let 7; be an
arbitrary (m, c, iy, i2, ..., ic)-permutation and let 7> be the
(m, c, 11,13, ...,i.)-standard permutation. Then,

7(Y")) e ALKX,Y)) = P((X", Y") € AXX, Y)).

P((X", m(Y") € AUX, Y)) = P((X", m(Y")) € ALX, V).

iii) For arbitrary permutations 7y, 7y € S,., let  be the stan-
dard permutation having the same number of cycles and cycle
lengths as that of 7! (y). Then,
P((me(X"), 7y (Y")) € ALX, 1))
=P((X", 7 (Y")) e ALK, ).
iv) For an arbitrary permutation 7 € S,
P((X", 7 (")) e X, 1)=P( (X", 771 (¥") )eALX, 1) ).

Proof: Part i) follows from the fact that permuting both X"
and Y” by the same permutation does not change their joint
type. For part ii), it is known that there exists a permutation
such that 7 (1) = mo(w) [42]. Then the statement is proved
using part i) as follows:

((X" 1 (1")) € ALX. 1))

P((w (X"). 7 (71 (Y"))) € ALX. 1))
= P((e (). o (1)) € 700K, )
= P((X", m2(Y")) € ALX. Y)) (1)
= P((X", ;2 (Y")) € ALX. 1)), @

where in (1) we have defined (X",Y") = (x(X"), x(¥Y")).
and (2) holds since ()?",17”) has the same distribution as
(X", Y™). Part iii) follows directly from Parts i) and ii). Part iv)
follows from Part ii) by noting that the number and lengths of
cycles in 77! is the same as that of 7. |

The following theorem provides an upper-bound on the
probability of joint typicality of permutations of correlated
sequences for an arbitrary permutation with m € [n] fixed
points.

Theorem 1: Let € € [0, %minx’yexxy Px y(x,y)], and con-
sider (X", Y") a pair of i.i.d sequences defined on finite
alphabets X and Y, respectively. For any permutation 7 with
m € [n] fixed points, the following holds:

P((x", 7 ( ")) € AUX, Y)) < 27" Fem im0, (3)
E, = min ((1 — a)D(ty||Px) + aD(ty||Px)
£Xe7)

+ D(Px.yl|(1 —a)PxPy» +aPxy)), (4)

%’Pé {ty € Pxl Vx € X : ty(x) €
ﬁ[PX(X) — a, Px(x)]}, Px is the probability simplex on
the alphabet X, D(-||-) is the Kullback-Leibler divergence,
L £ 2Px — (1 — k), Pyr() £ Y xfy(®)Pyx(-1v),
& 2 3IXPIY D 61|20 and

Se=elX||Y|

A
where o =

Px.y(x,y)
x | max log +0(e).
xyeXxY: — aPx y(x, y)+(1—a)Px(x)Py(y)
Px,y (x,y)#0

The proof is provided in the supplementary material. In the
following, we describe an outline of the proof. Let us define
A as the set of fixed points of the permutation 7. From the
theorem statement, the set A includes o = % fraction of the
indices [n]. Let T’y be the type of the vector of X;, i € A, and
let T’ be the type of the vector X;, i ¢ A. A necessary condi-
tion for (X", 7 (Y™)) to be jointly e-typical with respect to Px y
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is that T% = 7} and T% = ¢ such that (1—a)tl+ary = Px=te.
Since X" is an i.i.d sequence of variables, from standard
information theoretic arguments, the probability of the event
that 7% = 1y decays exponentially in n with exponent
aD(ty||Px). Similarly, the probability that Ty = ry decays
exponentially in n with exponent (1 — a)D(y||Px). This jus-
tifies the term (1 —a)D(ty||Px) +aD(ty||Px) in the exponent
E, in Equation (4). Next, note that for i € A, we have
m(Y;)) = Y. As a result, the joint distribution of each of
the pairs (X;, w(Y;)),i € A is Pxy. On the other hand, for
indices i ¢ A, we have w(Y;) = Y@, where w(i) # i. So,
the pair (X;, w(Y;)),i ¢ A is an independent pair of variables,
where X; is generated based on Py, and m(Y;) is generated
based on Py|x(-|Xr(;). Note that given that Ty = i, the
average distribution of 7 (Y;),i ¢ A is m Zi¢y{ Py, =
Y vex Iy (X)Pyx(-|x) = Py». Consequently, the average distri-
bution of (X;, w(Y;)), i ¢ A is PxPy». As a result, the average
distribution of (X", #(Y")) is (1 — «)PxPy» + aPx y. Hence,
using standard information theoretic arguments, the probabil-
ity that the pair (X", w(Y")) is jointly e-typical with respect
to Py y decays exponentially with exponent D(Px y||(1 —
a)PxPy» + aPyx,y), which appears as the third term in the
exponent Ey in Equation (4). The exponent E, can be further
simplified for special classes of permutations. For instance, if
7 does not have any fixed points, the following corollary to
Theorem 1 holds.

Corollary 1: If the permutation w in Theorem 1 has no
fixed points (i.e., « = 0), then:

P((X", (Y")) € AKX, Y)) < 27"Eo~tn=de) (5

where, Ey = %I (X;Y), and ¢, and §, are defined in Theorem 1.

Proof: The proof follows from Theorem 1. Note that when
a = 0, the set P in the theorem statement has a single element
Px. So, we have #y, = Px, Py» = Py, Ey = JI(X;Y), and

Px,y(x,y)
86 =€ |X||y| |maXx’yEXXy:PX.Y(x’y)#O lOg #}fy)(ly) .

Corollary 1 shows that for two sequences (X", Y”") gener-
ated jointly according to Px y and a permutation 7 without
any fixed points, the probability that the pair (X", 7(Y")) are
jointly typical with respect to Px y decays exponentially in
n with exponent %1 (X; Y). Note that since there are no fixed
points in the permutation, each pair (X;, 7(Y;)),i € [n] has
joint distribution PxPy. So, there is no ‘single-letter’ corre-
lation among the elements of (X", 7 (¥Y")). It is well-known
that if the sequences X" and Y” are generated independently
of each other according to marginal distributions Py and Py,
respectively, then the probability that they are jointly typical
with respect to the joint distribution Py y decays exponentially
in n with exponent I(X; Y) (e.g., [41]). The coefficient % in
exponent in Corollary 1 is an artifact of the n-letter correlation
between (X", 7(¥Y")) due to the fact that the original pair of
sequences (X", Y"") are correlated.

Theorem 1 is used in the next sections to derive suffi-
cient conditions under which pairs of correlated graphs can be
matched successfully. However, the arguments in the proof of
the theorem do not extend naturally to typicality of collections

of more than two permuted sequences. Bounds on the proba-
bility of joint typicality of such collections are necessary for
evaluating graph matching for collections of graphs studied in
Section VII. To this end, the following theorem and the ensu-
ing corollary provide an alternative bound on the probability
of joint typicality of (X", m(¥Y")) for an arbitrary permutation
m which is then extended to evaluate the typicality of collec-
tions of more than two sequences in Theorem 3. This is used
in Section VII to evaluate matching of more than two graphs.
Additionally, we will observe in the proof of Theorem 5 in
Section V that E| derived below yields tighter bounds on
the probability of joint typicality of (X", w(¥Y")) for large «
compared to Ey derived in Theorem 1.

Theorem 2: Let (X", Y") be a pair of i.i.d sequences defined
on finite alphabets X and Y, respectively. For any permutation
 with m € [n] fixed points, the following holds:

P((X", 7 (Y")) € ALK, V) < 27"(EaGi=de), ©

. -«
E,, = min (T>D(£§(,Y||PXPY) +aD(i ylIPxy), (7)

/ /
ty yP

where « £ 2 9 £ {1}, € Pxy|l V(xy) € X x
Yo tyy(ny) € t=[Pry(ry) — o Pxy(xylh Pxy is
the probability simplex on the alphabet X x Y, &’Y =
Lipyy—al —a)ty y), & = 4X||Y|log =t "and §. is defined
as in Theorem 1.

Proof: In the supplementary material. |

Computing E, requires optimizing over gg(yy, which is com-
putationally challenging for large alphabets. The following
removes the optimization and provides a lower bound for EJ,.

Corollary 2: Let (X", Y") be a pair of ii.d sequences
defined on finite alphabets X and Y, respectively. For any
permutation 7 with m € [n] fixed points, the following holds:

P((x, 2 (1) e e, vy) < 2" EaE) g

- 1
E, = gD(PX,Y“(l — a)PxPy +aPyy), ©)
where @ £ 2, ¢/ £ 4]X||Y|log " and & is defined as in
Theorem 1.
Proof: In the supplementary material. |

It is desirable to find the largest exponent which can be
used to bound the exponential decay in the probability of joint
typicality of (X", w(¥Y")). Consequently, a question of interest
is whether one of the two exponents E, and E, is strictly
larger than the other. Towards such a comparison, the next
lemma shows that the relation %Ea < E& < E/, holds. On
the other hand, it can be shown through analytical evaluations
of the bounds under specific distributions Py y that in some
instances, the relation E], < E, holds. We will observe in the
proof of Theorem 5 in Section V that E, in Theorem 1 yields
tighter bounds on the probability of joint typicality when o
is small, whereas E(’x in Theorem 2 is useful when evaluating
permutations with large «.

Lemma 2: For the exponents Eg, E,,, and E’l in Theorems 1
and 2 and Corollary 2, we have:

2 o /
JE <E, < E,.
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Proof: The relation E/, < E/, follows by convexity of KL

divergence. Also, note that
2f = 2 min l((1 — a)D(ty||Px) + aD(ty||Px)
37T 3 ep2 X X

+ D(Px.yl|(1 — a)PxPy» + aPyx.y))

D(Px.yll(1 — )PxPy + aPxy) = E,

=<

W | =

where the inequality follows by taking 1}, = Px. Note that this
leads to fy = Py, so that D(ty||Px) = D(ty||Px) = 0. [ ]
We have provided bounds on the probability of joint typi-
cality of X" and 7w (Y") as a function of the number of fixed
points m of the permutation 7 (-). Such bounds are often used
in error analysis and derivation of error bounds in various
applications [7], [43], [44], and we will use them in the fol-
lowing sections to evaluate the probability of error in graph
matching scenarios. In order to evaluate the error exponents,
the following results on the limiting behavior of the number
of distinct permutations with a given number of fixed points
are needed.
Lemma 3: Let n € N. Let N,,, be the number of distinct
permutations with exactly m € [0, n] fixed points. Then,
n!

i —m) = (o

<N, = <n>!(n —m) <n"™
m

Particularly, let m = an,0 < o < 1. Then, the following

holds:
log N,
lim 227 _ | _g (11)
n—o0 nlogn
Proof: In the supplementary material. |

B. Typicality of Permutations of Collections of Correlated
Sequences

We consider joint typicality of permutations of more than
two correlated sequences (X?l)’ XE’Z), cel, Xz'k)), neN k> 2.
The derivations in this section are used in Section VII to extend
the analysis of the TM strategy to simultaneous matching of
collections of more than two graphs.

Definition 13 (Strong  Typicality of Collections of
Sequences [41]): Let the random vector X* be defined
on the probability space (]—[je[k] Xj, Pxx), where Xj,j € [k]
are finite alphabets, and k > 2. The e-typical set of sequences
of length n with respect to Py« is defined as:

ﬂﬁ(x"): (x@-))je[k] : g(ak)ﬁPXk (ak):lze Vot e 1_[ Xit,

Jelk]

where € > 0, and 1(a*) = %Z?:] 1((xg).)jek) = o) is the
type of (x{;))jerk-

In the previous section, in order to investigate the typi-
cality of permutations of pairs of correlated sequences, we
introduced standard permutations which are completely char-
acterized by the number of fixed points, number of cycles, and
cycle lengths of the permutation. The concept of standard per-
mutations does not extend naturally when there are more than
two sequences (i.e., more than one non-trivial permutation).

Consequently, investigating typicality of permutations of col-
lections of sequences requires developing additional analytical
tools described next.

Definition 14 (Bell Number [45]): Let P = {P1, P2, ...,
P} be the set of all partitions of [1, k]. The natural num-
ber by is the k’th Bell number. We make the convention that
Pp.={[nl}.

In the following, we define Bell permutation vectors which
are analogous to standard permutations for the case when the
problem involves more than one non-trivial permutation.

Definition 15 (Partition Correspondence): Let k,n € N
and (my, mp, ..., m) be arbitrary permutations operating on
n-length vectors. The index i € [1, n] is said to correspond to
the partition $; € P of the set [1, k] if the following holds:

VIl e[kl () =7,"() & Ir: 11 €D,

where P; = {D; 1, Dj2, ..., @j,lpj\}'

Example 3: Let us consider a triple of permutations of
n-length sequences, i.e., k = 3, and the partition P =
{{1, 2}, {3}}. An index i € [n] corresponds to P if the first
two permutations map the index to the same integer and the
third permutation maps the index to a different integer.

Definition 16 (Bell Permutation Vector): Let (i1, iz, . .., ip,)
be an arbitrary sequence, where Zke[bk] ir = n, i € [0,n],
by is the kth Bell number, and n, k € N. The vector of per-
mutations (7, 72, ..., ) is called an (i1, ia, ..., iy )-Bell
permutation vector if for every partition P exactly i indices
correspond to that partition. Equivalently:

Vjelbl :ix = Hz elnl: VLIUelk:a () =r"0)
= Frellpll: 1l D)

where P] = {Dj‘l, Dj,z, ey D],IP,\}

The definition of Bell permutation vectors is further clarified
through the following example.

Example 4: Consider three permutations (w1, 72, 73) of
vectors with length seven, i.e., k =3 and n = 7. Then, by =5
and we have:

P = {1}, {2}, 31}, P> ={{1,2}, {3}}, P53 ={{1,3},{2}},
Py={{1}11{2,3}}, Ps=1{{1,2,3}}.
Let 1 be the identity permutation, 7, = (135)(24), and 713 =
(15)(24)(37). Then:
m((1,2,...,7)=(,2,3,4,5,6,7),
m((1,2,...,7) =(,4,1,2,3,6,7),
m3((1,2,...,7) =(,4,7,2,1,6,3),

)

The vector (my,mo, m3) is a (2,1,0, 3, 1)-Bell permutation
vector, where the indices (3,5) correspond to the | parti-
tion (each of the three permutations map indices (3,5) to a
different integer), index 7 corresponds to the P, partition (the
first two permutations map the index 7 to the same integer
which is different from the one for the third permutation),
indices (1,2, 4) correspond to the 4 permutation (the second
and third permutations map the indices (1, 2, 4) to the same
integer which is different from the output of the first permu-
tation), and index 6 corresponds to Ps (all permutations map
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the index 6 to the same integer). None of the indices corre-
sponds to Pz since there is no index which is mapped to the
same integer by the first and third permutations and a different
integer by the second permutation.

Remark 2: Bell permutation vectors are not unique. There
can be several distinct (i1, i2, . . ., i, )-Bell permutation vectors
for given n, k, iy, i3, ..., ip,. This is in contrast with standard
permutations defined in Definition 10, which are unique given
the parameters n, k, c, i1, i2, . . ., ic.

The following theorem provides bounds on the probability
of joint typicality of permutations of collections of correlated
sequences.

Theorem 3: Let (X?]-))je[k] be a collection of correlated
sequences of i.i.d random variables defined on finite alphabets
Xj,j € [k]. For any (iy, iy, ..., ip)-Bell permutation vector

(my, ma, ..., k), the following holds:
logn
P((m(xp) . € (1) ) = 27 v rr00CE),
Jelkl

(12)

E = ! I Z ip
iz = QDA D B\ *#;
Jje bk]

(13)
where PXPj HV€[1,|P/H PX,I ’Xi2""’Xi\Dj,,\ s Z)j,r =
{iv,i2, ... i, 1}, € [Be], r € [1, |41

Proof: In the supplementary material. |

Note that for the special case of permutations of pairs of
sequences of random variables, k = 2, the second Bell number
is by = 2. In this case (k(k—1)+1)(bx—1) = 3, and the bound
on the probability of joint typicality given in Theorem 3 is the
same as the one in Corollary 2.

In the following, we generalize Lemma 3 to the case where a
collection of more than two permuted sequence is considered,
and provide upper and lower bounds on the number of distinct
Bell permutation vectors for a given vector (i, i2, ..., ip,).

Definition 17 (k-fold Derangement): A vector  (m(-),
w2(), ..., m(-)) of permutations of n-length sequences
is called an k-fold derangement if m(-) is the identity
permutation, and 7r;(i) # 7wy (i),l,I € [k],] #I,i € [n]. The
number of distinct k-fold derangements of [n] is denoted by
di(n). Particularly d>(n) =!n is the number of derangements
of [n].

Lemma 4: Let n € N and k € [n]. Then,

(n—k+ DY < dp(m) < (n)F.

Proof: In the supplementary material. |

Lemma 5: Let (i, iz, ..., ip,) be a vector of non-negative

integers such that ;¢ [b] lj = n. Define Nj, ..., as the

number of distinct (11 i2,...,1p)-Bell permutatlon vectors.
) @)

Then,
( n
i1, 02, ..
12 Jelbi]

< ( n )n _/e[bk]|7>.f|lj_”'
1,12, '~'albk

ll i2,.

(14)

Particularly, let iy = o - n, n € N. The following holds:

log Ni, 4.
lim —o 2t > Pl - (15)
n—oo  nlogn
Jjelbx]
Proof: In the supplementary material. |

V. MATCHING ERDOS-RENYI GRAPHS

In this section, we consider matching of CPER graphs with
weighted edges. In Section III, we described correlated ran-
dom graphs. A CPER is a special instance of the correlated
random graphs defined in Definition 2. We propose the typi-
cality matching strategy and provide sufficient conditions on
the joint edge statistics under which the strategy succeeds.

A. The Typicality Matching Strategy for CPERs

Given a correlated pair of graphs (', g?), where only the
labeling for 3! is given, the TM strategy operates as follows.
The scheme finds a labeling 62, for which the pair of UT’s
U(l71 and Uéz are jointly typical with respect to P;?l)’ x, When
viewed as vectors of length @ The strategy fails if no
such labeling exists. Alternatively, it finds an element 62 in
the set:

n(n—1)

s = {&2|<U(‘T1, ng) €A’

(X17X2)}s (16)
where € = w(%). The alg\orithm declares 62 as the correct
labeling. Note that the set ¥ may have more than one element.
In that case, the strategy chooses one of these elements as the
output randomly. We will show that under certain conditions
on the joint graph statistics, all of the elements of s satisfy
the criteria for successful matching given in Definition 3. In
other words, for all of the elements of % the probability of
incorrect labeling for any given vertex is arbitrarily small for
large n. Formally, The TM strategy is a sequence of functions
fo: @ g —> (gn, 22),n € N, where for any given n € N,
the labeling of gn is chosen randomly and uniformly from
the set & deﬁned in Equation (16).

Theorem 4: For the TM strategy described above, a given
family of sets of distributions P = (Pr)nen is achievable, if
for every sequence of distributions Pg("l)’ x, € P, neN,

I
2(1 — a)iri <max(E,, E'2),0 <o <o,  (17)
n—

P(’” (1)PY) (32)

and max T = o(logn),

(1 x2)PY) ) (61.%2)70 o P§;‘]>_X2 (x1,%2)
where o, — 1 as n — oo, and E,> and sz , are defined
in Theorems 1 and 2, respectively.

Proof: In the supplementary material. |

Theorem 4 provides sufficient conditions on the edge
statistics of the CPER graphs such that the TM strategy
correctly matches ‘almost’ all vertices of the two graphs.
That is, the theorem provides sufficient conditions under
which P(UQ(V}W) - &Z(V;n))
is chosen uniformly among all indices [n], as defined in
Definition 3. A question of significant interest is how this suf-
ficient condition changes if the success criterion is relaxed

— 1 as n — o0, where I,
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so that the strategy is only required to correctly match a
fraction B € [0,1] of the vertices. More precisely, we
want to know the conditions on P;?l)’xz,n € N such that
P(4fi: 020P) =6207)}| 2 ) > 1 as n — oo. This is
of particular interest in social network deanonymization [5]-
[7], where even a small fraction of matched vertices is a
violation of those users’ privacy. The following corollary to
Theorem 4 provides sufficient conditions under which such
partial matching is possible using the TM strategy.

Corollary 3 (Partial Matching of CPERs): Let 8 > 0.
Given a sequence of distributions Pg("l)’ x,» the TM strategy
correctly matches at least B fraction of the vertices for asymp-
totically large 7 (i.e., P(L|{i : 02(:?) = 82(\/12)}‘ > ,3)) 1
as n — 00), given that the following holds:

logn

g
pa— < max(Eaz,E‘;z),O <a <8,

2(1 — ) (18)
Py, (x1)Px, (x2)
(1) Py, (41, x2)£0 | log Py, x,01.12)
The proof follows from the proof of Theorem 4 in the
supplementary material by replacing ¢, with B.

Remark 3: We have restricted our analysis to matching
undirected graphs where (x,v;,v;) € & if and only if
(x,vj, v;) € &. The results can be extended to directed graphs
by evaluating the joint typicality of the complete adjacency
matrices of the graphs rather than the upper-triangles of the
adjacency matrices.

and max |7 = o(log n).

B. Matching Under the Erasure Model

In the following, we consider matching pairs of CERs under
the special case of the erasure model, where the following
distribution on the graph edges is considered:

PP 4, (0,0) =1—p,, P{y (0.1)=0,
Py (1L0) = pu(l = 5). Py (1. 1) = pus,
PPO) =1=pa py (1) =pn,

PP =1—pus Py (1) =pas

where s € [0, 1] is fixed in n, and p, — 0 as n — oo. The
model has been studied extensively in the literature (e.g., [17],
[29], [30]). Under the erasure model, there is an edge between
each two vertices in g,g with probability p,. The edges in gﬁ
are sampled from the edges in g,l, such that each edge in g,ﬁ is
erased in g',% with probability (1 —s) and it is kept with prob-
ability s. We are interested in finding the fastest rate at which
pn — 0 such that successful matching is possible. In [30],
it is shown that a sufficient condition for successful match-
ing under the erasure model is that %pn > 1“7” as n — 09,
where In is the natural logarithm. Alternatively, a sufficient

nn
condition for successful matching is lim,_, pln < % The
following theorem shows that the TM strategy improves this
sufficient condition for successful matching.

Theorem 5: Let 4—11 <5< % There exists a sequence p,

approaching 0 as n — oo for which 1) tl}e TM strategy leads
oge n
to successful matching, and ii) lim,_, pL > %

Proof: In the supplementary material. |

Remark 4: Under certain sparsity conditions on graph
edges, sufficient conditions for successful matching were
derived in [20]. The erasure Model described above satis-
fies these sparsity conditions, and [20] provides guarantees

loge n

for successful matching when lim,,_, oo ;
n

<s.

VI. MATCHING GRAPHS WITH COMMUNITY STRUCTURE

In this section, we describe the TM scheme for matching
graphs generated under the SBM, i.e., graphs with community
structure and provide achievable regions for these matching
scenarios. A pair of correlated graphs with community struc-
ture are a special instance of the correlated random graphs
defined in Definition 2. In order to describe the notation used
in this section, we provide a separate formal definition of
random graphs with community structure below.

A. Problem Setup

To describe the notation used in the section, consider a graph
with n € N vertices belonging to ¢ € N communities whose
edges take [ > 2 possible attributes. It is assumed that the set of
communities C = {Cy, Ca, ..., C.} partitions the vertex set V.
The i community is written as C; = {vj;, Vj,, - . ., vjni}, where
n; € [n]is the size of the i community. Consequently, the graph
is parametrized by (n, ¢, (n;);e[¢], [). We sometimes refer to such
an unlabeled graph as an (n, ¢, (n;)i¢[¢], /)-unlabeled graph with
community structure (UCS). The set &;, ;, = {(x, v}, V},) €
Elvj, € Ciy,vj, € Ci,} is the set of edges connecting the
vertices in communities C;; and C;,. It can be noted that The
Erdos-Rényi (ER) graphs studied in Section V are examples
of single-community graphs, i.e., c = 1.

We consider random graphs with community structure
(RCS) generated stochastically based on the SBM model. In
this model, the probability of an edge between a pair of ver-
tices is determined by their community memberships. More
precisely, for a given vertex set V and set of communities C,
let PX|C,1,C,2, J1,J2 € [c] be a set of conditional distributions
defined on X x C x C, where X = [0, [—1]. It is assumed that
the edge set & is generated randomly, where the attribute X of
the edge between vertices v;; € Cj; and v;, € C}, is generated
based on the conditional distribution PX|C,-1 Cj- So,

P((x, Vi v,-z) € 8) = PX\le,CjZ (x|le,Cj2), Vx e[0,1—1],

where v;,v;, € Cj; x Cj,, and edges between different ver-
tices are mutually independent. It can be noted that for
undirected graphs considered in this work, we must have
Pxc;.c,xICj;, Cj,) = Px|c;,c,*xCj,,Cj;). A labeled graph
with community structure is a graph with community structure
g equipped with a labeling o, and is denoted by g = (g, o).
For the labeled graph g the adjacency matrix is defined as
Gs = [Go,ijlijen1,n) where Gy ;j is the unique value such
that (G,ij, vk, Vi) € En, Where (vi,v) = (0~1(), o~1())).
The submatrix Gy ¢, ¢; = [Gok, 1k 1:v.vieCixC; 18 the adjacency
matrix corresponding to the pair C; and C;. The upper triangle
(UT) corresponding to g is the structure U, =[Gy, jli<j. The
upper triangle corresponding to communities C; and C; in g
is denoted by Us ¢, c; = [Gok,1lk<i:vi.veCixC;- The subscript
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TABLE II
NOTATION TABLE: GRAPHS WITH COMMUNITY STRUCTURE

n: # of vertices c: # of communities C: set of communities
Ci it community n;: size of i community | &;;: edges between C; and C;
G,: adjacency matrix | U,: upper-triangle Gy j: adj. matrix between C; and C;
‘o’ is dropped when there is no ambiguity. The notation is JARE (g(”),C(”>,C/(”)) — 6™ n e N, where g™ =

summarized in Table II.

We consider pairs of correlated RCSs. It is assumed that
edges between pairs of vertices in the two graphs with the
same labeling are correlated and are generated based on a
joint probability distribution, whereas edges between pairs of
vertices with different labeling are generated independently. A
pair of correlated RCSs is formally defined below.

Definition 18 (Correlated Pair of RCSs): Let
PXX‘C“ Gy C’ C’ . J1,J2.J1.05 € [l,c] be a set of con-

ditional d1str1but10ns defined on X x X’ x CxC x C' x C,
where X = X' = [0,/ — 1] and (C,C’) are a pair of
community sets of size ¢ € N. A correlated pair of random
graphs with community structure (CPCS) generated according
to PX’X/|CJ.1,CJ.2,C(, ¢, is a pair g = (g,g’) characterized by:
) -
i) the pair of RCSs (g, g') generated according to Pxic;,.c;,
and PX’|C’ c’ respectively, ii) the pair of labelings (o, o),
and iii) the probablhty distribution Py X'|Cj,,Cjy ., ,C 0 such
12

that:
1) The graphs have the same set of vertices V = V.

2) For any two edges e = (x,vj,vj), € =
oV, ,v,)), x,x €[0,1— 1], we have
Pr(ej 8 e ef)

Pr(er). ifaly) =o'(s;).k=1.2
Ox x'(x,x'), Otherwise,

where [ € {1, 2}, v, v, € Cj; x Cj,, v],,v], € C=y x Cp,
the distribution Py y is the joint edge distribution when the
edges connect vertices with similar labels and is given by
PX*X"CJ‘psz’C}/’C}/’ the distribution Qy x is the conditional

edge distribution When the edges connect labels with different
labels and is given by Pyc; .c;, X PX/|C/ ,C

In this article, in order to simlify the notatlon we assume that
the community memberships in both graphs are the same. In
other words, we assume that v; € C; = v/’., € C; given that
o) =o' (vj/.,) for any j,j’ € [n] and i € [c]. Furthermore, we
assume that the size of the communities in the graph sequence
grows linearly in the number of vertices. More precisely, let
AW (@G & ICE")| be the size of the i community, we assume
that? A® (i) = @(n) for all i € [c]. We also assume that the
number of communities ¢ is constant in n.

We consider matching strategies under two scenarios:

o With Complete Side-Information: In this scenario, the
matching strategy uses prior knowledge of vertices’ com-
munity memberships. A matching strategy operating with
complete side-information is a sequence of functions

O (g(x)) if limy_s oo L&

=2 is a non-zero constant.
8(x)

3We write f(x) =

(~§"), g2 ) consists of a pair of graphs with community
structure with n vertices.

o With Partial Side-Information: A matching strategy oper-
ating with partial side-information does not use prior
knowledge of the vertices’ community memberships,
rather, it uses the statistics Px x|¢;.c,.c,.c,, and the com-
munity sizes (n;);c[¢]. The matching strategy is a sequence
of functions £V : g 6™ neN.

The matching strategy is said to be successful if the fraction
of correctly matched vertices approaches 1 as n — o0 as
formalized in Definition 3.

B. Matching in Presence of Side-Information

First, we describe the matching strategy under the com-
plete side-information scenario. In this scenario, the com-
munity membership of the nodes at both graphs are known
prior to matching. Given a CPCS g generated according to
PX,X|C,~1,C,~2,CJ(, *C} ,]1,]2,]1,]2 IS [1, c], the scheme operates

as follows. It finds a labeling 6’, for which i) the set of
pairs (G, .Cjy.Cy» Gy, c, .Cj, ),Jj1,j2 € [c] are jointly typical
each with respect to PX X1,y € .C, ¢, |C]1, Cp. C},. C)
when viewed as vectors of length mn, i # J, and
i) the set of pairs (Us ;¢ UA cl, C,) Jj € [c] are jointly
typical with respect to Py xc; c;,. ¢ .c, G, ICj,Cj,C]/ C)

when viewed as vectors of length ”("‘ )i e el

Specifically, it returns a randomly picked element ¢’ from
the set:

Sco = [ I(

X (PX,X’|C,-,C,-,C;,C;)7 ) (GJ,C,-,ij G:%’,C;,ij)

e A" (Pxch,c c’c’) Vi,je[CLi#j]’

where ¢ = a)(%), and declares ¢’ as the correct labeling.
We show that under this scheme, the probability of incor-
rect labeling for any given vertex is arbitrarily small for
large n.

Theorem 6: For the TM strategy described above, a given
family of sets of distributions P= (P™),cx is achievable, if
for any constants § > 0, o € [0, 1 —§] and every sequence of
distributions P o ¢,.c, € Pmit-jzfi-Jy € 1. ¢l and

2

community sizes (np, na, ..., ne) such that Zle n; = n, the
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following holds:

lo n;n;
3(1 — )2 min il
[ai]ie[c]Eﬂa ijeleli<j n
x D(PY (1 = Bij)PL% o PYe o + BiiPy)
xx’|C» c- ii)Pxic.ctxic.c T Pisbx xici.c
nl(nl (n) (n)
Ly R (PX vic.o (= BOPYe o
i€[c]
(n) (n)
X Pyic.c. t BiPx xc, C) (19)
Py, (¢, ()P, c; (x2)
and max [1o PP ic ) It =

@) Py 6, (1.32) 0 P %,(G;.C; (¥1.%2)
o(logn), i,j € [c], as n — oo, where A, = {([al],e[c]) o
%s Zie[clal = o}, and ,Bl,j

Bi = %,i € [c]. The maximal family of sets of dis-

tributions which are achievable using the typicality matching
strategy with complete side-information is denoted by Pp;.

Proof: In the supplementary material. |

Remark 5: Note that the community sizes
(ny,n2,...,nc),n € N are assumed to grow in n such
that lim,, o 7 > 0.

It can be noted that Theorem 6 includes the achievable
region for matching of pairs of Erd6s-Reényi graphs (i.e., single
community) derived in Theorem 3.

IA

2
Wjala],z,] € [c] and

C. Matching in Absence of Side-Information

The scheme described in the previous section can be
extended to matching graphs without community memberships
side-information. In this scenario, it is assumed that the distri-

. Ly g .
bution PX,X’leI ,Cjz,CJ(, C,/ J1.J2,J1,J5 € [1,c] is known, but

the community memberships of the vertices in the graphs
are not known. In this case, the scheme sweeps over all
possible community membership assignments of the vertices
in the two graphs. For each community membership assign-
ment, the scheme attempts to match the two graphs using
the method proposed in the complete side-information sce-
nario. If it finds a labeling which satisfies the joint typicality
conditions, it declares the labeling as the correct label-
ing. Otherwise, the scheme proceeds to the next community
membership assignment. More precisely, for a given com-
munity assignment (C C’) the scheme forms the following
ambiguity set

i

S Y o AA . . .
Define 2.0 = U @.C)e C.EC, ¢ where C is the set of all possible
community membership assignments. The scheme outputs a
randomly chosen element of X as the correct labeling. The
following theorem shows that the achievable region is the same

as the one described in Theorem 6.
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Theorem 7: Let Py be the maximal family of sets of achiev-
able distributions for the typicality matching strategy without
side-information. Then, Py = P

The proof follows similar arguments as Theorem 6. We pro-
vide an outline. It is enough to show that |§0| has the same
exponent as |§C.C’|- Note that the size of the set of all com-
munity membership assignments C has an exponent which is
©®(n) since |C| < 2. On the other hand,

|§0| =< |C||/E\CC/| < 2”02(9("10%”) — 2®(nlogn).

The rest of the proof follows by the same arguments as in
Theorem 6.

VII. MATCHING COLLECTIONS OF GRAPHS

In the previous sections, we considered matching of pairs
of correlated graphs. The results can be further extended
to problems involving matching of collections of more than
two graphs. In this section, we consider matching collec-
tions of more than two correlated graphs, where the first
graph is deanonymized and the other graphs are anonymized.
For brevity we consider collections of correlated Erdos-Rényi
graphs, i.e., single-community random graphs in Section V.
The results can be further exteneded to correlated graphs with
community structure in a straightforward manner. We formally
describe collections of correlated Erdos-Rényi graphs below.

Definition 19 (Correlated Collection of ER Graphs):
Let Pxm be a conditional distribution defined on er[m] Xi,
where X; =[0,/—1],i € [m] and m > 2. A correlated collec-
tion of ER graphs § = (§')ic(m) generated according to Pxm
is characterized by:_i) the collection of ER graphs (gi)ie[m]
each generated according to Py;, ii) the collection of labelings
(01)iem) for the unlabeled graphs (gi),-e[m], and 1iii) the joint
probability distribution Px=, such that:

1) The graphs have the same set of vertices V = V;,i €

i) o |

2) For any collection of edges ¢' = (x, Viis Vi ), x' € [0,1—

11, i € [m], we have

Pr(e' € E',i € [m])
_ [ irel(y) = ot (). vike
[ Ticpm) Pxi(xi), Otherwise,

where [ € {1, 2}, and Viis Vi € Vi xVy,ie[m].

Similar to the TM strategy for pairs of correlated graphs

, described in Section V, we propose a matching strategy

based on typicality for collections of correlated graphs.
Given a correlated collection of graphs (gi)ie[m], where the
labeling for g! is given and the rest of the graphs are
anonymized, the TM VI strategy operates as follows. The scheme
finds a collection & of labelings &7 ,j € [2,m], for which
the UT’s U/ j»J € [m] are jointly typical with respect to
P, xm when viewed as vectors of length "(”2 D The strat-
egy succeeds if at least one such labeling exists and fails
otherwise.

Theorem 8: For the TM strategy, a given family of sets of
distributions P = (Pn)nen is achievable, if for every sequence
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of distributions P, xn € Pn, n € N we have

> 1Pulon — 1

n
kelbm]

B 1
= 2(bw — D(m(m — 1) + 1)

+0(10gn)’
n

2Oy D kelby) Ok = My tp, € [1,1 — o,
ic[m] PX,— (x7) +
! PG|
o = aTk + Zk’,k“:?’kgk,,zﬂ apag, P ={ANA": A €
Py, A" € P}, k', k" € [by], and Py, = [1, n].
Proof: In the supplementary material. |
Remark 6: Note that Equation (20) recovers the result given
in Equation (17) for matching of pairs of correlated ER graphs,
ie., m=2.

logn

x D me|| Z O(]/CP)(,Pk (20)

ke[b]
for all ay, o, ...

and maxym.py, (ym)20 | log = o(logn), where

VIII. CONVERSE RESULTS

In this section, we provide conditions on the graph param-
eters under which graph matching is not possible. Without
loss of generality, we assume that (o, o’) are a pair of ran-
dom labelings chosen uniformly among the set of all possible
labeling for the two graphs. Roughly speaking, the information
revealed by identifying the realization of o’ is equal to
H(c') = log(n!) ~ log(n") = nlogn. Consequently, using
Fano’s inequality, we show that the information contained
in (o, g, g") regarding o', which is quantified as the mutual
information I(c’; o, g, '), must be at least nlog n bits for suc-
cessful matching. The mutual information I(c’; 0, g, ¢’) is a
function of multi-letter probability distributions. We use stan-
dard information theoretic techniques to bound I(¢”’; 0, g, &)
using information quantities which are functionals of single-
letter distributions. The following states the resulting necessary
conditions for successful matching.

Theorem 9: For the graph matching problem under the
community structure model with complete side-information,
the following provides necessary conditions for successful
matching:

logn nn;

< Y H(xxie.c.cc)
ijelcl.i<j

ni(n; — 1) y ;o logn

+2}7ﬁ—ﬂxmaﬂm;m+o =).
ielc]

where I(X,X/|C,-,Cj,C§CJ’~) is defined with respect to

Px xici.c,.ClC)-

Proof: In the supplementary material. |

Corollary 4: For the graph matching problem under the
Erd6s-Renyi model, the following provides necessary condi-
tions for successful matching:

21 1
-Jﬁfguxxj+o<%ﬂ)
n n

IX. SEEDED GRAPH MATCHING

So far, we have investigated the fundamental limits of graph
matching assuming the availability of unlimited computational
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Fig. 3. The matching algorithm constructs the bipartite graph which captures
the connections between the unmatched vertices with the seed vertices.

resources. In this section, we consider seeded graph matching,
and propose a matching algorithm whose complexity grows
polynomially in the number of vertices of the graph and leads
to successful matching in a wide range of graph matching
scenarios. The algorithm leverages ideas from prior work a
related problem called online fingerprinting which involves
matching of correlated bipartite graphs [46].

In seeded graph matching, it is assumed that we are
given the correct labeling for a subset of the vertices in the
anonymized graph prior to the start of the matching pro-
cess. The subset of pre-matched vertices are called ‘seeds’.
The motivation behind the problem formulation is that in
many applications of graph matching, the correct labeling of
a subset of vertices is known through side-information. For
instance, in social network deanonymization, many users link
their social media accounts across social networks publicly.
As shown in this section, the seed side-information can be
used to significantly reduce the complexity of the matching
algorithm.

The proposed graph matching algorithm operates as fol-
lows. First, the algorithm constructs the bipartite graph shown
in Figure 3 whose edges consist of the connections between
the unmatched vertices with the seeded vertices in each graph.
The algorithm proceeds in two steps. First, it constructs the
‘fingerprint’ vectors for each of the unmatched vertices in the
two bipartite graphs based on their connections to the seed
vertices. The fingerprint vector of a vertex is the row in the
adjacency matrix of the bipartite graph corresponding to the
edges between that vertex and the seed vertices. In the second
step, the algorithm finds a jointly typical pair of fingerprint
vectors in the deanonymized and deanonymized graph adja-
cency matrices and matches the corresponding vertices, where
typicality is defined based on the joint distribution between the
edges of the two graphs. Note that the bipartite graphs encom-
pass only a subset of the edges in the original graphs. Hence by
restricting the matching process to the bipartite graphs, some
of the information which could potentially help in matching is
ignored. This leads to more restrictive conditions on successful
matching compared to the ones derived in the previous sec-
tions. However, the computational complexity of the resulting
matching algorithm is considerably improved. In the follow-
ing, we focus on matching of seeded CPERs. The results can
be easily extended to seeded CPCSs similar to the unseeded
graph matching in prior sections. A seeded CPER (SCPER) is
formally defined below.

Definition 20 (Correlated Pair of Seeded ER Graphs):
An SCPER is a triple (g,8',S), where g = (g,2) is a
CPER generated according to Py x/, and & C V is the
seed set.
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Let S = {vj,,vi,, ..., vi,} and define the reverse seed set
S = {Vji\, Vjr, ..., Vj, ), where o (v;,) = o'(v;), k € [1, Al.
The algorithm is given the correct labeling of all the vertices
in the first graph o : V — [1, n] and the seed vertices in the
second graph ¢’|g : 8 — [1, n]. The objective is to find the
correct labeling of the rest of the vertices in the second graph
0, V;— [1,n] so that the fraction of mislabeled vertices
is negligible as the number of vertices grows asymptotically
large, i.e., P(6' = o) — 1 as n — oo. To this end, the
algorithm first constructs a fingerprint for each vertex in each
of the graphs. For an arbitrary vertex v; in gpy, its fingerprint
is defined as F; = (F;(1), Fi(2), ..., F;(A)). which indicates
its connections to the reverse seed elements:
1if  (vivy) €&

0 Otherwise, Le[l, Al

Fi() = {

The fingerprint of a vertex v; in the second graph is defined
in a similar fashion based on connections to the elements of the
seed set S. Take an unmatched vertex v; ¢ S. The algorithm
matches v; in g to a vertex v; in g’ if it is the unique vertex
such that the fingerprint pair (F;, F’ ]’-) are jointly e-typical with

respect to the distribution Py x, where? € = w(\LﬁA):
3 (. F}) € AL(X,X) = 60 = 0 (),

where A (X, X') is the set of jointly e-typical set sequences
of length n with respect to Py y’. If a unique match is not
found, then vertex v; is added to the ambiguity set £. Hence,
V\L is the set of all matched vertices. In the next step, these
vertices are added to the seed set and the expanded seed set is
used to match the vertices in the ambiguity set. The algorithm
succeeds if all vertices are matched at this step and fails oth-
erwise. We call this strategy the Seeded Typicality Matching
Strategy (STM).

Theorem 10: Define the family of sets of pairs of distribu-
tion and seed sizes P as follows:

2logn
VPn,X,X/ S Pn . —g

%: (Pn, An)neN' ' I(X,X)

<A IXGX)=w

An

Any family of SCPERs with parameters chosen from P is
matchable using the STM strategy.

The proof which is provided in the supplementary material
uses the following lemma.

Lemma 6: The following holds:

2
P<|.£| > A_ZZ> — 0, as n — oo,

Proof: In the supplementary material. |

X. CONCLUSION

We have considered matching of collections of correlated
graphs. We have studied the problem under the Erdos-Renyi

4A1ternative1y, limy,—s 00 —= = 00.

VIS

model as well as the more general community structure
model. The derivations apply to graphs whose edges may
take non-binary attributes. We have introduced a graph match-
ing scheme called the Typicality Matching scheme which
relies on tools such as concentration of measure and typ-
icality of sequences of random variables to perform graph
matching. We have further provided converse results which
lead to necessary conditions on graph parameters for success-
ful matching. We have investigated seeded graph matching,
where the correct labeling of a subset of graph vertices is
known prior to the matching process. We have introduced a
matching algorithm for seeded graph matching which success-
fully matches the graphs in wide range of matching problems
with large enough seeds and has a computational complexity
which grows polynomially in the number of graph vertices.
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