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a b s t r a c t

A weighted digraph is balanced if the sums of the weights of the incoming and of the outgoing edges
are equal at each vertex. We show that if these sums are integers, then for any edge weights satisfying
the balance conditions, there exist integer weights obtained by rounding the original weights up or
down that preserve both the balance condition and the sum of all edge weights.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V , E) be a strongly connected digraph on n vertices,
ossibly with self-loops but no multi-edges. We use vivj to denote

an edge from vi ∈ V to vj ∈ V . For a vertex vi, let N−(vi) := {vj ∈

V | vivj ∈ E} and N+(vi) := {vk ∈ V | vkvi ∈ E} be the sets of
out-neighbors and in-neighbors of vi, respectively.

We assign wij ∈ R to edges vivj, for vivj ∈ E, and denote by
w ∈ R|E| the collection of these wij. We call (G, w) a weighted
digraph.

Definition 1.1. The weighted digraph (G,w) is balanced if, for
every vertex, the inflow is equal to the outflow:

ui :=

∑
vj∈N−(vi)

wij =

∑
vk∈N+(vi)

wki, ∀vi ∈ V . (1.1)

We call ui the weight of vertex vi associated with (G,w).

The vector u := (u1, . . . , un) ∈ Rn for G is said to be feasible if
there exists a w ∈ R|E| such that (1.1) holds.

Balanced digraphs have a host of applications in engineer-
ing and applied sciences, including the study of flocking behav-
iors [1], sensor networks and distributed estimation [2]. While
balancing over the real numbers is acceptable in some scenarios,
others such as traffic management and fractional packing, require
integer balancing [3–7].

In this note, we always assume that u is integer-valued. If
all the wij are integers, then clearly every ui is an integer. The
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uestion we are interested in is: Given a feasible integer-valued
and given a w that satisfies (1.1), can we find an integer-valued
∗, as close to w as possible, satisfying (1.1)? We show that the
nswer is affirmative in a sense that every edge weight w∗

ij can
e obtained by taking either a ceil or a floor function of wij:

heorem 1.2. Let G be a strongly connected digraph, u ∈ Zn be
ny feasible vector, and w ∈ R|E| be any solution to (1.1). Then,
here exists a w∗

∈ Z|E| such that (1.1) holds (with the same u) and
w − w∗

∥∞ < 1.

emark 1.3. A corollary of Theorem 1.2 is that if w is a non-
egative solution to (1.1), then so is w∗.

The result also applies to the case of weakly connected digraph
, based upon the fact that (G,w) is balanced if and only if every
trongly connected component of (G, w) is balanced [6].
We provide below a constructive proof of Theorem 1.2.

. Algorithm and proofs

To proceed, we associate to the digraph G = (V , E) on n
ertices an undirected bipartite graph B = (X ⊔ Y , F ) on 2n
ertices, where X ⊔ Y is the vertex set and F is the edge set. Each
f the two sets X and Y comprises n vertices. The edge set F is
efined as follows: there is an edge (xi, yj) in B if vivj is an edge
f G. See Fig. 1 for an illustration.
Note that the directed edges in G are in one-to-one correspon-

ence with the undirected edges in B. Thus, we can assign the
dge weights wij, for vivj ∈ E, to the edges (xi, yj) in B.
The balance relation (1.1), when applied to the bipartite rep-

esentation of G, is now turned into

i =

∑
wij =

∑
wki, ∀i = 1, . . . , n. (2.1)
yj∈N(xi) xk∈N(yi)
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Fig. 1. Left: A digraph G. Right: Its bipartite counterpart B. A cycle in B, and the corresponding edges in G, are marked in blue. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
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f the above relations hold for some real numbers ui, then (B,w)
is said to be balanced with vertex weights ui for both xi and yi.
he following result is an immediate consequence of the above
onstruction of (B,w):

emma 2.1. The digraph (G, w) is balanced if and only if (B, w) is
alanced.

Now, let u ∈ Zn be a feasible vector for G and w ∈ R|E| be
such that (2.1) is satisfied. We refer to elements of R\Z as decimal
umbers.
Every cycle in B has an even number of edges, and the number

s at least 4. A cycle in B does not correspond to a (directed) cycle
n G, as illustrated in Fig. 1. Instead, if xα1yβ1 · · · xαpyβpxα1 is a cycle
n B, then each vertex vαi in G has two outgoing edges vαivβi and
αivβi−1 (with β0 identified with βp) while each vertex vβi has two
ncoming edges vαivβi and vαi+1vβi (with αp+1 identified with α1).

Given a balanced (B, w), our aim is to obtain a set of integer
dge weights w∗

ij ∈ Z that satisfy (1.1). Algorithm 1 does so in a
finite number of steps. For that, we need the following definition:

Definition 2.2. An edge in (B,w) is decimal if its weight is a
decimal number. A cycle C in (B, w) is completely decimal if all its
edges are decimal.

The following lemma says that it is computationally simple
both to decide whether a completely decimal cycle exists and to
exhibit one.

Lemma 2.3. Let (B, w) be balanced. If there is a decimal edge in
(B, w), then there is a completely decimal cycle and it can be found
in B in at most 2n steps.

Proof. Let xi be a vertex incident to a decimal edge. Denote
by λ(xi) the number of decimal edges incident to xi. Since the
ertex weight ui of xi is integer-valued, λ(xi) ≥ 2. Now, fix a
ecimal edge (xi, yj) in (B, w). By the same arguments, λ(yj) ≥ 2.
hus, there exists another decimal edge incident to yj, say (yj, xk)

and, similarly, λ(xk) ≥ 2. Iterating this procedure, we will return
to some previously encountered vertex xℓ (since B is finite) in
at most 2n steps. By construction, the vertices obtained in the
process yield a completely decimal cycle. □

We are now in a position to present the algorithm:

Algorithm 1. Start with a balanced (B, w(0)) with integer vertex
weights, and denote by w(k) the vector of edge weights at itera-
tion k. While there exists a completely decimal cycle in (B,w(k)),
erform the following steps sequentially:

• select a completely decimal cycle C in (B, w(k));

select an edge e in C whose weight is closest to an integer;
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• write C = xα1yβ1 · · · xαpyβpxα1 , with e = (xα1 , yβ1 ) and
p = |C |/2;
set ϵℓ := wα1β1 − ⌊wα1β1⌋, ϵh := ⌈wα1β1⌉ − wα1β1 ;

• if ϵℓ ≤ ϵh

wαiβi (k + 1) := wαiβi (k) − ϵℓ

wβiαi+1 (k + 1) := wβiαi+1 (k) + ϵℓ
for 1 ≤ i ≤ p; (2.2)

else
wαiβi (k + 1) := wαiβi (k) + ϵh

wβiαi+1 (k + 1) := wβiαi+1 (k) − ϵh
for 1 ≤ i ≤ p; (2.3)

where αp+1 is identified with α1;
• for any edge (xi, yj) ∈ F not in C , set wij(k + 1) := wij(k);
• increase the value of k by 1.

hen there are no decimal edges left, return w∗
:= w(k).

Theorem 1.2 is then a direct consequence of the following
esult:

heorem 2.4. Given a balanced bipartite graph (B, w(0)) with
ertex weights u ∈ Zn, Algorithm 1 terminates in a finite number of
teps and returns a balanced (B, w∗) with w∗

∈ Z|E| and the same
ertex weights u. Moreover, ∥w∗

− w∥∞ < 1.

We establish Theorem 2.4 and start with the following propo-
sition:

Proposition 2.5. Let (B, w) be balanced with vertex weights
u ∈ Z|E|. Denote by (B, w′) the bipartite graph obtained after one
iteration on w performed by Algorithm 1. Let u′ be the vertex weights
associated with (B, w′). Then, (B, w′) is balanced with u′

= u, and
⌊wij⌋ ≤ w′

ij ≤ ⌈wij⌉ holds for every edge weight.

Proof. Let C = xα1yβ1 · · · xαpyβpxα1 be a completely decimal cycle
as described in the algorithm. For any vertex xαi in the cycle, we
have that∑
γ∈N(xαi )

(w′

αiγ
− wαiγ ) = (w′

αiβi−1
+ w′

αiβi
)− (wαiβi−1 + wαiβi ), (2.4)

where β0 is identified with βp for the case i = 1. By (2.2) and
2.3), the two expressions in parentheses on the right hand side
f (2.4) are equal, so the difference is 0. It follows that u′

αi
= uαi .

he same arguments can be applied to vertices yβi .
For any vertex xi (or yi) not in C , the weights of edges incident

o it are not updated, so u′

i = ui.
Finally, let ϵℓ and ϵh be defined as in Algorithm 1, and let

:= min{ϵℓ, ϵh}. Then, ⌊wij⌋ ≤ wij − ϵ ≤ w′

ij ≤ wij + ϵ ≤ ⌈wij⌉,
hich completes the proof. □
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We next have the following result strengthening Lemma 2.3:

Proposition 2.6. Let (B, w) be a balanced bipartite graph, with
vertex weights u ∈ Zn. Then, the following statements are equiva-
lent:

1. There is no decimal edge;
2. There is no completely decimal cycle;
3. The vector w is integer-valued.

roof. It is immediate that (1) implies (2) and that (3) implies (1).
ssuming (2) holds, we prove (3). Let F ′

⊆ F be the collection of
ecimal edges. Suppose that F ′

̸= ∅; then, we let X ′
⊆ X and

′
⊆ Y be the collections of vertices incident to the edges in F ′.

t follows that the subgraph B′
= (X ′

⊔ Y ′, F ′) induced by X ′
⊔ Y ′

is acyclic by assumption (2). Its connected components are thus
trees. Pick a connected component of B′ and one of its leaves, say
xi. On the one hand, there exists one and only one edge (xi, yj) in
B′ such that the weight wij is decimal. By construction, this edge is
also the only decimal edge in B incident to xi. On the other hand,
since (B, w) is balanced, we have that wij = ui −

∑
yj′∈N(xi)\{yj}

wij′ .
The right hand side of the expression is integer-valued, which is
a contradiction. □

We now present a proof of Theorem 2.4:

Proof of Theorem 2.4. Every iteration of Algorithm 1 on a bal-
anced (B, w), with integer-valued vertex weights, affects only its
decimal edges and reduces the number of its completely decimal
cycles by at least one. Thus, Theorem 2.4 follows as an immediate
consequence of Propositions 2.5 and 2.6. □

Finally, note that the arguments in the above proof also imply
that every decimal edge of such (B, w) is contained in a com-
pletely decimal cycle. Indeed, if (xi, yj) is a decimal edge that is
3

not contained in any completely decimal cycle; then, the weight
wij will not be affected by executing Algorithm 1, which is a
contradiction.
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