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Abstract

Motivation: While each cancer is the result of an isolated evolutionary process, there are repeated patterns in
tumorigenesis defined by recurrent driver mutations and their temporal ordering. Such repeated evolutionary trajec-
tories hold the potential to improve stratification of cancer patients into subtypes with distinct survival and therapy
response profiles. However, current cancer phylogeny methods infer large solution spaces of plausible evolutionary
histories from the same sequencing data, obfuscating repeated evolutionary patterns.

Results: To simultaneously resolve ambiguities in sequencing data and identify cancer subtypes, we propose to le-
verage common patterns of evolution found in patient cohorts. We first formulate the Multiple Choice Consensus
Tree problem, which seeks to select a tumor tree for each patient and assign patients into clusters in such a way that
maximizes consistency within each cluster of patient trees. We prove that this problem is NP-hard and develop a
heuristic algorithm, Revealing Evolutionary Consensus Across Patients (RECAP), to solve this problem in practice.
Finally, on simulated data, we show RECAP outperforms existing methods that do not account for patient subtypes.
We then use RECAP to resolve ambiguities in patient trees and find repeated evolutionary trajectories in lung and
breast cancer cohorts.

Availability and implementation: https://github.com/elkebir-group/RECAP.

Contact:melkebir@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The landmark paper by Nowell (1976) posits that cancer results
from an evolutionary process that leads to multiple genetically dis-
tinct subpopulations of cells known as clones. While each cancer
results from a different instantiation of this evolutionary process,
the complexity of all cancers can be reduced to a small number of
principles, so called hallmarks of cancer (Hanahan and Weinberg,
2000, 2011). Nevertheless, there is an exponential number of com-
binations of somatic mutations in which these traits can be acquired.
To reason about cancer evolution, researchers represent the evolu-
tionary histories of individual tumors using phylogenies.
Specifically, the increasing availability of tumor sequencing data has
led to the use of phylogenies to identify mutations that drive cancer
progression (Jamal-Hanjani et al., 2017; McGranahan et al., 2015),
which in turn have been used to identify repeated evolutionary tra-
jectories in tumorigenesis and metastasis (Caravagna et al., 2018;
Khakabimamaghani et al., 2019; Turajlic et al., 2018a,b). The
grouping of cancer patients into subtypes with similar patterns of
evolution holds the potential to enhance current pathology-based

subtypes, thereby improving our understanding of tumorigenesis
and leading to better stratification of tumors with respect to survival
and response to therapy.

The two types of current sequencing technologies, bulk and
single-cell DNA sequencing, each present unique challenges to the
task of identifying repeated evolutionary trajectories. With bulk
DNA sequencing, which forms the majority of currently available
data, the input is a mixed sample, composed of sequences from cells
with distinct genomes (Pradhan and El-Kebir, 2018; Qi et al., 2019).
With single-cell DNA sequencing, the input has elevated rates of
false positives, false negatives and missing data (Navin, 2014).
Hence, in neither case does one directly observe the leaves of the
phylogeny, preventing the adoption of species phylogenetics techni-
ques. Specialized tumor phylogeny inference methods must be used
to analyze these data[reviewed in Schwartz and Schäffer (2017)].
Such methods infer many plausible trees for the same input, leading
to large solution spaces of phylogenies with different mutation
orderings. Importantly, alternative phylogenies at the individual pa-
tient level obfuscate repeated patterns of cancer evolution at the pa-
tient cohort level.

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com i684

Bioinformatics, 36(26), 2020, i684–i691

doi: 10.1093/bioinformatics/btaa801

ECCB2020

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/Supplem
ent_2/i684/6055908 by guest on 19 January 2021

https://github.com/elkebir-group/RECAP
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa801#supplementary-data
https://academic.oup.com/


Two recent methods, REVOLVER (Caravagna et al., 2018) and
HINTRA (Khakabimamaghani et al., 2019), propose to select one
phylogeny for each patient so that the resulting trees are maximally
similar, enabling the identification of repeated evolutionary tra-
jectories. There are several limitations. First, since HINTRA
(Khakabimamaghani et al., 2019) exhaustively enumerates all pos-
sible (directed) two-state perfect phylogenies, which grows as nn�1

where n is the number of mutations, it does not scale beyond a
small number n¼5 of mutations. Second, neither HINTRA
(Khakabimamaghani et al., 2019) nor REVOLVER (Caravagna
et al., 2018) directly account for the presence of distinct subtypes of
patients with distinct evolutionary patterns. Specifically, neither
method uses a mixture model to represent the selected patient trees,
assuming all selected trees to originate from a single distribution.
REVOLVER tries to recover a patient clustering only after the fact,
i.e. hierarchical clustering is performed only after inference of the
selected trees and their single generating distribution. This is a ser-
ious limitation of both methods as the presence of distinct subtypes
with distinct evolutionary trajectories is a documented phenomenon
in cancer (Curtis et al., 2012; Turajlic et al., 2018a,b).

Here, we view the problem of identifying repeated patterns of
tumor evolution as a consensus tree problem, where the consensus
tree summarizes different patient phylogenies. Leveraging our previ-
ous work on the Multiple Consensus Tree (MCT) problem (Aguse
et al., 2019), we formulate the Multiple Choice Consensus Tree
(MCCT) optimization problem to simultaneously (i) select a phyl-
ogeny for each patient in a cancer cohort, (ii) cluster the patients
to account for subtype heterogeneity and (iii) identify a representa-
tive consensus tree for each patient cluster (Fig. 1). We prove the
problem to be NP-hard. We introduce Revealing Evolutionary
Consensus Across Patients (RECAP), a coordinate ascent algorithm
as a heuristic for solving this problem. We include a model selection
criterion for identifying the number k of subtypes needed to explain
a dataset. On simulated data, we show that RECAP outperforms
existing methods that do not support diverse evolutionary trajecto-
ries. We demonstrate the use of RECAP on real data, identifying
well-supported evolutionary trajectories in a non-small cell lung
cancer cohort and a breast cancer cohort.

2 Preliminaries

We represent the evolutionary history of a tumor by a rooted tree T
whose root vertex is denoted by r(T), vertex set by V(T) and directed
edge set by E(T). Each vertex v of T corresponds to a clone in the
tumor, composed of the mutations that label the edges on the unique
path from r(T) to v. In particular, the root r(T) corresponds to the
normal/germline clone without any mutations. In line with the ma-
jority of current phylogenetic analyses in cancer genomics, this work
adheres to the infinite sites assumption, i.e. each mutation is gained
exactly once and is never subsequently lost. Thus, each mutation is
present on exactly one edge (u, v) of T and we may represent each
non-root vertex v 6¼ rðTÞ by the mutations lðvÞ ¼ lðu; vÞ introduced
on its unique incoming edge (u, v). The root vertex r(T) may be rep-
resented by the empty set lðrðTÞÞ ¼ 1. Throughout the manuscript,
we will refer to rooted trees adhering to the infinite sites assumption
simply as trees.

Tree distances. By comparing trees of different patients, we may
identify repeated patterns of tumor evolution. To do this in a prin-
cipled way, we require a distance function dðT;T 0Þ that quantifies
the degree of differences between two trees T and T 0. Many distance
measures have been proposed for cancer phylogenies under the in-
finite sites assumption (DiNardo et al., 2019; Govek et al., 2018;
Karpov et al., 2019; Ross and Markowetz, 2016), including the par-
ent–child distance, defined as follows.

DEFINITION 1 (Govek et al., 2018) The parent–child distance dðT;T 0Þ of

two trees T and T 0 is the size of the symmetric difference between the

two edge sets E(T) and EðT 0Þ, i.e.

dðT;T 0Þ ¼ jEðTÞ�EðT 0Þj: (1)

To control for trees of varying sizes and mutation sets, we augment the

parent–child distance to account for missing mutations in either tree and

include a normalization factor (Fig. 2). This is formalized as follows.

DEFINITION 2 The normalized parent–child distance dNðT;T 0Þ of two

trees T and T 0 is the parent–child distance divided by twice the size of

the vertex set R ¼ jVðTÞ [ VðT 0Þj, i.e.

dNðT;T 0Þ ¼ jEðTÞ�EðT0Þj þ jVðTÞ�VðT 0Þj
2R

: (2)

Consensus tree problems. The problem of identifying repeated
patterns of tumor evolution may be viewed as a consensus tree prob-
lem. The following SINGLE CONSENSUS TREE (SCT) problem was posed
and solved in a recent paper for trees with identical mutation sets
using the parent–child distance.

Fig. 1. RECAP solves the MCCT problem. Given a family fT 1; . . . ; T ng of sets of

patient trees, we simultaneously cluster n patients into k subtypes of evolutionary

trajectories fR1; . . . ;Rkg and select a phylogeny for each patient

Fig. 2. Normalized parent–child distance accounts for varying mutation sets and

tree sizes. Here, R consists of six mutations (colored circles). The normalized

parent–child distance dNðT1;T2Þ ¼ 0:5 of trees T1 and T2 is the sum of the sizes of

the symmetric differences of their edge sets (light gray) and vertex sets (light blue)

divided by 2jRj
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PROBLEM 1 [SCT (Govek et al., 2018)] Given a set T ¼ fT1; . . . ;Tng of

trees on the same vertex set R, find a consensus tree R with vertex set R
such that the total parent–child distance

Pn
i¼1 dðTi;RÞ is minimum.

Representing evolutionary patterns common to a large number of

patients by a SCT is often too restrictive, as multiple subtypes with dis-

tinct evolutionary patterns and phenotypes exist even among cancers

with the same primary location (Curtis et al., 2012). This limitation may

be overcome by a natural extension of the SCT problem, where rather

than finding a SCT one simultaneously clusters patient trees and identi-

fies a representative consensus tree for each cluster. In previous work,

we formalized this as the MCT problem (Aguse et al., 2019).

PROBLEM 2 [MCT (Aguse et al., 2019)] Given a set T ¼ fT1; . . . ;Tng of

trees with the same vertex set R and integer k> 0, find (i) a clustering r :

½n� ! ½k� of input trees into k clusters and (ii) a consensus tree Rj with

vertex set R for each cluster j 2 ½k� such that the total parent–child dis-

tance
Pn

i¼1 dðTi;RrðiÞÞ is minimum.

There are three challenges that prevent the adoption of methods for the

MCT problem to identify repeated evolutionary patterns. First, the ap-

plication of phylogenetic techniques specialized for cancer sequencing

data results in a large solution space T of plausible trees for each individ-

ual patient. Second, inference methods typically label vertices by muta-

tion clusters rather than a single mutation. Such mutation clusters repre-

sent another type of ambiguity in the patient trees where the linear

ordering of mutations in the vertex is unknown. We say that a tree T 0 is

an expansion of a tree T if all mutation clusters of T have been expanded

into ordered paths (see Fig. 4). Third, due to inter-tumor heterogeneity,

the set of mutations across patients will vary, violating the constraint

that patient trees are on the same set R of mutations.

Leveraging information across patients, we wish to resolve ambiguities

in our input data and detect subtypes of evolutionary patterns by simul-

taneously (i) identifying a single expanded tree among the solution space

of trees for each patient, (ii) assigning patients to clusters and (iii) infer-

ring a consensus tree summarizing the identified expanded trees for each

cluster of patients. We formalize this as the MCCT problem (Fig. 1).

PROBLEM 3 (MCCT) Given a family T ¼ fT 1; . . . ; T ng of sets of patient

trees composed of subsets of mutations R and integer k> 0, find (i) a sin-

gle tree Si 2 T i for each patient i 2 ½n�, (ii) an expanded tree S0i of each

selected tree Si, (iii) a clustering r : ½n� ! ½k� of patients into k (non-

empty) clusters and (iv) a consensus tree Rj for each cluster j 2 ½k� such

that the total normalized parent–child distance
Pn

i¼1 dNðS0i;RrðiÞÞ is

minimum.

The MCCT problem generalizes both the SCT and MCT problems when

there are no mutation clusters and all patients have the same set of muta-

tions. In particular, when there is only a single tree for each patient, the

MCCT problem reduces to the MCT problem. For the case where, in

addition to the previous, we seek only a single cluster (k¼ 1), the MCCT

problem further reduces to the SCT problem.

3 Complexity

We start by noting that since the MCCT problem is a generalization
for the MCT problem, any hardness result for MCT carries over to
MCCT. Previously, Aguse et al. (2019) showed that MCT is NP-
hard for the case where k ¼ OðnÞ, which thus means that MCCT is
NP-hard for the same case. Here, we prove a stronger result, show-
ing that MCCT is NP-hard even when k¼1. Specifically, this sec-
tion sketches a proof of NP-hardness for the MCCT problem by
reducing from the canonical NP-hard problem of 3-
SATISFIABILITY (3-SAT) (Karp, 1972). The full proof can be found
in Supplementary Appendix A.

THEOREM 1 MCCT is NP-hard even in the restricted case where (i) we

seek a SCT (k¼ 1), (ii) trees in T have the same vertex set R and (iii)

there are no mutation clusters.

Recall that in 3-SAT, we are given a Boolean formula / ¼
^n

i¼1ðyi;1 _ yi;2 _ yi;3Þ in 3-conjunctive normal form with m variables

denoted by fx1; . . . ; xmg and n clauses denoted by fc1; . . . ; cng. We de-

fine cðyi;jÞ ¼ 1 if literal yi;j is of the form x, and cðyi;jÞ ¼ 0 if literal yi;j is

of the form :x, where x is one of the variables. A truth assignment h :

½m� ! f0; 1g satisfies clause ci ¼ ðyi;1 _ yi;2 _ yi;3Þ if there exists a j 2
f1; 2; 3g such that hðxÞ ¼ cðyi;jÞ, where x is the variable corresponding to

literal yi;j. 3-SAT seeks to determine if there exists a truth assignment h�

satisfying all clauses of /.

Given an instance / of 3-SAT, we reduce it to an MCCT instance T ð/Þ
as follows (see Fig. 3). To simplify the reduction, we assume that (i) /
has literals from three distinct variables within every clause, (ii) every

variable and its negation appear in at least two clauses each and (iii) a

Fig. 4. An example of an optimal expansion of the mutation clusters of a tree T with

respect to an expanded tree R. Tree T contains mutation clusters, whereas tree R

does not. Each mutation is denoted by a colored triangle. Matching edges between

R and the expanded tree T 0 are denoted with a dashed line

Fig. 3. An example of the gadget used in the NP-hardness proof for the MCCT prob-

lem. This is just one the seven trees in collection T i constructed from clause ci ¼
yi;1 _ yi;2 _ yi;3 in our 3-SAT formula. This tree corresponds to the case where ci is

satisfied by both the first and second literal, but not the third
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variable and its negation never appear in the same clause. These condi-

tions are without loss of generality, as every / that does not satisfy these

conditions can be rewritten as an equisatisfiable formula /0 in polyno-

mial time that adheres to the three conditions. We construct a family

T ð/Þ ¼ fT 1; . . . ; T ng of sets of trees over the shared vertex/mutation set

R ¼ fr;x1; . . . ; xm;:x1; . . . ;:xm; c1; . . . ; cng:

Note that this shared vertex set contains a vertex for each positive and

negative literal in /, a vertex for every clause in / and an extra vertex r

(i.e. jRj ¼ 2m þ n þ 1).

For each clause ci ¼ ðyi;1 _ yi;2 _ yi;3Þ in /, the family T ð/Þ contains one

set T i comprised of seven trees. These trees correspond to the seven pos-

sible assignments of truth values to variables in ci such that the clause is

satisfied. Per our assumption that / has clauses composed of distinct var-

iables, there exist exactly seven distinct truth assignments that satisfy

clause ci. Consider one such assignment /ðx1Þ ¼ cðyi;1Þ; /ðx2Þ ¼ cðyi;2Þ;
/ðx3Þ 6¼ cðyi;3Þ, where x1; x2; x3 are the variables corresponding to liter-

als yi;1; yi;2; yi;3, respectively. The tree representing this assignment in T i

is constructed as follows: (i) the tree has r as the root vertex; (ii) the root

r has vertices c1; . . . ; cn as children; (iii) the root also has children corre-

sponding to each literal based on the assignment, i.e. fðr; yi;1Þ; ðr; yi;2Þ;
ðr;:yi;3Þg for this example; (iv) each of these literals then has its negation

as a child, i.e. fðyi;1;:yi;1Þ; ðyi;2;:yi;2Þ; ð:yi;3; yi;3Þg; (v) the remaining

vertices (corresponding to variables and negations not in ci) are added as

children of the vertex labeled ci. Note that r will always have 3 þ n chil-

dren corresponding to the three literals and n clauses. Figure 3 shows an

example.

This reduction can be performed in OðjT ð/Þj � jRjÞ ¼ Oðnð2m þ n þ
1ÞÞ ¼ Oðn2 þ nmÞ time and is therefore polynomial. After constructing

T ð/Þ, we can use an algorithm for MCCT to select one of the 7 trees

from each set in T ð/Þ in order to minimize the parent–child distance to a

SCT (i.e. k¼ 1). Note that minimizing the parent–child distance is

equivalent to minimizing the normalized parent–child distance since all

input trees have identical vertex sets and the same number of edges (i.e.

the vertex symmetric difference in the numerator is zero, and the nor-

malizing denominator is a constant scaling factor). Supplementary

Appendix B proves that / has a satisfying assignment if and only if the

optimal solution to this corresponding MCCT instance has a parent–

child score of 2nð2m � 6Þ. Moreover, we may use the consensus tree to

recover a satisfying assignment for /.

4 Materials and methods

In this section, we introduce RECAP, an algorithm to heuristically
solve the MCCT problem. We first introduce a simplified version of
the algorithm where all input trees from all patients are on the same
mutation set and there are no mutation clusters (Section 4.1). We
then subsequently relax these requirements and show how we aug-
ment the algorithm to handle these two conditions (Sections 4.2 and
4.3). Section 4.4 describes a model selection procedure for choosing
the number k of clusters.

4.1 Coordinate ascent heuristic for simple case
The MCCT problem models (i) the selection of one tree Si 2 T i for
each patient i, (ii) the surjective clustering function r : ½n� ! ½k� of
the selected trees to one of k clusters and (iii) the construction of
MCTs fR1; . . . ;Rkg by minimizing the sum of normalized parent–
child distances between consensus trees and the selected trees. To
begin, we assume that all trees from all patients have the same set of
mutations and no mutation clusters.

The pseudocode for our algorithm is given in Algorithm 1. We
begin by initializing a random selection of one tree for each patient.
We also initialize a random assignment of patients to one of k clusters,
ensuring that there is at least one patient per cluster. We then iterate

between two steps: (i) finding an optimal consensus tree for the cur-
rent selected trees assigned to each cluster, and (ii) selecting new trees
for each patient and reassigning patients to clusters given the current
consensus trees. We iterate between these two steps until convergence.

To perform step (i), we note that we can reduce this step into k
independent instances of SCT, one for each cluster. The input to
each SCT instance is simply the selected trees of patients assigned to
that cluster. The output is a consensus tree minimizing the parent–
child distance to the input trees. Note that this is equivalent to mini-
mizing the unnormalized parent–child distance; since we assume all
patients have the same vertex set, the vertex symmetric difference in
the numerator is equal to zero and normalization term in the par-
ent–child distance function just becomes a constant scaling factor.

To perform step (ii), we iterate over all input trees for each pa-
tient. For each tree, we calculate the parent–child distance to the
consensus tree for each cluster. We then select the tree and cluster
that minimizes this distance for each patient.

While this algorithm is a heuristic, the total parent–child score is
monotonically decreasing with each iteration. In step (i), the
updated consensus tree is guaranteed to be optimal and so can only
decrease the score. In step (ii), the tree selection and cluster assign-
ment is only changed if it decreases the score. We restart the algo-
rithm a user-specified number of times, each time with a different
random initialization and return the solution with minimum parent–
child distance.

4.2 Varying mutation sets
We now adapt Algorithm 1 to be able to handle patients that have
different sets of mutations. When patients in the input data have dif-
ferent mutation sets, some patients have many more mutations than
other patients. When this occurs, minimizing the parent–child dis-
tance can often be achieved by putting the most massive trees alone
in their own clusters with an identical consensus tree. To avoid this
degenerate scenario, we introduce normalization to our distance
function (see Definition 2).

On trees with identical vertex sets, optimizing this normalized
distance simply reduces to optimizing the parent child distance, as
we discussed above. However, with varying mutation sets, the nu-
merator term containing the symmetric difference in vertex sets can
no longer be assumed equal to zero. In most places in our algorithm,

Algorithm 1: Coordinate Ascent Heuristic for Simple Case
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we can simply swap the distance function to normalized distances.
However, this cannot immediately done in step (i) since the SCT
subroutine is designed to work on identical mutation sets and
unnormalized distances.

To address this problem, we augment the input patient trees so
that all augmented trees are on the same vertex set. As described in
Section 2, all input trees share the same root vertex corresponding to
the germline clone. We first add a new vertex labeled ? as a child of
this shared root in all trees. For each patient tree, we then add new
vertices for all mutations the tree is missing and attach each one as a
child of ?. We then run the algorithm as previously described on
these augmented input trees. After the algorithm terminates, we post-
process the consensus trees to remove the ? vertex along with all of
its descendants, which we interpret as missing from this cluster.

The intuition behind this heuristic reduction is as follows.
Consider a mutation b appearing in one tree but not the other. This
mutation increases the vertex symmetric difference term in the nor-
malized parent–child distance numerator. After augmenting the trees
as described, this increase will now be captured by the symmetric
difference in the edge sets of the augmented trees; the tree missing
the mutation will now have the edge ð?; bÞ, which is not contained
in the other tree by construction.

4.3 Mutation clusters
In practice, patient input trees may have vertices that do not corres-
pond to a single mutation but in fact correspond to a set of muta-
tions. We call vertices with multiple mutations mutation clusters.
We interpret these mutation clusters as implicitly representing an-
other type of ambiguity in the patient trees where the linear ordering
of mutations in the vertex is unknown. We wish to resolve all muta-
tion clusters into a linear ordering of the mutations by leveraging in-
formation across patients. However, a naive expansion of all
mutation clusters in all possible ways may dramatically increase the
set of patient trees.

Solving the following optimization problem would allow us to
resolve these clusters without explicitly enumerating all possible
expansions. To start, we define an expansion of a mutation cluster
as follows (Fig. 4).

DEFINITION 3 An expansion of a mutation cluster C is an ordered se-

quence PðCÞ of the mutations in C.

Similarly, an expanded tree T 0 of T is obtained by expanding all muta-

tion clusters of T into paths.

PROBLEM 4 [Optimal Cluster Expansion (OCE)] Given a tree R with no

mutation clusters and a tree T with at least one mutation cluster, find a

tree T 0 such that (i) T 0 is an expansion of T, and (ii) T 0 minimizes the

normalized parent–child distance to R out of all tree expansion of T.

We observe that when expanding mutation clusters, we cannot expand

each mutation cluster in isolation since abutting clusters have edges that

interact. Therefore, to solve this problem, we use dynamic programming

(DP). The details of the polynomial time DP algorithm are given in

Supplementary Appendix B. To incorporate support for mutation clus-

ters into Algorithm 1, we run the DP subroutine on each patient tree

considered in step (ii). This gives us the score of the best expansion of

each tree in polynomial time, avoiding an exponential blow-up of the in-

put tree set.

4.4 Model selection
In the above section, we gave the number k of clusters as an input to
our algorithm. Clearly, the total normalized parent–child distance
will decrease with increasing number k of clusters, with k¼n lead-
ing to a total distance of 0. Thus, we must choose the number of
clusters necessary to explain the data without overfitting.
Intuitively, what we seek is the minimum number of clusters k, after
which introducing additional clusters no longer leads to a

meaningful decrease in our optimization criterion. In other words,
this is the point at which the normalized parent–child distance ‘flat-
tens’. We capture this intuition with the following elbow approach.

Given an absolute threshold ta � 0 and a percentage threshold
tp 2 ð0; 1Þ, we seek the largest k such that the following two condi-
tions hold: (i) the change in the optimization criterion between k—1
and k is greater than ta, and (ii) the percentage change in the opti-
mization criterion between k—1 and k is greater than tp. Selecting
the largest k meeting these two conditions ensures that all larger k
values must have a small marginal changes. The use of an absolute
threshold just ensures that for normalized parent–child distances
very close to 0, a fractional change to the total cost does not trigger
the percentage change criterion. In practice, we set ta ¼ 0:5 and
tp ¼ 0:05.

5 Results

Section 5.1 compares RECAP to HINTRA (Khakabimamaghani
et al., 2019) and REVOLVER (Caravagna et al., 2018) on simulated
data, whereas Section 5.2 highlights the use of RECAP to identify
repeated evolutionary trajectories in a non-small cell lung cohort
(Jamal-Hanjani et al., 2017) and a breast cancer cohort (Razavi
et al., 2018).

5.1 Simulations
We use simulations to evaluate our method. We generate three sets
of simulation instances, with varying total number jRj of mutations
and number ‘ mutations per cluster. The first set has jRj ¼ ‘ ¼ 5
mutations, the second set jRj ¼ 12 total mutations and ‘ ¼ 7 muta-
tions per cluster and the third set jRj ¼ ‘ ¼ 12 mutations. For each
set, we generate simulated instances with varying number k� 2
f1;2; 3; 4;5g of clusters and number n 2 f50;100g of patients,
yielding an MCCT instance T ¼ fT1; . . . ;Tng and solution
ðR�;C�; r�Þ as follows. First, we draw the patient clustering r� :
½n� ! ½k� from a Dirichlet-multinomial distribution with concentra-
tion parameters a1 ¼ � � � ¼ ak ¼ 10 and the number of trials equal
to the number of patients n. Next, for each cluster j 2 ½k�, we ran-
domly pick ‘ mutation without replacement from the set R, ensuring
that mutation 0 is among the picked mutations. We then randomly
generate a consensus tree R�

j using Prüfer sequences (Prüfer, 1918),
rooted at mutation 0. To obtain the set T i of trees of patient i 2 ½n�,
we simulate a bulk sequencing experiment by generating a matrix F
of variant allele frequencies (with 5 bulk samples) obtained from
mixing the vertices of the corresponding consensus tree RrðiÞ, and
subsequently running SPRUCE (El-Kebir et al., 2016). For each
simulation instance, parameterized by jRj; ‘, n and k, we generate
20 instances. This amounts to a total of 3 � 2 � 5 � 20 ¼ 600 instances.

We compare RECAP (50 restarts) to HINTRA
(Khakabimamaghani et al., 2019) and REVOLVER (Caravagna
et al., 2018) (with default parameters, see Supplementary Appendix
C). Figure 5a shows that RECAP correctly selects the ground truth
tree for each patient. REVOLVER, by contrast, only does so when
the number k� of simulated clusters equals 1 and performance
decreases with increasing k�. Indeed, in REVOLVER’s model patient
trees originate from a single generative model (which is a directed
graph). This model assumption breaks down when there are distinct
generative models, with varying sets of edges, for each patient clus-
ter as is the case in our simulations. We were only able to run
HINTRA for the jRj ¼ ‘ ¼ 5 simulation instances, resulting in poor
performance for varying number k� of simulated clusters. Figure 5b
shows that RECAP’s model selection criterion correctly identifies
the simulated number k� of clusters. REVOLVER’s performance is
slightly worse that RECAP, often overestimating the number of clus-
ters. Next, we assess the accuracy of the patient clustering of
RECAP and REVOLVER. Note that we did not include HINTRA in
this analysis, as it is does not possess the capability to group patients
into clusters with similar evolutionary trajectories. We find that
RECAP correctly assigns pairs of patients to the same cluster (recall,
Fig. 5c) and also correctly groups patients into distinct clusters (pre-
cision, Fig. 5d). Finally, we assess in Supplementary Figure S5
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RECAP’s stability with varying number of restarts, showing that
RECAP quickly converges onto the ground truth solution.

In summary, our simulations demonstrate that RECAP outper-
forms existing methods, correctly reconstructing distinct evolution-
ary trajectories, selecting the correct tree per patient and correctly
clustering patients together.

5.2 Real data
Non-small cell lung cancer cohort. We first run RECAP on the
TRACERx dataset from (Jamal-Hanjani et al., 2017), which con-
tains whole-exome sequencing (500� depth) of tumors taken from
patients (n¼99) with non-small cell lung cancer. In the original
study, phylogenetic trees were reconstructed for each patient with
some patients having more than one proposed tree (median: 1 tree,
maximum: 14 trees). The number of clones per patient ranges from
2 to 15. Furthermore, 85 patients have trees containing at least one
mutation cluster, with a maximum mutation cluster size of 11. We
additionally process these trees by restricting them to recurrent
driver mutations, which we define to be mutations appearing in at
least 10 patients. We run RECAP on this dataset with k ranging
from 1 to 15 and with 5000 restarts.

RECAP’s model selection criterion identifies k¼10 distinct
clusters (Fig. 6a). We note that as k increases, the clusters remain
fairly stable in terms of the consensus trees found and the patient
clustering, with each incremental cluster typically subdividing a pre-
vious cluster (Fig. 6b). The cluster size for the selected k ranges

from a minimum of 4 patients to a maximum of 21 patients assigned
to a particular cluster. Six of the consensus graphs we recover con-
sist of at most one edge from germline to a driver mutation. The
remaining four consensus trees have between two and three
mutations.

We note that Caravagna et al. (2018) likewise reported 10 dis-
tinct clusters for this dataset. Of these, the authors found five to
have the strongest signal (C2, C3, C4, C6, C8). RECAP returns a
consensus tree exactly matching two of these clusters, and very simi-
lar consensus trees for the remaining clusters. Moreover, the patients
in these clusters are similarly clustered by RECAP.

We discuss Cluster 4 from RECAP, which we use as an illustra-
tive example of how RECAP can use patterns observed in other
patients to resolve ambiguities due to mutation clusters (Fig. 6c).
The consensus tree for Cluster 4 contains an edge from germline to
EGFR followed by an edge from EGFR to TP53 (matching cluster
C4 in REVOLVER). We observe that in the input data, patient
CRUK0015 has a single tree that after processing contains both of
these edges, ordering EGFR and TP53 (Fig. 6d). As we would ex-
pect, patient CRUK0015 is assigned to Cluster 4. Moreover, this in-
formation then transfers via the consensus tree to resolve mutation
clusters for 10 other patients in this cluster including CRUK0001,
CRUK0004, CRUK0022, CRUK0024, CRUK0026, CRUK0048,
CRUK0049, CRUK0051, CRUK0058 and CRUK0080. Indeed, it
has been previously observed that EGFR and TP53 frequently co-
occur, potentially having important clinical implications, and that in
some patients EGFR proceeds TP53 VanderLaan et al. (2017).

Fig. 5. Simulations show that RECAP accurately solves the MCCT problem, outperforming HINTRA (Khakabimamaghani et al., 2019) and REVOLVER (Caravagna et al.,

2018). We show results for all simulation conditions. (a) The fraction of patients with correctly inferred trees by each method. (b) The number k of patient clusters inferred by

each method. (c) The fraction of patient pairs that are correctly clustered together. (d) The fraction of patient pairs that are correctly put in separate clusters. Panel (a) shows

only jRj ¼ ‘ ¼ 5 results for HINTRA, due to scaling issues. No results are shown in (b)–(d) for HINTRA, as this method does not infer patient clusters
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Breast cancer cohort. Razavi et al. (2018) performed targeted
sequencing of 1918 tumors from 1756 breast cancer samples, identi-
fying copy number aberrations and single-nucleotide variants
(SNVs) using a panel comprised of 468 genes. Here, we restrict our
analysis to the subset of n¼1315 patients with SNVs that occur in
copy neutral autosomal regions. For each patient, we run SPRUCE
(El-Kebir et al., 2016) to enumerate all tumor phylogenies that ex-
plain the variant allele frequencies of the copy-neutral SNVs.
Specifically, we identify between 1 to 6332 trees per patient (me-
dian: 1). We further process these trees by restricting them to muta-
tions that occur in at least 100 patients, yielding a set R of eight

mutations. We run RECAP on this dataset with k ranging from 1 to
15 and with 1000 restarts.

RECAP’s identifies k¼8 distinct clusters for this dataset
(Fig. 7a). Similar to the lung cancer cohort, the clusters remain fairly
stable in terms of the consensus trees found and the patient cluster-
ing (Fig. 7b). The cluster size for the selected k ranges from a min-
imum of 55 patients to a maximum of 410 patients assigned to a
particular cluster. Two consensus trees have two mutations, the
remaining six are comprised of a single mutation. We focus our at-
tention on Cluster 1, comprised of 71 patients. In particular, Patient
P-0004859 has two input trees (Fig. 7c): TP53 and PIK3CA are

Fig. 6. RECAP identities repeated evolutionary patterns in a non-small cell lung cancer cohort, resolving ambiguities in the solution space and expanding mutation clusters.

We show results for running RECAP on TRACERx (Jamal-Hanjani et al., 2017). (a) The criterion scores obtained by each cluster across different values for k. As k increases,

the total normalized distance decreases and levels off at k¼ 10, which RECAP selects. (b) The number of patient trees assigned to each cluster. (c) In the input data, 10 out of

16 patients that RECAP assigns to Cluster 4 have TP53 and EGFR together in a mutation cluster. (d) Patient CRUK0015 is also assigned to Cluster 4 and has an edge from

EGFR to TP53. This information resolves the mutation cluster for these 10 patients via the consensus tree (red edges, edge label indicating number of patients) for this cluster

Fig. 7. RECAP finds a stable patient clustering and resolves ambiguities in a breast cancer cohort by identifying shared evolutionary patterns. We show results for running

RECAP on a breast cancer cohort (Razavi et al., 2018). (a) The criterion scores obtained by each cluster across different values for k. As k increases, the total normalized dis-

tance decreases and levels off at k¼8, which RECAP selects. (b) The number of patient trees assigned to each cluster. (c) In the input data, patient P-0004859 has two pro-

posed trees with different arrangements of TP53 and PIK3CA. (d) This patient is assigned to Cluster 1, where other patients in this cluster have an edge from PIK3CA to TP53.

Red edge coloring indicate consensus tree, and edge labels indicate the number of patients with that edge. This information is used to select the tree for P-0004859 consistent

with this mutation ordering. We do not show edges in the consensus graph that occur in fewer than three patients in this cluster
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children of MAP3K1 in tree T1 while tree T2 has a chain from
MAKP1 to PIK3CA to TP53. As the consensus tree of this cluster
has an edge from germline to EGFR and an edge from EGFR to
TP53, RECAP selects tree T2 for this patient (Fig. 7d). In turn, the
consensus tree was informed by the mutation orderings of other
patients, revealing shared evolutionary trajectories. In this way, the
consensus tree facilitates the transfer of information across patients
to resolve ambiguities in the solution space.

Previously, Khakabimamaghani et al. (2019) used HINTRA to
analyze this dataset, manually splitting the patients into four sub-
types based on receptor status (HRþ/HER2-, HRþ/HER2þ, HR-/
HER2þ and Triple Negative). In the HRþ/HER2- subtype, the
authors found CDH1 commonly precedes PIK3CA. Without prior
knowledge, RECAP recapitulates this finding in Cluster 7 with a
consensus tree comprised of an edge from germline to CDH1 and
then CDH1 to PIK3CA. When analyzing the 93 patients assigned to
this cluster, we see that 87 patients (�93.5%) belong to the HRþ/
HER2- subtype. This finding demonstrates RECAP’s ability to un-
cover cancer subtypes based on evolutionary trajectories.

6 Discussion

In this article, we formulated an optimization problem for simultan-
eously selecting a phylogeny for each patient in a cancer cohort, cluster-
ing these patients to account for subtype heterogeneity, and identifying
a representative consensus tree for each patient cluster. After establish-
ing the hardness of this problem, we proposed RECAP, a coordinate as-
cent algorithm as a heuristic for solving this problem. We included with
this algorithm a way to handle patients with different sets of mutations
as well as mutation clusters, something not previously handled in this
line of work. The fact that our algorithm is capable of running over
patients with different mutation clusters is particularly necessary in the
whole-genome context, where the number of mutations necessitates
clustering and there is variations in these clusters across patients.
Moreover, we included a model selection criterion for identifying the
number k of subtypes needed to explain a dataset. We validated our ap-
proach on simulated data, showing that RECAP outperforms existing
methods that do not support diverse evolutionary trajectories. We dem-
onstrated the use of RECAP on real data, identifying well-supported
evolutionary trajectories in a non-small cell lung cancer cohort and a
breast cancer cohort.

This work put forth a general framework for defining clusters of
patients while reducing ambiguity inherent to the input data. We be-
lieve that this framework is adaptable and can be used to structure
several avenues for future work. Broadly, these questions surround
what makes two cancer phylogenies meaningfully similar and what
are relevant underlying models that should be used to summarize
shared evolutionary patterns. For instance, we currently support a
variation on the parent–child distance to evaluate the difference be-
tween trees. However, there are other types of distance measures,
such as the ancestor-descendent distance (Govek et al., 2018) or
MLTD (Karpov et al., 2019), that weigh discrepancies between trees
differently. Exploring the trade-offs between distance metrics in
more depth could lead to new insights. We currently require the con-
sensus for each cluster to be a tree, but other graphical structures
such as directed acyclic graph could be considered. This is especially
useful when trying incorporate mutual exclusivity of drivers muta-
tions that occur in the same pathway into the inference. We could
also consider incorporating auxiliary information, such as mutation-
al signatures, into our model either via constraints or a secondary
optimization criterion in order to test how clusters change when
accounting for this incremental signal. Indeed, using mutational sig-
natures as a constraint to improve the estimation of just a single pa-
tient tree has recently been done in Christensen et al. (2020). On the
theoretical side, we note that the current formulation is done using
the infinite sites assumption. We hope to expand this work to the
more comprehensive k-Dollo evolutionary model that allows for
mutation losses (El-Kebir, 2018). Exploring such variations will not
only shed light on solution space summarization, but will also shed
light on the common evolutionary models generating the mutation
patterns we observe in patient cohorts.

Acknowledgements

The authors thank Layla Oesper for helpful discussions.

Funding

M.E.-K. was supported by the National Science Foundation [CCF 18-50502].

Conflict of Interest: none declared.

References

Aguse,N. et al. (2019) Summarizing the solution space in tumor phylogeny in-

ference by multiple consensus trees. Bioinformatics, 35, i408–i416.

Caravagna,G. et al. (2018) Detecting repeated cancer evolution from

multi-region tumor sequencing data. Nat. Methods, 15, 707–714.

Christensen,S. et al. (2020) PhySigs: phylogenetic inference of mutational sig-

nature dynamics. In Pacific Symposium on Biocomputing, World Scientific

Publishing Co., Singapore, Vol. 25, pp. 226–237.

Curtis,C. et al.; METABRIC Group. (2012) Dynamics of breast cancer relapse

reveal late recurring ER-positive genomic subgroups. Nature, 486,

346–352.

DiNardo,Z. et al. (2019) Distance measures for tumor evolutionary trees.

Bioinformatics, 36, 2090–2097.

El-Kebir,M. (2018) SPhyR: tumor phylogeny estimation from single-cell

sequencing data under loss and error. Bioinformatics, 34, i671–i679.

El-Kebir,M. et al. (2016) Inferring the mutational history of a tumor using

multi-state perfect phylogeny mixtures. Cell Syst., 3, 43–53.

Govek,K. et al. (2018) A consensus approach to infer tumor evolutionary

histories. In Proceedings of the 2018 ACM International Conference on

Bioinformatics, Association for Computing Machinery, New York, NY,

USA, pp. 63–72.

Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell, 100,

57–70.

Hanahan,D. and Weinberg,R.A. (2011) Hallmarks of cancer: the next gener-

ation. Cell, 144, 646–674.

Jamal-Hanjani,M. et al. (2017) Tracking the evolution of non-small-cell lung

cancer. N. Engl. J. Med., 376, 2109–2121.

Karp,R.M. (1972). Reducibility among Combinatorial Problems. Springer,

Boston, MA, pp. 85–103.

Karpov,N. et al. (2019) A multi-labeled tree dissimilarity measure for compar-

ing “clonal trees” of tumor progression. Algorithms Mol. Biol., 14, 1–18.

Khakabimamaghani,S. et al. (2019) Collaborative intra-tumor heterogeneity

detection. Bioinformatics, 35, i379–i388.

McGranahan,N. et al. (2015) Clonal status of actionable driver events and the

timing of mutational processes in cancer evolution. Sci. Transl. Med., 7,

283ra54–283ra54.

Navin,N.E. (2014) Cancer genomics: one cell at a time. Genome Biol., 15,

452.

Nowell,P.C. (1976) The clonal evolution of tumor cell populations. Science,

194, 23–28.

Pradhan,D. and El-Kebir,M. (2018) On the non-uniqueness of solutions to the

perfect phylogeny mixture problem. In Proceedings of Research in

Computational Molecular Biology – Comparative Genomics. Springer,

Cham, Switzerland.
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