Efficient Deterministic Federated Scheduling for
Parallel Real-Time Tasks

Son Dinh, Christopher Gill, and Kunal Agrawal
Washington University in St. Louis
{sonndinh, cdgill, kunal} @wustl.edu

Abstract—Federated scheduling is a generalization of parti-
tioned scheduling for parallel tasks on multiprocessors, and has
been shown to be a competitive scheduling approach. However,
federated scheduling may waste resources due to its dedicated al-
location of processors to parallel tasks. In this work we introduce
a novel algorithm for scheduling parallel tasks that require more
than one processor to meet their deadlines (i.e., heavy tasks). The
proposed algorithm computes a deterministic schedule for each
heavy task based on its internal graph structure. It efficiently
exploits the processors allocated to each task and thus reduces
the number of processors required by the task. Experimental
evaluation shows that our new federated scheduling algorithm
significantly outperforms other state-of-the-art federated-based
scheduling approaches, including semi-federated scheduling and
reservation-based federated scheduling, that were developed to
tackle resource waste in federated scheduling, and a stretching
algorithm that also uses the tasks’ graph structures.

I. INTRODUCTION

The development of multicore processors enables appli-
cations with high computational demand to be deployed in
modern real-time systems. Applications such as motion plan-
ning in autonomous vehicles [1], real-time hybrid structural
simulation [2], and computer vision [3] require multiple
processors simultaneously to meet their deadlines. In contrast
to sequential tasks which only allow inter-task parallelism,
such parallel applications also allow intra-task parallelism — a
task can execute on more than one processor at the same time.
With the prevalence of multicore processors and the available
parallel programming languages and concurrency platforms
such as OpenMP and Cilk Plus, ever more parallel applications
are being deployed in modern real-time systems.

In addition to global and partitioned scheduling [4]-[11],
federated scheduling is a promising approach for scheduling
parallel tasks. Federated scheduling, originally proposed by
Li et al. [12], classifies parallel tasks as heavy tasks, which
must execute on multiple processors to meet their deadlines,
and light tasks, which can execute sequentially and still meet
their deadlines. Each heavy task is allocated a dedicated set
of processors and scheduled exclusively on its processors.
Light tasks are then scheduled sequentially on the remaining
processors. Federated scheduling has been shown to be a
promising approach for scheduling parallel tasks [12]-[15]
due to its analytical properties and ease of implementation in
practice [16]. Federated scheduling, however, may suffer from

978-1-7281-4403-0/20/$31.00 ©2020 IEEE

resource waste, as processors that are dedicated to a heavy task
cannot be shared with other tasks, even if not fully exploited.

Recent work has attempted to address this resource waste
problem, by either potentially reducing the number of proces-
sors allocated to heavy tasks [13] or increasing the ability for
heavy tasks to share their processors with other tasks [17],
[18]. In this work, we address the resource waste problem
by reducing the number of processors exclusively allocated to
heavy tasks. At runtime, each heavy task is executed based on
a deterministic schedule computed offline by our algorithm.
Light tasks are treated and scheduled as sequential tasks on
the remaining processors as in [12]-[15].

The contributions of this work are as follows.

o We propose a novel algorithm to compute a deterministic
schedule for each heavy task by using its internal graph
structure along with basic parameters such as its deadline
and its subtasks’ execution times. The proposed algorithm
efficiently exploits the processors allocated to each heavy
task, hence reducing the number of processors required
to schedule the task. We also present a new federated
scheduling algorithm based on the proposed deterministic
scheduling algorithm.

+ We conduct an extensive evaluation of the performance
of the proposed algorithm with randomly generated tasks.
Experiment results show that the proposed algorithm
significantly reduces the numbers of processors required
by heavy tasks, and that our new federated scheduling al-
gorithm outperforms the state-of-the-art federated-based
scheduling approaches [13], [17], [18] and a stretching
algorithm [19] by a large margin.

This paper is organized as follows. Sections II and III
present related work and the considered task model respec-
tively. Section IV presents our new deterministic schedul-
ing algorithm for heavy tasks, and discusses its theoretical
properties and how the computed schedules can be used at
runtime. Sections V and VI present a performance evaluation
of our deterministic and federated scheduling algorithms, and
compare them with other state-of-the-art techniques. Finally,
Section VII concludes our work.

II. RELATED WORK
There are three common approaches for scheduling parallel
tasks: global scheduling [4], [5], [8], [9], [12], [20], par-
titioned scheduling [10], [11], and federated-based schedul-
ing [12]-[14], [17], [18]. Due to space limitation, we focus

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



on federated-based scheduling in this section. In federated
scheduling [12], parallel tasks are classified as heavy tasks
(tasks with densities > 1.0) and light tasks (tasks with
densities < 1.0). Each heavy task is allocated a large enough
number of dedicated processors so that worst-case releases
of the task can meet their deadlines. Light tasks are then
scheduled as sequential tasks on the remaining processors
using an existing multiprocessor scheduling algorithm.

Federated scheduling, however, may over-provision heavy
tasks, and thus may waste computational resources. To address
this problem, Jiang et al. [17] and Ueter et al. [18] have
proposed semi-federated scheduling and reservation-based fed-
erated scheduling, respectively. In semi-federated scheduling,
a heavy task with a processing requirement of x + €, where
xr € Zt and 0 < ¢ € R < 1, is allocated = dedicated
processors (instead of x + 1 as it would have been in [12]).
The fractional part € is scheduled together with light tasks.
In reservation-based scheduling, parallel tasks are allocated
dedicated reservation servers instead of dedicated processors.
Reservation servers are then scheduled as sequential tasks us-
ing existing multiprocessor scheduling algorithms. We discuss
these two approaches in detail in Section VL.

Baruah proposed a different method to reduce the number of
processors allocated to heavy tasks [13], [14]. That approach
allocates each heavy task a minimal number of processors on
which Graham’s list scheduling algorithm [21] can schedule
the task successfully. We discuss this method in detail and
compare our algorithm with it in Sections V and VI.

ITII. TASK MODEL & NOTATION

We consider a task set of n real-time, sporadic tasks sched-
uled upon m identical processors. Each task 7; is modeled
using a tuple (G;, D;,T;), where D; and T; are the relative
deadline and minimum inter-arrival time (i.e., period) of 7;, re-
spectively. Task 7; is represented by a Directed Acyclic Graph
(DAG) Gi = (V;, Ez) in which V; £ {Ui,h Vi, 2y ey Ui,ni} is the
set of vertices and E; C (V; x V;) is the set of directed edges
of 7;. Vertices are also called subtasks or nodes. Each vertex
denotes a sequential execution unit of the task and each edge
(Vi,p,Vi,q) € E; denotes the precedence constraint between
vertices v; , and v; ¢ — v;,, must finish before v; , may start
its execution. A vertex with no incoming edges is called a
source vertex, and a vertex with no outgoing edges is called
a sink vertex. A sequence of vertices (Vs g, Vik;.qs s Viky )
where v; 1, is a sink vertex and (v;k,,Vik,,,) € Ei, Vj <
p < t, is a path starting from v; i, of 7;. The length of a path
is the sum of the worst-case execution times (WCETSs) of all
subtasks along the path.

Task 7; may release an infinite number of jobs and any two
consecutive jobs of 7; must be released at least T; time units
apart. We consider constrained-deadline tasks, i.e., D; < T;
for all 7;. WCET of subtask v; ; is denoted by C; ;. WCET
of 7;, denoted by Cj, is C; = Zvl,jevi C; ;. The WCET C; is
also called the work of 7;. A path with the greatest length of
7; is called a critical-path of ;. The critical-path length (or
span) of T; is denoted by L;. Figure 1 illustrates a task 7; with

C,=122,L,=36,D, = 44

Fig. 1: An example DAG task.

10 vertices, C; = 122, L; = 36, and D; = 44. The utilization
and density of 7; are denoted by wu; = % and o; = %,
respectively. 7; is a heavy task if o; > 1.0 and a light task if
o; < 1.0. We use n” and n! to denote the number of heavy
and light tasks in a task set respectively. The total normalized
utilization of a task set is denoted by U = “* The total
normalized utilization of heavy and light tasks in a task set
are denoted by U” and U, respectively.

We use dag(v; ;) to denote the subgraph of 7;’s DAG rooted
at v; ;, i.e., dag(v; ;) contains v; ; and all of its descendants.
Let work(v; ;) denote the total work of dag(v; ;): work(v; ;)
= Zvi,pedag(ui,j) C;.p- In Figure 1, dag(v; o) consists of v; g,
V.3, Vi7, Ui 9, and work(v; o) = 52. We use \; ; to denote a
longest path from v; ;, and len(); ;) to denote the length of
Ai,j- In other words, A; ; is a critical-path of dag(v; ;), and
len(\; ;) is its critical-path length.

A subtask may be scheduled as multiple portions, i.e., it
can be preempted and resumed multiple times. We call each
such portion of a subtask a fragment of that subtask. The
k" fragment of subtask v; ; is denoted as v} ;. Fragment v
has execution time C’ffj. If v; ; is scheduled as nfrags(v; ;)
fragments, we have 7/709%(vis )C’ﬁj = C;;. We extend
the notation of subgraph, subgraph work, and critical-path
of subgraph for fragments. In particular, we use dag(vl’fj) to
denote the subgraph rooted at vf ;- For instance, supposé Vi.0
in Figure 1 has executed 9 time units in its first fragment
1)20 before it is preempted. Later, its second fragment UZ{O
is resumed. The subgraph dag(v},) thus contains v}, and
V.3, V37, Uig. We use work(vf;j) to denote the total work of
dag(vﬁj). In this example, work(v} ;) = 43. A longest path
starting from v¥ ; is denoted by A¥ ; and its length is len(\F ).

T,ET

IV. A DETERMINISTIC SCHEDULING ALGORITHM

Much of the previous work on federated scheduling ignores
the tasks’ internal graph structures [12], [15], [18]. For in-
stance, in [12] the number of processors allocated to 7; is
[%1 and is independent of other details of 7;’s DAG. The
advantage of this method is that it is simple and allows each
task’s DAG to vary in different releases as long as it satisfies
the work and critical-path length bounds. However, this also
means that this method must assume the worst-case DAG for

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



every task when allocating processors to it. Hence, it risks
over-provisioning the task, which leads to resource waste.

In [13], [14], the authors take the tasks’ DAGs into account
to some extent. In particular, they use Graham’s list schedul-
ing [21] to schedule a task on a given number of processors
and only increase the number of processors allocated to the
task one at a time if the schedule’s makespan (i.e., the elapsed
time from the start to the end of the schedule) is greater than
the task’s deadline. In other words, they indirectly take 7;’s
DAG into consideration through the use of list scheduling to
test whether 7; can be scheduled successfully in each step.

Graham’s list scheduling, however, was not originally de-
signed for real-time systems. Instead, its objective is to sched-
ule a task so that its completion time is minimized; there is
no notion of deadline in list scheduling. In contrast, a real-
time task’s temporal correctness is satisfied as long as its jobs
finish by their deadlines. In this section, we propose a new
scheduling algorithm for heavy tasks which takes into account
each task’s DAG, deadline, and subtasks’ WCETSs to compute
a deterministic schedule for the task. The goal of this algorithm
is to exploit the processors allocated to heavy task as efficiently
as possible, hence reducing the number of processors required.

A. DAG Scheduling Algorithm

Algorithm 1 shows the pseudocode for the proposed algo-
rithm. In contrast to Graham’s list scheduling, where sub-
tasks are scheduled non-preemptively — once scheduled a
subtask is not preempted until it completes — Algorithm 1
allows subtasks to be preempted and resumed at appropriate
times. The computed schedule for 7; consists of a chain of
segments, each comprising fragments from different subtasks
of 7; executing in parallel (Figure 2). The algorithm starts
by pre-processing 7;’s DAG (line 2). For each subtask v; ;
it computes two parameters: (i) the length of a longest path
originating from v, j, i.e., len(); ;), and (ii) the work of the
subgraph rooted at v; ;, i.e., work(v; ;). Algorithm 1 proceeds
by allocating 7; a minimal number of dedicated processors:
m; = {gj (line 3). This is the smallest number of processors
that can possibly schedule 7;. The algorithm then iteratively
increases the number of processors m; allocated to 7;, only
when necessary (line 4). In each iteration, it computes a
schedule for 7; with the given m;. If the computed schedule
does not satisfy 7;’s deadline, it increases m; by 1 and re-
computes a schedule for 7;. The algorithm terminates when
a satisfying schedule for 7; is obtained, or if there are not
enough processors to schedule ;.

For a given m;, the algorithm maintains a queue readyQ
of ready fragments (line 12). At the beginning, fragments
corresponding to the source subtasks are inserted into the
queue. These fragments have execution times equal to the
WCETs of the corresponding subtasks. For the DAG in Fig-
ure 1, fragments v, v9 1,075, v 4,076, 07 are inserted into
readyQ; each has execution time equal to its subtask’s WCET.
The algorithm then incrementally constructs a schedule for 7;
(lines 13 - 48). In each iteration, it determines which fragments
will be scheduled and for how long; all chosen fragments will

Algorithm 1 Scheduling Algorithm for Parallel DAG Tasks

1: procedure DAGSCHED(7;, m)

2 Pre-process 7;’s DAG

3 m; ]'%] > Assuming m; < m
4 while SCHEDULECORE(7;, m;) = False do

5: if m; > m then Return False

6 end if

7 end while

8 Return True and the schedule for 7;
9: end procedure

10: procedure SCHEDULECORE(T;, M)
11: currTime < 0

12: ready@ < {fragments of the source subtasks}
13: while readyQ # 0 do

14: remainWork < Total un-scheduled work at currTime

15: minCores + [%1

16: if minCores > m; then

17: m; < m; + 1

18: Return False

19: end if

20: S « {vfjlvi; € readyQ A len(\;;) = D; —
currTime}

21: if |S| > m; then

22: m; < m; + 1

23: Return False

24: end if

25: listFrags <— S > Fragments scheduled in the current
iteration

26: ready@ < ready@ \ S

27: while readyQ # 0 A |listFrags| < m; do

28: Find v ; € readyQ with greatest work(vy ;)

29: listFrags « listFrags U {vf;}

30: ready@ « readyQ \ {vf;}

31: end while

32: execlime <— min Cikj

vﬁj €listFrags ’

33: Find of,, st (v, € ready@) A (len(A\.,) >
len()\ﬁj), Vvﬁj € readyQ)

34: if v ,, # @ then

35: execTime < min{execTime, D; — currTime —
len(M%.)}

36: end if

37: Find vl , st (vi, € readyQ) A (work(vi,) >
work(v ), ‘v’v{fj € readyQ)

38: Find vy, st (vy, € listFrags) A (vz, ¢ S) A

(work(vy,,) < work(vf;), YoF,; € listFrags AvF; ¢ S)

39: if v, # 9 Nv;, # @ then

40: erecTime <« min{execTime, work(vy ,) —
work(vy ) + 1}

41: end if

42: Split all vf,j € listF'rags that has C{fj > execlime

43: 1) < {remainder of the split fragments}

44: readyQ) < ready@ Uy

45: readyQ — ready@ U
{fragments of the newly enabled subtasks}

46: Fragments in listF'rags are set up to run for execTime
time units

47: currTime < currTime + execl'ime

48: end while
49: Return True
50: end procedure

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



P2 A 0 3 5 4 0 1 4[5 3
vi,O Uiofio vi,O ”i‘fovi,O Lo vz’,2 ’UZ-,5 ’Ui,5 vi's Ui vi,5 /Ui,5 Ui],B’UiZ,Q’Ui,g viovss
P1 0 2 2 5 0 1 4 |5 4
Vi1 apialVi 6 PiolVi2 piapia] Via Ui Wir pirpiaVi7 Vi pirpinVs 3 pis
PO 0 1 3 6 0 0 0 |2 7
Vi6 PispiaVs,2 PalVig Pisis] Vie Uig Vi3 pispialVi,9 [Vi,3 pispislVi,5 Pini \i
0 91011 1314 161718 21 27 293031 33 353637 394041

Fig. 2: The deterministic schedule computed by Algorithm 1 for the DAG in Figure 1.

be scheduled for the same duration. A variable currTime is
used to denote the time up to that the schedule has been
constructed (line 11).

Algorithm 1 allocates 1 more processor to 7; if one of the
following two cases happens. First, it computes an estimate

for the minimum number of processors required to schedule

D;—currTime |’

is the remaining work of 7; that has not yet been scheduled
at time currlime, and D; — currTime is the amount of
time the algorithm has to schedule that remaining work
(line 15). If this value is greater than the current m;, i.e.,
it is impossible to schedule the remaining work using m;
processors, it increases m; by 1 and re-computes the schedule
for 7; using the updated m; (lines 16 - 19). Second, at the
beginning of each iteration, the algorithm computes a set S
of ready fragments for which the lengths of their longest
paths are equal to the time remaining until 7;’s deadline:
S & {vﬁj € readyQ|len()\ﬁj) = D; — currTime} (line 20).
Each such fragment must execute immediately, for otherwise
7; will miss its deadline since the path corresponding to
a fragment that is not scheduled immediately will run past
the deadline. If there are more fragments in S than m;, the
algorithm increases m; by 1, since it is impossible to schedule
all longest paths of the fragments in S to meet the deadline
with the current m; (lines 21 - 24).

If neither case happens, m; is unchanged and the algorithm
determines at most m; ready fragments to schedule. Since all
fragments in S must be scheduled immediately, the algorithm
picks all of them to schedule in this iteration (line 25). We
call the list of fragments chosen to be scheduled listF'rags.
For m; — |S| processors left, it takes at most m; — |S| ready
fragments not in S and with the greatest subgraph work to
add to listFrags (lines 27 - 31). The intuition is that we
want to prioritize the fragments with the greatest amounts
of pending work, so that as much work will be enabled for
the next iterations as possible; this gives a better chance of
scheduling more work in parallel in the future.

The algorithm then computes the execution duration, de-
noted by execTime, for those fragments. If execTime is less
than a chosen fragment vz’f j ’s execution time C’ff o the fragment
is split into two smaller fragments. The first fragment, which
is scheduled in this iteration, has execution time C’i’fj =
execl'ime. The second fragment, vfjl, has execution time
equal to the remaining WCET of v; j; it is then inserted back

the remaining work of 7;: where remainWork

into readyQ for later iterations. The value of execTime is first
determined by taking the minimum execution time among
all chosen fragments (line 32). Two other factors are also
considered when computing execTime. The intuition for them
is that after the chosen fragments have been scheduled for
some time, some ready, unchosen fragments may have greater
subgraph work than the ones being scheduled. Similarly,
some of them may have longest paths that need to execute
immediately because their lengths become equal to the time
remaining until the task’s deadline. When that happens, the
algorithm needs to choose a new set of fragments to schedule.

First, it picks from the unchosen ready fragments a fragment
vl ,, with the greatest longest-path length len(A}, ) (line 33).
The chosen fragments thus can execute for at most D; —
currTime — len(A}, ) units before % ,, must be scheduled
(line 35). If there is no such %, ,,, the algorithm ignores this
factor. Second, the algorithm considers an unchosen fragment
vib with the greatest subgraph work (line 37), and a chosen
fragment v; , with smallest subgraph work among all chosen
fragments such that v;’y is not in S (line 38). The difference
between work(vy, ) and work(vg ,) gives us the second factor
(line 40). The reason is that after that amount of time, vZﬁb
has its subgraph work equal to vy ,’s and we should decide
whether v! ; should be scheduled next. Specifically, the second
factor is: Work(v;y) - work(v{ ;) + 1. One time unit is added
to break ties in case there are multiple fragments with the
same subgraph work. If either vgﬁb or vy, does not exist, we
ignore this factor.

Now, execTime is computed by taking the minimum of the
execution times of the chosen fragments and the values of
the two factors. Each fragment with execution time greater
than execTime is split; the remaining fragment after splitting
is inserted back into readyQ as described above (lines 42 -
44). For fragments that complete, their corresponding subtasks
are also finished, and the algorithm inserts the fragments
corresponding to the enabled subtasks (those have become
ready) into readyQ (line 45). The chosen fragments are then
scheduled onto m; processors for execI'vme units (line 46).

Example for Algorithm 1. Figure 2 shows the schedule
computed by Algorithm 1 for the DAG in Figure 1. The
algorithm starts with m; = [%ﬂ = 3 processors. At time
0, fragments Y, vY |, v) are chosen to be scheduled since
they have greatest subgraph work. They are then scheduled
for execT'ime = 9 time units. At time 9, v;; has completed,

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



v; 5 18 enabled and inserted into the ready queue as a fragment
vy 5 with C?5 = C; 5 = 18. The remainders of v; o and v; ¢ are
inserted into the ready queue as fragments v} with Cf; =9,
and vj ¢ with Cil) ¢ = 9. The algorithm keeps running until the
ready queue is empty. For this task, Algorithm 1 only needs
3 processors, compared to [g‘ _Izl ] = 11 processors required
by the algorithm in [12]. The proposed algorithm thus saves

8 processors for this task.

B. Correctness & Optimization

We now show that Algorithm 1 computes a valid schedule
for 7; in the sense that any schedule returned by the algorithm
satisfies 7;’s deadline.

Lemma 1: For every iteration of the while-loop at line 13
of Algorithm 1, all ready fragments have their longest-path
lengths less than or equal to D; — currTime.

Proof: We prove by induction. For the first iteration,
currTime = 0. Since L; < D, there is no ready fragment
with longest-path length greater than D; — currTime = D;.

Suppose that at iteration k, all ready fragments have their
longest-path lengths less than or equal to D; — currlime.
We now prove that the lemma also holds for iteration (k+1).
Let currTimey and currTimeg,; denote the values of
currTime at the beginning of iterations k and (k + 1),
respectively. Let execT'ime; denote the execution length
computed for the iteration k. At the beginning of iteration
(k + 1), each fragment v}, that was scheduled at iteration
; "1 has been
inserted into the ready queue. For the latter case, len()\f_j;l) =
len()\f,a) —execTimey, < D; — currTimey, — execTimey, =
D; — currTimeyy1, since len()\f’a) < D; — currTimey,.
In the former case, for any subtask wv;; enabled by the
completion of v} ,, its first fragment v?’b has len()\?’b) <
len()\f,a) —execTimey, < D; — currTimey, — execTimey, =
D, — currTimey41. Hence, the lemma holds in both cases.

Let v} denote a fragment with greatest longest-path length
among all ready fragments that were not chosen to be sched-
uled at iteration k. If there is no such fragment, then all ready
fragments in iteration k£ were scheduled and the lemma holds
as discussed above. Otherwise, we have execTime, < D; —
currTimey — len(N] ) < len(A],) < D; — currTimey, —
execlimey, < len()\g’x) < D; — currTimey;. Since every
other fragment v; , that was not scheduled at iteration k
has len()\},) < len()],), the lemma holds for all ready
fragments that were not scheduled at iteration k. ]

We now can prove that if Algorithm 1 returns a schedule
for 7;, then it is a valid schedule.

Theorem 2: If Algorithm 1 returns a schedule for T;, then
this schedule satisfies T;’s deadline.

Proof: Suppose the algorithm returns a schedule that
misses 7;’s deadline. Then in the last iteration of the while-
loop at line 13 before the algorithm terminates, there must
be at least a ready fragment vl}fj with len()\f,j) > D, —

k either has completed, or its remaining v

currTivme. This contradicts Lemma 1. [ |
Theorem 2 in [12] proves that an implicit-deadline DAG
Ci—L;

task 7; is schedulable on processors using any work-

Di—L;

conserving scheduler. This result also applies to constrained-
deadline parallel tasks, as stated in the following lemma.
Lemma 3: A constrained-deadline parallel task allocated
[%—‘ dedicated processors is guaranteed to meet its dead-
line when scheduled using any work-conserving scheduler.
Proof: The proof is similar to the proof of Theorem
2 in [12]. We note that a parallel task with work C; and
critical-path length L; will complete within D, time units
when scheduled by a work-conserving scheduler exclusively
on [% processors. Since the task is constrained-deadline
(D; < T;), every job of the task finishes before the next job
is released. Thus, all jobs of the task meet their deadlines. W
Note that Algorithm 1 is a work-conserving algorithm since
it does not leave any processor idle if there are some fragments
ready to be executed. We now can bound the number of
processors required by Algorithm 1 in the following theorem.

Theorem 4: The number of processors required by Algo-
Ci—L,

Di—L; |’

Proof: Suppose that Aliorithm 1 returns a schedule for 7;

rithm 1 for task T; is at most

that requires m; > [% processors. The algorithm starts

with m; = [gl] < %—‘ processors. In each subsequent

call at line 4, it increases m; by 1. Thus at some point, m;
g;il—‘ Since Algorithm 1 is work-conserving, it
would have scheduled 7; successfully using that number of
processors (as proved in Lemma 3) and the returned m; would
g :ﬁ—‘ < m;. This contradicts the hypothesis. W
In Sections V and VI, we show that Algorithm 1 performs
much better than other federated-based scheduling algorithms,
in terms of the number of processors allocated to each heavy
task and the acceptance ratios of the generated task sets.
Time Complexity. In the pre-processing step, a variant of
shortest paths algorithm presented in [22] (Section 24.2) can
be used to compute the longest-path length of a subtask. That
algorithm takes time O(|V;| 4 |E;|). We can use breadth-first
search (or depth-first search) to compute the subgraph work
for each subtask with complexity of O(|V;| + |E;|). Overall,
the pre-processing step takes time O(|V;|(|V;| + |E;i])). The
while-loops at lines 4 and 13 run O(m) and O(D;) iterations,
respectively. We can implement ready() using a priority-
queue with subgraph work values of ready fragments as keys.
Computing the set S (line 20) takes O(|V;|log|V;|) time by
iteratively examining the fragments in ready®. The while-
loop at lines 27 - 31 takes O(mlog|V;|) time. Line 33 takes
O(]V;|) time by simply examining the ready but unscheduled
fragments, and computing the maximum longest-path length
for them. Lines 42 - 45 take O(|V;|log|V;|) time since there are
at most |V;| ready fragments inserted into ready@. Overall,
Algorithm 1 takes O(D;mlog|Vi|(|V;|+m)+|V;|*> + |V;|| Eil)
time, i..e, pseudo-polynomial time in the deadline of ;.
Optimizing and Using the Computed Schedule. A schedule
computed by Algorithm 1 may contain multiple consecutive
fragments of a subtask on the same processor. For instance,
in Figure 2, all fragments of v; ¢ are scheduled consecutively
on processor P2. Such consecutive fragments can be merged

is set to [

have been

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



P2 A 2 0 1
V5.0 V2 V5 Vig P
P1 0 1 1 2 0 3
Vi1 }’%’4 ’ Vis6 ’ Vi | Vig ‘ Uit ’ Vi3
PO 0 0 1 2 0 0 0 2 11
Vig ‘ Vio ‘ Vi4 ‘ Vi6 ‘ Vig |’Ui,3 lvf,sLiaF)ig ‘ Vi3 ‘ Vis }'Um | \J
0 91011 1314 161718 21 27 293031 33 353637 394041

Fig. 3: The final schedule after fragments in Figure 2 are merged.

into a larger fragment or even into the original subtask, as
in the case of v; . Figure 3 shows the schedule computed
by Algorithm 1 after merging. The final schedule computed
offline for each task can then be stored in a lookup table,
which can be referred to by the system at run time.

Even though the schedule computed for each task relies on
the WCETs of its subtasks, in practice, a subtask may execute
for less than its WCET. In this case, the runtime system can
let the processors that host the remainder of the subtask busy
waiting. (Note that the remainder of the subtask may comprise
multiple fragments that are scheduled on different processors.)
By doing so, we avoid the timing anomalies that are introduced
by executing subtasks for less than their WCETs [21]. We note
that in a practical system, such busy waiting intervals can be
used more efficiently to co-schedule non-real-time workloads.

C. A Federated Scheduling Algorithm

Algorithm 1 can be incorporated into a federated scheduling
algorithm. The pseudocode for our federated scheduling algo-
rithm is shown in Algorithm 2. In this algorithm, heavy tasks
are scheduled by Algorithm 1 on their dedicated processors,
and light tasks are scheduled sequentially on the remaining
processors using any existing multiprocessor scheduling algo-
rithm. The algorithm returns failure if Algorithm 1 fails to
schedule a heavy task (line 4) or if the light tasks cannot be
scheduled on the remaining processors (line 9). Otherwise, the
task set is scheduled successfully.

Algorithm 2 Federated Scheduling for DAG Tasks

1: procedure FEDSCHED(7, m)
2 My <—m

3 for Each heavy task 7; do
4 if DAGSCHED(7;, m,.) = False then © Algo. 1
5: Return Failure
6 end if

7 My 4— My — M
8 end for

9 if Scheduling light tasks on m,. processors fails then
10 Return Failure

11: end if

12: Return Success

13: end procedure

> 7; is allocated m; processors

V. EVALUATION WITH HEAVY TASKS

In this section, we compare the performance of Algo-
rithm 1 (denoted by PRO) with the algorithms introduced by

Baruah [13], [14] (denoted by BAR) and Li et al. [12] (denoted
by LI). For a given DAG task, the schedule returned by BAR
(and thus the number of processors required) depends on a
specific order of subtasks in list scheduling. For the DAG task
in Figure 1, BAR requires at least 4 processors to schedule
the task, compared to 3 processors needed by Algorithm 1.

Experimental Setup. We used the Erd8s-Rényi G(n;,p)
method for generating DAGs [23]. In this method, n; is the
number of vertices and p is a probability threshold used to
determine whether a directed edge between a pair of vertices
is added. For each pair of vertices, a real number is drawn
uniformly at random from [0, 1] and if the number is less than
p, an edge is added between the two vertices. If the obtained
DAG is not connected, we add a minimal number of edges
to make it weakly connected. For each task, the number of
vertices was chosen uniformly at random in [50,250]. The
WCET of each vertex was drawn uniformly at random in
[50, 100]. The relative deadline for 7; was generated uniformly
at random in [L;, C;). Since we consider only heavy tasks in
this section and tasks are constrained-deadline (D; < T;),
we do not need to generate periods — as long as each
heavy task finishes by its deadline, the length of the period
does not affect its schedulability. We varied the probability
threshold p in [0.1,0.9] with a step of 0.1. For each setting,
we generated 10,000 tasks and scheduled them using PRO and
BAR algorithms. The numbers of processors required by PRO,
BAR, and LI were recorded.

Results. Table 1 shows the percentages of the generated
heavy tasks for which PRO needed fewer or more processors
than BAR and LI. As we can see, PRO required fewer
processors than BAR for 21% — 48% of the generated tasks.
As p increases, the generated tasks become more sequential,
and thus there is less room for the proposed algorithm to
improve. There were still over 22% of the tasks for which
at least 1 processor was saved when p = 0.9. Notably, there
was no task for which PRO required more processors than
BAR. PRO also significantly outperforms LI as 74% — 92%
of the generated tasks needed fewer processors under PRO.
Similar to the comparison with BAR, there was no task for
which PRO required more processors than LI.

We also conducted experiments with task sets consisting of
heavy tasks for systems with m = {16, 32, 64} processors. For
each value of m, we varied the normalized total utilization U
in [0.2,1.0] with a step of 0.05. For m = {16,32,64}, each
task set consisted of n = {5, 10,15} tasks, respectively. If U
is too small to generate n heavy tasks, we generate smaller

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Comparison to BAR and LI for Heavy DAG Tasks (Unit: %)

Edge Probability Threshold p

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Against BAR [13] Fewer 43.55 4281 40.6 4447 4828 39.67 2835 21.73 22.14
More 0 0 0 0 0 0 0 0 0
Against LI [12] Fewer 8393 82.03 8025 7691 7521 7445 7626 92.04 84.84
More 0 0 0 0 0 0 0 0 0
1@ 16-© ¢
0.8r 0.8 0.8r
9 ] 9
: 0.6 i 0.6V : 067
Q Q Q
g g g
8 = 8
0.4 304 20.4r
3 3] 3
<< << <
0.2 0.2 0.2

0.4 06 08 04

Normalized Utilization

(@) m =16, n =n" = 5.

. 0.6 .
Normalized Utilization

(b) m =32, n=n"=10.

0.4 0.6 0.8
Normalized Utilization

(¢) m =64, n =n" = 15.

08 "

Fig. 4: Ratio of schedulable task sets for varying total utilization and number of processors.

numbers of tasks. For instance, when m = 16 and U = 0.2,
we generated 2 tasks per task set. DAG tasks were generated
using the Erd6és-Rényi method as described above with p set
to 0.2. We used the RandFixedSum algorithm [24] to generate
individual utilizations for the tasks uniformly in [1.1,U x m).
For each value of U, we generated 100 task sets and recorded
the acceptance ratios of PRO, BAR, and LI. The results in
Figure 4 show that PRO outperforms both BAR and LI. As
m and n increase, the performance gap between PRO and
BAR (and LI) increase. This is because as m and n increase,
the chance that PRO can save processors for some tasks in
each task set, and thus the chance that all tasks get sufficient
processors, increases. Again there was no task for which PRO
required more processors than BAR and LI

VI. EVALUATION VERSUS THE STATE-OF-THE-ART

We now evaluate our federated scheduling algorithm against
the state-of-the-art federated-based scheduling algorithms and
a stretching algorithm for scheduling DAG task sets consisting
of both heavy and light tasks.

A. Overview of the State-of-the-Art

In the semi-federated scheduling approach proposed by
Jiang et al. [17], instead of allocating a heavy task 7; with
processing capacity requirement of x + € g:i (where
v = [§=F] and 0 < € Gt — 2 < 1) [z + €
processors as in [12], they allocate 7; x processors. The
remaining € fraction is scheduled sequentially together with
the light tasks on the remaining processors. The number of
processors allocated to each heavy task is thus reduced by (at
most) 1 compared to that of [12].

To realize this idea, a runtime dispatcher for each DAG
determines when (and for how long) each subtask of the DAG
is mapped to the computational fraction e. They proposed two
variants of the semi-federated approach which differ in the way
the fraction € is implemented. In the first variant, the fraction
€ is encapsulated by a container task with a load equal to
e whereas in the second variant, it is encapsulated by two
container tasks with the total load of e. The container tasks
are then scheduled sequentially together with the light tasks
using P-EDF with Worst Fit packing [25].

In the reservation-based federated scheduling approach [18],
instead of allocating each heavy task 7; a set of dedicated pro-
cessors, they allocate 7; a set of dedicated reservation servers
(each light task is assigned one server with a budget equal to
its work). The obtained reservation servers are then scheduled
using an existing multiprocessor scheduling algorithm for
sequential tasks. Task 7; is guaranteed to be schedulable if
the total budget of its servers is > C; + L; - (m; — 1), where
m is the number of servers of 7; (Equation 1 in [18]). They
introduced two algorithms for assigning reservation servers
to tasks, called R-MIN and R-EQUAL, which differ in the
way they classify tasks as heavy or light. R-MIN classifies
tasks in a similar fashion as [12], i.e., based on the tasks’
densities, whereas R-EQUAL uses a common stretch ratio ~y
for all tasks to decide whether a task is heavy or not: 7; is
heavy if C; > vL;. The authors also introduced an algorithm
that dynamically adapts the number of servers assigned to a
heavy task if one of its current servers fails to be partitioned.

In addition to those federated-based scheduling approaches,
Qamhieh et al. [19] introduced an algorithm that take the tasks’
graph structures into consideration. In particular, a critical path

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



of each heavy task 7; is stretched up to the task’s deadline
using work from subtasks not belonging to the critical path.
As a result, 7; is transformed into a master thread with an
execution time equal to 7;’s deadline and a set of constrained-
deadline threads. Each master thread is assigned a dedicated
processor while all constrained-deadline threads and the light
tasks are scheduled together on the remaining processors.

We choose to compare our algorithm with those algorithms
since they have been shown to outperform other techniques,
including the DAG decomposition algorithms [26], [27] and
global scheduling [12], [20].

B. Experimental Evaluation

For all considered federated-based scheduling approaches,
we used P-EDF for scheduling sequential tasks including
light tasks, container tasks (in semi-federated scheduling), and
reservation servers. We considered three packing heuristics for
partitioning: Worst Fit (WF), Best Fit (BF), and First Fit (FF).
For testing whether a sequential task can be assigned to a
processor, two EDF schedulability tests were adopted. The first
test, denoted by DEN, checks whether the sum of the task’s
load (or density) and the current total load of the processor is
< 1.0 or not. If it is, the task can be assigned to the processor.
The second test, denoted by DBF, was introduced by Baruah
et al. [28] and is based on an approximation to the demand
bound function [29]. In this test, tasks are considered in non-
decreasing order of their relative deadlines. In general, Best
Fit packing combined with the DBF test produced the best
results in our experiments.

In [18] the authors show that their approach performs best
when R-MIN is used for assigning reservation servers together
with BF packing and the DBF test. We hence included this
variant in our figures and denote it RESV. For semi-federated
scheduling, denoted by SEMI, we used WF packing together
with the DEN test, which is similar to [17]. For the federated
scheduling algorithm proposed by Baruah [13], denoted by
BAR, the results for BF packing combined with the DBF
test are reported since they performed the best for BAR. For
the stretching algorithm proposed by Qamhieh el al. [19],
we included the results for when G-EDF and P-EDF are
used to schedule light tasks and the threads resulting after
stretching. These two variants are denoted as STRG and STRP,
respectively. In case of P-EDF, BF packing and the DBF test
are used. For our federated scheduling algorithm, we include
two variants: one for WF packing with the DEN test, and the
other for BF packing with the DBF test. These two variants
are denoted as PRO-WF-DEN and PRO-BF-DBF, respectively.

We applied the Erd6s-Rényi method [23] to generate DAGs.
For each task, the number of subtasks was uniformly chosen
in [50,250]. Each subtask has a WCET picked uniformly in
[50,100] and the probability threshold p was set to 0.2. The
work and span of each DAG were computed accordingly. For
given values of m, U, U", n", n!, we used the RandFixedSum
algorithm [24] to generate individual utilizations uniformly
in [1.1,U" x m] for heavy tasks and in [0.01,0.9] for light
tasks. Each task’s period was computed from its work and

utilization. For each setting, 500 task sets were generated
and the ratios of schedulable task sets were recorded. We
conducted experiments with m = {16, 32,64} processors.

Varying total utilization: In Figure 5 we varied U in
[0.2,1.0] with a step of 0.05. The ratio %h was set to 0.5,
i.e., half of the total utilization is from heavy tasks. For
m = {16,32,64}, we generated a maximum of {4,7,14}
heavy tasks, respectively (for small values of U we generated
smaller numbers of heavy tasks accordingly). For light tasks,
n' = {20,40,80} respectively. We observed that PRO-BF-
DBF outperformed all other approaches. Especially, it outper-
formed SEMI, RESV, STRP, and STRG by a large margin.
PRO-WF-DEN, which uses a similar combination of WF
packing with DBF test as SEMI, also outperformed SEMI.

PRO outperforms SEMI because regardless of the process-
ing capacity of a heavy task (the x + € quantity), SEMI saves
at most 1 processor for the task. SEMI’s effectiveness thus re-
duces when the number of heavy tasks increases and/or heavy
tasks get larger. In RESYV, the ability of sharing processors
between heavy and light tasks by using reservation servers
comes at the cost of inflating budget. In particular, the total
budget for 7; must be > C; + L; - (m; — 1) > C;, where m;
is the number of servers of 7;. Similar to [18], we observe
that RESV outperforms SEMI. STRP and STRG performed
worst among all approaches. This is because when a task
has a large number of subtasks, the stretching algorithm may
generate many threads with short relative deadlines (compared
to the DAG task’s deadline). These threads may have high
total density and thus are hard to schedule. Among these two
variants, STRP performed better than STRG.

Surprisingly, BAR also outperformed RESV and SEMI (and
STRP, STRG) significantly. This shows that federated schedul-
ing is still very competitive if heavy tasks are scheduled effi-
ciently. As m (and n) increases, the gap between group (PRO-
BF-DBF, PRO-WF-DEN, BAR) and group (RESV, SEMI,
STRP, STRG) expands. This is because as n and m increases,
the number of processors saved by PRO-BF-DBF, PRO-WF-
DEN, and BAR increases while the effectiveness of RESV
and SEMI reduces due to over-provisioning. The gap between
PRO-BF-DBF and BAR also increases for the same reason as
was discussed in Section V. BF packing combined with the
DBF test performed much better than the combination of WF
packing with the DEN test. This is shown in the performance
gap between PRO-BF-DBF and PRO-WF-DEN.

Varying load of heavy tasks: In Figure 6, for each m we
kept U and varied %h in [0.0,1.0] with a step of 0.1. The
maximum n” in each task set is {4,8,14} and the maximum
nt is {20,40,80} for m = {16, 32,64}, respectively.

We observed a similar trend in this experiment. The fluc-
tuation of PRO-BF-DBF, PRO-WF-DEN, and BAR is due to
the integral processor allocation for heavy tasks. Consequently,
there are cases when U” increases but the heavy tasks do not
require additional processors while U’ reduces and the light
tasks become easier to schedule. In addition, as the proportion
of heavy tasks increases, the task sets become harder to
schedule and the performances of all approaches decrease.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



-©-PRO-BF-DBF
=#-PRO-WF-DEN
BAR
=—=RESV
-E-SEMI
STRP
STRG

Acceptance Ratio

Normallzed Utlllzatlon

(@) m =16, n" € [1,4], U" = 0.5U, n' =
20.

-©-PRO-BF-DBF
=#-PRO-WF-DEN
BAR |
=—RESV
-B-SEMI
STRP
STRG

Acceptance Ratio

05 04 05 06 07 08 09
Normalized Utilization

(b)y m =32, n" €[2,7,U" =050, n' =

40.

-©-PRO-BF-DBF
=#-PRO-WF-DEN
BAR
=+—=RESV
-B-SEMI
STRP
STRG

0.8

Acceptance Ratio

02 03 04 05 06 07 08 09

Normalized Utilization
(c) m = 64, n" € [4,14], U" = 0.5U, n' =
80.

Fig. 5: Ratio of schedulable task sets for varying total utilization U.

Acceptance Ratio

01 02 03 0.4 05 0.6 0.7 0.8 0.9
Ratio of Heavy Tasks Utilization

(@) m =16, n" € [1,4], n' =20, U = 0.6.

Fig. 6:

-

o
@

o
o

o
~

Acceptance Ratio

o
o

o

=4, n' =20.

(a) m = 16, n”

0.8
8
=
<
© 06[
o
c
[
I
20.4r
3 g PRO-BF-DBF
3] PRO-WF-DEN
< BAR
=4=RESV
0.2 SEMI
STRP
STRG

0.1 0.2 0.3 0.4 05 06 0.7 08 09 1
Ratio of Heavy Tasks Utilization

(b)ym =32, n" € [1,8],n' =40, U = 0.55.

0.8F
i)
8
g o6l -©- PRO-BF-DBF
Y ~#- PRO-WF-DEN
e BAR
3 —=RESV
Q04+ =E=SEMI
§ XSTRP
2 STRG

0.2

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Ratio of Heavy Tasks Utilization

(c)m =64,n" €[2,14], n' =80, U = 0.5.

Ratio of schedulable task sets for varying %+

o
)

Acceptance Ratio
o
~

o
o

AN

N P &P o o O O P o

60,67 (0 B0 B0 (B PO A D P

0 P WP P A SIS

€O O OO ¢ EE
D/T,

() m =32, n" =7, n! = 40.

-

o
®

o
)

Acceptance Ratio
o
~

o
o

o

=14, n' = 80.

(c) m = 64, n"

Fig. 7: Ratio of schedulable task sets for 0.9 normalized density, 0.5 normalized density for heavy tasks, and varying 2=,

However, RESV, SEMI and STRP degrade much faster than
PRO-BF-DBF, PRO-WF-DEN, and BAR; and PRO-BF-DBF
is the most stable approach. When th = 0, all tasks are light
and STRP performed as well as other approaches. However, its
performance degraded quickly as heavy tasks were included.
Also, when %h increases, the performance gap between PRO-
BF-DBF and BAR gets larger as Algorithm 1 schedules heavy

tasks more efficiently.

Varying deadline and period ratio: Figure 7 shows the

result for varying ?i We generated 500 task sets with

normalized density fixed to 0.9 for all values of m. In each
task set, half of the total density was given to heavy tasks.
For m = {16,32,64}, n" = {4,7,14} and n! = {20, 40,80}
respectively. We used the RandFixedSum algorithm [24] to
generate individual densities for all tasks. D; of each task was
computed based on its density and work. The range for —’ was
varied in the set {[0.01,0.05),[0.05,0.1), ..., [0.95, 1. 0)} For
a given range, % was uniformly chosen in that range, and

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



T; was computed accordingly based on D,. As D =L increases,
the total utilization also increases and the task sets become
harder to schedule. Again, PRO-BF-DBF outperformed other
methods. RESV performed well for smal
quickly when it increases. The performance of PRO-WF-DEN
and SEMI did not change as ?‘ increases since they use the
DEN test for light tasks, which only depends on the densities
(and thus the deadlines) of the tasks, and for heavy tasks the
number of processors allocated to them is not affected.

VII. CONCLUSION

We have proposed a novel algorithm that computes a
deterministic schedule for DAG tasks. The algorithm uses the
graph structure of each task to efficiently schedule it on its
dedicated processors. Our experiments show that the proposed
algorithm significantly reduces the number of processors re-
quired by each heavy task. Our new federated scheduling
algorithm is also shown to outperform the state-of-the-art
federated-based scheduling algorithms [13], [17], [18] and a
stretching scheduling algorithm [19] by a large margin. Our
deterministic algorithm for scheduling heavy tasks can be
combined with the work by Brandenburg et al. [30] for an
overall efficient solution to scheduling DAG tasks. In [30],
the authors show that near optimal schedulable utilization
(over 99%) for sequential tasks on multiprocessors can be
reached using techniques, such as semi-partitioned scheduling,
reservations, period transformation, and their new heuristics
for task placement. In this combination, Algorithm 1 can be
used to schedule heavy tasks, and techniques in [30] can be
applied to schedule light tasks on the remaining processors.

REFERENCES

[1] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study on a
self-driving car,” in Proceedings of the ACM/IEEE 4th International
Conference on Cyber-Physical Systems. ACM, 2013, pp. 31-40.

[2] D. Ferry, G. Bunting, A. Maghareh, A. Prakash, S. Dyke, K. Agrawal,
C. Gill, and C. Lu, “Real-time system support for hybrid structural
simulation,” in Proceedings of the 14th International Conference on
Embedded Software. ACM, 2014, p. 25.

[3] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time com-
puter vision workloads using OpenVX on multicore+ GPU platforms,”
in 2015 IEEE Real-Time Systems Symposium. 1EEE, 2015, pp. 273—
284.

[4] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in ECRTS, 2013.

[5] H. S. Chwa, J. Lee, J. Lee, K.-M. Phan, A. Easwaran, and 1. Shin,
“Global EDF schedulability analysis for parallel tasks on multi-core
platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1331-1345, 2016.

[6] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global EDF
scheduling of directed acyclic graphs on multiprocessor systems,” in
Proceedings of the 21st International conference on Real-Time Networks
and Systems. ACM, 2013, pp. 287-296.

[7]1 V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG task model,” in 2013 25th Euromicro
conference on real-time systems. 1EEE, 2013, pp. 225-233.

[8] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic DAG task systems,” in 2014 26th Euromicro conference on
real-time systems. 1EEE, 2014, pp. 97-105.

[9] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis
of sporadic DAG tasks for global FP scheduling,” in Proceedings of
the 25th international conference on real-time networks and systems.
ACM, 2017, pp. 28-37.

[10] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES). 1EEE,
2016, pp. 1-10.

D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE
Real-Time Systems Symposium (RTSS). 1EEE, 2018, pp. 421-433.

J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Real-
Time Systems (ECRTS), 2014 26th Euromicro Conference on. IEEE,
2014, pp. 85-96.

S. Baruah, “The federated scheduling of constrained-deadline sporadic
DAG task systems,” in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition. EDA Consortium, 2015, pp.
1323-1328.

——, “Federated scheduling of sporadic DAG task systems,” in 2015
IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2015, pp. 179-186.

——, “The federated scheduling of systems of conditional sporadic
DAG tasks,” in Proceedings of the 12th International Conference on
Embedded Software. 1EEE Press, 2015, pp. 1-10.

J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems,” in
2016 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2016, pp.
203-214.

X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in 2017 IEEE Real-Time
Systems Symposium (RTSS). 1EEE, 2017, pp. 80-91.

N. Ueter, G. von der Briiggen, J.-J. Chen, J. Li, and K. Agrawal,
“Reservation-based federated scheduling for parallel real-time tasks,”
in 2018 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2018, pp.
482-494.

M. Qambhieh, L. George, and S. Midonnet, “A stretching algorithm for
parallel real-time DAG tasks on multiprocessor systems,” in Proceedings
of the 22Nd International Conference on Real-Time Networks and
Systems. ACM, 2014, p. 13.

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in 2015 27th Euromicro Conference on Real-
Time Systems. 1EEE, 2015, pp. 211-221.

R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
Jjournal on Applied Mathematics, vol. 17, no. 2, pp. 416-429, 1969.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
Proceedings of the 3rd international ICST conference on simulation
tools and techniques. 1CST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, p. 60.

[24] R. Stafford, “Random vectors with fixed sum,”
http://www.mathworks.com/matlabcentral/fileexchange/9700-random-
vectors-with-fixed-sum, 2006.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on computing, vol. 3, no. 4, pp. 299-325,
1974.

A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill, “Parallel
real-time scheduling of DAGs,” IEEE Transactions on Parallel and
Distributed Systems, 2014.

X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-based
global EDF scheduling of parallel real-time tasks,” in 2016 IEEE Real-
Time Systems Symposium (RTSS). 1EEE, 2016, pp. 237-246.

S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling
of deadline-constrained sporadic task systems,” IEEE Transactions on
Computers, vol. 55, no. 7, pp. 918-923, 2006.

S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in [/1990] Proceedings
11th Real-Time Systems Symposium. 1EEE, 1990, pp. 182-190.

B. B. Brandenburg and M. Giil, “Global scheduling not required: Simple,
near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in 2016 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2016, pp. 99-110.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[25]

[26]

[27]

[28]

[29]

[30]

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.



