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We study the problem of robust global synchronization of pulse-coupled oscillators (PCOs) over
directed graphs. It is known that when the digraphs are strongly connected, global synchronization
can be achieved by using a class of deterministic binary set-valued resetting controllers (Poveda and
Teel, 2019). However, for large-scale networks, these algorithms are not scalable because some of
their tuning parameters have upper bounds of the order © (%) where N is the number of agents. This
paper resolves this scalability issue by presenting several new results about global synchronization
of PCOs with more general network topologies using the frameworks of deterministic and stochastic
hybrid dynamical systems. First, we establish that similar deterministic binary resetting algorithms
can achieve robust global and fixed-time synchronization in any rooted acyclic digraph. Moreover, in
this case, we show that the synchronization dynamics are now scalable as the tuning parameters
of the algorithm are network independent, i.e., of order ©(1). However, the algorithms cannot be
further extended to all rooted digraphs. We establish this new impossibility result by introducing a
counter-example with a particular rooted digraph for which global synchronization cannot be achieved,
irrespective of the tuning parameters. Nevertheless, we show that if the binary resetting algorithms are
modified by accommodating an Erdés-Renyi type random graph model, then the resulting stochastic
resetting dynamics will guarantee global synchronization almost surely for all rooted digraphs and,
moreover, the tuning parameters of the dynamics are network independent. Stability and robustness
properties of the resetting algorithms are studied using the tools from set-valued hybrid dynamical
systems. Numerical simulations are provided at the end of the paper for demonstration of the main
results.
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1. Introduction following continuous-time dynamics:

.1 :
A network of pulse-coupled oscillators (PCOs) consists of N el0.1) = 7= T vief{l,2,....N} (1)

periodic dynamical systems, also called agents, sharing informa- where T > 0 is the period of the oscillator, and [0, 1) is a

tion via a communication directed graph (digraph). In most of the
standard models of PCOs, e.g., Kannapan and Bullo (2016), Nunez,
Wang, and Doyle (2015a), Pagliari and Scaglione (2011), Poveda
and Teel (2019a) and Proskurnikov and Cao (2017), each agent
has an individual state 7; € R, which evolves according to the
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normalized unit interval. When the state of an agent i finishes an
oscillation, it sends a pulse to its out-neighbors j (the information
flow topology will be described by a directed graph, and j is an
out-neighbor of i if (i, j) is an edge of the graph), and it proceeds
to instantaneously reset its individual state back to zero:

=1 = 1" =0. (2)
After receiving the pulse, each out-neighbor j of agent i in-
stantaneously updates its own state t; using an individual phase
update rule (PR) t; — P;(t;), which usually has the following
form:
B(t;)
t — (1) = i/
The mapping 7; +— Bj(tj) is commonly referred to as the
backward mapping, and it decreases the value of 7;. The mapping

if 7j €[0,1;),
if 7je[r,1).

(3)
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7 > Fj(1;) is referred to as the forward mapping, and it increases
7; (Kannapan & Bullo, 2016). Whether an agent j implements
the mapping B; or the mapping F;, depends on the position of
7; with respect to the constant r; e [0, 1), which partitions
in Eq. (3) the normalized unit interval of each agent. In this
way, PCOs can be seen as multi-agent dynamical systems that
combine the continuous-time dynamics (1) and the discrete-time
dynamics (2)-(3). As a consequence, they are naturally modeled
as networked multi-agent hybrid dynamical systems (Poveda &
Teel, 2019b), and their convergence and stability properties are
highly dependent on the structures of the mappings P; and the
partitions induced by the tuning parameters ;.

Given that Egs. (1)-(3) are quite general, PCOs can be used to
model different biological systems, including Cardiac pacemakers,
rhythmic flashing of fireflies, electrical signals of neurons, and bi-
ological oscillators, see Kannapan and Bullo (2016) and references
therein. Networks of PCOs have also found several applications
in engineering systems, such as cellular mobile radio (Tyrrell,
2009), sensor networks (Wang & Doyle, 2012; Wang, Nunez, &
Doyle, 2012, 2013), and autonomous vehicles (Sepulchre, Paley,
& Leonard, 2007). Owing to the property of fixed time conver-
gence, PCOs with binary phase update rules have attracted more
and more attentions and have been used to address a variety
of engineering problems. Specifically, they have been used to
synchronize and coordinate clocks and logic states in networks
of sampled-data systems (Poveda & Teel, 2019a; Teel & Poveda,
2015), and also in distributed optimization algorithms with local
timers (Ochoa, Poveda, Uribe, & Quijano, 2021). In these applica-
tions, it is of interest to achieve fixed-time exact synchronization
to emulate a centralized system having one single timer that co-
ordinates the network. Finally, we refer the reader to Section 1.2
of the survey paper (Dorfler & Bullo, 2014) for more relevant
applications of PCOs.

A particular feature of PCOs is that their individual states are
confined to evolve in the normalized interval [0, 1]. By embed-
ding the closed interval to the unit circle and identifying the
two points 0 and 1 with each other, the network of PCOs can be
viewed as a multi-agent system evolving on the N-torus, where
the state t; of the ith agent evolves in the unit circle flowing
in counter-clockwise direction with frequency 1/T. In this way,
achieving global synchronization of PCOs can be cast as a global
stabilization problem on a smooth compact manifold (Poveda
& Teel, 2019a; Sontag, 1999a). It is well-known that there is
no smooth continuous-time state-feedback control law that can
solve, in a robust way, such type of stabilization problems (Dorfler
& Bullo, 2014; Sontag, 1999a, 1999b). This impossibility result
has motivated the development of several synchronization al-
gorithms that relax the global convergence requirement and,
instead, focus on achieving only local convergence (Kannapan
& Bullo, 2016; Kuramoto, 1991; Nishimura & Friedman, 2011;
Phillips, Sanfelice, & Erwin, 2012; Wang & Wang, 2020a) or al-
most global synchronization results, i.e., synchronization from all
initial conditions except possibly from those in a set of measure
zero (Mauroy & Sepulchre, 2012; Nishimura & Friedman, 2012;
Proskurnikov & Cao, 2017; Sarlette & Sepulchre, 2009). However,
for applications where measurement noise or external distur-
bances are unavoidable, almost global convergence results can
be problematic given that they lead to non-zero measure sets
from which synchronization cannot be achieved under arbitrarily
small disturbances (Mayhew, 2010; Sontag, 1999b). Moreover,
such problematic non-zero measure sets can be quite large in
multi-agent systems when the number of agents is large.

On the other hand, it has been shown that global synchroniza-
tion of PCOs can be achieved by using a hybrid-system approach
over various network topologies, such as cycle digraphs (Nunez
et al., 2015a), strongly rooted digraphs (Nunez, Wang, Teel, &
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Doyle, 2016), bidirectional chains and directed trees in Gao and
Wang (2019), bidirectional digraphs (Nunez, Wang, & Doyle,
2015b), and complete digraphs (Canavier & Tikidji-Hamburyan,
2017). Relevant issues, such as resilience of global synchroniza-
tion under attacks, have also been investigated in the litera-
ture (Wang & Wang, 2018, 2020b). In terms of convergence time
(i.e., time for PCOs to reach synchronization), we refer the reader
to Canavier and Tikidji-Hamburyan (2017), Gao and Wang (2019),
Nunez et al. (2015a, 2015b, 2016) and Wang and Wang (2018)
for asymptotic convergence and to Poveda and Teel (2019a), Teel
and Poveda (2015) and Wang and Wang (2020b) for fixed-time
convergence.

Using hybrid dynamics, robustness of synchronization can be
established by considering well-posed set-valued regularizations
of the discontinuous PR (3); see Gao and Wang (2019). The set-
valued hybrid model has also been investigated in Poveda and
Teel (2019a) and Teel and Poveda (2015) using (deterministic)
binary phase update rules (BPRs) that satisfy 7; : [0, 1] = {0, 1},
i.e.,, mappings that reset the position of each agent to a given
point in the unit circle that identifies the beginning and the end of
the interval [0, 1]. By using this type of resetting rule, also called
strong firing (Nishimura, 2013), it was shown in Poveda and Teel
(2019a) and Teel and Poveda (2015) that global and robust fixed-
time synchronization of homogeneous PCOs can be achieved if
the underlying information flow topology is characterized by a
directed strongly connected graph and if all the tuning parameters
rj satisfy an upper bound of order O (), see, e.g., Poveda and Teel
(2019a, Thm. 1). Thus, as the size of the network increases, the
set of feasible parameters goes to zero, resulting in a scalability
issue that holds even for strongly connected digraphs. Besides
the scalability issue, it has also remained an open question what
type of directed graphs, other than the strongly connected ones,
are necessary and/or sufficient for synchronization in PCOs with
binary resetting rules.

In this paper we address both questions at a time. We charac-
terize a class of digraphs, namely graphs that are rooted acyclic,
for which robust, global, and fixed-time synchronization can be
achieved by using resetting algorithms with BPRs. In this case,
the algorithms are scalable because the tuning parameters r; are
independent of network size. This result further allows us to
extend the resetting algorithm to a stochastic setting, where a
sequence of independent, identically distributed (i.i.d.) Bernoulli
random variables is used by each agent i to decide whether or not
to send the impulses to the out-neighbors j after resetting its own
state via equation (2). Interestingly, by injecting this randomness
into the networked system, synchronization can be achieved al-
most surely for the entire class of rooted digraphs. Moreover,
we show that with such digraphs it is in general impossible to
achieve global synchronization using the deterministic resetting
algorithm. We outline below the main contributions of the paper:

(1) We show in Proposition 2 that having a rooted digraph
is necessary for achieving global synchronization of
PCOs using deterministic BPRs. However, as shown in
Proposition 3, this condition is not sufficient, which is true
regardless of the choices of tuning parameters of the BPRs.
Note that the gap between necessity and sufficiency makes
our problem different from standard consensus dynamics
in Euclidean spaces where having a rooted digraph is
generally sufficient for global synchronization.

(2) We show that if the underlying digraph is rooted acyclic,
then the deterministic resetting algorithm achieves global
and fixed-time synchronization. Moreover, the tuning
parameters of individual PCOs are network independent.
The result is formulated as Theorem 1, and extended in
Corollary 1 to quasi-acyclic digraphs. In each case, we
provide a clear characterization of the upper bounds of the
convergence time in terms of the depth of the digraph.
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(3) We show that in the stochastic setting (with random trig-
gers of pulses), the corresponding resetting algorithm can
achieve global synchronization almost surely for all rooted
digraphs. Moreover, we show that the probability of the
network reaching synchronization converges exponentially
fast to one. The tuning parameters are again independent of
the network size. The result is in contrast with the counter-
example provided in Proposition 3 for the deterministic
setting.

By the nature of the dynamics of the PCOs, we combine graph
theoretic tools (Bullo, 2019) and set-valued hybrid dynamical
system’s (HDS) theory (Goebel, Sanfelice, & Teel, 2012) to ana-
lyze the qualitative properties of the network. This formalism is
instrumental to the robustness analysis of the synchronization
dynamics with respect to small additive bounded disturbances
that are unavoidable in practice. To the best of author’s knowl-
edge, the results of this paper are the first ones that address
the scalability issue that emerges in the global synchronization
problem of PCOs, and that establish robust global synchroniza-
tion over quasi-acyclic digraphs without using leading agents or
global cues, with an explicit characterization of the convergence
time as a function of the structure of the digraph. Moreover,
unlike existing almost sure convergence results in the literature
of stochastic synchronization of PCOs, e.g., Hartman, Subbaraman,
and Teel (2013), Klinglmayr, Bettstetter, Timme, and Kirst (2017),
Klinglmayr, Kirst, Bettstetter, and Timme (2012) and Pagliari and
Scaglione (2011), we use the framework of stochastic hybrid dy-
namical systems to establish uniform global asymptotic stability
in probability of the PCOs, with respect to the synchronization set,
in rooted digraphs. Furthermore, we provide theoretical bounds
for the stochastic synchronization time of our algorithms, as
functions of the structures of the underlying digraphs. Our results
open the door to new potential applications in the context of
distributed control and optimization in networked systems with
local timers that require synchronization mechanisms over gen-
eral rooted digraphs (Ochoa et al, 2021; Poveda & Teel, 2019a;
Teel & Poveda, 2015). Earlier, preliminary results, reported in the
conference paper (Javed, Poveda, & Chen, 2019), considered only
deterministic algorithms and presented results only for rooted
acyclic digraphs, a subclass of the digraphs considered in this
paper. Analysis and proofs of the results were also omitted in the
conference version.

The rest of this paper is organized as follows: Section 2

presents some preliminaries. Main results for the deterministic
and stochastic settings are presented and established in Sec-
tions 3 and 4, respectively. Section 5 shows numerical examples.
The paper ends with conclusions.
Notations. Given a vector x € R", we let |x| be the Euclidean norm
of x. For a compact set A C R", we let |x| 4 := minyc 4 [x — y|. We
also use |-| to denote the cardinality of a set. We use ¢, € R"
to denote a constant vector with all entries equal to c € R. We
use S C R? to denote the unit circle centered at the origin,
jie,S = {(xl,xz) ER? X1 4+x5 = ]}. Given a set B, we use BY
to denote the N-Cartesian product of B, i.e., BN := Bx B x --- xB.
A function B is said to be of class K. if it is non-decreasing
in its first argument, non-increasing in its second argument,
lim, o+ B(r,s) = 0 for each s € Rs, and lim,_, B(r,s) = 0
for each r € Rx. For a closed set B C R", and ¢ > 0, B+ ¢B
denotes the set {x € R" : |x|z < ¢}. We use B° to denote an open
ball of radius one centered at zero. For a real number x, we denote
by |x] the maximum integer that is less than or equal to x.

2. Preliminaries

This section presents basic notions from graph theory, hybrid
dynamical systems, and notions of system stability.
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2.1. Basic notions from graph theory

A directed graph, or digraph, is denoted by G = (V, &), and
it is characterized by the set of vertices V := {1,2,..., N}, and
the set of edges &€ C V x V. In this paper, we consider only
simple digraphs, i.e., digraphs without self-arcs. We adopt the
convention that information flows from vertex i to vertex j if
(i,j) € &, and we call i an in-neighbor of j, and j an out-neighbor
of i. A walk from a vertex i to a vertex j, denoted by wy, is a
sequence {ig, i1, ..., in}, With iy = i and i, = j, in which each
pair (iy, ixy1) € € forallk € {0, 1, ..., m—1}. A path corresponds
to a walk in which all the vertices are pairwise distinct. A cycle
is a walk in which there is no repetition of vertices other than
the repetition of the starting and ending vertex. The length of
a path/cycle/walk is defined to be the number of edges in that
path/cycle/walk. A vertex i € V is said to be a root of G if for any
other vertex j € V, there exists a path from i to j. A digraph G with
at least one root is a rooted digraph. A rooted digraph G without a
cycle is rooted acyclic. If G is rooted acyclic, then there is a unique
root. In general, a rooted digraph G can have multiple roots. All
the roots then form a strongly connected subgraph Gg. We call
Gr the root component of G. The digraph G is said to be quasi-
acyclic if all the cycles of G are contained in the root component.
In other words, if we condense Gy into a single vertex, then the
resulting condensed digraph, denoted by G, is rooted acyclic. A
rooted acyclic digraph is a directed tree if every vertex, except the
root, has a single in-neighbor. Every rooted digraph ¢ = (V, &)
contains a directed tree 7 = (V, &), with the same vertex set, as
its subgraph. We call 7 a directed spanning tree. Let G be a directed
tree with i* the root. The depth of a vertex i other than i*, denoted
by dep(i), is the length of the unique path from i* to i. The depth
of i* is 0 by default. The depth of G is dep(G) := max,,y dep(i).
For the given directed tree G, we decompose the vertex set V as
v = U9y, where v contains all the vertices of depth L Let ¢
be a rooted digraph. We define the depth of G, denoted by dep(G),
to be the maximal depth of a directed spanning tree 7 of G.

2.2. Hybrid dynamical systems with random inputs

A stochastic hybrid dynamical systems (SHDS) with state x €
R" and random input v € R™ is characterized by the following
set of equations:

x = f(x), (4a)
xt e Gx,v), v~ u(), (4b)

where the function f : R" — R", called the flow map, describes
the continuous-time dynamics of the system; the set C C R",
called the flow set, describes the points in the space where x
is allowed to evolve according to the differential equation (4a);
G:R" x R™ = R", called the jump map, is a set-valued mapping
that characterizes the discrete-time dynamics of the system; and
D C R" called the jump set, describes the points in the space
where x is allowed to evolve according to the stochastic difference
inclusion (4b). We use vt as a place holder for a sequence of
independent, identically distributed (i.i.d.) input random variables
{Vik}r, with probability distribution w, derived from an abstract
probability space (£2, F, P). General SHDS of the form (4) have
been introduced and analyzed in Subbaraman and Teel (2016).
In this paper we restrict our attention to SHDS that satisfy the
following basic conditions:

x e C,

xeD,

Definition 1 (Basic Conditions). A SHDS is said to satisfy the basic
conditions if the following holds: (a) The sets C and D are closed,
C C dom(f), and D C dom(G). (b) The function f is continuous. (c)
The set-valued mapping G : R" x R™ = R" is locally bounded and
the mapping v — graph(G(-, v)) := {(x,¥) € R"XR" : y € G(x, v)}
is measurable with closed values.
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When the discrete-time dynamics (4b) do not depend on ran-
dom inputs, the SHDS (4) is reduced to a standard deterministic
HDS (Goebel et al., 2012):

x = f(x), (5a)
xT e G(x). (5b)

Solutions to hybrid systems (either stochastic (4) or determin-
istic (5)) are parameterized by both continuous- and discrete-
time indices t € Rsg and j € Zso. The index t increases
continuously during flows (4a) or (5a), and the index j increases
by one when a jump occurs via (4b) or (5b).

Of particular interest to us are solutions that have an un-
bounded time domain in both t and j directions. Such type of
solution is maximal (i.e., its domain is not a proper subset of the
domain of other solution) and non-Zeno (i.e., they do not have
accumulation points in t). For a precise definition of maximal
non-Zeno solutions x to HDS of the form (5) we refer the reader
to Appendix B. Similarly, for a precise definition of maximal
random solutions x,, to SHDS of the form (4) we refer the reader
to Appendix C.

xeC,
xeD,

2.3. Stability and convergence notions

In this paper, we will use the following standard stability
notion (Goebel et al., 2012) for deterministic HDS (5):

Definition 2. A HDS # := {C, f, D, G} is said to render a compact
set A uniformly globally asymptotically stable (UGAS) if there
exists a function 8 € K£ such that every solution x of (5) satisfies
the bound

Ix(t, 1)la = B(IX(0, 0)] 4» £ + 1),

for all (t,j) € dom(x). We say that H renders .4 uniformly
globally fixed-time stable (UGFXTS) if, additionally, there exists
aT > 0 such that B(|x(0,0)| 4, t +j)=0forall t +j> T and all
x(0,0) e CUD.

The UGAS stability property introduced in Definition 2 is stan-
dard in the analysis of hybrid dynamical systems, see Goebel
et al. (2012, Chp. 3). On the other hand, the notion of UGFXTS
is stronger, since it asks that every solution of the system should
converge in finite time to the set .4, with a convergence time that
can be upper bounded by a constant independent of the initial
conditions. When C and D are compact, global fixed-time stability
is equivalent to global finite-time stability.

To study the stability properties of SHDS of the form (4), we
use the following definition borrowed from Teel (2013):

Definition 3. A SHDS (4) is said to render a compact set .A:

(a) Uniformly Lyapunov stable in probability if for each ¢ > 0
and p > O there exists a § > 0 such that for all x,(0,0) €
A + 8B, every maximal random solution x, from x,(0, 0)
satisfies the inequality:

[P’(xw(t,j) € A+eB°, V()€ dom(xw)> >1—p. (6)

(b) Uniformly Lagrange stable in probability if for each § > 0
and p > 0, there exists an & > 0 such that the inequality (6)
holds.

(c) Uniformly globally attractive in probability if for each ¢ >
0,0 > 0 and R > 0, there exists a ¥ > 0 such that for all
random solutions x,, with x,(0,0) € A 4+ RB the following
holds:

P(X(t.J) € A+ eB7 Y £ 4= 7, (¢.]) € dom(x,))
>1—p.
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System (4) is said to render a compact set A C R" Uniformly
Globally Asymptotically Stable in Probability (UGASp) if it sat-
isfies conditions (a), (b), and (c).

Definition 3 is a natural extension of Definition 2 to the
stochastic domain. Moreover, under the Basic Conditions and cer-
tain causality assumptions on the solutions of the system, UGASp
is a property that can be established by combining suitable Lya-
punov functions and stochastic hybrid invariance principles (Sub-
baraman & Teel, 2016, Thm. 8). These tools will be instrumental
in the analysis of our algorithms in the next sections.

3. Deterministic resetting algorithms

In this section we study how to construct deterministic BPRs
that are scalable and that achieve robust global synchronization
in PCOs over sparse networks.

3.1. Well-posed model for robust synchronization

We start by constructing suitable regularizations of discontin-
uous BPRs of the form (3). First, we recall that if all the agents
are completely decoupled, then their dynamics are described
by (1) and (2). When agents are coupled through a network,
every agent i will send a pulse to its out-neighbors whenever t;
reaches 1 and resets the value to 0 via (2). On the other hand, if
agent j receives a pulse from its in-neighbor, then we assign the
following set-valued BPR to the agent j:

{0} 77 € [0, 17)

o1 g=n ™)
{1} 7 € (15, 1]

where r; € [0, 1) is the tuning parameter. Each r; partitions [0, 1]

into two segments. For convenience, we call r := [ry;...;1ry] a
partition vector.

T e Pi(g) =

Remark 1. As in Poveda and Teel (2019a) and Teel and Poveda
(2015), the set-valued mapping P; : [0, 1] = {0, 1} in Eq. (7)
is generated as the outer semicontinuous hull! of the BPR (3)
with forward map Fj(z;) = 1 and backward map Bj(z;) = 0.
This regularization is used in the robustness analysis of dis-
continuous dynamical systems (Kellet & Teel, 2004), which will
allow to establish suitable robustness results for synchronization
dynamics.

We now model the dynamics of the agents, together with
the BPRs (7), as a HDS of the form (5) with overall state T =

[71, T2, ..., Tv]". Given a digraph G of N vertices, and a partition
vector r € [0, 1]V, we write the HDS as

H(r,g)={C,f,D,G}, (8)
with flow and jump sets given by

C:=1[0,11" and D := {r € C: maxey 7, = 1}, (9)

respectively; flow map and jump map given by

f(r) = % -1y and G(t) := G%7), (10)

respectively, where GO is the outer-semicontinuous hull of the
set-valued mapping G° : [0, 1]V = RN given by

G(1) ::!g eRV:g =0,
S e IR A

1 See Appendix A for a precise definition of the outer semicontinuous hull of
a mapping.
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which is defined to be nonempty only when 7; = 1 for some
i e vand r; € [0,1) for j # i Importantly, as in Poveda
and Teel (2019a), by construction of the jump set and the jump
map, when more than two agents satisfy the condition 7; = 1,
their jumps will occur sequentially rather than in parallel. This
behavior is induced on purpose to guarantee a suitable semi-
continuous dependence on the initial conditions for the solutions
of the system. Indeed, in order to capture the effect of arbitrarily
small disturbances acting on the states of the PCOs, the synchro-
nization model must guarantee that, for each initial condition
79 € [0, 1], and each graphicall%{( )convergent sequence of solutions

{t®}rez., with components 7, satisfying
0 < 70,0) < 7{}(0,0) < - < {30, 0) < 1, (12)

for someie vandlI € Z.y, and

lim (0, 0) =1

i i
k—o00 —

(k)
m 7((0,0) = - -

o (k) _
o= lim 7$(0,0) = 7o,
the sequence of solutions must graphically converge to a solution
of the system starting from the set of initial conditions

i =Ty = =17 =To. (13)

This condition is particularly relevant for the case when 7 =
1, since it implies that the states ‘L'l-(k) with initial conditions
satisfying (12) are sequentially reset with smaller and smaller
times between resets as k — oo. Thus, in the limiting case
(13), all agents must reset their states but the resets must occur
sequentially. Since no order is specified for the sequential jumps,
and there is no reason to give priority to one agent over the other,
any robust model of PCOs must take into account all the possible
trajectories induced by the N! different resetting orders that can
emerge from condition (13) with g = 1,i=1,and I = N.

Remark 2. The construction of G suggests that studying the
individual behavior of every possible solution of the system be-
comes intractable as N increases. In order to address this issue,
in this paper we will use Lyapunov stability theory to analyze the
qualitative behavior of every possible solution of the system from
any initial condition in [0, 1]V.

The following fact follows directly from the construction:

Lemma 1. For every partition vector r and every digraph G, the HDS
H(r, G) introduced in (8) satisfies the basic conditions.

We aim to characterize pairs (r, G) that make the correspond-
ing HDS #(r, G) well behaved (non-Zeno behavior) and, more-
over, render the following compact set UGAS:

As = {ply | n e [0, 1} U {0, 1}V (14)

It should be clear that if the state t belongs to A, then the
network flows synchronously. For convenience, we introduce the
following definition:

Definition 4. Let A; be the compact set in (14). Let r € [0, 1)V be
a partition vector and G be a digraph of N vertices. The pair (r, G)
is a sync-pair if

(a) For every initial condition in C U D there exists a non-trivial
solution to H(r, G), and each solution has an unbounded time
domain and it is uniformly non-Zeno (see Goebel et al., 2012,
Prop. 6.35-(a));

(b) The HDS #(r, G) renders UGAS the set As.

Automatica 132 (2021) 109807

While the stability analysis of the set A will be highly depen-
dent on the communication digraph G and the partition vector r,
the following Lemma will be instrumental in satisfaction of item
(a) in Definition 4.

Lemma 2. Consider the HDS H(r, G). For any partition vector r €
(0, 1N and any digraph G we have that item (a) in Definition 4
holds, and the number of jumps in any interval of length T is
bounded above by ¢* := N(|1/r] + 1) where r := minjcy, 1;.

Proof. Let G be given, and let r € (0, 1)V. Since the HDS #(r, G)
satisfies the basic conditions, and since f(r) > 0 for all T €
[0, 1)V, by Goebel et al. (2012, Prop. 6.10) there exists at least
one non-trivial solution from every initial condition 7(0,0) €
C U D. Since the flow map is globally Lipschitz and the flow
set is compact, every solution t does not exhibit finite escape
times. Moreover, since G(D) C C U D solutions cannot stop
due to jumps. Thus, by Goebel et al. (2012, Prop. 6.10) every
solution t is complete, i.e., it has an unbounded time domain.
To show absence of Zeno-behavior, it suffices to rule out the
existence of discrete solutions to system #(r, G) (Goebel et al.,
2012, Prop. 6.35). Suppose by contradiction that there exists a
maximal solution t satisfying 7(0,j) € D for all j € Zso. This
implies that for all j € Z-( there exists some i* € V such that
7#(0,j) = 1. By construction of the dynamics, and without loss
of generality, we will have that 7;+(0,j + 1) = 0, which implies
that agent i* cannot trigger further jumps. This argument can be
repeated at most N — 1 consecutive times, after which all agents
would satisfy 7; # 1, i.e,, 7(0,j + N) ¢ D, which contradicts the
original assumption.

We now establish the upper bound. Note that if an agent i hits
1 and jumps at a certain hybrid time (t, j) (so that 7;(t, j+1) = 0),
then the least time required by the agent i to hit again the value
1 is to first flow for r;T seconds and, then, to have one of its in-
neighbors to hit 1 and trigger it. This implies that the number of
times the agent i can hit 1 during the period [t, t +T] is bounded
above by (1/r; + 1) and, hence, |1/r;] + 1. Finally, the number
of jumps of the entire network during the period [t,t + T] is
equal to the number of times N agents hit 1 during the same
period, we conclude that the number of jumps is bounded above

by Y1, (L1/nl+ 1) < N([1/r] +1). =

Remark 3. Note that the conditions of Lemma 2 rule out the case
where there is a certain r; taking the value 0. We do so because
it could generate Zeno solutions. Specifically, if two agents i and
Jj with bi-directional links have their tuning parameters r; and r;
equal to O, there exists a solution in which agent i resets 7; from 1
to 0, triggering agent j to update t; to 1, which will be followed by
an update of the form ;% = 0, which in turn will trigger agent i to
update its state 7; to 1. The process repeats infinitely, generating a
purely discrete-time solution. In order to avoid this behavior, we
will introduce later in Theorem 2 a class of digraphs for which
Zeno solutions do not emerge even when r = 0.

An advantage of formulating the closed-loop system of PCOs
as HDS satisfying the basic conditions is that we can leverage
existing theoretical tools to establish suitable robustness results.
Specifically, we have the following fact:

Lemma 3. If (r, G) is a sync-pair, then there exists a B € KL
such that for each v > 0 there exists e* > 0 such that for
all measurable functions e; : dom(e) — RN, i e {1,2,...,6},
satisfying sup,;>¢ lei(t, j)| < e*, every solution of the perturbed
HDS #H(r, G) + e, given by

T+4+e €C, T =f(t+e)+es, (15a)



M.U. Javed, J.I. Poveda and X. Chen

Fig. 1. Illustration of the counter example in the proof of item (b), Proposition 1
for N = 4. When r; > 1/3 for all i, there exists a solution, shown in the
figure, which repeats its initial condition infinitely often and can never achieve
synchronization.

tt e G(t +e5) + e, (15b)

satisfies the bound |t(t,j)l 4, < B(I7(0,0)| 4, t + j) + v, for all
(t,j) € dom(7).

T+e4 €D,

Proof. The result follows directly from item (b) of Definition 4, the
compactness of As, C, and D; the fact that #(r, G) is well posed,
and the application of Goebel et al. (2012, Lemma 7.20). ®

3.2, Scalability issue and negative results

We start by presenting a known result established in Teel and
Poveda (2015, Thm. 1) and Poveda and Teel (2019a, Prop. 1):

Lemma 4. Let r € (0, Yn)N and G be a strongly connected digraph.
Then, (r, G) is a sync-pair. Moreover, the set As is UGFxTs. Every
maximal solution t satisfies |t(t,j)| 4, =0, V t>T*:=T, with
(t,j) € dom(z).

Remark 4. Although Lemma 4 is a positive result, the condition
r e (0, 1NN for strongly connected digraphs causes the scala-
bility issue; indeed, since each r; is upper bounded by a term of
order (’)(ﬁ), the partition [0, r;) in (7) associated with each agent
vanishes as N — oco. Moreover, if the size of the network is dy-
namic, then, in order to achieve fixed-time synchronization, one
would need to persistently re-tune the parameters r; of existing
agents. Some existing works, such as Nishimura and Friedman
(2011, 2012), have presented scalable algorithms with partition
parameters r; = % foralli = 1,..., N, but the synchronization
results are only local or almost global. Other relevant works on
global synchronization are restricted to specific digraphs, such
as bidirectional connected graphs (Nunez et al., 2015b), strongly
rooted graphs (Nunez et al.,, 2016), and bidirectional chains (Gao
& Wang, 2019).

By taking a closer look at the proof of Lemma 4, we can relax
slightly the condition by requiring that r € (0, 1/n—1)V. The trade-
off is that the convergence time will be doubled as 2T. However,
such relaxation is still insufficient for fixing the scalability is-
sue. Whether or not the condition can further be relaxed for
some particular digraph is unknown. Nevertheless, we present an
impossibility result for the family of strongly connected digraphs.

Proposition 1. The following holds for the HDS H(r,G) = {C,f,

D, G} given by (8):

(a) For every strongly connected digraph G, and every r € (0, ﬁ W
the pair (r, G) is a sync-pair. Every maximal solution t satisfies
[t(t, )4, =0, V t>T*:=2T, with (t,j) € dom(t).

(b) For any N > 3, there exists a strongly connected digraph G on N
vertices such that for any r € (ﬁ, 1N, the pair (r, G) is not
a sync-pair.

Proof. We first show the existence of a uniformly bounded time
t* > 0 such that every solution of #(r, G) satisfies 7(t*,0) € D
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for any r € [0, 1)" and any digraph G. Indeed, let r € [0, 1) and
G be given, and consider a solution of H(r, G). Let 7(0, 0) € C\D,
otherwise there is nothing to prove. Then, it must be the case
that 7;(0, 0) € [0, 1) for all i € V. By the construction of the flow
map f in (10), it follows that during flows the solutions satisfy
T5(t,j) = Ht — t) + w(t;,j) for all i € v, where t; := inf{t >
0 : (t,j) € dom(t)}. Since the function is increasing in t, setting
j = 0and t; = 0, there must exist i* € V and t* > 0 such that
7;+(t*, 0) = 1. In turn, this implies

t* =T(1 —1+(0,0)) < T, (16)

for all 7; € [0, 1). Now, to establish item (a), note that by Lemma 2
every solution of the system is complete and uniformly non-
Zeno. To show UGAS of A, we now consider a suitable Lyapunov
function V : [0, 1]V — Ry, defined as follows: First, pick two
agents next to each other on the unit circle; next, use these
two agents as the two endpoints of the arc that includes all the
other agents in the circle (points 0 and 1 are identified to be
the same point); then, define the Lyapunov function V to be the
minimum of lengths of all such arcs (there are N such arcs). Note
that this function is positive definite with respect to .4;, and by
construction V satisfies 0 < V(7(0,0)) < 1— ﬁ for every possible
initial condition 7(0,0) € [0, 1]N. Moreover, since during flows
the function V does not change, and during jumps the function V
cannot increase, it follows that the bound V(z(t,j)) < 1— % holds
for all solutions t of the HDS #(r, G). Additionally, by Eq. (16) we
know that every solution will experience a jump at the hybrid
time (t*, 0), triggered by at least one agent i* € V satisfying
7+ = 1. Since the digraph is strongly connected, and the update
rule (7) is binary, there exists at least one agent j* that is an out-
neighbor of agent i* such that 7j«(t*, 1) € {0, 1}. Therefore, agents
i* and j* are now at the same position on the unit circle, and it
follows that 0 < V(z(t*,1)) < 1— ﬁ From this point, by using
the same arguments that lead to Eq. (16), the system can stay in
the flow set for at most T seconds, which implies the existence
of an agent i** and a tirqe t** > 0 such that 7(t™*, 1) = 1.

Since V(z(t**, 1)) < 1— 5 still holds, it follows that necessarily

T > ﬁ for all i € V, and since the tuning parameters of
all agents satisfy r; € (0, ﬁ), it follows that ; € (r;, 1] for
alli € v, and by (7) and the fact that the digraph is strongly
connected, the system will experience N — 1 consecutive jumps,
after which 7;(t**,j*) = 0 for all i € V. This establishes finite-
time synchronization of the network with t** < 2T, which,
in turn, implies that there is no complete solution that keeps
the Lyapunov function V in a non-zero level set. By the hybrid
invariance principle (Goebel et al., 2012, Thm. 8.8) we conclude
UGAS of A;. Finally, note that since every solution is uniformly
non-Zeno, and the set of initial conditions is compact, there exists
j* > 0 such that the HDS will experience at most j* jumps in
any continuous-time interval of length 2T. Therefore, the set A;
is actually UGFxTS with T = 2T + j*.

To prove item (b), it suffices to consider a counter-example
for an arbitrary N > 3. Consider the cycle digraph having N > 3
vertices (see Fig. 1 for illustration). Let r € (ﬁ, 1)N be an
arbitrary partition vector. Without loss of generality we take T =
1. Choose the initial conditions for the agents as follows (for
convenience, we will omit arguments of 7):

i—1
T1=1tw=0 and ‘Ci:ﬁ,ViE{z,...,N—l}. (]7)

From this initialization, the system will flow for ﬁ seconds,
until the states of the agents satisfy 71 = oy = ﬁ and 7; =
v Yi € {2,...,N — 1}, which implies that agent (N — 1)
will be reset to zero and also trigger its out-neighbor N. Because

N > ﬁ agent N will reset its state to zero without triggering
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its out-neighbor. Thus, the states of the agents are updated as
follows: vy = &w = 0and §; = 5, Vi e {1,...,N = 2}.
The system will then flow again. Similarly, after ﬁ seconds, the
state of agent (N — 2) will reach one and immediately be reset to
zero. Meanwhile, agent (N — 2) triggers its out-neighbor (N — 1).
Because ry_1 > ﬁ agent (N — 1) resets its state to zero. The
states of the agents are thus updated as follows: ty_ = ty_1 =0
and 7; = w, forallie {1,...,N —3, N}. Proceeding with
this system dynamics for another % seconds, we will return to
the initial condition (17), which implies that the agents can never

reach synchronization. W

Although the proof of the negative result of Proposition 1 is
built upon cycle digraphs, there are other strongly connected
digraphs that also have the scalability issue. However, a complete
characterization of these digraphs remains open.

To fix the scalability issue, we consider below digraphs be-
yond the strongly connected ones. We start with the following
necessary condition:

Proposition 2. If (r, G) is a sync-pair, then G is rooted.

Proof. We apply strong component decomposition (see, for ex-
ample, Chen, Belabbas, & Basar, 2017) to G and obtain strongly
connected subgraphs G = (V}, &), for I = 1,...,k, where the
subsets V, form a partition of V. A subgraph V) is said to be a lead-
ing strong component if for any v; € V\V; and any v; € V, (i, ) is
not an edge of G. If a digraph G is not rooted, then it has at least
two leading components. Without loss of generality, we assume
that G; and G, are two leading components. Because a leading
component does not have incoming neighbors, its dynamics are
completely decoupled from the others. In particular, the dynamics
of components G; and G, are independent of each other. Thus,
the overall system cannot achieve synchronization from all initial
conditions. W

Conversely, we can ask whether for any given rooted digraph
G, there is a partition vector r such that (r, G) is a sync-pair? The
following result provides a negative answer:

Proposition 3. There exists a rooted digraph G on N vertices, for
N > 3, such that for any r € (0, 1) the pair (r, G) is not a sync-pair.

Proof. The proof is constructive. Let us consider the digraph
shown in Fig. 2, which is obtained by adding the edge (3, 2) to
a path digraph. Pick an arbitrary r € (0, 1)V, and we will need
to exhibit an initial condition for which the system cannot reach
synchronization. By the structure of the digraph, the dynamics of
agents 4, ..., N do not affect the dynamics of agents 1, 2, and
3. Thus, it suffices to find initial conditions for the first three
agents for which they cannot reach synchronization (the initial
conditions for the remaining agents can then be arbitrary). This
is done below and illustrated in Fig. 2.

Without loss of generality we consider T = 1. Define 7, :=
7;(0, 0) for i € {1, 2, 3}. We consider two scenarios: (a) r, < 0.5;
and (b) r, > 0.5.

Scenario (a): Choose 1, such that 1 —r;3 < 759 < 1. Choose 11
such that

max{0, 10 — 12} < T1,0 < 72,0, (18)
and choose 73 ¢ such that
0 < 73,0 < miH{TLo, 72,0 — (1 — r3)}. (]9)

Note that this initialization satisfies 1 > 7,9 > 710 > 730 > 0.
Following the hybrid dynamics we obtain the following sequence
of events: Agents flow for 1 — 1, seconds, until the system
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Fig. 2. Illustration of the counter-example in the proof of Proposition 3. Top:
Rooted digraph with vertex 1 the root and a 2-cycle form by vertices 2 and 3.
Center: Problematic solution for case r, > 0.5. Bottom: Problematic solution for
r, <0.5.

satisfies the condition 11 = 1190+ (1 —1720), 2 =1, 13 = 130 +
(1—12,0). By the right hand side of inequality (19) we obtain that
73 < 13, and the states will jump as 7, = 71, 7, = 0and 7; = 0.
Following this jump, the system will flow for 1— (71,04 (1—12,0))
seconds, until the system satisfies the following condition:

T1=1 To=710—Ti0, T3 = T20 — T1,0- (20)

By the left hand side of inequality (18) we have 7, < r5.
Therefore, the system will jump as r;” =0, 7,” =0 and ;" = 3.
Following this jump, the system will flow for 1 — 750 + 710
seconds, until the following condition holds:

=710+ (1—10), 2=710+(1—-120), 3 =1 (21)

Since r, < 0.5, it follows thatr, < 1—ryand 1 — 12 > 20—
(1 — ry). Therefore, using again the left hand side of inequality
(18) we obtain that 7, > r; in (27). Thus, the system will jump as
1 =1, 7, = 1and 15" = 0. At this point the system will jump
again as t; = 71, 7, = 0 and t; = 0. After 1 — 74 seconds of
flow, the system will satisfy the condition

T1=1, =170~ T10, T3 = T20 — T1,0, (22)

which is the same state described in (20), i.e., the system has
entered a periodic cycle which includes points outside the set A.

Scenario (b): Choose 1,0 such that max{1 —r3,1—r} < 150 <1
holds. Choose 77 ¢ such that

max{O, 7,0 — T2} <T,0 <70 — (1 — Tz). (23)

This choice is always possible given that r, > 0.5. Choose 73 ¢
such that

0 < T30 < min{n,o, 72,0 — (1 — r3)}. (24)

Note that this initialization is always feasible and satisfies
1> 150 > 1710 > 130 > 0. Following the hybrid dynamics we
obtain the following sequence of events: Agents flow for 1 — 739
seconds until the states satisfy 71 = 710+ (1 — 10), =2 = 1,
73 = 130 + (1 — 73,0). By the right hand side of inequality (24)
we obtain that t3 < r3, and the states will jump as r]+ = 19,
7,7 = 0 and 73" = 0. Following this jump, the system will flow
for 7,0 — 71,0 seconds, until the system satisfies the following
condition:

T1=1, Tu=T0—Ti0, T3 =T20— T1,0- (25)

By the left hand side of inequality (23) we have 7, < r5.
Therefore, the system will jump as ;" =0, 7,) =0 and ;" = 3.
Following this jump, the system will flow for 1 — 50 + 710
seconds, until the following condition holds:

T1=T10+(1—10), 2=T10+(1—-120), 3 =1 (26)
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By the right-hand side of (23) we obtain that t; < r; in (26). Thus,
the system will jump as 7, = 71, 7, = 0and 7" = 0. After 1— 1
seconds of flow, the system will satisfy the condition

T1=1 =170~ Ti0, T3 =T20— T10, (27)

which is the same state (25), i.e., the system has entered a
periodic cycle which includes points outside the set A;.

Since scenarios (a) and (b) cover every possible choice of r €
(0, )M, and for any choice we found a solution that does not
converge to Ay, the pair (r, G) is not a sync-pair for any partition
vectorr € (0, 1)V. m

Remark 5. It is well known that for standard consensus dy-
namics in RY, the digraph ¢ being rooted is a necessary and
sufficient condition for state synchronization. Moreover, finite-
time consensus in RN can also be achieved under the same
graphical condition (Wang, Yu, Ren, & Lu, 2019). Proposition 2
shows that, in order to achieve synchronization, the connectivity
requirement for the network of PCOs is completely different from
the one for the standard consensus dynamics.

3.3. Positive result on rooted acyclic digraphs

In this subsection, we focus on a special class of rooted di-
graphs, namely rooted acyclic digraphs (see Fig. 3 for illustration).
We will show that for every such digraph G and for every parti-
tion vector r € [0, 1)V, the tuple (r, G) is a sync-pair. In particular,
the choice of r can be made independent of the size N of the
digraph. We formulate the result in the following theorem:

Theorem 1. For any rooted acyclic digraph G and any r € (0, 1)V,
(r, G) is a sync-pair. Moreover, every maximal solution t satisfies

[7(t, )4 =0, V t>T":=(dep(g)+ 1T, (28)
with (t, j) € dom(t).

Proof. We consider again the Lyapunov function V : [0, 1]V —
R defined as the infimum of all the arcs that touch all agents
on the unit circle, where the points 0 an 1 are identified to be the
same. By Teel and Poveda (2015), this Lyapunov function satisfies
the following properties: (i) It is positive definite with respect
to the compact set (14). (ii) It remains constant during flows
because all the oscillators have the same frequency % (iii) It does
not increase at jumps since jumps never increase the number
of distinct points occupied by the agents. We claim that there
is no maximal solution of the HDS H(r, G) that keeps V equal
to a non-zero constant. We show this by establishing fixed-time
synchronization. Let 7(0,0) € [0, 1]V and t be a solution of the
HDS (8). Recall that V; defines all vertices/agents of depth I. Since
the digraph is rooted acyclic, no agent can influence the unique
root agent, and without loss of generality, we assume that t;
corresponds to the root agent, i.e,, Vo = {1}. Based on this, we
proceed to establish a uniform upper bound on the amount of
hybrid time that can pass before the Lyapunov function is exactly
equal to zero. We establish the fact by induction on the depth [
of the vertices of g.

e Base Case | = 1: In at most T seconds of flow, T will satisfy
71 = 1, and agent 1 will trigger all the vertices in V; to either
jump to O or 1. Thus, based on r, there will exist a partition of
V; that is defined by the index sets (I, I”, I"’) such that: (i) for
alli e I', ty > r; (the agents i’ will jump to 1 and trigger V»);
(ii) for all i” € I”, t» < r1; (the agents i’ will jump to 0 and
flow for at most T seconds to trigger V»); (iii) for all i € 1",
ty» = 1i (the agents i will have a set-valued jump {0, 1}. If the

agent jumps to 1, it will follow (i), otherwise, it will follow (ii)).
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Fig. 3. Rooted acyclic digraphs. Left: Depth = 1; Center: Depth = 2; Right: Depth
= 2. Black vertex indicates the root.

Note that after the first jump, V, synchronizes with V; within
at most 2T seconds and remains synchronized since V; does
not influence Vy by the acyclic property of the digraph.

e Induction Step: Suppose that agents {Vy, V1, ..., Vk} synchro-
nize in at most (k + 1)T seconds, where k < dep(G). Since
the digraph does not have a cycle, and the root/agent has a
path to all the agents, we have that agents V), only influence
agents Vi1 and cannot affect already synchronized agents
v, for 0 < | < k — 1. Thus, agents {Vo, V1, ..., Vir1}
synchronize in at most (k+ 2)T seconds. Therefore, the agents
{Vo, Vi, - -+, Vaep(gy} synchronize in at most (dep(G) + 1)T
seconds and remain synchronized after that, i.e., they occupy
the same position on the unit circle for all (¢, j) € dom(z).

Furthermore, by Lemma 2, the above arguments imply that
V(z(t,j)) = 0 for all (t,j) € dom(t) such that t +j > (dep(G) +
1)(T + N([1/r] + 1)) = T. Since t was arbitrary, we have
established that there is no solution of the HDS that keeps the
Lyapunov function in a non-zero level set. We can now directly
establish UGAS of the HDS #(r, G) with respect to the compact
set As by using the Hybrid Invariance Principle (Sanfelice, Goebel,
& Teel, 2007). Absence of purely or eventually discrete-time so-
lutions follows by Lemma 2. This completes the proof of the
Theorem. ®

For the special case where r = Oy, we have the following:

Theorem 2. A pair (Oy, G) is a sync-pair if and only if G is rooted
acyclic. In this case, (28) holds with T* :=T.

Proof. Sufficiency: First, we show that every solution is non-Zeno.
Indeed, by construction, Zeno behavior can only occur if there
exists a solution 7 that remains in the jump set D for all (¢, j) €
dom(t). In order to remain in D, for such solution there must
exist an agent i satisfying 7;(0, 0) = 1, and an agent j and a path
from i to j and from j to i. Otherwise, after at most N jumps
all other agents have already been triggered to O and t ¢ D.
However, since by assumption the digraph is acyclic, there are
no two vertices i, j that have a path from each other. Thus, at
most N consecutive jumps can occur in the system until the state
satisfies T = Oy € C\D. To show UGAS, note that since the root
agent is not affected by any other vertex, for every solution of
the HDS #(Oy, G) there exists (t*,j*) € dom(r) with t* < T
and j* < N such that the state of the root vertex v* satisfies
T,+(t*,j*) = 1. Based on this, we claim that every solution t
will satisfy V(z(t,j)) = O for all (t,j) € dom(r) such that
t +j > T 4 2N, where V is the same Lyapunov function used
in the proof of Theorem 1. We prove the claim by considering
the two possible cases: (a) t* > 0; and (b) t* = 0. Suppose
that case (a) holds; then, since t* > 0, whenever t,+(t*,j*) = 1
and t,«(t*, j* + 1) = 0, every other neighbor vertex j satisfying
Ti(t*, j*) € (0, 1] will satisfy 7j(t*,j* + 1) = 1. Similarly, since
r = Oy, every neighbor vertex j satisfying 7;(t*,j*) = 0 will
satisfy 7j(t*,j* + 1) € {0, 1}. Moreover, since t* > 0, every such
neighborhood satisfying 7;(t*,j*) = 0 must have already reset
its own state, thus also triggering its own neighbors to update
their states following the same rules described above. Since the
digraph is rooted acyclic, and no agent can trigger the root node
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Fig. 4. (a) Quasi-acyclic digraph g. (b) Condensed digraph gG..

v*, this process will repeat at most N — 1 times, until all agents
have been triggered and reset to 7; = 0. Thus, the same Lyapunov
function used in the proof of Theorem 1 allows us to establish
UGAS of A via the hybrid invariance principle. If case (b) holds,
note that after at most T seconds the root vertex v* would satisfy
T, = 1, and at this point case (a) will hold.

Necessity: It follows from the previous observation that when-
ever i* is the vertex of a cycle ¢, and r = Oy, the condition
7+(0, 0) = 1 will trigger sequentially all the vertices of the cycle
until every vertex k € C satisfies 7, € {0, 1}, with at least one
vertex j € C satisfying t; = 1. By definition of cycle, the vertex j
will trigger at least one vertex k satisfying t, = 0, generating the
update r,:’ = 1. This process repeats infinitely times generating a
discrete solution. Therefore, if (Oy, G) is a sync-pair, the digraph
G cannot have cycles. ®

Theorems 1 and 2 highlight two novel properties of PCOs with
digraphs and resetting BPRs of the form (7): First, robust fixed-
time global synchronization can be achieved in a scalable way for
any network characterized by a rooted acyclic digraph. Indeed,
in this case the bound on the parameter r; of each agent is of
order O(1); Second, for this kind of digraphs, the synchronization
can be accelerated by the parameter choice r = Oy, which, as
noted in Remark 3, is prohibited if the digraphs have cycles.
The results also highlight the role of the depth of the digraph
in the convergence time of the hybrid dynamics. Finally, by the
results of Lemma 3, the synchronization properties established
in Theorems 1 and 2 are preserved for the perturbed HDS (15),
which allow us to consider small delays and drifts on the PCO’s
states.

Remark 6. While Theorems 1 and 2 do not cover the case where
r; = 0 only for some agents of the network, it is clear from the
proof of Theorem 2 that if G is rooted acyclic, then (r, G) is also
a sync-pair. Therefore, there is no gap between the sufficiency
results of Theorems 1 and 2.

Toward the end of this section, we present a result that com-
bines Proposition 1 and Theorem 1. Recall that a rooted digraph
G is said to be quasi-acyclic if all the cycles of G are in its root
component Gg = (W, &). The digraph G, obtained by condensing
the root component to a single vertex is rooted acyclic (see Fig. 4
for illustration). We show that robust fixed-time synchronization
can be achieved for these digraphs as well. The trade-off is that
the partition vector is not free to choose anymore, and there is an
upper bound for every r;, with i € Vg, of order O(W%l). Since the
proof follows similar steps as the proof of Theorem 1, we present
the result as a corollary.

Corollary 1. Let G be rooted and quasi-acyclic, with Vg the root set.
Ifr; € (0, ﬁ)for any i € Vg, then (r, G) is a sync-pair. Moreover,
(28) holds for T* = (dep(G.) + 2)T.

Proof. By Proposition 1, the agents in the root component will
reach synchronization in no more than 2T seconds and stay
synchronized after that. We can thus treat all the roots as a
whole. After condensing the root component to a single vertex,
the resulting digraph g, is rooted acyclic. Theorem 1 then applies
to the case, which completes the proof. =
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Since any strongly connected digraph G satisfies dep(G.) = 0,
and any rooted acyclic digraph satisfies dep(G.) = dep(G), the
bound T* on the convergence time t established in Corollary 1
generalizes the bounds obtained in Proposition 1 and Theorem 1.
However, as mentioned before, this generality comes at the price
of the scalability of the partition vector r. The entries of r are of
order O(ﬁ), which tend to 0 as |Vg| — oo. Nevertheless, as we
will show in the next section, the scalability property of r can be
fully recovered by adding suitable randomness into the PCOs.

Remark 7. Given that Theorems 1-2, and Corollary 1 guarantee
fixed-time synchronization of the PCOs, it is clear that all our
results also hold if the digraph G; is time-varying and (T*, L)-
persistently rooted acyclic (Poveda & Teel, 20193, Def. 3), i.e,, if
for each interval I of length L there exists a sub-interval I; =
[ti, tir1] C I satisfying t;1 — t; = T* and a rooted acyclic digraph
G* such that G, = g* forall t € I,.

4. Stochastic resetting algorithms

In this section, we consider networks of PCOs implementing
the same hybrid update rule (1), (2), and (7), but with the un-
derlying communication network being a random digraph. In this
setting, every time an agent resets its phase to 1, it generates
i.i.d. Bernoulli random variables to decide whether or not to send
pulses to its out-neighbors. In order to formalize the model of
the system, we will use the framework of set-valued stochastic
hybrid dynamical systems (SHDS) (Subbaraman & Teel, 2016;
Teel, Subbaraman, & Sferlazza, 2014).

4.1. Well-posed stochastic hybrid model

To formalize the model of the PCOs with random digraphs, we
start by fixing a deterministic digraph G .= (V, £). Let ¢’ = (V, &)
be a subgraph of G, with the same vertex set V and £’ C £. We call
any such digraph G’ a feasible digraph. Note that every feasible
digraph ¢’ can be represented by a binary vector v € {0, 1}/¢! as
follows:

vi=1[..,v...], (29)

where each entry vy indicates whether (i, j) € £ is an edge of G’ or
not: If v; = 1, then (i, j) € £'. Otherwise, (i, j) & £'. Note that the
binary vectors in {0, 1}!! one-to-one correspond to the feasible
digraphs. For convenience, we will let ¥ := {0, 1}/¥/, be the set
of all feasible digraphs represented by the binary vectors v.

We next consider an Erdés-Rényi type random graph model
for generating a feasible digraph. For a given vector v € ¥, we
let the entries v; be i.i.d. Bernoulli (p) random variables, i.e., the
probability that v; takes value 1 (resp. 0) is p (resp. (1 — p)). We
denote by u the probability measure for the random graph. It
follows that for any feasible digraph ¢’ = (V, &),

(@) = pl1 = p)ee. (30)

We will now adapt the resetting algorithm to accommodate
the above random graph model. First, note that the communi-
cation digraph affects (only) the jump map of the hybrid dynam-
ics (8). In the previous deterministic setting, the digraph is always
given by G. For the stochastic setting, we replace G with a random
graph G’, with ¢’ ~ u(-). Furthermore, if we let Gy, for k € N, be
the feasible digraph at discrete time k (i.e., the communication
digraph at the occurrence of the kth jump), then all these digraphs
are independent of each other. In other words, the sequence
{Gk}r2, comprises ii.d. random variables, with G, ~ wu(-).

We note here that a similar random graph model has been
considered in Klinglmayr et al. (2017, 2012). The key difference
is that the model of Klinglmayr et al. (2017, 2012) considered the
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following scenario: Whenever an agent jumps, it draws only one
Bernoulli random variable to decide whether it sends pulses to
all of its out-neighbors or not. However, the digraphs considered
in these two papers were either bi-directional or strongly con-
nected. Whether their random graph model can work for rooted
graphs is a non-trivial question, which we will address on another
occasion. Another major difference from the works in Klinglmayr
et al. (2017, 2012) is that we utilize tools from stochastic hybrid
dynamical system to analyze the well-posedness, stability, and
convergence properties of the PCOs. Indeed, given that standard
PCOs are hybrid dynamical systems, the addition of randomness
into the model naturally leads to a stochastic hybrid setting.

To construct the corresponding SHDS, it suffices to re-define
the jump map. It takes three steps to do so. First, for each edge
(i,j) € &, we consider the set-valued mapping S; : [0, 1] x ¥ =
[0, 1] as follows:

Sij(7j, v) = vy P(7) + (1 — vy, (31)

where P is the BPR given by (7), and vy is the entry that corre-
sponds to the edge (i, j) in £. Next, using (31), we define a new
set-valued mapping G° : [0, 1]N x ¥ = RV as follows:

G, v) ::{g eRV:g =0,
Si(z, v), ()€€

gfe{ mh  ee } \”7“}*

which is defined to be nonempty only when z; = 1 for some i € V
and 7; € [0, 1) for j # i. Finally, the jump map for the SHDS is
defined as the outer-semicontinuous hull of GY, i.e.,

(32)

Gu(t, v) = GO(t, v). (33)

Note that when a jump occurs and a random graph gy is drawn,
not every edge of G, plays a role in the jump map G,. Only the
edges (i, j) with t; = 1 for some i € V, matter. Thus, an agent i
does not need to know the structure of the entire graph G, but
rather its out-neighbors (as the set of agents it needs to send
pulses from time to time). Correspondingly, the out-going edges
of the agent i are completely determined by the agent through
the i.i.d. Bernoulli random variables that are generated locally by
agent i itself. The reason of including the entire graph G in the
jump map G, is rather for ease of analysis.

The following lemma establishes that the jump map G, satis-
fies the Basic Conditions of Definition 1.

Lemma 5. The set-valued mapping G, : [0, 1]V x 2 = [0, 1]V
defined by (33) satisfies condition (c) of Definition 1.

Proof. We start by considering the set-valued map S; of (31). For
each fixed 7, the mapping S; is a summation of two measurable
maps. Thus, by Rockafellar and Roger (1998, Prop. 14.11), the
mapping S is measurable with respect to v. Since for each r € RV
the mapping G%(t, v) in (32) is constructed by assigning 0 to the
ith component, and S;(7j, v) or 7; to the other components, it fol-
lows that v — G°(t, v) is also measurable. Finally, measurability
of the mapping v + graph(G(-, v)) follows from the fact that
G is outer semicontinuous (Teel, 2013, Appendix A.2.). Since by
construction G is locally bounded, it follows that it satisfies the
basic conditions. ®

Note that the digraph G and the probability p € [0, 1] of the
Bernoulli distribution uniquely determine the probability space
(£2, F, ). Thus, the resulting SHDS depends on three parameters,
namely, p, r, and G.
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We will write the SHDS as
HS(}% r, g) = (Caf7 D! Gu)v (34)

where the subindex S indicates that the system is stochastic.

Remark 8. An important standing assumption of our model, em-
bedded in the definition of random solutions used in the paper, is
the causal dependence of the solutions on the random variables.
In particular, note that the condition t; = r;, or the existence of
more than one agent satisfying the condition t; = 1, leads to a set
G,(t, v) in (33) that has more than one element. In this case, our
model will require that each particular selection T+ € G,(t,v)
should not be able to anticipate the next communication graph
G that will be assigned to the agents at the next jump. This
causality property is specified in Appendix C. As shown in Teel
(2013), the causality property is needed in order to make use of
suitable Lyapunov-based arguments for the stability analysis of
the system via invariance-like principles. Causality is a standard
assumption in stochastic algorithms.

As highlighted in Remarks 2 and 8, it is important to note
that in our model for each fixed w € £ the sample path
7, generated by the SHDS (34) may not be unique, and the
analysis of each individual solution becomes intractable as N in-
creases. This feature makes the stability analysis of the set-valued
stochastic synchronization dynamics non-trivial and differs from
previous results in the literature that relied on single-valued
update rules (Klinglmayr et al., 2017, 2012).

4.2. Almost sure global synchronization: Stability and attractivity

We recall that the compact set .4 is defined in (14), which
captures all synchronized states of the network. Similar to the
definition of sync-pairs for deterministic HDS, we introduce the
following definition for SHDS:

Definition 5. Let A, be given in (14). Let p € [0, 1], r € [0, 1)V,

and G be a digraph of N vertices. Then, (p, r, G) is a sync-triplet

if

(a) For every initial condition in C U D, there exist non-trivial
solutions of #Hs(p, r, G) almost surely (see Appendix B for
the definition), and every maximal solution is complete and
uniformly Non-Zeno almost surely;

(b) The SHDS #s(p, r, G) renders .A; UGASp.

Note that a necessary condition for (p, r, G) to be a sync-triplet
is that G is rooted. This fact can be established by using the same
arguments as in the proof of Proposition 2. However, in contrast
to the deterministic setting (cf. Proposition 3), we will see soon
that having a rooted digraph G is also a sufficient condition for
(p, r, G) to be a sync-triplet.

For ease of presentation, we let w := wjw,ws - - - be a sequence
of i.i.d. random variables, with each w; ~ w(-) a feasible digraph.
We denote by £2 the collection of sample paths w. It should be
clear that for an event:

QR =lwel|wr=v1,...,00 = vy}

with v; € ¥ for alli = 1,...,k, its probability is given by
P(£2') ]_[L u(v;). Note that a sample path @ determines the
underlying digraphs for jumps at all discrete times k, for k > 1.
A solution of #Hs(p, r, G) thus depends on w and we denote it by
7,,. Note that there may exist multiple solutions even if we fix w
and the initial condition, which is due to the set-valued nature of
the jump map in the SHDS. For each solution we further define
the following random variable:

T*(t,) == inf{t | T,(t,]) € A, (t,]) € dom(z,)}, (35)
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which is the first hitting-time for the solution T, to enter the
compact set A; (i.e., the instant at which the SHDS achieves syn-
chronization for the first time). We establish below the following
result:

Theorem 3. If p € (0,1), r € (0, 1)V, and G is a rooted directed
graph, then (p, r, G) is a sync-triplet. Moreover, for any initial con-
dition 7,,(0, 0), the following holds for all positive integers n and all
random solutions T, of the SHDS:

P (T*(z,) > nT*) < p", (36)
where T* is given in (28) and p € (0, 1) is the constant:
pi=1— (pN71(1 _p)|£\7N+1)deD<9)é* ’ (37)

where ¢* = N(|1/r] 4+ 1), with r = mincy 13, as introduced in
Lemma 2,

Remark 9. Note that by Theorem 3, the stochastic resetting
algorithm is scalable because neither p nor r;, for i € V, depends
on the size N of the network. We also note that the result
can be further generalized by allowing different agents to have
heterogeneous probabilities p; € (0, 1), for (i,j) € &, as the
parameters of the Bernoulli random variables. Correspondingly,
the expression (37) will be changed as follows: first, let p
min{p; | (i,j) € £} and p := max{p; | (i,j) € £}; then, replace
in (37) the term p"~! with p¥~! and the term (1 — p)!¢!~N*1 with
(1—p)I€1=N+1_With slight modification, the analysis we carry out
below can still apply to establish the proof for the heterogeneous
case. However, for clarity of presentation, we will focus only on
the homogeneous case where p is the same for all agents.

Below, we present the proof of Theorem 3. To proceed, we first
establish some preliminary lemmas. We define S(tp) as the set of
all maximal random solutions of (34) from the initial condition
7,(0, 0) 79 € C U D. For each feasible initial condition, we
define the following event:

21(2,(0, 0)) :=[a) € 2|V 1, e 8(1,0,0)),3 i €
and 3 (t},j*) € dom(z,) with £ <T

St T (65, J5) = 1}. (38)

Lemma 6. For any t,(0,0) € CUD, £21(7,(0, 0)) = £2.

Proof. The result follows directly from the fact that a root can
only be influenced by another root and by the fact that t always
increases during flows. ®

Next, we recall a fact from graph theory:

Lemma 7. For a rooted digraph G with a root i*, there exists a
directed spanning tree T3 with i* the unique root.

Proof. One can generate a desired 7+ using the breadth-first
search algorithm (Graham, Grotschel, & Lovasz, 1995). ®

Note that for a given root i* of G, there may exist multiple
directed spanning trees with i* the root. In the sequel, we will fix
T+ for each root i* so that the map i* +— 73+ is well defined.

Next, we let [ and L be two positive integers. Then, for the
given | and L and for a given root i* of G, we define another event

as follows:
H(LLT*)={we 2 |wg="Tx, Vk=1+1,...,1+L}. (39)

In words, the above event is defined such that the random di-
graphs wy, for k = I+ 1,...,1+ L, are the same and given by
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a certain directed spanning tree with root i*. We introduce such
an event so as to make a connection with Theorem 1, details of
which will be elaborated soon in the proof of Theorem 3.

We have the following fact:

Lemma 8. For any given positive integers | and L and for any root
i* of G,

B(2,(L L) = (pV1(1 = p) €M) (40)
Proof. The result follows from the fact that the random variables
wy, for k > 1, are i.i.d. and, moreover, u(7x) = pN~1(1 —p)I€I=N+1
where the integer (N — 1) is the number of edges of a directed
spanning tree with N vertices. M

With the above lemmas, we are now in a position to prove
Theorem 3:

Proof of Theorem 3. We first establish the fact that (p,r, G) is a
sync-triplet. Consider again the Lyapunov function V : [0, 1]V —
R defined as the infimum of all arcs that touch all agents on
the unit circle, where the points 0 and 1 are identified to be the
same. This function is positive definite with respect to the set .4,
it is uniformly bounded as V(z,) < 1 — % for all T, € [0, 11V,
and it does not increase during flows of the SHDS (34) surely,
ie, V(t,) < 0 for all t,, € C. By construction of V, since the
number of points occupied by agents in the circle cannot increase,
we also have that V does not increase during jumps. Moreover,
by construction of the sets C and D, the continuity of the mapping
fin (10), and Lemma 5, the SHDS satisfies the basic conditions.
Also, by using the same arguments of the proof of Lemma 2, it
follows that every solution of the SHDS is surely complete. Thus,
by the stochastic hybrid invariance principle (c.f. Theorem C.1
in Appendix C) in order to show UGASp of the set Aj, it suffices to
show that there does not exist almost surely complete solutions
T, that remain in a non-zero level set of the Lyapunov function
almost surely.

To establish the above fact, we will show that there exist
positive constants « and T* such that for any initial condition
7,(0,0) € [0, 1]V, the following holds:

P(£23(1,(0, 0))) > «, (41)

where the event £25(7,(0, 0)) is given by
24(,,(0, 0)) :={a) €|V, es(1,0,0)andVt > T*
st (t.J) € dom(z,), V(zu(t.i) =0].

We show below that « and T* can be chosen to be the
following values « := 1 — p, where p € (0, 1) is defined in (37),
and T* := (dep(G) + 1)T.

First, by Lemma 6, for any solution t,, there exist a hy-
brid time (t},j*), with ¢ < T, and a root i* of G such that
T,,+(t},j*) = 1. Conditioning on the fact that 7, (t},j5) = 1,
we consider the event $£2,(j7, j¥ + L, Ti+), where L := dep(7)¢*,
and ¢* = N(|1/r] + 1) with r = min;cy, r;. Note that by Lemma 2,
for the discrete time j to increase from j} to j¥ 4L, the continuous
time has to increase at least dep(7:+)T because otherwise, there
will not be as many as L jumps. For convenience, we let t* be
the time that the (j* + L)th jump occurs. By definition of the
event 2,(j*, L, i*) (see (39)), the underlying digraph during this
period [t}, t**] is given by the directed spanning tree 7. Thus,
following the same arguments used in the proof of Theorem 1,
we have that the solution t,, will reach synchronization at time
t* + dep(7#)T < t}*. Further, since dep(7+) < dep(G) and since
t* < T (by Lemma 6), we have that t* + dep(7#)T < T*. The
above arguments imply that V(z,(t,j)) = 0, for all t > T*. Thus,
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Fig. 5. Rooted digraph with vertices 1, 2, and 3 being roots. The connections in
red indicate a directed spanning tree with maximum depth.
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Fig. 6. Solutions generated by the HDS (8) for the network topology given in
Fig. 5. Left: Synchronization is achieved in approximately 3.4 s when each agent
picks r; € (0, %). Right: Synchronization is not achieved when r;, is set to be
3/4.
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Fig. 7. A sample path generated by the SHDS (34) for the network topology
given in Fig. 5. Synchronization is achieved in approximately 12 s for this sample
path.

to establish (41), it now remains to show that the probability of
the event §2,(j*, L, i*) is a nonzero constant, but this is given by
Lemma 8 with P(£2,(j*, L, i*)) = a.

Finally, we show that (36) holds. The computation in fact
follows from the above argument. First, by the Bayes rule, we
have that

P (T*(t,) > nT*) = P(T*(t,) > (n — 1)T*) - -
- x P(T*(to) > nT* | T*(z,) > (n— 1)T¥).

Using the Markovian property, the conditional probability on
the right hand side of the above expression can be written as
P(T*(z/,) > T*), where 7/, is a new solution with the initial
condition z/ (0, 0) given by 7/ (0, 0) = 7,((n — 1)T*, ), for some
jand o = wj;1wj42 - - - Note that by definition of £23(z/ (0, 0))
and (41), we have that

P(T*(t,) > T*) = 1 — P(£23(
It then follows that
P (T*(t,) = nT*) < pP (T*(z,) = (n — 1)T*).

The above recursive formula then implies that (36) holds.

7,(0,0) < 1—a = p.

5. Numerical studies

In this section, we illustrate our theoretical results via nu-
merical examples. We consider a network of N = 12 PCOs.
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Fig. 8. This figure plots log(]?‘(T* > nT*)) versus the number n of windows
needed for a sample path to achieve synchronization. There are 1000 sample
paths simulated.

The underlying digraph is rooted as shown in Fig. 5. A directed
spanning tree with maximum depth is indicated by red arrows.
The depth of the tree is 7. We set the period of the PCOsas T = 1,
which implies that the constant T* = (dep(G) + 1)T introduced
in (28) is equal to 8. We also note that (dep(G.) + 2)T = 7
where G, is the condensed digraph of G. We first simulate the
HDS (8) over the digraph G. First, we let each agent sample its
r; uniformly randomly from (O, %), By doing so, the condition of
Corollary 1 is satisfied. We next let agents sample their initial
conditions uniformly randomly from (0, 1). On the left of Fig. 6,
we present a sample trajectory for one of such initial conditions.
The entire network achieves synchronization in 3.4 s (within 7 s)
which agrees with the statement of Corollary 1. However, if we
change the parameter r, of agent 2 to be % (which is greater
than %) and keep the other r;’s unchanged. Then, the network is
not guaranteed to reach synchronization anymore. On the right
of Fig. 6, we present a sample trajectory that does not reach
synchronization (over a long time interval).

We now simulate the SHDS (34) over the same digraph G as
above. This time, we let the parameters r; be uniformly randomly
chosen out of (0, 1). The probability p of drawing an out-going
edge is 0.5. In Fig. 7, we show a sample path generated by the
SHDS (34). Then, we investigate the first hitting time T*(t,)
defined in (35) using the same SHDS. We choose 1000 random
initial conditions uniformly from (0, 1)V. For each initial condi-
tion, we let ((n — 1)T*,nT*], for n > 1, be the window that
contains T*(z,) (i.e., the sample path reaches synchronization
during that period). In Fig. 8, we plot the empirical version of

P(T* > nT*) for different n, i.e.,, we plot BT* > nT*) = 1—
>k, 2l where Freq(k) is the total number of times that the
first h1tt1ng time T*(t,,) belongs to ((n — 1)T*, nT*]. The plot is in
the log scale.

Furthermore, we investigate the dependence of the first hit-
ting time T*(z,) on the size N of network. We simulate the
SHDS on three different classes of network topologies: complete
digraphs, cycle digraphs, and path digraphs. For each class, we
vary the number N of agents from 10 to 250, with increments
of 10. The parameters r; are again chosen uniformly randomly
from (0, 1) and the probability p of drawing an edge is 0.5. For
each case (with a fixed class and a fixed size N), we generate 100
initial conditions uniformly randomly from (0, 1)¥ and simulate
the SHDS (34). For each sample path, we record the first hitting
time T*(t,,). Figs. 9, 10, and 11 plot the data for complete-, cycle-
, and path-digraphs, respectively. For each figure, the horizontal
axis is the network size N and the vertical axis is the first hitting
time T*(t,). For each N, the crosses represent the first hitting
times of the sample paths. There are 100 of them and the red
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Fig. 9. First hitting time vs size of complete digraph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 10. First hitting time vs size of cycle digraph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 11. First hitting time vs size of path digraph. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

square is the mean. For complete digraphs, the mean decays to a
steady state. The variance seems to decay as well. However, this
is not the case for cycles or paths. In either case, the average and
the variance increase as N grows. Using linear regression, we find
that the fitting curves for paths and cycles are 1.4N — 2.6 and
7.5N — 170.6, respectively.
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6. Conclusions

In this paper we have established several new results about
synchronization of pulse-coupled oscillators over directed graphs,
amongst which there are two major ones: We have shown that
robust global fixed-time synchronization can be achieved over
quasi-acyclic digraphs using a deterministic binary resetting al-
gorithm, where turning parameters are independent of network
sizes. Further, by accommodating an Erdés-Renyi type random
graph model, we have developed a scalable stochastic binary re-
setting algorithm by which global synchronization can be
achieved, with probability one, over rooted digraphs. Future di-
rections will study the development of similar stochastic coordi-
nation algorithms for multi-time scale hybrid dynamical systems.

Appendix A. Notation and definitions

A set-valued mapping M : R™ = R" is said to be outer semi-
continuous (0SC) at x € R™ if for all sequences x; — x and
yi € M(x;) such that y; — y we have that y € M(x). A set-
valued mapping M : R™ = R" is said to be locally bounded
(LB) at x € R™ if there exists a neighborhood K, of x such that
M(K,) is bounded. Given a set X C R™, the mapping M is OSC
and LB relative to X if the set-valued mapping from R™ to R"
defined by M for x € X, and by @ for x ¢ &, is OSC and LB at
each x € x. The graph of a set-valued mapping G is defined as
graph(G) := {(x,y) € R™ x R" : y € G(x)}. Given a set B C R", we
use cl(B) to denote its closure. The outer semi-continuous hull
of G is the unique set-valued mapping G : R™ = R" satisfying
graph(G) cl(graph(G)), (Rockafellar & Roger, 1998, pp. 155).
Given a measurable space (£2, F), a set-valued map G : 2 = R" is
said to be F-measurable (Rockafellar & Roger, 1998, Def. 14.1), if
for each open set © C R", the set G™1(0) := {w € 2 : G(w)NO =
@} € F. A sequence of maps x; : dom(x;) — R" is said to converge
graphically if the sequence of sets {graph(x;)}7°, converges in the
sense of set convergence (Goebel et al., 2012, Def. 5.1).

Appendix B. Hybrid dynamical systems

A HDS is characterized by the following inclusions (Goebel
et al, 2012):

xeC, x = f(x), (B.1a)
xeD, x'eGx), (B.1b)
where x € R" is the state of the system, f : R" — R" is

the flow map, which describes the continuous-time dynamics of
the state; C C R" is called the flow set and it describes the
points in the space where x is allowed to evolve according to the
differential equation (B.1a); G : R" x R™ = R" is the jump map
and it characterizes the discrete-time dynamics of x; and D C R"
is called the jump set and it describes the points in the space
where x is allowed to evolve according to the set-valued update
(B.1b). The HDS is represented as # = {C, D, F, G}. In this paper
we restrict our attention to HDS that satisfy the basic conditions
of Definition 1. A standard solution x to (B.1) is parameterized
by a continuous-time index t and a discrete-time index j. In
particular, solutions to (B.1) are defined on hybrid time domains.
A compact hybrid time domain is a subset of R>¢ x Zx¢ of the
form U’ [tJ, tiy1] x {j}) for some J € Z>¢ and real numbers 0 =
th <t 5 - < tj+1. A hybrid time domain is a set E C Rxg X Zxo
such that for each T,J, the set EN([0,T] x {0,1,2,...,]})is a
compact hybrid time domain. A function x : E — R" is said to be
a hybrid arc if E is a hybrid time domain, and for each j such that
the interval I; = {t > 0 : (t, j) € dom(x)} has non-empty interior
the function t — x(t, j) is locally absolutely continuous. A hybrid
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arc x is said to be a solution to a HDS (B.1) satisfying the basic
conditions if: (1) x(0,0) € C U D. (2) If (t1,)), (t2,j) € dom(x)
with t; < t, then for almost every t € [t1, o], x(t,j) € C
and x(t,j) = fx(¢t,j). (3) If (t,j),(t,j + 1) € dom(x), then
x(t,j) € D and x(t,j + 1) € G(x(t, j)). A solution x to (B.1) is said
to be: (a) non-trivial if dom(x) contains at least two points; (b)
maximal if there does not exist another solution x” to # such that
dom(x) € dom(x') and x(t,j) = x'(t,j) for all (t,j) € dom(x);
(c) complete if its domain is unbounded; (d) eventually discrete if
T = sup,dom(x) < oo and dom(x)N({T} x N) contains at least two
points. d) uniformly non-Zeno if there exists (T, J) € R-¢ such that
for every (t1,j1), (t2,j2) € dom(x), if t; — t; < T then j, —j; <.

Appendix C. Stochastic hybrid dynamical systems

When the jump map in (B.1b) also depends on a random input
v, the HDS (B.1) becomes a SHDS (Subbaraman & Teel, 2016) of
the form
x=f(x),

xt e Gx,vT),

xeC, (C.1a)

v~ ul(-), (C.1b)

where v is a place holder for a sequence {v;}32, of independent,
identically distributed i.i.d. input random variables vy : 2 — R™,
k € N, defined on a probability space (£2, 7, P). Thus, v~ !(F)
o € 2 vi(w) € F} € F for all F € B(R)", and u
B(R™) — [0, 1] is defined as u(F) := P{lw € 2 : vw(w) € F}.
We restrict our attention to SHDS that satisfy the basic conditions
of Definition 1. Random solutions to SHDS (C.1) are functions of
w € £2 denoted x(w), such that: (1) w — x(w) has measurability
properties that are adapted to the minimal filtration of v; (2)
for each w € 2 the sample path x(w) is a standard solution to
the HDS (B.1) with the appropriate dependence on the random
input v(w) through the jumps. To formally define these mappings,
for k € Zs4, let F, denote the collection of sets {w € £ :
(vi(w), Vao(w), ..., Vi(w)) € F}, F € B(R™), which are the sub-
o-fields of F that form the minimal filtration of v = {v}2,,
which is the smallest o -algebra on (£2, F) that contains the pre-
images of B(R™)-measurable subsets on R™ for times up to k. A
stochastic hybrid arc is a mapping x from £2 to the set of hybrid
arcs, such that the set-valued mapping from §2 to R"*?, given by
w +— graph(x(w)) = {(t,j,z) : X = X(w), (t,j) € dom(x),z =
fc(t,j)}, is F-measurable with closed-values. Let graph(x())<x =
graph(x(w)) N (Rsg x {0, 1,...,k} x R"). An {F}2, adapted
stochastic hybrid arc is a stochastic hybrid arc x such that the
mapping w +— graph(x(w))< is 7, measurable for each k € N.
An adapted stochastic hybrid arc x is a solution to (C.1) starting
from xo denoted x € S;(xg) if (with x,, := X(w)): (1) x,(0, 0) = Xo;
(2) if (t1,]), (t2,)) € dom(x,,) with t; < t;, then for almost all t €
[t1, &2], (£, J) € C and X,,(t,J) = f(x,(t,J)); 3)if (¢, ), (t.j+1) €
dom(x,,), then x,(t,j) € D and x,(t,j + 1) € G(X,(t,]), Vit1(®)).
A random solution X is said to be: (a) almost surely complete if
for almost every sample path w € £2 the hybrid arc x(w) has an
unbounded time domain; and almost surely eventually discrete
if for almost every sample path w € 2 the hybrid arc x(w) is
eventually discrete. A continuous function V : R* — Rsg is a
Lyapunov function relative to a compact set A C R" for the SHDS
(C1)ifV(x) =0 <= x € A, V is radially unbounded and
satisfies V(¢(t)) < V(x), Yx € C, t € dom(¢), ¢ € Sg(x), and
me MaXgeqx,v) V(g)u(dv) < V(x), V x € D, where Sg(x) denotes
the set of solutions of (C.1a) with initial condition x. The following
stochastic hybrid invariance principle (Subbaraman & Teel, 2016,
Thm. 8) is instrumental for our analysis.

xeD,

Theorem C.1. Let V be a Lyapunov function relative to a compact set
A C R" for the SHDS system H. Then, A is UGASp if and only if there
does not exist an almost surely complete solution x that remains in
a non-zero level set of the Lyapunov function almost surely.
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