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a b s t r a c t

We study the problem of robust global synchronization of pulse-coupled oscillators (PCOs) over
directed graphs. It is known that when the digraphs are strongly connected, global synchronization
can be achieved by using a class of deterministic binary set-valued resetting controllers (Poveda and
Teel, 2019). However, for large-scale networks, these algorithms are not scalable because some of
their tuning parameters have upper bounds of the order O

( 1
N

)
, where N is the number of agents. This

paper resolves this scalability issue by presenting several new results about global synchronization
of PCOs with more general network topologies using the frameworks of deterministic and stochastic
hybrid dynamical systems. First, we establish that similar deterministic binary resetting algorithms
can achieve robust global and fixed-time synchronization in any rooted acyclic digraph. Moreover, in
this case, we show that the synchronization dynamics are now scalable as the tuning parameters
of the algorithm are network independent, i.e., of order O(1). However, the algorithms cannot be
further extended to all rooted digraphs. We establish this new impossibility result by introducing a
counter-example with a particular rooted digraph for which global synchronization cannot be achieved,
irrespective of the tuning parameters. Nevertheless, we show that if the binary resetting algorithms are
modified by accommodating an Erdös–Renýi type random graph model, then the resulting stochastic
resetting dynamics will guarantee global synchronization almost surely for all rooted digraphs and,
moreover, the tuning parameters of the dynamics are network independent. Stability and robustness
properties of the resetting algorithms are studied using the tools from set-valued hybrid dynamical
systems. Numerical simulations are provided at the end of the paper for demonstration of the main
results.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

A network of pulse-coupled oscillators (PCOs) consists of N
periodic dynamical systems, also called agents, sharing informa-
tion via a communication directed graph (digraph). In most of the
standard models of PCOs, e.g., Kannapan and Bullo (2016), Nunez,

ang, and Doyle (2015a), Pagliari and Scaglione (2011), Poveda
nd Teel (2019a) and Proskurnikov and Cao (2017), each agent
as an individual state τi ∈ R, which evolves according to the
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following continuous-time dynamics:

τi ∈ [0, 1) H⇒ τ̇i =
1
T

, ∀ i ∈ {1, 2, . . . ,N}, (1)

where T > 0 is the period of the oscillator, and [0, 1) is a
normalized unit interval. When the state of an agent i finishes an
oscillation, it sends a pulse to its out-neighbors j (the information
flow topology will be described by a directed graph, and j is an
out-neighbor of i if (i, j) is an edge of the graph), and it proceeds
to instantaneously reset its individual state back to zero:

τi = 1 H⇒ τ+

i = 0. (2)

After receiving the pulse, each out-neighbor j of agent i in-
stantaneously updates its own state τj using an individual phase
update rule (PR) τj ↦→ Pj(τj), which usually has the following
orm:

+

j = Pj(τj) =

{
B(τj), if τj ∈ [0, rj),
F (τj), if τj ∈ [rj, 1).

(3)

The mapping τj ↦→ Bj(τj) is commonly referred to as the

backward mapping, and it decreases the value of τj. The mapping
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j ↦→ Fj(τj) is referred to as the forward mapping, and it increases
τj (Kannapan & Bullo, 2016). Whether an agent j implements
the mapping Bj or the mapping Fj, depends on the position of
τj with respect to the constant rj ∈ [0, 1), which partitions
in Eq. (3) the normalized unit interval of each agent. In this
way, PCOs can be seen as multi-agent dynamical systems that
combine the continuous-time dynamics (1) and the discrete-time
dynamics (2)–(3). As a consequence, they are naturally modeled
as networked multi-agent hybrid dynamical systems (Poveda &
Teel, 2019b), and their convergence and stability properties are
highly dependent on the structures of the mappings Pj and the
partitions induced by the tuning parameters rj.

Given that Eqs. (1)–(3) are quite general, PCOs can be used to
model different biological systems, including Cardiac pacemakers,
rhythmic flashing of fireflies, electrical signals of neurons, and bi-
ological oscillators, see Kannapan and Bullo (2016) and references
therein. Networks of PCOs have also found several applications
in engineering systems, such as cellular mobile radio (Tyrrell,
2009), sensor networks (Wang & Doyle, 2012; Wang, Nunez, &
oyle, 2012, 2013), and autonomous vehicles (Sepulchre, Paley,
Leonard, 2007). Owing to the property of fixed time conver-

ence, PCOs with binary phase update rules have attracted more
nd more attentions and have been used to address a variety
f engineering problems. Specifically, they have been used to
ynchronize and coordinate clocks and logic states in networks
f sampled-data systems (Poveda & Teel, 2019a; Teel & Poveda,
015), and also in distributed optimization algorithms with local
imers (Ochoa, Poveda, Uribe, & Quijano, 2021). In these applica-
ions, it is of interest to achieve fixed-time exact synchronization
o emulate a centralized system having one single timer that co-
rdinates the network. Finally, we refer the reader to Section 1.2
f the survey paper (Dörfler & Bullo, 2014) for more relevant
pplications of PCOs.
A particular feature of PCOs is that their individual states are

onfined to evolve in the normalized interval [0, 1]. By embed-
ing the closed interval to the unit circle and identifying the
wo points 0 and 1 with each other, the network of PCOs can be
iewed as a multi-agent system evolving on the N-torus, where
he state τi of the ith agent evolves in the unit circle flowing
n counter-clockwise direction with frequency 1/T . In this way,
chieving global synchronization of PCOs can be cast as a global
tabilization problem on a smooth compact manifold (Poveda
Teel, 2019a; Sontag, 1999a). It is well-known that there is

o smooth continuous-time state-feedback control law that can
olve, in a robust way, such type of stabilization problems (Dörfler
Bullo, 2014; Sontag, 1999a, 1999b). This impossibility result

as motivated the development of several synchronization al-
orithms that relax the global convergence requirement and,
nstead, focus on achieving only local convergence (Kannapan
Bullo, 2016; Kuramoto, 1991; Nishimura & Friedman, 2011;

hillips, Sanfelice, & Erwin, 2012; Wang & Wang, 2020a) or al-
ost global synchronization results, i.e., synchronization from all

nitial conditions except possibly from those in a set of measure
ero (Mauroy & Sepulchre, 2012; Nishimura & Friedman, 2012;
roskurnikov & Cao, 2017; Sarlette & Sepulchre, 2009). However,
or applications where measurement noise or external distur-
ances are unavoidable, almost global convergence results can
e problematic given that they lead to non-zero measure sets
rom which synchronization cannot be achieved under arbitrarily
mall disturbances (Mayhew, 2010; Sontag, 1999b). Moreover,
uch problematic non-zero measure sets can be quite large in
ulti-agent systems when the number of agents is large.
On the other hand, it has been shown that global synchroniza-

ion of PCOs can be achieved by using a hybrid-system approach
ver various network topologies, such as cycle digraphs (Nunez

t al., 2015a), strongly rooted digraphs (Nunez, Wang, Teel, &

2

oyle, 2016), bidirectional chains and directed trees in Gao and
ang (2019), bidirectional digraphs (Nunez, Wang, & Doyle,
015b), and complete digraphs (Canavier & Tikidji-Hamburyan,
017). Relevant issues, such as resilience of global synchroniza-
ion under attacks, have also been investigated in the litera-
ure (Wang & Wang, 2018, 2020b). In terms of convergence time
i.e., time for PCOs to reach synchronization), we refer the reader
o Canavier and Tikidji-Hamburyan (2017), Gao and Wang (2019),
unez et al. (2015a, 2015b, 2016) and Wang and Wang (2018)
or asymptotic convergence and to Poveda and Teel (2019a), Teel
nd Poveda (2015) and Wang and Wang (2020b) for fixed-time
onvergence.
Using hybrid dynamics, robustness of synchronization can be

stablished by considering well-posed set-valued regularizations
f the discontinuous PR (3); see Gao and Wang (2019). The set-
alued hybrid model has also been investigated in Poveda and
eel (2019a) and Teel and Poveda (2015) using (deterministic)
inary phase update rules (BPRs) that satisfy Pj : [0, 1] ⇒ {0, 1},
.e., mappings that reset the position of each agent to a given
oint in the unit circle that identifies the beginning and the end of
he interval [0, 1]. By using this type of resetting rule, also called
trong firing (Nishimura, 2013), it was shown in Poveda and Teel
2019a) and Teel and Poveda (2015) that global and robust fixed-
ime synchronization of homogeneous PCOs can be achieved if
he underlying information flow topology is characterized by a
irected strongly connected graph and if all the tuning parameters
j satisfy an upper bound of order O

( 1
N

)
, see, e.g., Poveda and Teel

(2019a, Thm. 1). Thus, as the size of the network increases, the
set of feasible parameters goes to zero, resulting in a scalability
issue that holds even for strongly connected digraphs. Besides
the scalability issue, it has also remained an open question what
type of directed graphs, other than the strongly connected ones,
are necessary and/or sufficient for synchronization in PCOs with
binary resetting rules.

In this paper we address both questions at a time. We charac-
terize a class of digraphs, namely graphs that are rooted acyclic,
for which robust, global, and fixed-time synchronization can be
achieved by using resetting algorithms with BPRs. In this case,
the algorithms are scalable because the tuning parameters rj are
independent of network size. This result further allows us to
extend the resetting algorithm to a stochastic setting, where a
sequence of independent, identically distributed (i.i.d.) Bernoulli
random variables is used by each agent i to decide whether or not
to send the impulses to the out-neighbors j after resetting its own
state via equation (2). Interestingly, by injecting this randomness
into the networked system, synchronization can be achieved al-
most surely for the entire class of rooted digraphs. Moreover,
we show that with such digraphs it is in general impossible to
achieve global synchronization using the deterministic resetting
algorithm. We outline below the main contributions of the paper:

(1) We show in Proposition 2 that having a rooted digraph
is necessary for achieving global synchronization of
PCOs using deterministic BPRs. However, as shown in
Proposition 3, this condition is not sufficient, which is true
regardless of the choices of tuning parameters of the BPRs.
Note that the gap between necessity and sufficiency makes
our problem different from standard consensus dynamics
in Euclidean spaces where having a rooted digraph is
generally sufficient for global synchronization.

(2) We show that if the underlying digraph is rooted acyclic,
then the deterministic resetting algorithm achieves global
and fixed-time synchronization. Moreover, the tuning
parameters of individual PCOs are network independent.
The result is formulated as Theorem 1, and extended in
Corollary 1 to quasi-acyclic digraphs. In each case, we
provide a clear characterization of the upper bounds of the
convergence time in terms of the depth of the digraph.
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(3) We show that in the stochastic setting (with random trig-
gers of pulses), the corresponding resetting algorithm can
achieve global synchronization almost surely for all rooted
digraphs. Moreover, we show that the probability of the
network reaching synchronization converges exponentially
fast to one. The tuning parameters are again independent of
the network size. The result is in contrast with the counter-
example provided in Proposition 3 for the deterministic
setting.

By the nature of the dynamics of the PCOs, we combine graph
heoretic tools (Bullo, 2019) and set-valued hybrid dynamical
ystem’s (HDS) theory (Goebel, Sanfelice, & Teel, 2012) to ana-
yze the qualitative properties of the network. This formalism is
nstrumental to the robustness analysis of the synchronization
ynamics with respect to small additive bounded disturbances
hat are unavoidable in practice. To the best of author’s knowl-
dge, the results of this paper are the first ones that address
he scalability issue that emerges in the global synchronization
roblem of PCOs, and that establish robust global synchroniza-
ion over quasi-acyclic digraphs without using leading agents or
lobal cues, with an explicit characterization of the convergence
ime as a function of the structure of the digraph. Moreover,
nlike existing almost sure convergence results in the literature
f stochastic synchronization of PCOs, e.g., Hartman, Subbaraman,
nd Teel (2013), Klinglmayr, Bettstetter, Timme, and Kirst (2017),
linglmayr, Kirst, Bettstetter, and Timme (2012) and Pagliari and
caglione (2011), we use the framework of stochastic hybrid dy-
amical systems to establish uniform global asymptotic stability
n probability of the PCOs, with respect to the synchronization set,
n rooted digraphs. Furthermore, we provide theoretical bounds
or the stochastic synchronization time of our algorithms, as
unctions of the structures of the underlying digraphs. Our results
pen the door to new potential applications in the context of
istributed control and optimization in networked systems with
ocal timers that require synchronization mechanisms over gen-
ral rooted digraphs (Ochoa et al., 2021; Poveda & Teel, 2019a;
eel & Poveda, 2015). Earlier, preliminary results, reported in the
onference paper (Javed, Poveda, & Chen, 2019), considered only
eterministic algorithms and presented results only for rooted
cyclic digraphs, a subclass of the digraphs considered in this
aper. Analysis and proofs of the results were also omitted in the
onference version.
The rest of this paper is organized as follows: Section 2

resents some preliminaries. Main results for the deterministic
nd stochastic settings are presented and established in Sec-
ions 3 and 4 , respectively. Section 5 shows numerical examples.
he paper ends with conclusions.
otations. Given a vector x ∈ Rn, we let |x| be the Euclidean norm
f x. For a compact set A ⊂ Rn, we let |x|A := miny∈A |x − y|. We
lso use |·| to denote the cardinality of a set. We use cn ∈ Rn

o denote a constant vector with all entries equal to c ∈ R. We
se S ⊂ R2 to denote the unit circle centered at the origin,
.e., S :=

{
(x1, x2) ∈ R2

: x21 + x22 = 1
}
. Given a set B, we use BN

o denote the N-Cartesian product of B, i.e., BN
:= B×B×· · ·×B.

function β is said to be of class KL if it is non-decreasing
n its first argument, non-increasing in its second argument,
imr→0+ β(r, s) = 0 for each s ∈ R≥0, and lims→∞ β(r, s) = 0
or each r ∈ R≥0. For a closed set B ⊂ Rn, and ε > 0, B + εB
enotes the set {x ∈ Rn

: |x|B ≤ ε}. We use B◦ to denote an open
all of radius one centered at zero. For a real number x, we denote
y ⌊x⌋ the maximum integer that is less than or equal to x.

. Preliminaries

This section presents basic notions from graph theory, hybrid
ynamical systems, and notions of system stability.
3

.1. Basic notions from graph theory

A directed graph, or digraph, is denoted by G := (V, E), and
t is characterized by the set of vertices V := {1, 2, . . . ,N}, and
he set of edges E ⊂ V × V . In this paper, we consider only
imple digraphs, i.e., digraphs without self-arcs. We adopt the
onvention that information flows from vertex i to vertex j if
i, j) ∈ E , and we call i an in-neighbor of j, and j an out-neighbor
f i. A walk from a vertex i to a vertex j, denoted by wij, is a
equence {i0, i1, . . . , im}, with i0 = i and im = j, in which each
air (ik, ik+1) ∈ E for all k ∈ {0, 1, . . . ,m−1}. A path corresponds
o a walk in which all the vertices are pairwise distinct. A cycle
s a walk in which there is no repetition of vertices other than
he repetition of the starting and ending vertex. The length of
path/cycle/walk is defined to be the number of edges in that
ath/cycle/walk. A vertex i ∈ V is said to be a root of G if for any
ther vertex j ∈ V , there exists a path from i to j. A digraph G with
t least one root is a rooted digraph. A rooted digraph G without a
ycle is rooted acyclic. If G is rooted acyclic, then there is a unique
oot. In general, a rooted digraph G can have multiple roots. All
he roots then form a strongly connected subgraph GR. We call
R the root component of G. The digraph G is said to be quasi-
cyclic if all the cycles of G are contained in the root component.
n other words, if we condense GR into a single vertex, then the
esulting condensed digraph, denoted by Gc , is rooted acyclic. A
ooted acyclic digraph is a directed tree if every vertex, except the
oot, has a single in-neighbor. Every rooted digraph G = (V, E)
ontains a directed tree T = (V, E ′), with the same vertex set, as
ts subgraph. We call T a directed spanning tree. Let G be a directed
ree with i∗ the root. The depth of a vertex i other than i∗, denoted
y dep(i), is the length of the unique path from i∗ to i. The depth
f i∗ is 0 by default. The depth of G is dep(G) := maxvi∈V dep(i).
or the given directed tree G, we decompose the vertex set V as
= ∪

dep(G)
l=0 Vl, where Vl contains all the vertices of depth l. Let G

e a rooted digraph. We define the depth of G, denoted by dep(G),
o be the maximal depth of a directed spanning tree T of G.

.2. Hybrid dynamical systems with random inputs

A stochastic hybrid dynamical systems (SHDS) with state x ∈
n and random input v ∈ Rm is characterized by the following
et of equations:

∈ C, ẋ = f (x), (4a)

∈ D, x+
∈ G(x, v+), v ∼ µ(·), (4b)

here the function f : Rn
→ Rn, called the flow map, describes

he continuous-time dynamics of the system; the set C ⊂ Rn,
alled the flow set, describes the points in the space where x
s allowed to evolve according to the differential equation (4a);
: Rn

×Rm ⇒ Rn, called the jump map, is a set-valued mapping
hat characterizes the discrete-time dynamics of the system; and

⊂ Rn, called the jump set, describes the points in the space
here x is allowed to evolve according to the stochastic difference

nclusion (4b). We use v+ as a place holder for a sequence of
ndependent, identically distributed (i.i.d.) input random variables
vk}∞k=1 with probability distribution µ, derived from an abstract
robability space (Ω,F,P). General SHDS of the form (4) have
een introduced and analyzed in Subbaraman and Teel (2016).
n this paper we restrict our attention to SHDS that satisfy the
ollowing basic conditions:

efinition 1 (Basic Conditions). A SHDS is said to satisfy the basic
onditions if the following holds: (a) The sets C and D are closed,
⊂ dom(f ), and D ⊂ dom(G). (b) The function f is continuous. (c)
he set-valued mapping G : Rn

×Rm ⇒ Rn is locally bounded and
he mapping v ↦→ graph(G(·, v)) := {(x, y) ∈ Rn

×Rn
: y ∈ G(x, v)}

s measurable with closed values.
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When the discrete-time dynamics (4b) do not depend on ran-
om inputs, the SHDS (4) is reduced to a standard deterministic
DS (Goebel et al., 2012):

∈ C, ẋ = f (x), (5a)

∈ D, x+
∈ G(x). (5b)

Solutions to hybrid systems (either stochastic (4) or determin-
stic (5)) are parameterized by both continuous- and discrete-
ime indices t ∈ R≥0 and j ∈ Z≥0. The index t increases
ontinuously during flows (4a) or (5a), and the index j increases
y one when a jump occurs via (4b) or (5b).
Of particular interest to us are solutions that have an un-

ounded time domain in both t and j directions. Such type of
olution is maximal (i.e., its domain is not a proper subset of the
omain of other solution) and non-Zeno (i.e., they do not have
ccumulation points in t). For a precise definition of maximal
on-Zeno solutions x to HDS of the form (5) we refer the reader
o Appendix B. Similarly, for a precise definition of maximal
andom solutions xω to SHDS of the form (4) we refer the reader
o Appendix C.

.3. Stability and convergence notions

In this paper, we will use the following standard stability
otion (Goebel et al., 2012) for deterministic HDS (5):

efinition 2. A HDS H := {C, f ,D,G} is said to render a compact
et A uniformly globally asymptotically stable (UGAS) if there
xists a function β ∈ KL such that every solution x of (5) satisfies
he bound

x(t, j)|A ≤ β(|x(0, 0)|A, t + j),

or all (t, j) ∈ dom(x). We say that H renders A uniformly
lobally fixed-time stable (UGFxTS) if, additionally, there exists
T > 0 such that β(|x(0, 0)|A, t + j) = 0 for all t + j ≥ T and all
(0, 0) ∈ C ∪ D.

The UGAS stability property introduced in Definition 2 is stan-
dard in the analysis of hybrid dynamical systems, see Goebel
et al. (2012, Chp. 3). On the other hand, the notion of UGFxTS
is stronger, since it asks that every solution of the system should
converge in finite time to the set A, with a convergence time that
can be upper bounded by a constant independent of the initial
conditions. When C and D are compact, global fixed-time stability
is equivalent to global finite-time stability.

To study the stability properties of SHDS of the form (4), we
use the following definition borrowed from Teel (2013):

Definition 3. A SHDS (4) is said to render a compact set A:

(a) Uniformly Lyapunov stable in probability if for each ε > 0
and ρ > 0 there exists a δ > 0 such that for all xω(0, 0) ∈

A + δB, every maximal random solution xω from xω(0, 0)
satisfies the inequality:

P
(
xω(t, j) ∈ A + εB◦, ∀ (t, j) ∈ dom(xω)

)
≥ 1 − ρ. (6)

(b) Uniformly Lagrange stable in probability if for each δ > 0
and ρ > 0, there exists an ε > 0 such that the inequality (6)
holds.

(c) Uniformly globally attractive in probability if for each ε >
0, ρ > 0 and R > 0, there exists a γ ≥ 0 such that for all
random solutions xω with xω(0, 0) ∈ A + RB the following
holds:

P
(
xω(t, j) ∈ A + εB◦, ∀ t + j ≥ γ , (t, j) ∈ dom(xω)

)
≥ 1 − ρ.
 a

4

System (4) is said to render a compact set A ⊂ Rn Uniformly
Globally Asymptotically Stable in Probability (UGASp) if it sat-
isfies conditions (a), (b), and (c).

Definition 3 is a natural extension of Definition 2 to the
stochastic domain. Moreover, under the Basic Conditions and cer-
tain causality assumptions on the solutions of the system, UGASp
is a property that can be established by combining suitable Lya-
punov functions and stochastic hybrid invariance principles (Sub-
baraman & Teel, 2016, Thm. 8). These tools will be instrumental
in the analysis of our algorithms in the next sections.

3. Deterministic resetting algorithms

In this section we study how to construct deterministic BPRs
that are scalable and that achieve robust global synchronization
in PCOs over sparse networks.

3.1. Well-posed model for robust synchronization

We start by constructing suitable regularizations of discontin-
uous BPRs of the form (3). First, we recall that if all the agents
are completely decoupled, then their dynamics are described
by (1) and (2). When agents are coupled through a network,
every agent i will send a pulse to its out-neighbors whenever τi
reaches 1 and resets the value to 0 via (2). On the other hand, if
agent j receives a pulse from its in-neighbor, then we assign the
following set-valued BPR to the agent j:

τ+

j ∈ P j(τj) :=

{
{0} τj ∈ [0, rj)

{0, 1} τj = rj
{1} τj ∈ (rj, 1]

, (7)

here rj ∈ [0, 1) is the tuning parameter. Each rj partitions [0, 1]
nto two segments. For convenience, we call r := [r1; . . . ; rN ] a
artition vector.

emark 1. As in Poveda and Teel (2019a) and Teel and Poveda
2015), the set-valued mapping P j : [0, 1] ⇒ {0, 1} in Eq. (7)
s generated as the outer semicontinuous hull1 of the BPR (3)
with forward map Fj(τj) = 1 and backward map Bj(τj) = 0.
This regularization is used in the robustness analysis of dis-
continuous dynamical systems (Kellet & Teel, 2004), which will
allow to establish suitable robustness results for synchronization
dynamics.

We now model the dynamics of the agents, together with
the BPRs (7), as a HDS of the form (5) with overall state τ =

[τ1, τ2, . . . , τN ]
⊤. Given a digraph G of N vertices, and a partition

vector r ∈ [0, 1]N , we write the HDS as

H(r, G) := {C, f ,D,G}, (8)

with flow and jump sets given by

C := [0, 1]N and D :=
{
τ ∈ C : maxi∈V τi = 1

}
, (9)

respectively; flow map and jump map given by

f (τ ) :=
1
T

· 1N and G(τ ) := G0(τ ), (10)

espectively, where G0 is the outer-semicontinuous hull of the
set-valued mapping G0

: [0, 1]N ⇒ RN given by

G0(τ ) :=

{
g ∈ RN

: gi = 0,

gj ∈

{
P j(τj), (i, j) ∈ E
{τj}, (i, j) /∈ E

}
, ∀ j ̸= i

}
, (11)

1 See Appendix A for a precise definition of the outer semicontinuous hull of
mapping.
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hich is defined to be nonempty only when τi = 1 for some
∈ V and τj ∈ [0, 1) for j ̸= i. Importantly, as in Poveda

nd Teel (2019a), by construction of the jump set and the jump
ap, when more than two agents satisfy the condition τi = 1,

heir jumps will occur sequentially rather than in parallel. This
ehavior is induced on purpose to guarantee a suitable semi-
ontinuous dependence on the initial conditions for the solutions
f the system. Indeed, in order to capture the effect of arbitrarily
mall disturbances acting on the states of the PCOs, the synchro-
ization model must guarantee that, for each initial condition
0 ∈ [0, 1], and each graphically convergent sequence of solutions
τ (k)

}k∈Z≥0 with components τ
(k)
i satisfying

≤ τ
(k)
i (0, 0) ≤ τ

(k)
i+1(0, 0) ≤ · · · ≤ τ

(k)
i+I (0, 0) < τ0, (12)

for some i ∈ V and I ∈ Z>0, and

lim
k→∞

τ
(k)
i (0, 0) = lim

k→∞

τ
(k)
i+1(0, 0) = · · ·

· · · = lim
k→∞

τ
(k)
i+I (0, 0) = τ0,

the sequence of solutions must graphically converge to a solution
of the system starting from the set of initial conditions

τi = τi+1 = · · · = τI = τ0. (13)

This condition is particularly relevant for the case when τ0 =

1, since it implies that the states τ
(k)
i with initial conditions

satisfying (12) are sequentially reset with smaller and smaller
times between resets as k → ∞. Thus, in the limiting case
(13), all agents must reset their states but the resets must occur
sequentially. Since no order is specified for the sequential jumps,
and there is no reason to give priority to one agent over the other,
any robust model of PCOs must take into account all the possible
trajectories induced by the N! different resetting orders that can
emerge from condition (13) with τ0 = 1, i = 1, and I = N .

Remark 2. The construction of G suggests that studying the
individual behavior of every possible solution of the system be-
comes intractable as N increases. In order to address this issue,
in this paper we will use Lyapunov stability theory to analyze the
qualitative behavior of every possible solution of the system from
any initial condition in [0, 1]N .

The following fact follows directly from the construction:

Lemma 1. For every partition vector r and every digraph G, the HDS
H(r, G) introduced in (8) satisfies the basic conditions.

We aim to characterize pairs (r, G) that make the correspond-
ing HDS H(r, G) well behaved (non-Zeno behavior) and, more-
over, render the following compact set UGAS:

As := {µ1N | µ ∈ [0, 1]} ∪ {0, 1}N . (14)

It should be clear that if the state τ belongs to As, then the
network flows synchronously. For convenience, we introduce the
following definition:

Definition 4. Let As be the compact set in (14). Let r ∈ [0, 1)N be
a partition vector and G be a digraph of N vertices. The pair (r, G)
is a sync-pair if

(a) For every initial condition in C ∪ D there exists a non-trivial
solution to H(r, G), and each solution has an unbounded time
domain and it is uniformly non-Zeno (see Goebel et al., 2012,
Prop. 6.35-(a));

(b) The HDS H(r, G) renders UGAS the set As.
5

While the stability analysis of the set As will be highly depen-
dent on the communication digraph G and the partition vector r ,
the following Lemma will be instrumental in satisfaction of item
(a) in Definition 4.

Lemma 2. Consider the HDS H(r, G). For any partition vector r ∈

(0, 1)N and any digraph G we have that item (a) in Definition 4
holds, and the number of jumps in any interval of length T is
bounded above by ℓ∗

:= N(⌊1/r⌋ + 1) where r := mini∈V ri.

Proof. Let G be given, and let r ∈ (0, 1)N . Since the HDS H(r, G)
atisfies the basic conditions, and since f (τ ) > 0 for all τ ∈

[0, 1)N , by Goebel et al. (2012, Prop. 6.10) there exists at least
one non-trivial solution from every initial condition τ (0, 0) ∈

C ∪ D. Since the flow map is globally Lipschitz and the flow
et is compact, every solution τ does not exhibit finite escape
imes. Moreover, since G(D) ⊂ C ∪ D solutions cannot stop
ue to jumps. Thus, by Goebel et al. (2012, Prop. 6.10) every
olution τ is complete, i.e., it has an unbounded time domain.
o show absence of Zeno-behavior, it suffices to rule out the
xistence of discrete solutions to system H(r, G) (Goebel et al.,
012, Prop. 6.35). Suppose by contradiction that there exists a
aximal solution τ satisfying τ (0, j) ∈ D for all j ∈ Z≥0. This

mplies that for all j ∈ Z≥0 there exists some i∗ ∈ V such that
i∗ (0, j) = 1. By construction of the dynamics, and without loss
f generality, we will have that τi∗ (0, j + 1) = 0, which implies
hat agent i∗ cannot trigger further jumps. This argument can be
epeated at most N − 1 consecutive times, after which all agents
ould satisfy τi ̸= 1, i.e., τ (0, j + N) /∈ D, which contradicts the
riginal assumption.
We now establish the upper bound. Note that if an agent i hits

and jumps at a certain hybrid time (t, j) (so that τi(t, j+1) = 0),
hen the least time required by the agent i to hit again the value
is to first flow for riT seconds and, then, to have one of its in-
eighbors to hit 1 and trigger it. This implies that the number of
imes the agent i can hit 1 during the period [t, t +T ] is bounded
bove by (1/ri + 1) and, hence, ⌊1/ri⌋ + 1. Finally, the number
f jumps of the entire network during the period [t, t + T ] is
qual to the number of times N agents hit 1 during the same
eriod, we conclude that the number of jumps is bounded above
y

∑N
i=1 (⌊1/ri⌋ + 1) ≤ N(

⌊
1/r

⌋
+ 1). ■

emark 3. Note that the conditions of Lemma 2 rule out the case
here there is a certain ri taking the value 0. We do so because

t could generate Zeno solutions. Specifically, if two agents i and
with bi-directional links have their tuning parameters ri and rj
qual to 0, there exists a solution in which agent i resets τi from 1
o 0, triggering agent j to update τj to 1, which will be followed by
n update of the form τ+

j = 0, which in turn will trigger agent i to
pdate its state τi to 1. The process repeats infinitely, generating a
urely discrete-time solution. In order to avoid this behavior, we
ill introduce later in Theorem 2 a class of digraphs for which
eno solutions do not emerge even when r = 0.

An advantage of formulating the closed-loop system of PCOs
s HDS satisfying the basic conditions is that we can leverage
xisting theoretical tools to establish suitable robustness results.
pecifically, we have the following fact:

emma 3. If (r, G) is a sync-pair, then there exists a β ∈ KL
uch that for each ν > 0 there exists e∗ > 0 such that for
ll measurable functions ei : dom(e) → RN , i ∈ {1, 2, . . . , 6},
atisfying supt+j≥0 |ei(t, j)| ≤ e∗, every solution of the perturbed
DS H(r, G) + e, given by

+ e ∈ C, τ̇ = f (τ + e ) + e , (15a)
1 2 3
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Fig. 1. Illustration of the counter example in the proof of item (b), Proposition 1
for N = 4. When ri > 1/3 for all i, there exists a solution, shown in the
igure, which repeats its initial condition infinitely often and can never achieve
ynchronization.

+ e4 ∈ D, τ+
∈ G(τ + e5) + e6, (15b)

satisfies the bound |τ (t, j)|As ≤ β(|τ (0, 0)|As , t + j) + ν, for all
t, j) ∈ dom(τ ).

roof. The result follows directly from item (b) of Definition 4, the
ompactness of As, C , and D; the fact that H(r, G) is well posed,
nd the application of Goebel et al. (2012, Lemma 7.20). ■

.2. Scalability issue and negative results

We start by presenting a known result established in Teel and
oveda (2015, Thm. 1) and Poveda and Teel (2019a, Prop. 1):

Lemma 4. Let r ∈ (0, 1/N)N and G be a strongly connected digraph.
Then, (r, G) is a sync-pair. Moreover, the set As is UGFxTs. Every
maximal solution τ satisfies |τ (t, j)|As = 0, ∀ t ≥ T ∗

:= T , with
(t, j) ∈ dom(τ ).

Remark 4. Although Lemma 4 is a positive result, the condition
r ∈ (0, 1/N)N for strongly connected digraphs causes the scala-
bility issue; indeed, since each ri is upper bounded by a term of
order O( 1

N ), the partition [0, rj) in (7) associated with each agent
anishes as N → ∞. Moreover, if the size of the network is dy-
amic, then, in order to achieve fixed-time synchronization, one
ould need to persistently re-tune the parameters ri of existing
gents. Some existing works, such as Nishimura and Friedman
2011, 2012), have presented scalable algorithms with partition
arameters ri =

1
2 for all i = 1, . . . ,N , but the synchronization

esults are only local or almost global. Other relevant works on
lobal synchronization are restricted to specific digraphs, such
s bidirectional connected graphs (Nunez et al., 2015b), strongly
ooted graphs (Nunez et al., 2016), and bidirectional chains (Gao
Wang, 2019).

By taking a closer look at the proof of Lemma 4, we can relax
lightly the condition by requiring that r ∈ (0, 1/N−1)N . The trade-
ff is that the convergence time will be doubled as 2T . However,
uch relaxation is still insufficient for fixing the scalability is-
ue. Whether or not the condition can further be relaxed for
ome particular digraph is unknown. Nevertheless, we present an
mpossibility result for the family of strongly connected digraphs.

roposition 1. The following holds for the HDS H(r, G) := {C, f ,
D,G} given by (8):

(a) For every strongly connected digraph G, and every r ∈ (0, 1
N−1 )

N ,
the pair (r, G) is a sync-pair. Every maximal solution τ satisfies
|τ (t, j)|As = 0, ∀ t ≥ T ∗

:= 2T , with (t, j) ∈ dom(τ ).
(b) For any N ≥ 3, there exists a strongly connected digraph G on N

vertices such that for any r ∈ ( 1
(N−1) , 1)

N , the pair (r, G) is not
a sync-pair.

roof. We first show the existence of a uniformly bounded time
∗

≥ 0 such that every solution of H(r, G) satisfies τ (t∗, 0) ∈ D
6

for any r ∈ [0, 1)N and any digraph G. Indeed, let r ∈ [0, 1)N and
G be given, and consider a solution of H(r, G). Let τ (0, 0) ∈ C\D,
otherwise there is nothing to prove. Then, it must be the case
that τi(0, 0) ∈ [0, 1) for all i ∈ V . By the construction of the flow
map f in (10), it follows that during flows the solutions satisfy
τi(t, j) =

1
T (t − tj) + τi(tj, j) for all i ∈ V , where tj := inf{t ≥

0 : (t, j) ∈ dom(τ )}. Since the function is increasing in t , setting
j = 0 and tj = 0, there must exist i∗ ∈ V and t∗ ≥ 0 such that
τi∗ (t∗, 0) = 1. In turn, this implies

t∗ = T (1 − τi∗ (0, 0)) ≤ T , (16)

for all τi ∈ [0, 1). Now, to establish item (a), note that by Lemma 2
every solution of the system is complete and uniformly non-
Zeno. To show UGAS of As, we now consider a suitable Lyapunov
function V : [0, 1]N → R≥0 defined as follows: First, pick two
agents next to each other on the unit circle; next, use these
two agents as the two endpoints of the arc that includes all the
other agents in the circle (points 0 and 1 are identified to be
the same point); then, define the Lyapunov function V to be the
minimum of lengths of all such arcs (there are N such arcs). Note
that this function is positive definite with respect to As, and by
construction V satisfies 0 ≤ V (τ (0, 0)) ≤ 1−

1
N for every possible

initial condition τ (0, 0) ∈ [0, 1]N . Moreover, since during flows
the function V does not change, and during jumps the function V
annot increase, it follows that the bound V (τ (t, j)) ≤ 1−

1
N holds

or all solutions τ of the HDS H(r, G). Additionally, by Eq. (16) we
know that every solution will experience a jump at the hybrid
time (t∗, 0), triggered by at least one agent i∗ ∈ V satisfying
τi∗ = 1. Since the digraph is strongly connected, and the update
rule (7) is binary, there exists at least one agent j∗ that is an out-
neighbor of agent i∗ such that τj∗ (t∗, 1) ∈ {0, 1}. Therefore, agents
i∗ and j∗ are now at the same position on the unit circle, and it
follows that 0 ≤ V (τ (t∗, 1)) ≤ 1−

1
N−1 . From this point, by using

the same arguments that lead to Eq. (16), the system can stay in
the flow set for at most T seconds, which implies the existence
of an agent i∗∗ and a time t∗∗ > 0 such that τi∗∗ (t∗∗, 1) = 1.
ince V (τ (t∗∗, 1)) ≤ 1−

1
N−1 still holds, it follows that necessarily

τi ≥
1

N−1 for all i ∈ V , and since the tuning parameters of
all agents satisfy ri ∈ (0, 1

N−1 ), it follows that τi ∈ (ri, 1] for
ll i ∈ V , and by (7) and the fact that the digraph is strongly
onnected, the system will experience N − 1 consecutive jumps,
fter which τi(t∗∗, j∗) = 0 for all i ∈ V . This establishes finite-
ime synchronization of the network with t∗∗

≤ 2T , which,
n turn, implies that there is no complete solution that keeps
he Lyapunov function V in a non-zero level set. By the hybrid
nvariance principle (Goebel et al., 2012, Thm. 8.8) we conclude
GAS of As. Finally, note that since every solution is uniformly
on-Zeno, and the set of initial conditions is compact, there exists

∗ > 0 such that the HDS will experience at most j∗ jumps in
ny continuous-time interval of length 2T . Therefore, the set As
s actually UGFxTS with T = 2T + j∗.

To prove item (b), it suffices to consider a counter-example
for an arbitrary N ≥ 3. Consider the cycle digraph having N ≥ 3
ertices (see Fig. 1 for illustration). Let r ∈ ( 1

N−1 , 1)
N be an

arbitrary partition vector. Without loss of generality we take T =

. Choose the initial conditions for the agents as follows (for
onvenience, we will omit arguments of τ ):

1 = τN = 0 and τi =
i − 1
N − 1

, ∀ i ∈ {2, . . . ,N − 1}. (17)

rom this initialization, the system will flow for 1
N−1 seconds,

until the states of the agents satisfy τ1 = τN =
1

N−1 and τi =
i

N−1 , ∀ i ∈ {2, . . . ,N − 1}, which implies that agent (N − 1)
will be reset to zero and also trigger its out-neighbor N . Because
r > 1 , agent N will reset its state to zero without triggering
N N−1
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ts out-neighbor. Thus, the states of the agents are updated as
ollows: τN−1 = τN = 0 and τi =

i
N−1 , ∀ i ∈ {1, . . . ,N − 2}.

The system will then flow again. Similarly, after 1
N−1 seconds, the

state of agent (N − 2) will reach one and immediately be reset to
zero. Meanwhile, agent (N − 2) triggers its out-neighbor (N − 1).
Because rN−1 > 1

N−1 , agent (N − 1) resets its state to zero. The
tates of the agents are thus updated as follows: τN−2 = τN−1 = 0
and τi =

(i+1) mod N
N−1 , for all i ∈ {1, . . . ,N − 3,N}. Proceeding with

this system dynamics for another N−2
N−1 seconds, we will return to

he initial condition (17), which implies that the agents can never
each synchronization. ■

Although the proof of the negative result of Proposition 1 is
built upon cycle digraphs, there are other strongly connected
digraphs that also have the scalability issue. However, a complete
characterization of these digraphs remains open.

To fix the scalability issue, we consider below digraphs be-
yond the strongly connected ones. We start with the following
necessary condition:

Proposition 2. If (r, G) is a sync-pair, then G is rooted.

Proof. We apply strong component decomposition (see, for ex-
ample, Chen, Belabbas, & Başar, 2017) to G and obtain strongly
connected subgraphs Gl = (Vl, El), for l = 1, . . . , k, where the
ubsets Vl form a partition of V . A subgraph Vl is said to be a lead-
ing strong component if for any vj ∈ V\Vl and any vi ∈ Vl, (i, j) is
not an edge of G. If a digraph G is not rooted, then it has at least
two leading components. Without loss of generality, we assume
that G1 and G2 are two leading components. Because a leading
component does not have incoming neighbors, its dynamics are
completely decoupled from the others. In particular, the dynamics
of components G1 and G2 are independent of each other. Thus,
the overall system cannot achieve synchronization from all initial
conditions. ■

Conversely, we can ask whether for any given rooted digraph
G, there is a partition vector r such that (r, G) is a sync-pair? The
following result provides a negative answer:

Proposition 3. There exists a rooted digraph G on N vertices, for
N ≥ 3, such that for any r ∈ (0, 1)N the pair (r, G) is not a sync-pair.

Proof. The proof is constructive. Let us consider the digraph
shown in Fig. 2, which is obtained by adding the edge (3, 2) to
a path digraph. Pick an arbitrary r ∈ (0, 1)N , and we will need
to exhibit an initial condition for which the system cannot reach
synchronization. By the structure of the digraph, the dynamics of
agents 4, . . . ,N do not affect the dynamics of agents 1, 2, and
3. Thus, it suffices to find initial conditions for the first three
agents for which they cannot reach synchronization (the initial
conditions for the remaining agents can then be arbitrary). This
is done below and illustrated in Fig. 2.

Without loss of generality we consider T = 1. Define τi,0 :=

τi(0, 0) for i ∈ {1, 2, 3}. We consider two scenarios: (a) r2 ≤ 0.5;
and (b) r2 > 0.5.

Scenario (a): Choose τ2,0 such that 1 − r3 < τ2,0 ≤ 1. Choose τ1,0
such that

max{0, τ2,0 − r2} < τ1,0 < τ2,0, (18)

and choose τ3,0 such that

0 < τ3,0 < min{τ1,0, τ2,0 − (1 − r3)}. (19)

Note that this initialization satisfies 1 > τ2,0 > τ1,0 > τ3,0 > 0.
Following the hybrid dynamics we obtain the following sequence
of events: Agents flow for 1 − τ seconds, until the system
2,0

7

Fig. 2. Illustration of the counter-example in the proof of Proposition 3. Top:
Rooted digraph with vertex 1 the root and a 2-cycle form by vertices 2 and 3.
Center: Problematic solution for case r2 > 0.5. Bottom: Problematic solution for
r2 ≤ 0.5.

satisfies the condition τ1 = τ1,0 + (1 − τ2,0), τ2 = 1, τ3 = τ3,0 +

1−τ2,0). By the right hand side of inequality (19) we obtain that
τ3 < r3, and the states will jump as τ+

1 = τ1, τ+

2 = 0 and τ+

3 = 0.
Following this jump, the system will flow for 1− (τ1,0+ (1−τ2,0))
seconds, until the system satisfies the following condition:

τ1 = 1, τ2 = τ2,0 − τ1,0, τ3 = τ2,0 − τ1,0. (20)

By the left hand side of inequality (18) we have τ2 < r2.
Therefore, the system will jump as τ+

1 = 0, τ+

2 = 0 and τ+

3 = τ3.
ollowing this jump, the system will flow for 1 − τ2,0 + τ1,0

seconds, until the following condition holds:

τ1 = τ1,0 + (1 − τ2,0), τ2 = τ1,0 + (1 − τ2,0), τ3 = 1. (21)

Since r2 ≤ 0.5, it follows that r2 ≤ 1− r2 and τ0,2 − r2 ≥ τ2,0 −

1 − r2). Therefore, using again the left hand side of inequality
18) we obtain that τ2 > r2 in (27). Thus, the system will jump as
+

1 = τ1, τ+

2 = 1 and τ+

3 = 0. At this point the system will jump
gain as τ+

1 = τ1, τ+

2 = 0 and τ+

3 = 0. After 1 − τ1 seconds of
low, the system will satisfy the condition

1 = 1, τ2 = τ2,0 − τ1,0, τ3 = τ2,0 − τ1,0, (22)

hich is the same state described in (20), i.e., the system has
ntered a periodic cycle which includes points outside the set A.

cenario (b): Choose τ2,0 such that max{1− r3, 1− r2} < τ2,0 ≤ 1
olds. Choose τ1,0 such that

max{0, τ2,0 − r2} < τ1,0 < τ2,0 − (1 − r2). (23)

This choice is always possible given that r2 > 0.5. Choose τ3,0
uch that

< τ3,0 < min{τ1,0, τ2,0 − (1 − r3)}. (24)

Note that this initialization is always feasible and satisfies
> τ2,0 > τ1,0 > τ3,0 > 0. Following the hybrid dynamics we
btain the following sequence of events: Agents flow for 1− τ2,0
econds until the states satisfy τ1 = τ1,0 + (1 − τ2,0), τ2 = 1,
3 = τ3,0 + (1 − τ2,0). By the right hand side of inequality (24)
e obtain that τ3 < r3, and the states will jump as τ+

1 = τ1,
+

2 = 0 and τ+

3 = 0. Following this jump, the system will flow
or τ2,0 − τ1,0 seconds, until the system satisfies the following
ondition:

1 = 1, τ2 = τ2,0 − τ1,0, τ3 = τ2,0 − τ1,0. (25)

By the left hand side of inequality (23) we have τ2 < r2.
herefore, the system will jump as τ+

1 = 0, τ+

2 = 0 and τ+

3 = τ3.
ollowing this jump, the system will flow for 1 − τ2,0 + τ1,0
econds, until the following condition holds:

= τ + (1 − τ ), τ = τ + (1 − τ ), τ = 1. (26)
1 1,0 2,0 2 1,0 2,0 3
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y the right-hand side of (23) we obtain that τ2 < r2 in (26). Thus,
he system will jump as τ+

1 = τ1, τ+

2 = 0 and τ+

3 = 0. After 1−τ1
econds of flow, the system will satisfy the condition

1 = 1, τ2 = τ2,0 − τ1,0, τ3 = τ2,0 − τ1,0, (27)

hich is the same state (25), i.e., the system has entered a
periodic cycle which includes points outside the set As.

Since scenarios (a) and (b) cover every possible choice of r ∈

(0, 1)N , and for any choice we found a solution that does not
converge to As, the pair (r, G) is not a sync-pair for any partition
vector r ∈ (0, 1)N . ■

Remark 5. It is well known that for standard consensus dy-
namics in RN , the digraph G being rooted is a necessary and
sufficient condition for state synchronization. Moreover, finite-
time consensus in RN can also be achieved under the same
graphical condition (Wang, Yu, Ren, & Lu, 2019). Proposition 2
shows that, in order to achieve synchronization, the connectivity
requirement for the network of PCOs is completely different from
the one for the standard consensus dynamics.

3.3. Positive result on rooted acyclic digraphs

In this subsection, we focus on a special class of rooted di-
graphs, namely rooted acyclic digraphs (see Fig. 3 for illustration).
We will show that for every such digraph G and for every parti-
tion vector r ∈ [0, 1)N , the tuple (r, G) is a sync-pair. In particular,
the choice of r can be made independent of the size N of the
digraph. We formulate the result in the following theorem:

Theorem 1. For any rooted acyclic digraph G and any r ∈ (0, 1)N ,
(r, G) is a sync-pair. Moreover, every maximal solution τ satisfies

|τ (t, j)|As = 0, ∀ t ≥ T ∗
:= (dep(G) + 1)T , (28)

with (t, j) ∈ dom(τ ).

Proof. We consider again the Lyapunov function V : [0, 1]N →

R≥0 defined as the infimum of all the arcs that touch all agents
on the unit circle, where the points 0 an 1 are identified to be the
same. By Teel and Poveda (2015), this Lyapunov function satisfies
the following properties: (i) It is positive definite with respect
to the compact set (14). (ii) It remains constant during flows
because all the oscillators have the same frequency 1

T . (iii) It does
not increase at jumps since jumps never increase the number
of distinct points occupied by the agents. We claim that there
is no maximal solution of the HDS H(r, G) that keeps V equal
o a non-zero constant. We show this by establishing fixed-time
ynchronization. Let τ (0, 0) ∈ [0, 1]N and τ be a solution of the
DS (8). Recall that Vl defines all vertices/agents of depth l. Since
he digraph is rooted acyclic, no agent can influence the unique
oot agent, and without loss of generality, we assume that τ1
orresponds to the root agent, i.e., V0 = {1}. Based on this, we
roceed to establish a uniform upper bound on the amount of
ybrid time that can pass before the Lyapunov function is exactly
qual to zero. We establish the fact by induction on the depth l
f the vertices of G.

• Base Case l = 1: In at most T seconds of flow, τ will satisfy
τ1 = 1, and agent 1 will trigger all the vertices in V1 to either
jump to 0 or 1. Thus, based on r , there will exist a partition of
V1 that is defined by the index sets (I ′, I ′′, I ′′′) such that: (i) for
all i′ ∈ I ′, τi′ > ri (the agents i′ will jump to 1 and trigger V2);
(ii) for all i′′ ∈ I ′′, τi′′ < ri (the agents i′′ will jump to 0 and
flow for at most T seconds to trigger V2); (iii) for all i′′′ ∈ I ′′′,
τi′′′ = ri (the agents i′′′ will have a set-valued jump {0, 1}. If the
agent jumps to 1, it will follow (i), otherwise, it will follow (ii)).
8

Fig. 3. Rooted acyclic digraphs. Left: Depth = 1; Center: Depth = 2; Right: Depth
= 2. Black vertex indicates the root.

Note that after the first jump, V0 synchronizes with V1 within
at most 2T seconds and remains synchronized since V1 does
not influence V0 by the acyclic property of the digraph.

• Induction Step: Suppose that agents {V0,V1, . . . ,Vk} synchro-
nize in at most (k + 1)T seconds, where k < dep(G). Since
the digraph does not have a cycle, and the root/agent has a
path to all the agents, we have that agents Vk only influence
agents Vk+1 and cannot affect already synchronized agents
Vl, for 0 ≤ l ≤ k − 1. Thus, agents {V0,V1, . . . ,Vk+1}

synchronize in at most (k+2)T seconds. Therefore, the agents
{V0,V1, . . . ,Vdep(G)} synchronize in at most (dep(G) + 1)T
seconds and remain synchronized after that, i.e., they occupy
the same position on the unit circle for all (t, j) ∈ dom(τ ).

Furthermore, by Lemma 2, the above arguments imply that
V (τ (t, j)) = 0 for all (t, j) ∈ dom(τ ) such that t + j ≥ (dep(G) +

1)(T + N(⌊1/r⌋ + 1)) =: T . Since τ was arbitrary, we have
established that there is no solution of the HDS that keeps the
Lyapunov function in a non-zero level set. We can now directly
establish UGAS of the HDS H(r, G) with respect to the compact
set As by using the Hybrid Invariance Principle (Sanfelice, Goebel,
& Teel, 2007). Absence of purely or eventually discrete-time so-
lutions follows by Lemma 2. This completes the proof of the
Theorem. ■

For the special case where r = 0N , we have the following:

Theorem 2. A pair (0N , G) is a sync-pair if and only if G is rooted
acyclic. In this case, (28) holds with T ∗

:= T .

Proof. Sufficiency: First, we show that every solution is non-Zeno.
Indeed, by construction, Zeno behavior can only occur if there
exists a solution τ that remains in the jump set D for all (t, j) ∈

dom(τ ). In order to remain in D, for such solution there must
exist an agent i satisfying τi(0, 0) = 1, and an agent j and a path
from i to j and from j to i. Otherwise, after at most N jumps
all other agents have already been triggered to 0 and τ /∈ D.
However, since by assumption the digraph is acyclic, there are
no two vertices i, j that have a path from each other. Thus, at
most N consecutive jumps can occur in the system until the state
satisfies τ = 0N ∈ C\D. To show UGAS, note that since the root
gent is not affected by any other vertex, for every solution of
he HDS H(0N , G) there exists (t∗, j∗) ∈ dom(τ ) with t∗ ≤ T
and j∗ ≤ N such that the state of the root vertex v∗ satisfies
τv∗ (t∗, j∗) = 1. Based on this, we claim that every solution τ

will satisfy V (τ (t, j)) = 0 for all (t, j) ∈ dom(τ ) such that
t + j ≥ T + 2N , where V is the same Lyapunov function used
in the proof of Theorem 1. We prove the claim by considering
the two possible cases: (a) t∗ > 0; and (b) t∗ = 0. Suppose
that case (a) holds; then, since t∗ > 0, whenever τv∗ (t∗, j∗) = 1
and τv∗ (t∗, j∗ + 1) = 0, every other neighbor vertex j satisfying
τj(t∗, j∗) ∈ (0, 1] will satisfy τj(t∗, j∗ + 1) = 1. Similarly, since
r = 0N , every neighbor vertex j satisfying τj(t∗, j∗) = 0 will
satisfy τj(t∗, j∗ + 1) ∈ {0, 1}. Moreover, since t∗ > 0, every such
neighborhood satisfying τj(t∗, j∗) = 0 must have already reset
its own state, thus also triggering its own neighbors to update
their states following the same rules described above. Since the

digraph is rooted acyclic, and no agent can trigger the root node
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Fig. 4. (a) Quasi-acyclic digraph G. (b) Condensed digraph Gc .

∗, this process will repeat at most N − 1 times, until all agents
ave been triggered and reset to τj = 0. Thus, the same Lyapunov
unction used in the proof of Theorem 1 allows us to establish
GAS of A via the hybrid invariance principle. If case (b) holds,
ote that after at most T seconds the root vertex v∗ would satisfy
v∗ = 1, and at this point case (a) will hold.
Necessity: It follows from the previous observation that when-

ver i∗ is the vertex of a cycle C, and r = 0N , the condition
i∗ (0, 0) = 1 will trigger sequentially all the vertices of the cycle
ntil every vertex k ∈ C satisfies τk ∈ {0, 1}, with at least one
ertex j ∈ C satisfying τj = 1. By definition of cycle, the vertex j
ill trigger at least one vertex k satisfying τk = 0, generating the
pdate τ+

k = 1. This process repeats infinitely times generating a
iscrete solution. Therefore, if (0N , G) is a sync-pair, the digraph
cannot have cycles. ■

Theorems 1 and 2 highlight two novel properties of PCOs with
igraphs and resetting BPRs of the form (7): First, robust fixed-
ime global synchronization can be achieved in a scalable way for
ny network characterized by a rooted acyclic digraph. Indeed,
n this case the bound on the parameter ri of each agent is of
rder O(1); Second, for this kind of digraphs, the synchronization
an be accelerated by the parameter choice r = 0N , which, as
oted in Remark 3, is prohibited if the digraphs have cycles.
he results also highlight the role of the depth of the digraph
n the convergence time of the hybrid dynamics. Finally, by the
esults of Lemma 3, the synchronization properties established
n Theorems 1 and 2 are preserved for the perturbed HDS (15),
which allow us to consider small delays and drifts on the PCO’s
states.

Remark 6. While Theorems 1 and 2 do not cover the case where
ri = 0 only for some agents of the network, it is clear from the
proof of Theorem 2 that if G is rooted acyclic, then (r, G) is also
a sync-pair. Therefore, there is no gap between the sufficiency
results of Theorems 1 and 2.

Toward the end of this section, we present a result that com-
bines Proposition 1 and Theorem 1. Recall that a rooted digraph
G is said to be quasi-acyclic if all the cycles of G are in its root
component GR = (VR, ER). The digraph Gc obtained by condensing
the root component to a single vertex is rooted acyclic (see Fig. 4
for illustration). We show that robust fixed-time synchronization
can be achieved for these digraphs as well. The trade-off is that
the partition vector is not free to choose anymore, and there is an
upper bound for every ri, with i ∈ VR, of order O( 1

|VR|
). Since the

roof follows similar steps as the proof of Theorem 1, we present
he result as a corollary.

orollary 1. Let G be rooted and quasi-acyclic, with VR the root set.
f ri ∈ (0, 1

|VR|−1 ) for any i ∈ VR, then (r, G) is a sync-pair. Moreover,
(28) holds for T ∗

= (dep(Gc) + 2)T .

Proof. By Proposition 1, the agents in the root component will
reach synchronization in no more than 2T seconds and stay
ynchronized after that. We can thus treat all the roots as a
hole. After condensing the root component to a single vertex,
he resulting digraph Gc is rooted acyclic. Theorem 1 then applies
o the case, which completes the proof. ■
9

Since any strongly connected digraph G satisfies dep(Gc) = 0,
and any rooted acyclic digraph satisfies dep(Gc) = dep(G), the
bound T ∗ on the convergence time t established in Corollary 1
generalizes the bounds obtained in Proposition 1 and Theorem 1.
However, as mentioned before, this generality comes at the price
of the scalability of the partition vector r . The entries of r are of
order O( 1

|VR|
), which tend to 0 as |VR| → ∞. Nevertheless, as we

ill show in the next section, the scalability property of r can be
ully recovered by adding suitable randomness into the PCOs.

emark 7. Given that Theorems 1–2, and Corollary 1 guarantee
ixed-time synchronization of the PCOs, it is clear that all our
esults also hold if the digraph Gt is time-varying and (T ∗, L)-
persistently rooted acyclic (Poveda & Teel, 2019a, Def. 3), i.e., if
for each interval I of length L there exists a sub-interval Ii =

ti, ti+1] ⊂ I satisfying ti+1 − ti = T ∗ and a rooted acyclic digraph
G∗ such that Gt = G∗ for all t ∈ Ii.

4. Stochastic resetting algorithms

In this section, we consider networks of PCOs implementing
the same hybrid update rule (1), (2), and (7), but with the un-
derlying communication network being a random digraph. In this
setting, every time an agent resets its phase to 1, it generates
i.i.d. Bernoulli random variables to decide whether or not to send
pulses to its out-neighbors. In order to formalize the model of
the system, we will use the framework of set-valued stochastic
hybrid dynamical systems (SHDS) (Subbaraman & Teel, 2016;
eel, Subbaraman, & Sferlazza, 2014).

.1. Well-posed stochastic hybrid model

To formalize the model of the PCOs with random digraphs, we
tart by fixing a deterministic digraph G := (V, E). Let G′

= (V, E ′)
e a subgraph of G, with the same vertex set V and E ′

⊆ E . We call
ny such digraph G′ a feasible digraph. Note that every feasible
igraph G′ can be represented by a binary vector v ∈ {0, 1}|E| as
ollows:

:= [. . . , vij, . . .], (29)

here each entry vij indicates whether (i, j) ∈ E is an edge of G′ or
ot: If vij = 1, then (i, j) ∈ E ′. Otherwise, (i, j) ̸∈ E ′. Note that the
inary vectors in {0, 1}|E| one-to-one correspond to the feasible
igraphs. For convenience, we will let Ψ := {0, 1}|E|, be the set
f all feasible digraphs represented by the binary vectors v.
We next consider an Erdös–Rényi type random graph model

or generating a feasible digraph. For a given vector v ∈ Ψ , we
et the entries vij be i.i.d. Bernoulli (p) random variables, i.e., the
robability that vij takes value 1 (resp. 0) is p (resp. (1 − p)). We
enote by µ the probability measure for the random graph. It
ollows that for any feasible digraph G′

= (V, E ′),

(G′) = p|E ′
|(1 − p)|E|−|E ′

|. (30)

We will now adapt the resetting algorithm to accommodate
he above random graph model. First, note that the communi-
ation digraph affects (only) the jump map of the hybrid dynam-
cs (8). In the previous deterministic setting, the digraph is always
iven by G. For the stochastic setting, we replace G with a random
raph G′, with G′

∼ µ(·). Furthermore, if we let Gk, for k ∈ N, be
he feasible digraph at discrete time k (i.e., the communication
igraph at the occurrence of the kth jump), then all these digraphs
re independent of each other. In other words, the sequence
Gk}

∞

k=1 comprises i.i.d. random variables, with Gk ∼ µ(·).
We note here that a similar random graph model has been

onsidered in Klinglmayr et al. (2017, 2012). The key difference
s that the model of Klinglmayr et al. (2017, 2012) considered the
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ollowing scenario: Whenever an agent jumps, it draws only one
Bernoulli random variable to decide whether it sends pulses to
all of its out-neighbors or not. However, the digraphs considered
in these two papers were either bi-directional or strongly con-
nected. Whether their random graph model can work for rooted
graphs is a non-trivial question, which we will address on another
occasion. Another major difference from the works in Klinglmayr
et al. (2017, 2012) is that we utilize tools from stochastic hybrid
dynamical system to analyze the well-posedness, stability, and
convergence properties of the PCOs. Indeed, given that standard
PCOs are hybrid dynamical systems, the addition of randomness
into the model naturally leads to a stochastic hybrid setting.

To construct the corresponding SHDS, it suffices to re-define
the jump map. It takes three steps to do so. First, for each edge
(i, j) ∈ E , we consider the set-valued mapping Sij : [0, 1] × Ψ ⇒
[0, 1] as follows:

Sij(τj, v) = vijP(τj) + (1 − vij)τj, (31)

where P is the BPR given by (7), and vij is the entry that corre-
ponds to the edge (i, j) in E . Next, using (31), we define a new
et-valued mapping G0

v : [0, 1]N × Ψ ⇒ RN as follows:

0
v(τ , v) :=

{
g ∈ RN

: gi = 0,

gj ∈

{
Sij(τj, v), (i, j) ∈ E
{τj}, (i, j) /∈ E

}
, ∀ j ̸= i

}
, (32)

hich is defined to be nonempty only when τi = 1 for some i ∈ V
nd τj ∈ [0, 1) for j ̸= i. Finally, the jump map for the SHDS is

defined as the outer-semicontinuous hull of G0
v , i.e.,

v(τ , v) := G0
v(τ , v). (33)

Note that when a jump occurs and a random graph Gk is drawn,
not every edge of Gk plays a role in the jump map Gv . Only the
edges (i, j) with τi = 1 for some i ∈ V , matter. Thus, an agent i
does not need to know the structure of the entire graph Gk, but
rather its out-neighbors (as the set of agents it needs to send
pulses from time to time). Correspondingly, the out-going edges
of the agent i are completely determined by the agent through
the i.i.d. Bernoulli random variables that are generated locally by
agent i itself. The reason of including the entire graph Gk in the
jump map Gv is rather for ease of analysis.

The following lemma establishes that the jump map Gv satis-
fies the Basic Conditions of Definition 1.

Lemma 5. The set-valued mapping Gv : [0, 1]N × Ω ⇒ [0, 1]N
defined by (33) satisfies condition (c) of Definition 1.

Proof. We start by considering the set-valued map Sij of (31). For
each fixed τ , the mapping Sij is a summation of two measurable
maps. Thus, by Rockafellar and Roger (1998, Prop. 14.11), the
mapping S is measurable with respect to v. Since for each τ ∈ RN

the mapping G0(τ , v) in (32) is constructed by assigning 0 to the
ith component, and Sij(τj, v) or τj to the other components, it fol-
lows that v ↦→ G0(τ , v) is also measurable. Finally, measurability
of the mapping v ↦→ graph(G(·, v)) follows from the fact that
G is outer semicontinuous (Teel, 2013, Appendix A.2.). Since by
construction G is locally bounded, it follows that it satisfies the
basic conditions. ■

Note that the digraph G and the probability p ∈ [0, 1] of the
Bernoulli distribution uniquely determine the probability space
(Ω,F, µ). Thus, the resulting SHDS depends on three parameters,
namely, p, r , and G.
10
We will write the SHDS as

HS(p, r, G) := (C, f ,D,Gv), (34)

where the subindex S indicates that the system is stochastic.

Remark 8. An important standing assumption of our model, em-
bedded in the definition of random solutions used in the paper, is
the causal dependence of the solutions on the random variables.
In particular, note that the condition τi = ri, or the existence of
more than one agent satisfying the condition τi = 1, leads to a set
Gv(τ , v) in (33) that has more than one element. In this case, our
model will require that each particular selection τ+

∈ Gv(τ , v)
should not be able to anticipate the next communication graph
Gk that will be assigned to the agents at the next jump. This
causality property is specified in Appendix C. As shown in Teel
2013), the causality property is needed in order to make use of
uitable Lyapunov-based arguments for the stability analysis of
he system via invariance-like principles. Causality is a standard
ssumption in stochastic algorithms.

As highlighted in Remarks 2 and 8, it is important to note
hat in our model for each fixed ω ∈ Ω the sample path
ω generated by the SHDS (34) may not be unique, and the
nalysis of each individual solution becomes intractable as N in-
reases. This feature makes the stability analysis of the set-valued
tochastic synchronization dynamics non-trivial and differs from
revious results in the literature that relied on single-valued
pdate rules (Klinglmayr et al., 2017, 2012).

.2. Almost sure global synchronization: Stability and attractivity

We recall that the compact set As is defined in (14), which
aptures all synchronized states of the network. Similar to the
efinition of sync-pairs for deterministic HDS, we introduce the
ollowing definition for SHDS:

efinition 5. Let As be given in (14). Let p ∈ [0, 1], r ∈ [0, 1)N ,
nd G be a digraph of N vertices. Then, (p, r, G) is a sync-triplet
f

(a) For every initial condition in C ∪ D, there exist non-trivial
solutions of HS(p, r, G) almost surely (see Appendix B for
the definition), and every maximal solution is complete and
uniformly Non-Zeno almost surely;

(b) The SHDS HS(p, r, G) renders As UGASp.

Note that a necessary condition for (p, r, G) to be a sync-triplet
s that G is rooted. This fact can be established by using the same
rguments as in the proof of Proposition 2. However, in contrast
o the deterministic setting (cf. Proposition 3), we will see soon
hat having a rooted digraph G is also a sufficient condition for
p, r, G) to be a sync-triplet.

For ease of presentation, we let ω := ω1ω2ω3 · · · be a sequence
f i.i.d. random variables, with each ωi ∼ µ(·) a feasible digraph.
e denote by Ω the collection of sample paths ω. It should be

lear that for an event:
′
:= {ω ∈ Ω | ω1 = v1, . . . , ωk = vk}

ith vi ∈ Ψ for all i = 1, . . . , k, its probability is given by
(Ω ′) =

∏k
i=1 µ(vi). Note that a sample path ω determines the

nderlying digraphs for jumps at all discrete times k, for k ≥ 1.
solution of HS(p, r, G) thus depends on ω and we denote it by

ω . Note that there may exist multiple solutions even if we fix ω
nd the initial condition, which is due to the set-valued nature of
he jump map in the SHDS. For each solution we further define
he following random variable:
∗(τττ ) := inf {t | τττ (t, j) ∈ A , (t, j) ∈ dom(τττ )} , (35)
ω ω s ω
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hich is the first hitting-time for the solution τττω to enter the
ompact set As (i.e., the instant at which the SHDS achieves syn-
hronization for the first time). We establish below the following
esult:

heorem 3. If p ∈ (0, 1), r ∈ (0, 1)N , and G is a rooted directed
raph, then (p, r, G) is a sync-triplet. Moreover, for any initial con-
ition τω(0, 0), the following holds for all positive integers n and all
andom solutions τττω of the SHDS:(
TTT ∗(τττω) > nT ∗

)
≤ ρn, (36)

here T ∗ is given in (28) and ρ ∈ (0, 1) is the constant:

:= 1 −
(
pN−1(1 − p)|E|−N+1)dep(G)ℓ∗

, (37)

here ℓ∗
= N(⌊1/r⌋ + 1), with r = mini∈V ri, as introduced in

emma 2,

emark 9. Note that by Theorem 3, the stochastic resetting
lgorithm is scalable because neither p nor ri, for i ∈ V , depends
n the size N of the network. We also note that the result
an be further generalized by allowing different agents to have
eterogeneous probabilities pij ∈ (0, 1), for (i, j) ∈ E , as the
arameters of the Bernoulli random variables. Correspondingly,
he expression (37) will be changed as follows: first, let p :=

min{pij | (i, j) ∈ E} and p̄ := max{pij | (i, j) ∈ E}; then, replace
in (37) the term pN−1 with pN−1 and the term (1−p)|E|−N+1 with
1− p̄)|E|−N+1. With slight modification, the analysis we carry out
elow can still apply to establish the proof for the heterogeneous
ase. However, for clarity of presentation, we will focus only on
he homogeneous case where p is the same for all agents.

Below, we present the proof of Theorem 3. To proceed, we first
stablish some preliminary lemmas. We define S(τ0) as the set of
ll maximal random solutions of (34) from the initial condition

τω(0, 0) = τ0 ∈ C ∪ D. For each feasible initial condition, we
define the following event:

Ω1(τω(0, 0)) :=

{
ω ∈ Ω | ∀ τω ∈ S(τω(0, 0)), ∃ i∗ ∈ VR

and ∃ (t∗ω, j∗ω) ∈ dom(τω) with t∗ω ≤ T

s.t. τω,i∗ (t∗ω, j∗ω) = 1
}
. (38)

Lemma 6. For any τω(0, 0) ∈ C ∪ D, Ω1(τω(0, 0)) = Ω .

Proof. The result follows directly from the fact that a root can
only be influenced by another root and by the fact that τ always
increases during flows. ■

Next, we recall a fact from graph theory:

Lemma 7. For a rooted digraph G with a root i∗, there exists a
directed spanning tree Ti∗ with i∗ the unique root.

Proof. One can generate a desired Ti∗ using the breadth-first
search algorithm (Graham, Grötschel, & Lovász, 1995). ■

Note that for a given root i∗ of G, there may exist multiple
directed spanning trees with i∗ the root. In the sequel, we will fix
Ti∗ for each root i∗ so that the map i∗ ↦→ Ti∗ is well defined.

Next, we let l and L be two positive integers. Then, for the
given l and L and for a given root i∗ of G, we define another event
as follows:

Ω2(l, L, i∗) := {ω ∈ Ω | ωk = Ti∗ , ∀k = l + 1, . . . , l + L}. (39)

In words, the above event is defined such that the random di-
graphs ω , for k = l + 1, . . . , l + L, are the same and given by
k

11
a certain directed spanning tree with root i∗. We introduce such
an event so as to make a connection with Theorem 1, details of
which will be elaborated soon in the proof of Theorem 3.

We have the following fact:

Lemma 8. For any given positive integers l and L and for any root
i∗ of G,

P(Ω2(l, L, i∗)) =
(
pN−1(1 − p)|E|−N+1)L . (40)

Proof. The result follows from the fact that the random variables
ωk, for k ≥ 1, are i.i.d. and, moreover, µ(Ti∗ ) = pN−1(1−p)|E|−N+1

where the integer (N − 1) is the number of edges of a directed
spanning tree with N vertices. ■

With the above lemmas, we are now in a position to prove
Theorem 3:

Proof of Theorem 3. We first establish the fact that (p, r, G) is a
sync-triplet. Consider again the Lyapunov function V : [0, 1]N →

R≥0 defined as the infimum of all arcs that touch all agents on
the unit circle, where the points 0 and 1 are identified to be the
same. This function is positive definite with respect to the set As,
it is uniformly bounded as V (τττω) ≤ 1 −

1
N for all τττω ∈ [0, 1]N ,

and it does not increase during flows of the SHDS (34) surely,
i.e, V̇ (τττω) ≤ 0 for all τττω ∈ C . By construction of V , since the
number of points occupied by agents in the circle cannot increase,
we also have that V does not increase during jumps. Moreover,
by construction of the sets C and D, the continuity of the mapping
f in (10), and Lemma 5, the SHDS satisfies the basic conditions.
lso, by using the same arguments of the proof of Lemma 2, it
ollows that every solution of the SHDS is surely complete. Thus,
y the stochastic hybrid invariance principle (c.f. Theorem C.1
n Appendix C) in order to show UGASp of the set As, it suffices to
how that there does not exist almost surely complete solutions
ω that remain in a non-zero level set of the Lyapunov function
lmost surely.
To establish the above fact, we will show that there exist

ositive constants α and T ∗ such that for any initial condition
ω(0, 0) ∈ [0, 1]N , the following holds:

(Ω3(τω(0, 0))) > α, (41)

here the event Ω3(τω(0, 0)) is given by

3(τω(0, 0)) :=

{
ω ∈ Ω | ∀ τττω ∈ S(τω(0, 0)) and ∀ t ≥ T ∗

s.t. (t, j) ∈ dom(τω), V (τττω(t, j)) = 0
}
.

We show below that α and T ∗ can be chosen to be the
ollowing values α := 1 − ρ, where ρ ∈ (0, 1) is defined in (37),
nd T ∗

:= (dep(G) + 1)T .
First, by Lemma 6, for any solution τττω , there exist a hy-

rid time (t∗ω, j∗ω), with t∗ω ≤ T , and a root i∗ of G such that
ω,i∗ (t∗ω, j∗) = 1. Conditioning on the fact that τττω,i∗ (t∗ω, j∗ω) = 1,
e consider the event Ω2(j∗ω, j∗ω + L, Ti∗ ), where L := dep(Ti∗ )ℓ∗,
nd ℓ∗

= N(⌊1/r⌋+1) with r = mini∈V ri. Note that by Lemma 2,
for the discrete time j to increase from j∗ω to j∗ω +L, the continuous
time has to increase at least dep(Ti∗ )T because otherwise, there
will not be as many as L jumps. For convenience, we let t∗∗

ω be
the time that the (j∗ + L)th jump occurs. By definition of the
event Ω2(j∗, L, i∗) (see (39)), the underlying digraph during this
period [t∗ω, t∗∗

ω ] is given by the directed spanning tree Ti∗ . Thus,
following the same arguments used in the proof of Theorem 1,
we have that the solution τττω will reach synchronization at time
t∗ω + dep(Ti∗ )T ≤ t∗∗

ω . Further, since dep(Ti∗ ) ≤ dep(G) and since
t∗ω ≤ T (by Lemma 6), we have that t∗ω + dep(Ti∗ )T ≤ T ∗. The
above arguments imply that V (τττ (t, j)) = 0, for all t ≥ T ∗. Thus,
ω
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Fig. 5. Rooted digraph with vertices 1, 2, and 3 being roots. The connections in
red indicate a directed spanning tree with maximum depth.

Fig. 6. Solutions generated by the HDS (8) for the network topology given in
ig. 5. Left: Synchronization is achieved in approximately 3.4 s when each agent
icks ri ∈ (0, 1

2 ). Right: Synchronization is not achieved when r2 is set to be
/4.

Fig. 7. A sample path generated by the SHDS (34) for the network topology
given in Fig. 5. Synchronization is achieved in approximately 12 s for this sample
path.

to establish (41), it now remains to show that the probability of
the event Ω2(j∗, L, i∗) is a nonzero constant, but this is given by
Lemma 8 with P(Ω2(j∗, L, i∗)) = α.

Finally, we show that (36) holds. The computation in fact
follows from the above argument. First, by the Bayes rule, we
have that

P
(
TTT ∗(τττω) > nT ∗

)
= P

(
TTT ∗(τττω) > (n − 1)T ∗

)
· · ·

· · · × P
(
TTT ∗(τττω) > nT ∗

|TTT ∗(τττω) > (n − 1)T ∗
)
.

sing the Markovian property, the conditional probability on
he right hand side of the above expression can be written as
(TTT ∗(τττ ′

ω′ ) > T ∗), where τττ ′

ω′ is a new solution with the initial
ondition τ ′

ω′ (0, 0) given by τ ′

ω′ (0, 0) = τω((n − 1)T ∗, j), for some
and ω′

:= ωj+1ωj+2 · · ·. Note that by definition of Ω3(τ ′

ω′ (0, 0))
nd (41), we have that(
TTT ∗(τττ ′

ω′ ) > T ∗
)

= 1 − P(Ω3(τ ′

ω′ (0, 0))) < 1 − α = ρ.

t then follows that(
TTT ∗(τττω) ≥ nT ∗

)
< ρP

(
TTT ∗(τττω) ≥ (n − 1)T ∗

)
.

he above recursive formula then implies that (36) holds. ■

. Numerical studies

In this section, we illustrate our theoretical results via nu-
erical examples. We consider a network of N = 12 PCOs.
 t

12
Fig. 8. This figure plots log
(
P̂(T∗ > nT ∗)

)
versus the number n of windows

needed for a sample path to achieve synchronization. There are 1000 sample
paths simulated.

The underlying digraph is rooted as shown in Fig. 5. A directed
spanning tree with maximum depth is indicated by red arrows.
The depth of the tree is 7. We set the period of the PCOs as T = 1,
which implies that the constant T ∗

= (dep(G) + 1)T introduced
in (28) is equal to 8. We also note that (dep(Gc) + 2)T = 7
where Gc is the condensed digraph of G. We first simulate the
HDS (8) over the digraph G. First, we let each agent sample its
ri uniformly randomly from (0, 1

2 ). By doing so, the condition of
Corollary 1 is satisfied. We next let agents sample their initial
conditions uniformly randomly from (0, 1). On the left of Fig. 6,
we present a sample trajectory for one of such initial conditions.
The entire network achieves synchronization in 3.4 s (within 7 s)
which agrees with the statement of Corollary 1. However, if we
change the parameter r2 of agent 2 to be 3

4 (which is greater
than 1

2 ) and keep the other ri’s unchanged. Then, the network is
not guaranteed to reach synchronization anymore. On the right
of Fig. 6, we present a sample trajectory that does not reach
synchronization (over a long time interval).

We now simulate the SHDS (34) over the same digraph G as
above. This time, we let the parameters ri be uniformly randomly
chosen out of (0, 1). The probability p of drawing an out-going
edge is 0.5. In Fig. 7, we show a sample path generated by the
SHDS (34). Then, we investigate the first hitting time TTT ∗(τττω)
defined in (35) using the same SHDS. We choose 1000 random
initial conditions uniformly from (0, 1)N . For each initial condi-
tion, we let ((n − 1)T ∗, nT ∗

], for n ≥ 1, be the window that
contains TTT ∗(τττω) (i.e., the sample path reaches synchronization
during that period). In Fig. 8, we plot the empirical version of
P(T∗ > nT ∗) for different n, i.e., we plot P̂(T∗ > nT ∗) := 1 −∑n

k=1
Freq(k)
1000 , where Freq(k) is the total number of times that the

first hitting time T∗(τττω) belongs to ((n−1)T ∗, nT ∗
]. The plot is in

the log scale.
Furthermore, we investigate the dependence of the first hit-

ting time TTT ∗(τττω) on the size N of network. We simulate the
SHDS on three different classes of network topologies: complete
digraphs, cycle digraphs, and path digraphs. For each class, we
vary the number N of agents from 10 to 250, with increments
of 10. The parameters ri are again chosen uniformly randomly
from (0, 1) and the probability p of drawing an edge is 0.5. For
each case (with a fixed class and a fixed size N), we generate 100
initial conditions uniformly randomly from (0, 1)N and simulate
the SHDS (34). For each sample path, we record the first hitting
time TTT ∗(τττω). Figs. 9, 10, and 11 plot the data for complete-, cycle-
and path-digraphs, respectively. For each figure, the horizontal
xis is the network size N and the vertical axis is the first hitting
ime TTT ∗(τττω). For each N , the crosses represent the first hitting
imes of the sample paths. There are 100 of them and the red
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Fig. 9. First hitting time vs size of complete digraph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. First hitting time vs size of cycle digraph. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 11. First hitting time vs size of path digraph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

square is the mean. For complete digraphs, the mean decays to a
steady state. The variance seems to decay as well. However, this
is not the case for cycles or paths. In either case, the average and
the variance increase as N grows. Using linear regression, we find
that the fitting curves for paths and cycles are 1.4N − 2.6 and
.5N − 170.6, respectively.
13
. Conclusions

In this paper we have established several new results about
ynchronization of pulse-coupled oscillators over directed graphs,
mongst which there are two major ones: We have shown that
obust global fixed-time synchronization can be achieved over
uasi-acyclic digraphs using a deterministic binary resetting al-
orithm, where turning parameters are independent of network
izes. Further, by accommodating an Erdös–Renýi type random
raph model, we have developed a scalable stochastic binary re-
etting algorithm by which global synchronization can be
chieved, with probability one, over rooted digraphs. Future di-
ections will study the development of similar stochastic coordi-
ation algorithms for multi-time scale hybrid dynamical systems.

ppendix A. Notation and definitions

A set-valued mapping M : Rm ⇒ Rn is said to be outer semi-
ontinuous (OSC) at x ∈ Rm if for all sequences xi → x and
yi ∈ M(xi) such that yi → y we have that y ∈ M(x). A set-
valued mapping M : Rm ⇒ Rn is said to be locally bounded
(LB) at x ∈ Rm if there exists a neighborhood Kx of x such that
M(Kx) is bounded. Given a set X ⊂ Rm, the mapping M is OSC
and LB relative to X if the set-valued mapping from Rm to Rn

defined by M for x ∈ X , and by ∅ for x /∈ X , is OSC and LB at
each x ∈ X . The graph of a set-valued mapping G is defined as
graph(G) := {(x, y) ∈ Rm

× Rn
: y ∈ G(x)}. Given a set B ⊂ Rn, we

use cl(B) to denote its closure. The outer semi-continuous hull
of G is the unique set-valued mapping G : Rm ⇒ Rn satisfying
graph(G) = cl(graph(G)), (Rockafellar & Roger, 1998, pp. 155).
Given a measurable space (Ω,F), a set-valued map G : Ω ⇒ Rn is
aid to be F-measurable (Rockafellar & Roger, 1998, Def. 14.1), if
or each open set O ⊂ Rn, the set G−1(O) := {ω ∈ Ω : G(ω)∩O =

∅} ∈ F . A sequence of maps xi : dom(xi) → Rn is said to converge
graphically if the sequence of sets {graph(xi)}∞i=1 converges in the
sense of set convergence (Goebel et al., 2012, Def. 5.1).

Appendix B. Hybrid dynamical systems

A HDS is characterized by the following inclusions (Goebel
et al., 2012):

x ∈ C, ẋ = f (x), (B.1a)

x ∈ D, x+
∈ G(x), (B.1b)

where x ∈ Rn is the state of the system, f : Rn
→ Rn is

the flow map, which describes the continuous-time dynamics of
the state; C ⊂ Rn is called the flow set and it describes the
points in the space where x is allowed to evolve according to the
differential equation (B.1a); G : Rn

× Rm ⇒ Rn is the jump map
and it characterizes the discrete-time dynamics of x; and D ⊂ Rn

is called the jump set and it describes the points in the space
where x is allowed to evolve according to the set-valued update
(B.1b). The HDS is represented as H = {C,D, F ,G}. In this paper
we restrict our attention to HDS that satisfy the basic conditions
of Definition 1. A standard solution x to (B.1) is parameterized
by a continuous-time index t and a discrete-time index j. In
particular, solutions to (B.1) are defined on hybrid time domains.
A compact hybrid time domain is a subset of R≥0 × Z≥0 of the
form ∪

J
j=0([tj, tj+1] × {j}) for some J ∈ Z≥0 and real numbers 0 =

t0 ≤ t1 ≤ · · · ≤ tJ+1. A hybrid time domain is a set E ⊂ R≥0×Z≥0
such that for each T , J , the set E ∩ ([0, T ] × {0, 1, 2, . . . , J}) is a
compact hybrid time domain. A function x : E → Rn is said to be
a hybrid arc if E is a hybrid time domain, and for each j such that
the interval Ij = {t ≥ 0 : (t, j) ∈ dom(x)} has non-empty interior
the function t ↦→ x(t, j) is locally absolutely continuous. A hybrid
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rc x is said to be a solution to a HDS (B.1) satisfying the basic
onditions if: (1) x(0, 0) ∈ C ∪ D. (2) If (t1, j), (t2, j) ∈ dom(x)
with t1 < t2, then for almost every t ∈ [t1, t2], x(t, j) ∈ C
nd ẋ(t, j) = f (x(t, j)). (3) If (t, j), (t, j + 1) ∈ dom(x), then
(t, j) ∈ D and x(t, j + 1) ∈ G(x(t, j)). A solution x to (B.1) is said
o be: (a) non-trivial if dom(x) contains at least two points; (b)
aximal if there does not exist another solution x′ to H such that
om(x) ⊊ dom(x′) and x(t, j) = x′(t, j) for all (t, j) ∈ dom(x);

(c) complete if its domain is unbounded; (d) eventually discrete if
T = suptdom(x) < ∞ and dom(x)∩({T }×N) contains at least two
points. d) uniformly non-Zeno if there exists (T , J) ∈ R>0 such that
for every (t1, j1), (t2, j2) ∈ dom(x), if t2 − t1 ≤ T then j2 − j1 ≤ J .

Appendix C. Stochastic hybrid dynamical systems

When the jump map in (B.1b) also depends on a random input
, the HDS (B.1) becomes a SHDS (Subbaraman & Teel, 2016) of
he form

∈ C, ẋ = f (x), (C.1a)

∈ D, x+
∈ G(x, v+), v ∼ µ(·), (C.1b)

here v+ is a place holder for a sequence {vk}∞k=1 of independent,
dentically distributed i.i.d. input random variables vk : Ω → Rm,
∈ N, defined on a probability space (Ω,F,P). Thus, vk−1(F ) :=

ω ∈ Ω : vk(ω) ∈ F} ∈ F for all F ∈ B(R)m, and µ :

(Rm) → [0, 1] is defined as µ(F ) := P{ω ∈ Ω : vk(ω) ∈ F}.
e restrict our attention to SHDS that satisfy the basic conditions
f Definition 1. Random solutions to SHDS (C.1) are functions of
∈ Ω denoted x(ω), such that: (1) ω ↦→ x(ω) has measurability
roperties that are adapted to the minimal filtration of v; (2)
or each ω ∈ Ω the sample path x(ω) is a standard solution to
he HDS (B.1) with the appropriate dependence on the random
nput v(ω) through the jumps. To formally define these mappings,
or k ∈ Z≥1, let Fk denote the collection of sets {ω ∈ Ω :

v1(ω), v2(ω), . . . , vk(ω)) ∈ F}, F ∈ B(Rm)k, which are the sub-
-fields of F that form the minimal filtration of v = {vk}∞k=1,
hich is the smallest σ -algebra on (Ω,F) that contains the pre-

mages of B(Rm)-measurable subsets on Rm for times up to k. A
tochastic hybrid arc is a mapping x from Ω to the set of hybrid
rcs, such that the set-valued mapping from Ω to Rn+2, given by

↦→ graph(x(ω)) :=
{
(t, j, z) : x̃ = x(ω), (t, j) ∈ dom(x̃), z =

˜(t, j)
}
, is F-measurable with closed-values. Let graph(x(ω))≤k :=

raph(x(ω)) ∩ (R≥0 × {0, 1, . . . , k} × Rn). An {Fk}
∞

k=0 adapted
tochastic hybrid arc is a stochastic hybrid arc x such that the
apping ω ↦→ graph(x(ω))≤k is Fk measurable for each k ∈ N.
n adapted stochastic hybrid arc x is a solution to (C.1) starting
rom x0 denoted x ∈ Sr (x0) if (with xω := x(ω)): (1) xω(0, 0) = x0;
2) if (t1, j), (t2, j) ∈ dom(xω) with t1 < t2, then for almost all t ∈

t1, t2], xω(t, j) ∈ C and ẋω(t, j) = f (xω(t, j)); (3) if (t, j), (t, j+1) ∈

om(xω), then xω(t, j) ∈ D and xω(t, j + 1) ∈ G(xω(t, j), vj+1(ω)).
random solution x is said to be: (a) almost surely complete if

or almost every sample path ω ∈ Ω the hybrid arc x(ω) has an
nbounded time domain; and almost surely eventually discrete
f for almost every sample path ω ∈ Ω the hybrid arc x(ω) is
ventually discrete. A continuous function V : Rn

→ R≥0 is a
yapunov function relative to a compact set A ⊂ Rn for the SHDS
C.1) if V (x) = 0 ⇐⇒ x ∈ A, V is radially unbounded and
atisfies V (φ(t)) ≤ V (x), ∀ x ∈ C, t ∈ dom(φ), φ ∈ SFC (x), and
Rm maxg∈G(x,v) V (g)µ(dv) ≤ V (x), ∀ x ∈ D, where SFC (x) denotes
he set of solutions of (C.1a) with initial condition x. The following
tochastic hybrid invariance principle (Subbaraman & Teel, 2016,
hm. 8) is instrumental for our analysis.

heorem C.1. Let V be a Lyapunov function relative to a compact set
⊂ Rn for the SHDS system H. Then, A is UGASp if and only if there

oes not exist an almost surely complete solution x that remains in
non-zero level set of the Lyapunov function almost surely.
14
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