
Efficient Deterministic Federated Scheduling for
Parallel Real-Time Tasks

Son Dinh, Christopher Gill, and Kunal Agrawal
Washington University in St. Louis

{sonndinh, cdgill, kunal}@wustl.edu

Abstract—Federated scheduling is a generalization of parti-
tioned scheduling for parallel tasks on multiprocessors, and has
been shown to be a competitive scheduling approach. However,
federated scheduling may waste resources due to its dedicated al-
location of processors to parallel tasks. In this work we introduce
a novel algorithm for scheduling parallel tasks that require more
than one processor to meet their deadlines (i.e., heavy tasks). The
proposed algorithm computes a deterministic schedule for each
heavy task based on its internal graph structure. It efficiently
exploits the processors allocated to each task and thus reduces
the number of processors required by the task. Experimental
evaluation shows that our new federated scheduling algorithm
significantly outperforms other state-of-the-art federated-based
scheduling approaches, including semi-federated scheduling and
reservation-based federated scheduling, that were developed to
tackle resource waste in federated scheduling, and a stretching
algorithm that also uses the tasks’ graph structures.

I. INTRODUCTION

The development of multicore processors enables appli-

cations with high computational demand to be deployed in

modern real-time systems. Applications such as motion plan-

ning in autonomous vehicles [1], real-time hybrid structural

simulation [2], and computer vision [3] require multiple

processors simultaneously to meet their deadlines. In contrast

to sequential tasks which only allow inter-task parallelism,

such parallel applications also allow intra-task parallelism — a

task can execute on more than one processor at the same time.

With the prevalence of multicore processors and the available

parallel programming languages and concurrency platforms

such as OpenMP and Cilk Plus, ever more parallel applications

are being deployed in modern real-time systems.

In addition to global and partitioned scheduling [4]–[11],

federated scheduling is a promising approach for scheduling

parallel tasks. Federated scheduling, originally proposed by

Li et al. [12], classifies parallel tasks as heavy tasks, which

must execute on multiple processors to meet their deadlines,

and light tasks, which can execute sequentially and still meet

their deadlines. Each heavy task is allocated a dedicated set

of processors and scheduled exclusively on its processors.

Light tasks are then scheduled sequentially on the remaining

processors. Federated scheduling has been shown to be a

promising approach for scheduling parallel tasks [12]–[15]

due to its analytical properties and ease of implementation in

practice [16]. Federated scheduling, however, may suffer from

resource waste, as processors that are dedicated to a heavy task

cannot be shared with other tasks, even if not fully exploited.

Recent work has attempted to address this resource waste

problem, by either potentially reducing the number of proces-

sors allocated to heavy tasks [13] or increasing the ability for

heavy tasks to share their processors with other tasks [17],

[18]. In this work, we address the resource waste problem

by reducing the number of processors exclusively allocated to

heavy tasks. At runtime, each heavy task is executed based on

a deterministic schedule computed offline by our algorithm.

Light tasks are treated and scheduled as sequential tasks on

the remaining processors as in [12]–[15].

The contributions of this work are as follows.

• We propose a novel algorithm to compute a deterministic

schedule for each heavy task by using its internal graph

structure along with basic parameters such as its deadline

and its subtasks’ execution times. The proposed algorithm

efficiently exploits the processors allocated to each heavy

task, hence reducing the number of processors required

to schedule the task. We also present a new federated

scheduling algorithm based on the proposed deterministic

scheduling algorithm.

• We conduct an extensive evaluation of the performance

of the proposed algorithm with randomly generated tasks.

Experiment results show that the proposed algorithm

significantly reduces the numbers of processors required

by heavy tasks, and that our new federated scheduling al-

gorithm outperforms the state-of-the-art federated-based

scheduling approaches [13], [17], [18] and a stretching

algorithm [19] by a large margin.

This paper is organized as follows. Sections II and III

present related work and the considered task model respec-

tively. Section IV presents our new deterministic schedul-

ing algorithm for heavy tasks, and discusses its theoretical

properties and how the computed schedules can be used at

runtime. Sections V and VI present a performance evaluation

of our deterministic and federated scheduling algorithms, and

compare them with other state-of-the-art techniques. Finally,

Section VII concludes our work.

II. RELATED WORK

There are three common approaches for scheduling parallel

tasks: global scheduling [4], [5], [8], [9], [12], [20], par-

titioned scheduling [10], [11], and federated-based schedul-

ing [12]–[14], [17], [18]. Due to space limitation, we focus978-1-7281-4403-0/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.

every task when allocating processors to it. Hence, it risks

over-provisioning the task, which leads to resource waste.

In [13], [14], the authors take the tasks’ DAGs into account

to some extent. In particular, they use Graham’s list schedul-

ing [21] to schedule a task on a given number of processors

and only increase the number of processors allocated to the

task one at a time if the schedule’s makespan (i.e., the elapsed

time from the start to the end of the schedule) is greater than

the task’s deadline. In other words, they indirectly take τi’s

DAG into consideration through the use of list scheduling to

test whether τi can be scheduled successfully in each step.

Graham’s list scheduling, however, was not originally de-

signed for real-time systems. Instead, its objective is to sched-

ule a task so that its completion time is minimized; there is

no notion of deadline in list scheduling. In contrast, a real-

time task’s temporal correctness is satisfied as long as its jobs

finish by their deadlines. In this section, we propose a new

scheduling algorithm for heavy tasks which takes into account

each task’s DAG, deadline, and subtasks’ WCETs to compute

a deterministic schedule for the task. The goal of this algorithm

is to exploit the processors allocated to heavy task as efficiently

as possible, hence reducing the number of processors required.

A. DAG Scheduling Algorithm

Algorithm 1 shows the pseudocode for the proposed algo-

rithm. In contrast to Graham’s list scheduling, where sub-

tasks are scheduled non-preemptively — once scheduled a

subtask is not preempted until it completes — Algorithm 1

allows subtasks to be preempted and resumed at appropriate

times. The computed schedule for τi consists of a chain of

segments, each comprising fragments from different subtasks

of τi executing in parallel (Figure 2). The algorithm starts

by pre-processing τi’s DAG (line 2). For each subtask vi,j
it computes two parameters: (i) the length of a longest path

originating from vi,j , i.e., len(λi,j), and (ii) the work of the

subgraph rooted at vi,j , i.e., work(vi,j). Algorithm 1 proceeds

by allocating τi a minimal number of dedicated processors:

mi =
⌈

Ci

Di

⌉

(line 3). This is the smallest number of processors

that can possibly schedule τi. The algorithm then iteratively

increases the number of processors mi allocated to τi, only

when necessary (line 4). In each iteration, it computes a

schedule for τi with the given mi. If the computed schedule

does not satisfy τi’s deadline, it increases mi by 1 and re-

computes a schedule for τi. The algorithm terminates when

a satisfying schedule for τi is obtained, or if there are not

enough processors to schedule τi.

For a given mi, the algorithm maintains a queue readyQ

of ready fragments (line 12). At the beginning, fragments

corresponding to the source subtasks are inserted into the

queue. These fragments have execution times equal to the

WCETs of the corresponding subtasks. For the DAG in Fig-

ure 1, fragments v0i,0, v
0
i,1, v

0
i,2, v

0
i,4, v

0
i,6, v

0
i,8 are inserted into

readyQ; each has execution time equal to its subtask’s WCET.

The algorithm then incrementally constructs a schedule for τi
(lines 13 - 48). In each iteration, it determines which fragments

will be scheduled and for how long; all chosen fragments will

Algorithm 1 Scheduling Algorithm for Parallel DAG Tasks

1: procedure DAGSCHED(τi, m)
2: Pre-process τi’s DAG
3: mi ← d

Ci

Di
e . Assuming mi ≤ m

4: while SCHEDULECORE(τi, mi) = False do
5: if mi > m then Return False
6: end if
7: end while
8: Return True and the schedule for τi
9: end procedure

10: procedure SCHEDULECORE(τi, mi)
11: currT ime← 0
12: readyQ← {fragments of the source subtasks}
13: while readyQ 6= ∅ do
14: remainWork ← Total un-scheduled work at currT ime
15: minCores←

⌈

remainWork
Di−currTime

⌉

16: if minCores > mi then
17: mi ← mi + 1
18: Return False
19: end if
20: S ← {vki,j |v

k
i,j ∈ readyQ ∧ len(λk

i,j) = Di −
currT ime}

21: if |S| > mi then
22: mi ← mi + 1
23: Return False
24: end if
25: listFrags← S . Fragments scheduled in the current

iteration
26: readyQ← readyQ \ S
27: while readyQ 6= ∅ ∧ |listFrags| < mi do

28: Find vki,j ∈ readyQ with greatest work(vki,j)

29: listFrags← listFrags ∪ {vki,j}
30: readyQ← readyQ \ {vki,j}
31: end while
32: execT ime← min

vk
i,j

∈listFrags

Ck
i,j

33: Find vpu,w s.t. (vpu,w ∈ readyQ) ∧ (len(λp
u,w) ≥

len(λk
i,j), ∀v

k
i,j ∈ readyQ)

34: if vpu,w 6= ∅ then
35: execT ime ← min{execT ime,Di − currT ime −

len(λp
u,w)}

36: end if
37: Find vqa,b s.t. (vqa,b ∈ readyQ) ∧ (work(vqa,b) ≥

work(vki,j), ∀v
k
i,j ∈ readyQ)

38: Find vrx,y s.t. (vrx,y ∈ listFrags) ∧ (vrx,y /∈ S) ∧
(work(vrx,y) ≤ work(vki,j), ∀v

k
i,j ∈ listFrags ∧ vki,j /∈ S)

39: if vqa,b 6= ∅ ∧ vrx,y 6= ∅ then

40: execT ime ← min{execT ime,work(vrx,y) −
work(vqa,b) + 1}

41: end if
42: Split all vki,j ∈ listFrags that has Ck

i,j > execT ime
43: ψ ← {remainder of the split fragments}
44: readyQ← readyQ ∪ ψ
45: readyQ ← readyQ ∪
{fragments of the newly enabled subtasks}

46: Fragments in listFrags are set up to run for execT ime
time units

47: currT ime← currT ime+ execT ime
48: end while
49: Return True
50: end procedure

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.

vi,5 is enabled and inserted into the ready queue as a fragment

v0i,5 with C0
i,5 = Ci,5 = 18. The remainders of vi,0 and vi,6 are

inserted into the ready queue as fragments v1i,0 with C1
i,0 = 9,

and v1i,6 with C1
i,6 = 9. The algorithm keeps running until the

ready queue is empty. For this task, Algorithm 1 only needs

3 processors, compared to
⌈

Ci−Li

Di−Li

⌉

= 11 processors required

by the algorithm in [12]. The proposed algorithm thus saves

8 processors for this task.

B. Correctness & Optimization

We now show that Algorithm 1 computes a valid schedule

for τi in the sense that any schedule returned by the algorithm

satisfies τi’s deadline.
Lemma 1: For every iteration of the while-loop at line 13

of Algorithm 1, all ready fragments have their longest-path

lengths less than or equal to Di − currT ime.

Proof: We prove by induction. For the first iteration,

currT ime = 0. Since Li ≤ Di, there is no ready fragment

with longest-path length greater than Di − currT ime = Di.
Suppose that at iteration k, all ready fragments have their

longest-path lengths less than or equal to Di − currT ime.

We now prove that the lemma also holds for iteration (k+1).
Let currT imek and currT imek+1 denote the values of

currT ime at the beginning of iterations k and (k + 1),
respectively. Let execT imek denote the execution length

computed for the iteration k. At the beginning of iteration

(k + 1), each fragment v
p
i,a that was scheduled at iteration

k either has completed, or its remaining v
p+1

i,a has been

inserted into the ready queue. For the latter case, len(λp+1

i,a) =
len(λp

i,a)− execT imek ≤ Di − currT imek − execT imek =
Di − currT imek+1, since len(λp

i,a) ≤ Di − currT imek.

In the former case, for any subtask vi,b enabled by the

completion of v
p
i,a, its first fragment v0i,b has len(λ0

i,b) ≤
len(λp

i,a)− execT imek ≤ Di − currT imek − execT imek =
Di − currT imek+1. Hence, the lemma holds in both cases.

Let v
q
i,x denote a fragment with greatest longest-path length

among all ready fragments that were not chosen to be sched-

uled at iteration k. If there is no such fragment, then all ready

fragments in iteration k were scheduled and the lemma holds

as discussed above. Otherwise, we have execT imek ≤ Di −
currT imek − len(λq

i,x) ⇔ len(λq
i,x) ≤ Di − currT imek −

execT imek ⇔ len(λq
i,x) ≤ Di − currT imek+1. Since every

other fragment vri,y that was not scheduled at iteration k

has len(λr
i,y) ≤ len(λq

i,x), the lemma holds for all ready

fragments that were not scheduled at iteration k.
We now can prove that if Algorithm 1 returns a schedule

for τi, then it is a valid schedule.
Theorem 2: If Algorithm 1 returns a schedule for τi, then

this schedule satisfies τi’s deadline.

Proof: Suppose the algorithm returns a schedule that

misses τi’s deadline. Then in the last iteration of the while-

loop at line 13 before the algorithm terminates, there must

be at least a ready fragment vki,j with len(λk
i,j) > Di −

currT ime. This contradicts Lemma 1.
Theorem 2 in [12] proves that an implicit-deadline DAG

task τi is schedulable on
⌈

Ci−Li

Di−Li

⌉

processors using any work-

conserving scheduler. This result also applies to constrained-

deadline parallel tasks, as stated in the following lemma.

Lemma 3: A constrained-deadline parallel task allocated
⌈

Ci−Li

Di−Li

⌉

dedicated processors is guaranteed to meet its dead-

line when scheduled using any work-conserving scheduler.

Proof: The proof is similar to the proof of Theorem

2 in [12]. We note that a parallel task with work Ci and

critical-path length Li will complete within Di time units

when scheduled by a work-conserving scheduler exclusively

on
⌈

Ci−Li

Di−Li

⌉

processors. Since the task is constrained-deadline

(Di ≤ Ti), every job of the task finishes before the next job

is released. Thus, all jobs of the task meet their deadlines.

Note that Algorithm 1 is a work-conserving algorithm since

it does not leave any processor idle if there are some fragments

ready to be executed. We now can bound the number of

processors required by Algorithm 1 in the following theorem.

Theorem 4: The number of processors required by Algo-

rithm 1 for task τi is at most
⌈

Ci−Li

Di−Li

⌉

.

Proof: Suppose that Algorithm 1 returns a schedule for τi

that requires m∗

i >
⌈

Ci−Li

Di−Li

⌉

processors. The algorithm starts

with mi =
⌈

Ci

Di

⌉

<
⌈

Ci−Li

Di−Li

⌉

processors. In each subsequent

call at line 4, it increases mi by 1. Thus at some point, mi

is set to
⌈

Ci−Li

Di−Li

⌉

. Since Algorithm 1 is work-conserving, it

would have scheduled τi successfully using that number of

processors (as proved in Lemma 3) and the returned mi would

have been
⌈

Ci−Li

Di−Li

⌉

< m∗

i . This contradicts the hypothesis.

In Sections V and VI, we show that Algorithm 1 performs

much better than other federated-based scheduling algorithms,

in terms of the number of processors allocated to each heavy

task and the acceptance ratios of the generated task sets.

Time Complexity. In the pre-processing step, a variant of

shortest paths algorithm presented in [22] (Section 24.2) can

be used to compute the longest-path length of a subtask. That

algorithm takes time O(|Vi|+ |Ei|). We can use breadth-first

search (or depth-first search) to compute the subgraph work

for each subtask with complexity of O(|Vi| + |Ei|). Overall,

the pre-processing step takes time O(|Vi|(|Vi| + |Ei|)). The

while-loops at lines 4 and 13 run O(m) and O(Di) iterations,

respectively. We can implement readyQ using a priority-

queue with subgraph work values of ready fragments as keys.

Computing the set S (line 20) takes O(|Vi|log|Vi|) time by

iteratively examining the fragments in readyQ. The while-

loop at lines 27 - 31 takes O(mlog|Vi|) time. Line 33 takes

O(|Vi|) time by simply examining the ready but unscheduled

fragments, and computing the maximum longest-path length

for them. Lines 42 - 45 take O(|Vi|log|Vi|) time since there are

at most |Vi| ready fragments inserted into readyQ. Overall,

Algorithm 1 takes O(Dimlog|Vi|(|Vi|+m)+ |Vi|
2+ |Vi||Ei|)

time, i..e, pseudo-polynomial time in the deadline of τi.

Optimizing and Using the Computed Schedule. A schedule

computed by Algorithm 1 may contain multiple consecutive

fragments of a subtask on the same processor. For instance,

in Figure 2, all fragments of vi,0 are scheduled consecutively

on processor P2. Such consecutive fragments can be merged

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.

of each heavy task τi is stretched up to the task’s deadline

using work from subtasks not belonging to the critical path.

As a result, τi is transformed into a master thread with an

execution time equal to τi’s deadline and a set of constrained-

deadline threads. Each master thread is assigned a dedicated

processor while all constrained-deadline threads and the light

tasks are scheduled together on the remaining processors.

We choose to compare our algorithm with those algorithms

since they have been shown to outperform other techniques,

including the DAG decomposition algorithms [26], [27] and

global scheduling [12], [20].

B. Experimental Evaluation

For all considered federated-based scheduling approaches,

we used P-EDF for scheduling sequential tasks including

light tasks, container tasks (in semi-federated scheduling), and

reservation servers. We considered three packing heuristics for

partitioning: Worst Fit (WF), Best Fit (BF), and First Fit (FF).

For testing whether a sequential task can be assigned to a

processor, two EDF schedulability tests were adopted. The first

test, denoted by DEN, checks whether the sum of the task’s

load (or density) and the current total load of the processor is

≤ 1.0 or not. If it is, the task can be assigned to the processor.

The second test, denoted by DBF, was introduced by Baruah

et al. [28] and is based on an approximation to the demand

bound function [29]. In this test, tasks are considered in non-

decreasing order of their relative deadlines. In general, Best

Fit packing combined with the DBF test produced the best

results in our experiments.

In [18] the authors show that their approach performs best

when R-MIN is used for assigning reservation servers together

with BF packing and the DBF test. We hence included this

variant in our figures and denote it RESV. For semi-federated

scheduling, denoted by SEMI, we used WF packing together

with the DEN test, which is similar to [17]. For the federated

scheduling algorithm proposed by Baruah [13], denoted by

BAR, the results for BF packing combined with the DBF

test are reported since they performed the best for BAR. For

the stretching algorithm proposed by Qamhieh el al. [19],

we included the results for when G-EDF and P-EDF are

used to schedule light tasks and the threads resulting after

stretching. These two variants are denoted as STRG and STRP,

respectively. In case of P-EDF, BF packing and the DBF test

are used. For our federated scheduling algorithm, we include

two variants: one for WF packing with the DEN test, and the

other for BF packing with the DBF test. These two variants

are denoted as PRO-WF-DEN and PRO-BF-DBF, respectively.

We applied the Erdős-Rényi method [23] to generate DAGs.

For each task, the number of subtasks was uniformly chosen

in [50, 250]. Each subtask has a WCET picked uniformly in

[50, 100] and the probability threshold p was set to 0.2. The

work and span of each DAG were computed accordingly. For

given values of m,U,Uh, nh, nl, we used the RandFixedSum

algorithm [24] to generate individual utilizations uniformly

in [1.1, Uh × m] for heavy tasks and in [0.01, 0.9] for light

tasks. Each task’s period was computed from its work and

utilization. For each setting, 500 task sets were generated

and the ratios of schedulable task sets were recorded. We

conducted experiments with m = {16, 32, 64} processors.
Varying total utilization: In Figure 5 we varied U in

[0.2, 1.0] with a step of 0.05. The ratio Uh

U
was set to 0.5,

i.e., half of the total utilization is from heavy tasks. For

m = {16, 32, 64}, we generated a maximum of {4, 7, 14}
heavy tasks, respectively (for small values of U we generated

smaller numbers of heavy tasks accordingly). For light tasks,

nl = {20, 40, 80} respectively. We observed that PRO-BF-

DBF outperformed all other approaches. Especially, it outper-

formed SEMI, RESV, STRP, and STRG by a large margin.

PRO-WF-DEN, which uses a similar combination of WF

packing with DBF test as SEMI, also outperformed SEMI.
PRO outperforms SEMI because regardless of the process-

ing capacity of a heavy task (the x+ ε quantity), SEMI saves

at most 1 processor for the task. SEMI’s effectiveness thus re-

duces when the number of heavy tasks increases and/or heavy

tasks get larger. In RESV, the ability of sharing processors

between heavy and light tasks by using reservation servers

comes at the cost of inflating budget. In particular, the total

budget for τi must be ≥ Ci + Li · (mi − 1) > Ci, where mi

is the number of servers of τi. Similar to [18], we observe

that RESV outperforms SEMI. STRP and STRG performed

worst among all approaches. This is because when a task

has a large number of subtasks, the stretching algorithm may

generate many threads with short relative deadlines (compared

to the DAG task’s deadline). These threads may have high

total density and thus are hard to schedule. Among these two

variants, STRP performed better than STRG.
Surprisingly, BAR also outperformed RESV and SEMI (and

STRP, STRG) significantly. This shows that federated schedul-

ing is still very competitive if heavy tasks are scheduled effi-

ciently. As m (and n) increases, the gap between group (PRO-

BF-DBF, PRO-WF-DEN, BAR) and group (RESV, SEMI,

STRP, STRG) expands. This is because as n and m increases,

the number of processors saved by PRO-BF-DBF, PRO-WF-

DEN, and BAR increases while the effectiveness of RESV

and SEMI reduces due to over-provisioning. The gap between

PRO-BF-DBF and BAR also increases for the same reason as

was discussed in Section V. BF packing combined with the

DBF test performed much better than the combination of WF

packing with the DEN test. This is shown in the performance

gap between PRO-BF-DBF and PRO-WF-DEN.
Varying load of heavy tasks: In Figure 6, for each m we

kept U and varied Uh

U
in [0.0, 1.0] with a step of 0.1. The

maximum nh in each task set is {4, 8, 14} and the maximum

nl is {20, 40, 80} for m = {16, 32, 64}, respectively.
We observed a similar trend in this experiment. The fluc-

tuation of PRO-BF-DBF, PRO-WF-DEN, and BAR is due to

the integral processor allocation for heavy tasks. Consequently,

there are cases when Uh increases but the heavy tasks do not

require additional processors while U l reduces and the light

tasks become easier to schedule. In addition, as the proportion

of heavy tasks increases, the task sets become harder to

schedule and the performances of all approaches decrease.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.

Ti was computed accordingly based on Di. As Di

Ti
increases,

the total utilization also increases and the task sets become

harder to schedule. Again, PRO-BF-DBF outperformed other

methods. RESV performed well for small Di

Ti
but declined

quickly when it increases. The performance of PRO-WF-DEN

and SEMI did not change as Di

Ti
increases since they use the

DEN test for light tasks, which only depends on the densities

(and thus the deadlines) of the tasks, and for heavy tasks the

number of processors allocated to them is not affected.

VII. CONCLUSION

We have proposed a novel algorithm that computes a

deterministic schedule for DAG tasks. The algorithm uses the

graph structure of each task to efficiently schedule it on its

dedicated processors. Our experiments show that the proposed

algorithm significantly reduces the number of processors re-

quired by each heavy task. Our new federated scheduling

algorithm is also shown to outperform the state-of-the-art

federated-based scheduling algorithms [13], [17], [18] and a

stretching scheduling algorithm [19] by a large margin. Our

deterministic algorithm for scheduling heavy tasks can be

combined with the work by Brandenburg et al. [30] for an

overall efficient solution to scheduling DAG tasks. In [30],

the authors show that near optimal schedulable utilization

(over 99%) for sequential tasks on multiprocessors can be

reached using techniques, such as semi-partitioned scheduling,

reservations, period transformation, and their new heuristics

for task placement. In this combination, Algorithm 1 can be

used to schedule heavy tasks, and techniques in [30] can be

applied to schedule light tasks on the remaining processors.

REFERENCES

[1] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study on a
self-driving car,” in Proceedings of the ACM/IEEE 4th International

Conference on Cyber-Physical Systems. ACM, 2013, pp. 31–40.
[2] D. Ferry, G. Bunting, A. Maghareh, A. Prakash, S. Dyke, K. Agrawal,

C. Gill, and C. Lu, “Real-time system support for hybrid structural
simulation,” in Proceedings of the 14th International Conference on

Embedded Software. ACM, 2014, p. 25.
[3] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time com-

puter vision workloads using OpenVX on multicore+ GPU platforms,”
in 2015 IEEE Real-Time Systems Symposium. IEEE, 2015, pp. 273–
284.

[4] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in ECRTS, 2013.

[5] H. S. Chwa, J. Lee, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin,
“Global EDF schedulability analysis for parallel tasks on multi-core
platforms,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1331–1345, 2016.

[6] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global EDF
scheduling of directed acyclic graphs on multiprocessor systems,” in
Proceedings of the 21st International conference on Real-Time Networks

and Systems. ACM, 2013, pp. 287–296.
[7] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-

bility analysis in the sporadic DAG task model,” in 2013 25th Euromicro

conference on real-time systems. IEEE, 2013, pp. 225–233.
[8] S. Baruah, “Improved multiprocessor global schedulability analysis of

sporadic DAG task systems,” in 2014 26th Euromicro conference on

real-time systems. IEEE, 2014, pp. 97–105.
[9] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time analysis

of sporadic DAG tasks for global FP scheduling,” in Proceedings of

the 25th international conference on real-time networks and systems.
ACM, 2017, pp. 28–37.

[10] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho, “Response time
analysis of sporadic DAG tasks under partitioned scheduling,” in 2016

11th IEEE Symposium on Industrial Embedded Systems (SIES). IEEE,
2016, pp. 1–10.

[11] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Partitioned fixed-
priority scheduling of parallel tasks without preemptions,” in 2018 IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 421–433.
[12] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis

of federated and global scheduling for parallel real-time tasks,” in Real-

Time Systems (ECRTS), 2014 26th Euromicro Conference on. IEEE,
2014, pp. 85–96.

[13] S. Baruah, “The federated scheduling of constrained-deadline sporadic
DAG task systems,” in Proceedings of the 2015 Design, Automation &

Test in Europe Conference & Exhibition. EDA Consortium, 2015, pp.
1323–1328.

[14] ——, “Federated scheduling of sporadic DAG task systems,” in 2015

IEEE International Parallel and Distributed Processing Symposium.
IEEE, 2015, pp. 179–186.

[15] ——, “The federated scheduling of systems of conditional sporadic
DAG tasks,” in Proceedings of the 12th International Conference on

Embedded Software. IEEE Press, 2015, pp. 1–10.
[16] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu,

“Randomized work stealing for large scale soft real-time systems,” in
2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp.
203–214.

[17] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in 2017 IEEE Real-Time

Systems Symposium (RTSS). IEEE, 2017, pp. 80–91.
[18] N. Ueter, G. von der Brüggen, J.-J. Chen, J. Li, and K. Agrawal,

“Reservation-based federated scheduling for parallel real-time tasks,”
in 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp.
482–494.

[19] M. Qamhieh, L. George, and S. Midonnet, “A stretching algorithm for
parallel real-time DAG tasks on multiprocessor systems,” in Proceedings

of the 22Nd International Conference on Real-Time Networks and

Systems. ACM, 2014, p. 13.
[20] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and

G. C. Buttazzo, “Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in 2015 27th Euromicro Conference on Real-

Time Systems. IEEE, 2015, pp. 211–221.
[21] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM

journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.
[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2009.
[23] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and

F. Wagner, “Random graph generation for scheduling simulations,” in
Proceedings of the 3rd international ICST conference on simulation

tools and techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, p. 60.

[24] R. Stafford, “Random vectors with fixed sum,”
http://www.mathworks.com/matlabcentral/fileexchange/9700-random-
vectors-with-fixed-sum, 2006.

[25] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on computing, vol. 3, no. 4, pp. 299–325,
1974.

[26] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. Gill, “Parallel
real-time scheduling of DAGs,” IEEE Transactions on Parallel and

Distributed Systems, 2014.
[27] X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-based

global EDF scheduling of parallel real-time tasks,” in 2016 IEEE Real-

Time Systems Symposium (RTSS). IEEE, 2016, pp. 237–246.
[28] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling

of deadline-constrained sporadic task systems,” IEEE Transactions on

Computers, vol. 55, no. 7, pp. 918–923, 2006.
[29] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling

hard-real-time sporadic tasks on one processor,” in [1990] Proceedings

11th Real-Time Systems Symposium. IEEE, 1990, pp. 182–190.
[30] B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple,

near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in 2016 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 2016, pp. 99–110.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 22,2021 at 15:36:25 UTC from IEEE Xplore. Restrictions apply.

