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Abstract
Regret minimization has proved to be a versatile tool for tree-
form sequential decision making and extensive-form games. In
large two-player zero-sum imperfect-information games, mod-
ern extensions of counterfactual regret minimization (CFR)
are currently the practical state of the art for computing a
Nash equilibrium. Most regret-minimization algorithms for
tree-form sequential decision making, including CFR, require
(i) an exact model of the player’s decision nodes, observation
nodes, and how they are linked, and (ii) full knowledge, at
all times t, about the payoffs—even in parts of the decision
space that are not encountered at time t. Recently, there has
been growing interest towards relaxing some of those restric-
tions and making regret minimization applicable to settings for
which reinforcement learning methods have traditionally been
used—for example, those in which only black-box access to
the environment is available. We give the first, to our knowl-
edge, regret-minimization algorithm that guarantees sublinear
regret with high probability even when requirement (i)—and
thus also (ii)—is dropped. We formalize an online learning
setting in which the strategy space is not known to the agent
and gets revealed incrementally whenever the agent encoun-
ters new decision points. We give an efficient algorithm that
achieves O(T 3/4) regret with high probability for that setting,
even when the agent faces an adversarial environment. Our
experiments show it significantly outperforms the prior algo-
rithms for the problem, which do not have such guarantees. It
can be used in any application for which regret minimization
is useful: approximating Nash equilibrium or quantal response
equilibrium, approximating coarse correlated equilibrium in
multi-player games, learning a best response, learning safe
opponent exploitation, and online play against an unknown
opponent/environment.

1 Introduction
A tree-form sequential decision making (TFSDM) problem
formalizes in a tree-form structure the interaction of an agent
with an unknown and potentially adversarial environment.
The agent’s tree includes decision nodes, observation nodes,
and terminal nodes. TFSDM captures the problem that a
player faces in an extensive-form game. TFSDM also cap-
tures MDPs and POMDPs where the agent conditions on
observed history, but TFSDM problems are more general
because the Markovian assumption is not necessarily made.
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In TFSDM, the environment may react adversarially to
what the agent does. This is important to take into account, for
example, in game-theoretic settings and multiagent reinforce-
ment learning (MARL) because the other agents’ learning
makes the environment nonstationary for the agent (Sand-
holm and Crites 1996; Matignon, Laurent, and Le Fort-Piat
2012). This is in contrast to the standard assumption in single-
agent reinforcement learning where the environment is oblivi-
ous to the agent instead of adversarial. Hence, learning strong
policies (aka. strategies) in TFSDM problems is especially
challenging, and the agent must be careful about exploration
because exploration actions can change the environment.

Online, regret minimization methods have been success-
fully used in TFSDM. In particular, the counterfactual re-
gret minimization (CFR) framework decomposes the over-
all regret of an agent to local regrets at individual decision
nodes (aka. information sets in game theory) (Zinkevich et al.
2007). That enables significantly larger TFSDMs to be tack-
led. Many enhancements have been developed on top of the
basic CFR framework (Lanctot et al. 2009; Tammelin 2014;
Brown and Sandholm 2015; Brown, Kroer, and Sandholm
2017; Brown and Sandholm 2017a, 2019a; Farina, Kroer,
and Sandholm 2019), and have led to major milestones in
imperfect-information games such as poker (Bowling et al.
2015; Moravčík et al. 2017; Brown and Sandholm 2017b,
2019b). Many of those methods guarantee low regret even
against an adversarial environment—which, in turn, enables
the computation of game-theoretic solutions such as Nash
equilibrium, coarse correlated equilibrium (Moulin and Vial
1978; Celli et al. 2020), best responses, etc.

However, those methods usually come with two drawbacks:
(i) they require an explicit upfront model of the agent’s deci-
sion space, and (ii) depending on the online learning model
used, they require full feedback, at all times t, about the
payoffs assigned by the environment—even in parts of the de-
cision space not encountered at time t. There has been work
towards an online learning setting, called the bandit optimiza-
tion setting, that drops (ii) (Lattimore and Szepesvári 2020).
Most MARL algorithms apply for the unknown game setting
and drop both (i) and (ii), often at the cost of invalidating any
regret guarantees. In this paper, we give, to our knowledge,
the first regret-minimization algorithm that guarantees sublin-
ear (specifically O(T 3/4

√
log 1/p) with probability 1 − p)

regret even when requirements (i) and (ii) are both dropped.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5381



Conceptually, our algorithm has elements of both online
bandit optimization and MARL. On the one hand, our re-
gret guarantees hold with high probability no matter how the
environment picks its actions or assigns utilities to terminal
nodes at all iterations t. In fact, our algorithm is a regret min-
imizer in the proper online-learning sense: it does not need
to know—and makes no assumptions about—the underlying
policy of the environment or the utility at the terminal states.
Furthermore, those quantities are not assumed to be time
independent and they can even be selected adversarially by
the environment at each iteration. This is contrast with many
self-play methods, that require control over the opponent in
order to retain guarantees. In particular, because we assume
no control over the adversarial environment, every interaction
with the environment can lead it to react and change behavior
in the next iteration. So, it is impossible to “freeze” the policy
of the environment to perform off-policy exploration like
many self-play methods require. Because of its strong online
guarantees, our algorithm can be used for all the applications
in which regret minimization provides benefits—for example,
to converge to Nash equilibrium in a two-player zero-sum
extensive-form game, to learn a best response against static
opponents, to converge to coarse correlated equilibrium in a
multiagent setting (Moulin and Vial 1978; Celli et al. 2020),
to converge to a quantal-response equilibrium (Ling, Fang,
and Kolter 2018; Farina, Kroer, and Sandholm 2019), to com-
pute safe exploitative strategies (Farina, Kroer, and Sandholm
2019; Ponsen, De Jong, and Lanctot 2011), or to play online
against an unknown opponent/environment.

On the other hand, ours is not an algorithm for the on-
line bandit optimization problem. In bandit optimization, the
agent does not interact with the environment: at all times t,
the agent outputs a policy πt for the whole decision space,
and receives a single real number ut, representing the gain
incurred by πt, as feedback. Instead, our algorithm operates
within a slightly different online learning model that we in-
troduce, which we call the interactive bandit model. In it,
the decision maker gets to observe the signals (actions) se-
lected by the environment on the path from the root of the
decision problem to the agent’s terminal state, in additions
to ut. Hence, we operate within a more specific online learn-
ing model than bandit optimization (which applies to, for
example, picking a point on a sphere also, as opposed to
just TFSDM), and rather one that is natural to TFSDM. This
comes with a significant advantage. While, to our knowledge,
all algorithms for the bandit optimization problem require
a priori knowledge of the full structure of the tree-from se-
quential decision problem,1 our algorithm for the interactive
bandits model is model free. Here, the structure of the tree-
form sequential decision process is at first unknown and has
to be discovered by exploring as part of the decision-making
process. Decision and observation nodes are revealed only at
the time the agent encounters them for the first time.

1This is needed, for example, to construct a self-concordant
barrier function (Abernethy, Hazan, and Rakhlin 2008) or a global
regularizer for the strategy space (Abernethy and Rakhlin 2009;
Farina, Schmucker, and Sandholm 2021), to compute a barycentric
spanner (Awerbuch and Kleinberg 2004; Bartlett et al. 2008), or to
set up a kernel function (Bubeck, Lee, and Eldan 2017).

Closely Related Research
In the rest of this section we discuss how our algorithm relates
to other attempts to connect online learning guarantees with
model-free MARL. A comparison between our algorithm
and other settings in online learning is deferred to Section 3,
where we formally introduce our interactive bandit model.

The greatest inspiration for our algorithm is the online
variant of Monte Carlo CFR (online MCCFR) algorithm
proposed in passing by (Lanctot et al. 2009). Unlike the
traditional “self-play” MCCFR, online MCCFR does not as-
sume that the algorithm have control over the environment.
The authors note that in theory online MCCFR could be
used to play games in a model-free fashion, provided that
a lower bound on the reach probability of every terminal
state can be enforced. That lower bound, say η, is necessary
for them to invoke their main theorem, which guarantees
O(η−1T 1/2

√
1/p) regret with probability 1− p. They sug-

gest perhaps using some form of ε-greedy exploration at each
decision node to enforce the lower bound, but no guarantee
is provided and the authors then move away from this side
note to focus on the self-play case. We show that their pro-
posed approach encounters significant hurdles. First, using
exploration at each decision node results in a lower bound
on the reach of every terminal state on the order of η = εd,
where d is the depth of the decision process, thus making
the regret bound not polynomial in the size of the decision
process itself, but rather exponential. Second, the paper did
not provide theoretical guarantees for the online case. In
particular, the theory does not take into account the degre-
dation effect caused by the exploration itself, which scales
roughly as ηT . So, on the one hand, a large η is needed to
keep the term η−1 in their regret bound under control, but
at the same time a large η results in a ηT term being added
to the regret. These hurdles show that it is unlikely that their
approach can lead to O(T 1/2

√
1/p) regret with high proba-

bility 1− p as they hypothesized. We address those issues by
using a different type of exploration and being careful about
bounding the degradation terms in the regret incurred due to
the exploration. Because of the latter, our algorithm incurs
O(T 3/4

√
log(1/p)) regret with high probability against ad-

versarial opponents. Because the exponent is less than 1, ours
is truly a regret minimization algorithm for TFSDMs with
unknown structure, and to our knowledge, the first. At the
same time, our exponent is worse than the originally hypoth-
esized exponent 1/2. It is unknown whether the latter can be
achieved. Finally, our dependence on p is better than in their
hypothesized regret bound.

A recent paper by Srinivasan et al. (2018) related policy
gradient algorithms to CFR (and, to a much lesser degree,
MCCFR). Despite their experiments demonstrating empirical
convergence rates for sampled versions of their algorithms,
formal guarantees are only obtained for tabularized policy
iteration in self-play, and use policy representations that re-
quire costly `2 projections back into the policy space. In
contrast, our regret guarantees hold (i) in any TFSDM setting
(not just two-player zero-sum extensive-form games), (ii) in
high probability, (iii) with sampling, and (iv) when playing
against any environment, even an adversarial one, without
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requiring complex projections.
A very recent paper (Zhou, Li, and Zhu 2020) on two-

player zero-sum games proposes combining full-information
regret minimization with posterior sampling (Strens 2000)
to estimate the utility function of the player and transition
model of chance, both of which they assume to be time inde-
pendent unlike our setting. They show in-expectation bounds
under the assumption that the agent’s strategy space is known
ex ante. We operate in a significantly more general setting
where the observations and utilities are decided by the en-
vironment and can change—even adversarially—between
iterations. Like theirs, our algorithm converges to Nash equi-
librium in two-player zero-sum games when used in self play.
However, unlike theirs, our algorithm is a regret minimizer
that can be used for other purposes also, such as finding
a coarse correlated equilibrium in multiplayer general-sum
games, a quantal-response equilibrium, or safe exploitative
strategies. In the latter two applications, the payoff function,
in effect, changes as the agent changes its strategy. Our regret
guarantees hold in high probability and we do not assume ex
ante knowledge of the agent’s strategy space.

A different line of work has combined fictitious play
(Brown 1951) with deep learning for function approxima-
tion (Heinrich, Lanctot, and Silver 2015; Heinrich and Silver
2016). Those methods do not give regret guarantees. Finally,
other work has studied how to combine the guarantees of on-
line learning with MDPs. Kash, Sullins, and Hofmann (2020)
combine the idea of breaking up and minimizing regret lo-
cally at each decision point, proper of CFR, with Q-learning,
obtaining an algorithm with certain in-the-limit guarantees
for MDPs. Even-Dar, Kakade, and Mansour (2009) study
online optimization (in the full-feedback setting, as opposed
to bandit) in general MDPs where the reward function and
the structure of the MDP is known. Neu et al. (2010) study
online bandit optimization in MDPs in the oblivious setting,
achieving O(T 2/3) regret with high probability, again assum-
ing that the MDP’s structure is known and certain conditions
are met. Zimin and Neu (2013) give bandit guarantees for
episodic MDPs with a fixed known transition function.

2 Our Model for (Unknown) Tree-Form
Sequential Decision Making and Games

In this section, we introduce the notation for TFSDM prob-
lems that we will be using for the rest of the paper.

A tree-form sequential decision making (TFSDM) prob-
lem is structured as a tree made of three types of nodes: (i)
decision nodes j, in which the agent acts by selecting an
action from the finite set Aj (different decision nodes can ad-
mit different sets of allowed actions); (ii) observation points
k, where the agent observes one out of set Sk of finitely
many possible signal from the environment (different obser-
vation points can admit different sets of possible signals);
and (iii) terminal nodes, corresponding to the end of the de-
cision process. We denote the set of decision nodes in the
tree-form sequential decision making problem as J , the set
of observation points as K, and the set of terminal nodes as
Z. Furthermore, we let ρ denote the dynamics of the game:
selecting action a ∈ Aj at decision node j ∈ J makes the

process transition to the next state ρ(j, a) ∈ J ∪K∪Z, while
the process transitions to ρ(k, s) ∈ J ∪K ∪ Z whenever the
agent observes signal s ∈ Sk at observation point k ∈ K.

Our algorithm operates in the difficult setting where the
structure of the TFSDM problem is at first unknown and
can be discovered only through exploration. Decisions and
observation nodes are revealed only at the time the agent
encounters them for the first time. As soon as a decision node
j is revealed for the first time, its corresponding set of actions
Aj is revealed with it.
Sequences In line with the game theory literature, we call
a sequence a decision node-action pair; each sequence (j, a)
uniquely identifies a path from the root of the decision pro-
cess down to action a at decision node j, included. Formally,
we define the set of sequences as Σ := {(j, a) : j ∈ J , a ∈
Aj} ∪ {∅}, where the special element ∅ is called the empty
sequence. Given a decision node j ∈ J , its parent sequence,
denoted pj , is the last sequence (that is, decision node-action
pair) encountered on the path from the root of the decision
process down to j. If the agent does not act before j (that is,
only observation points are encountered on the path from the
root to j), we let pj = ∅.

Given a terminal node z ∈ Z and a sequence (j, a) ∈ Σ,
we write (j, a) z to mean that the path from the root of the
decision process to z passes through action a at decision node
j. Similarly, given a terminal node z ∈ Z and an observation
node-signal pair (k, s) (s ∈ Sk), we write (k, s)  z to
indicate that the path from the root of the decision process
to z passes through signal s at observation node k. Finally,
we let σ(z) be the last sequence (decision node-action pair)
on the path from the root of the decision process to terminal
node z ∈ Z.
Strategies Conceptually, a strategy for an agent in a tree-
form sequential decision process specifies a distribution
xj ∈ ∆|Aj | over the set of actions Aj at each decision node
j ∈ J . We represent a strategy using the sequence-form
representation, that is, as a vector q ∈ R|Σ|≥0 whose entries
are indexed by Σ. The entry q[j, a] contains the product of
the probabilities of all actions at all decision nodes on the
path from the root of the process down to and including
action a at decision node j ∈ J . A vector q ∈ R|Σ|≥0 is a
valid sequence-form strategy if and only if it satisfies the
constraints (i)

∑
a∈Aj

q[j, a] = q[pj ] for all j ∈ J ; and (ii)
x[∅] = 1 (Romanovskii 1962; Koller, Megiddo, and von
Stengel 1994; von Stengel 1996). We let Q denote the set of
valid sequence-form strategies. Finally, we let Π ⊆ Q denote
the subset of sequence-form strategies whose entries are only
0 or 1; a strategy π ∈ Π is called a pure sequence-form
strategy, as it assigns probability 1 to exactly one action at
each decision node.

3 Online Learning and Our Interactive
Bandit Model

In online learning, an agent interacts with its environment
in this order: (i) The environment chooses a (secret) gradi-
ent vector `t of bounded norm; (ii) The agent picks a pure
strategy πt ∈ Π. The environment evaluates the reward
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(gain) of the agent as (`t)>πt ∈ R; (iii) The agent observes
some feedback about her reward. The feedback is used by
the agent to learn to output good strategies over time. The
learning is online in the sense that the strategy πt at time t
is output before any feedback for it (or future strategies) is
available. A standard quality metric for evaluating an agent
in this setting is the regret that she accumulates over time:
RT (π̂) :=

∑T
t=1(`t)>π̂−∑T

t=1(`t)>πt. This measures the
difference between the total reward accumulated up to time
T , compared to the reward that would have been accumulated
had the oracle output the fixed strategy π̂ ∈ Π at all times. A
“good” agent, that is, a regret minimizer, is one whose regret
grows sublinearly: RT (π̂) = o(T ) for all π̂ ∈ Π.

Online learning models vary based on the type and extent
of feedback that is made available to the agent. We will
focus on two existing models—namely, the full-feedback2

setting and the bandit linear optimization setting. Then we
will introduce a third model that is especially natural for
TFSDM.

Full-Feedback2 Setting Here, the environment always re-
veals the full gradient vector `t to the agent (after the strat-
egy has been output). This is the same setting that was pro-
posed in the landmark paper by Zinkevich (2003) and is
the most well-studied online optimization setting. Efficient
agents that guaranteeO(T 1/2) regret with high probability in
the full-feedback setting are known well beyond TFSDM and
extensive-form games (e.g, (Shalev-Shwartz 2012; Hazan
2016)). In fact, given any convex and compact set X , it is
possible to construct an agent that outputs decisions xt ∈ X
that achieves O(T 1/2) regret in the worst case, even when
the gradient vectors `t are chosen adversarially by the en-
vironment after the decision xt has been revealed. In the
specific context of TFSDM and extensive-form games, the
most widely-used oracle in the full-feedback setting is based
on the counterfactual regret (CFR) framework (Zinkevich
et al. 2007). The idea is to decompose the task of computing
a strategy for the whole decision process into smaller sub-
problems at each decision point. The local strategies are then
computed via |J | independent full-feedback regret minimiz-
ers, one per decision node, that at each t observe a specific
feedback that guarantees low global regret across the de-
cision process. CFR guarantees O(T 1/2) regret with high
probability against any strategy π ∈ Π.

Bandit Linear Optimization Here, the only feedback
that the environment reveals to the agent is the utility
(`t)>πt at each time t (Kleinberg 2004; Flaxman, Kalai,
and McMahan 2005). Despite this extremely limited feed-
back, Õ(T 1/2) regret can still be guaranteed with high prob-
ability in some domains (including simplexes (Auer et al.
2002) and spheres (Abernethy and Rakhlin 2009)), although,
to our knowledge, a polynomial algorithm that guarantees
Õ(T 1/2) regret with high probability for any convex and

2In online learning, “full-feedback” is typically called “full-
information”. We use “full-feedback” to avoid confusion with full-
information games, that is, games where the full state is available to
all players at all times.

compact domain has not been discovered yet.3 Guarantee-
ing Õ(T 1/2) in expectation is possible for any domain of
decisions (Abernethy, Hazan, and Rakhlin 2008), but unfor-
tunately in-expectation low regret is not strong enough a
guarantee to enable, for instance, convergence to Nash or cor-
related equilibrium as described above. In the specific case of
tree-form sequential decision processes, (Farina, Schmucker,
and Sandholm 2021) proposed a bandit regret minimizer
that achieves O(T 1/2) regret in expectation compared to
any policy and linear-time iterations. Upgrading to in-high-
probability O(T 1/2) regret guarantees while retaining linear-
time iterations remains an open problem.

Interactive Bandit We propose interactive bandits as a nat-
ural online learning model to capture the essence of tree-form
sequential decision processes. Here, an agent interacts with
the environment until a terminal state is reached, at which
point the payoff (a real number) is revealed to the agent. The
agent observes the environment’s action (signal) whenever
the interaction moves to an observation point. We formalize
this as an online learning model as follows. At all times t,
before the agent acts, the environment privately selects (i) a
choice of payoff ut : Z → R for each terminal state z ∈ Z,
and (ii) a secret choice of signals stk ∈ Sk for all observa-
tion points k ∈ K. These choices are hidden, and only the
signals relevant to the observation points reached during the
interaction will be revealed. Similarly, only the payoff ut(zt)
relative to the terminal state zt reached in the interaction will
be revealed. In other words, the feedback that is revealed
to the agent after the interaction is the terminal state zt that
is reached (which directly captures all signals revealed by
the environment, as they are the signals encountered on the
path from the root of the decision process to zt) and its corre-
sponding payoff ut(zt), which can be equivalently expressed
as ut(zt) = (`t)>πt, where the gradient vector `t is defined
as the (unique) vector such that for all strategies x ∈ Q,

(`t)>x =
∑
z∈Z

ut(z)

 ∏
(k,s) z

1[stk = s]

x[σ(z)]. (1)

We assume that the environment is adversarial, in the sense
that the environment’s choices of payoffs ut and signals stk
at time t can depend on the previous actions of the agent.

Our term “interactive bandits” comes from the fact that an
algorithm for this setting can be thought of as interacting with
the environment until a terminal state of the decision process
is reached and a corresponding payoff is revealed. In other
words, while for modeling purposes it is convenient to think
about online learning algorithms as outputting strategies π
for the whole strategy space, one can think of an interactive
bandits algorithm as one that instead only outputs one action

3Several algorithms are able to guarantee one or two out of the
three requirements (i) applicable to any convex domain, (ii) polyno-
mial time per iteration, (iii) Õ(T 1/2) regret with high probability.
For example, Bartlett et al. (2008) achieve (i) and (iii) by extending
an earlier paper by Dani, Kakade, and Hayes (2008), and (György
et al. 2007) achieves (ii) for the set of flows with suboptimal regret
guarantees.
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at a time as the interaction moves throughout the decision
process.

Since the interactive bandit model requires that the gradient
vector `t be expressible as in (1), it makes more assumptions
on the gradient vector than either the bandit linear optimiza-
tion model or the full-feedback model. In terms of feedback,
it is an intermediate model: it receives a superset of the feed-
back that the bandit linear optimization framework receives,
but significantly less than the full-feedback model. So, the-
oretically, one could always use an algorithm for the bandit
linear optimization model to solve a problem in the interac-
tive bandit model. However, as we show in this paper, one
can design a regret-minimization algorithm for the interac-
tive bandit model that achieves sublinearO(T 3/4) regret with
high probability even in decision processes and extensive-
form games whose decision space is at first unknown. To our
knowledge, no algorithm guaranteeing sublinear regret when
the decision space is at first unknown has been designed for
bandit linear optimization.

4 Algorithm for Unknown Tree-Form
Sequential Decision Making Problems

We now describe a regret minimizer for the interactive ban-
dit model. At all time t, it goes through two phases: first,
the rollout phase, and then the regret update phase. Dur-
ing the rollout phase, the algorithm plays until a terminal
state zt and its corresponding payoff ut is revealed. During
the regret update phase, the algorithm rewinds through the
decision nodes j encountered during that trajectory, and up-
dates certain parameters at those decision nodes based on the
newly-observed payoff ut.4 Like the CFR framework, our
algorithm picks actions at each decision node j by means of
a local full-feedback regret minimizerRj for the action set
Aj at that decision node.

Rollout Phase: Playing the Game
We describe two alternative algorithms for the rollout phase
(namely the “upfront-flipping” and the “on-path-flipping”
rollout variants), which differ in the way they mix exploration
and exploitation. Both variants are theoretically sound, and
yield to the same sublinear in-high-probability regret bound
(Section 5), even when different variants are used at different
times t while playing against the adversarial opponent.

We start from the “upfront-flipping” variant, which is ar-
guably the conceptually simpler variant, although we find it
to usually perform worse in practice.

Upfront-Flipping Rollout Variant When the upfront-
flipping rollout variant is used at time t, at the beginning
of the rollout phase and before any action is played, a biased
coin is tossed to decide the algorithm used to play out the
interaction:

4While our algorithm shares many of the building blocks on
Monte Carlo Tree Search (MCTS)—incremental tree-building, back-
propagation, rollouts—it is not an anytime search algorithm, at least
not in the sense of traditional game-tree search like the one em-
ployed by the Online Outcome Sampling algorithm (Lisỳ, Lanctot,
and Bowling 2015).

• With probability βt, the EXPLORE routine is used. It
ignores the recommendations of the local regret minimiz-
ers at each decision node and instead plays according
to the exploration function ht : Σ → R>0 (more de-
tails are below). In particular, at every decision node
j encountered during the rollout, the agent picks ac-
tion a ∈ Aj at random according to the distribution
ht(j, a)/(

∑
a′∈Aj

ht(j, a′)).

• With probability 1 − βt, the EXPLOIT routine is used.
With this routine, at every decision node j encountered
during the rollout, the agent picks a decision by sampling
from the distribution xtj ∈ ∆|Aj | recommended by the
regret minimizerRj .

In both cases, a regret minimizer Rj for decision node j is
created when j is first discovered.

Our upfront-flipping rollout strategy differs from the ε-
greedy strategy in that the coin is tossed for the entire trajec-
tory, not at each decision point.

On-Path-Flipping Rollout Variant In the on-path-flipping
rollout variant, there is no single coin toss to distinguish
between exploration and exploitation, and the two are inter-
leaved throughout the rollout. Before any action is picked, the
two reach quantities rt, r̂t are both set to 1. Then, the rollout
phase begins, and eventually the agent will be required to
make a decision (pick an action) at some decision point j. Let
xtj ∈ ∆|Aj | be the distribution over actions recommended
by the regret minimizer Rj . In the on-path-flipping rollout
variant, the agent picks an action a ∈ Aj at j with probability
proportional to

(1− βt)rt · xtj [a] + βtr̂t · ht(j, a)∑
a′∈Aj

ht(j, a′)
.

Let a∗ be the chosen action; rt and r̂t are updated according
to the formulas rt ← rt ·xtj [a∗] and r̂t ← r̂t · ht(j,a∗)∑

a′∈Aj
h(j,a′) .

The agent keeps using this specific way of selecting actions
and updating the reach quantities r, r̂ for all decision points
encountered during the rollout.

The role of ht In both variants, the role of the exploration
function ht is to guide exploration of different parts of the de-
cision process.5 The optimal choice for ht is to have ht(j, a)
measure the number of terminal states in the subtree rooted at
(j, a). When this information is not available, a heuristic can
be used instead. If no sensible heuristic can be devised, the
uniform exploration strategy ht(j, a) = 1 for all (j, a) ∈ Σ
is always a valid fallback. In Theorem 1 below, we give guar-
antees about the regret cumulated by our algorithm that apply
to any ht : Σ→ R>0.

Regret Update Phase: Propagating the Payoff up the
Tree
In the regret update phase, the revealed feedback (that is,
the revealed utility ut(zt) and the terminal state zt that was

5Despite the positive exploration term induced by ht, it is not
guaranteed that all decision points will be discovered as T → ∞
as the adversarial environment might prevent so. Nonetheless, our
algorithm guarantees sublinear regret with high probability.
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reached in the rollout phase) is used to construct suitable local
gradient vectors `tj for each of the local regret minimizers
Rj on the path from the terminal state zt up to the root.
Let (j1, a1), . . . , (jm, am) be the sequence of decision nodes
and actions that were played, in order, that ultimately led to
terminal state zt during the repetition of the game at time
t. We start to construct local gradient vectors from decision
node jm, where we set the three quantities

γt := (1− βt) ·
m∏
i=1

xtji [ai] + βt ·
m∏
i=1

ht(ji, ai)∑
a′∈Aji

ht(ji, a′)
,

ûtjm :=
ut(zt)

γt
, `tjm := ûtjmeam ,

where we used the notation eam ∈ ∆Aj to denote the am-th
canonical vector, that is the vector whose components are
all 0 except for the am-th entry, which is 1. Then, for all
i = 1, . . . ,m− 1, we recursively let

ûtji := xtji [ai] · ûtji+1
, `tji := ûtjieai .

Finally, for all i = 1, . . . ,m, the gradient vector `tji is re-
vealed as feedback to the local full-feedback regret minimizer
Rji at decision point ji.

Average Policy
When regret minimizers are used to solve a convex-concave
saddle point problem (such as a Nash equilibrium in a two-
player zero-sum game), only the profile of average policies
produced by the regret minimizers are guaranteed to converge
to the saddle point. For this reason, it is crucial to be able to
represent the average policy of an agent. Since we are assum-
ing that the structure of the decision problem is only partially
known, this operation requires more care in our setting. As
we now show, it is possible to modify the algorithm so that
the average policy can be extracted.

In order to maintain the average policy, we maintain an
additional vector x̄j at each discovered decision node j. Intu-
itively, these vector will be populated with entries from the
cumulative sum of all partial sequence-form strategies recom-
mended so far by theRj’s. As soon as j is discovered for the
first time (say, time t), we create its x̄j . If j’s parent sequence
is the empty sequence (that is, j is one of the possible first
decision nodes in the TFSDM process, i.e., j is preceded
only by observation nodes), we simply set x̄j [a]t := t/|Aj |
for all a ∈ Aj . Otherwise, let pj = (j′, a′) be the parent se-
quence of j, and we set x̄j [a]t := x̄j′ [a

′]/|Aj | for all a ∈ Aj .
Then, at all times t, after the feedback has been received but
before the regret update phase has started, we introduce a
new average policy update phase. In it, we iterate through all
the decision nodes ji that have been discovered so far (that
is, the union of all decision points discovered up to time t),
in the order they have been discovered. For each of them,
we update x̄ji according to the following rule. Let xji be
the policy strategy returned by the local full-feedback regret
minimizerRji . If ji’s parent sequence is the empty sequence,
we simply set x̄t+1

ji
:= x̄tji + xji and rtji := xji . Otherwise,

let pji = (j′, a′) be the parent sequence of j, and we set
x̄t+1
ji

:= x̄tji + rtj′ [a
′] · xtji , and rtji [a] := rtj′ [a

′] · xtji [a] for
all a ∈ Aji .

In order to play the average policy, it is enough to play ac-
tions proportionally to x̄t+1

j at all discovered decision nodes
j, and actions picked uniformly at random at undiscovered
decision nodes.
Observation 1. In all phases, the agent performs an amount
of operations at most linear in the number of actions |Aj | at
each decision point j discovered up to time t. So, the average
policy update phase requires work at most linear in the size
of the underlying TFSDM.

5 Guarantees on Regret
In this section, we provide a sketch of the key logical steps in
our proof of the sublinear regret guarantees for the algorithm
we just described in Section 4.6 In order to make the analysis
approachable, we start by presenting a conceptual version
of our algorithm under the assumption that the structure of
the tree-form sequential decision problem is fully known. As
it turns out, our conceptual algorithm can be implemented
exactly as in Section 4, and therefore, it does not actually
need to know the structure of the decision process in advance.

At a high level, the construction of our conceptual inter-
active bandit regret minimizer works as follows (see also
Figure 1). At each iteration t, we use a full-feedback re-
gret minimizerRQ to output a recommendation for the next
sequence-form strategy yt ∈ Q to be played. Then, we intro-
duce a bias on yt, which can be thought of as an exploration
term. The resulting biased strategy is wt ∈ Q. Finally, we
sample a deterministic policy πt ∈ Π starting fromwt. After
the playthrough is over and a terminal node zt ∈ Z has been
reached, we use the feedback (that is, the terminal node zt
reached in the playthrough, together with its utility ut(zt)), to
construct an unbiased estimator ˜̀t of the underlying gradient
vector that was chosen by the environment.

Our full-feedback regret minimizerRQ is the counterfac-
tual regret minimization (CFR) algorithm (Zinkevich et al.
2007). At all times t, CFR combines the strategies output
by the local regret minimizers Rj (j ∈ J ), one per deci-
sion node, into the strategy yt ∈ Q for the overall TFSDM
problem. CFR guarantees O(T 1/2) regret in the worst case
against any strategy ŷ ∈ Q.

The gradient estimator that we use in our algorithm is
a form of importance-sampling estimator that can be con-
structed starting from the feedback received by the regret
minimizer (that is, the terminal leaf zt and its corresponding
payoff ut(zt)). It is a particular instantiation of the outcome
sampling estimator that appeared in the works by Lanctot
et al. (2009) and Farina, Kroer, and Sandholm (2020), and is
defined as

˜̀t :=
ut(zt)

wt[σ(zt)]
eσ(zt), (2)

where eσ(zt) ∈ R|Σ| is the vector that has zeros everywhere
but in the component corresponding to the terminal sequence
σ(zt), where it has a one.

The role of the exploration term is to reduce the norm of
the gradient estimators, by making sure that the denominator

6More details and full proofs are available in the full version of
this paper, which is available on arXiv.
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Figure 1: Conceptual construction of our algorithm for the interactive bandit online learning setting.

wt[σ(zt)] in (2) is never too small. We bias the strategies yt
output byRQ by taking a convex combination

wt := (1− βt) · yt + βt · ξt
with the exploration strategy ξt ∈ Q defined as the sequence-
form strategy that picks action a ∈ Aj at decision node
j ∈ J with probability proportional to

ξt[j, a] ∝ ht(j, a)∑
a∈Aj

ht(j, a)
.

The role of the strategy sampler is to provide an unbiased
estimator πt ∈ Π of wt. In fact, any unbiased estimator can
be used in our framework, and in Section 4 we gave two:
upfront-flipping and on-path-flipping strategy sampling.

Our analysis is split into two main conceptual steps. First,
we quantify the regret degradation that is incurred in pass-
ing from R̃ toR (Figure 1). Specifically, we study how the
regret cumulated by R̃, R̃T (π) :=

∑T
t=1(`t)>(π − yt),

is related to the regret cumulated by our overall algorithm,
RT (π) :=

∑T
t=1(`t)>(π − πt). In this case, the degrada-

tion term comes from the fact that the strategy output by
R, that is, πt ∈ Π, is not the same as the one, yt, that was
recommended by R̃, because an exploration term was added.
Using a concentration argument, the following inequality can
be shown.
Proposition 1. At all T , for all p ∈ (0, 1) and π ∈ Π, with
probability at least 1− p,

RT (π) ≤ R̃T (π) + ∆

(√
2T log

1

p
+

T∑
t=1

βt

)
.

The second step in the analysis is the quantification of
the regret degradation that is incurred in passing from RQ
to R̃ (Figure 1). Specifically, we will study how the re-
gret cumulated by R̃ is related to the regret RTQ(π) :=∑T
t=1( ˜̀t)>(π − yt), which is known to be O(T 1/2) with

high probability from the analysis of the CFR algorithm. In
particular, the following can be shown with a second concen-
tration argument.
Proposition 2. At all T , for all p ∈ (0, 1) and π ∈ Π, with
probability at least 1− p,

R̃T (π) ≤ RTQ(π) +
∆

βT
ν

√
2T log

1

p
,

where

ν :=

√√√√√ 1

T

T∑
t=1

max
z∈Z

 ∏
(j,a) z

(∑
a′∈Aj

ht(j, a′)

ht(j, a)

)2
.

When ht measures the number of terminal states reachable
under any sequence (j, a), the constant ν satisfies ν ≤ |Σ|−1.
For the uniform exploration function (ht(j, a) = 1 for all
j, a), ν is upper bounded by the product of the number of
actions at all decision nodes, a polynomial quantity in “bushy”
decision processes.

Combining Proposition 1 and Proposition 2 using the union
bound lemma, we obtain a general regret bound for R that
holds for any choice of local regret minimizersRj (j ∈ J ),
non-increasing stepsizes βt, and explorations functions ht
at all times t, which we formalize in Theorem 1. It will be
the basis for Theorem 2, which provides a way to set the
algorithm parameters to achieve sublinear O(T 3/4) regret.
Theorem 1. Let RTj (π̂j) denote the regret cumulated by
the local full-feedback regret minimizer Rj compared to a
generic strategy π̂j , and ∆ be the maximum range of payoffs
that can be selected by the environment at all times. Then,
for all T ≥ 1, p ∈ (0, 1), and π̂ ∈ Q, with probability at
least 1− p the regret cumulated by the algorithm of Section 4
satisfies

RT(π̂) ≤ max
q∈Π

∑
j∈J

q[pj ] · max
π̂j∈∆|Aj |

RTj (π̂j)


+

∆

βT
(1 + ν)

√
2T log

2

p
+ ∆

T∑
t=1

βt,

where ν is as in Proposition 2.
In Theorem 2 we operationalize Theorem 1 by showing sen-
sible choices of stepsizes βt and local regret minimizersRj .
Theorem 2. Let the local full-feedback regret minimizers
Rj guarantee O(T 1/2) regret in the worst case7, and let
p ∈ (0, 1). Furthermore, let the exploration probabilities be
βt := min{1, k ·t−1/4} for all t, where k > 0 is an arbitrary
constant. Then, there exists a (decision-problem-dependent)
constant c independent of p and T such that for all T ≥ 1

P
[
max
π̂∈Π

RT (π̂) ≤ c · T 3/4∆

√
log

2

p

]
≥ 1− p.

When ht is an exact measure of the number of terminal states,
c is polynomial in |Σ|. Otherwise, it is linear in the constant
ν defined in Proposition 2, which depends on the specific
exploration functions used.

7Valid choices include the following algorithms: regret match-
ing (Hart and Mas-Colell 2000), regret matching+ (Tammelin et al.
2015), follow-the-regularized-leader, online mirror descent, expo-
nential weights, hedge, and others.
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Since Theorem 2 guarantees sublinear regret with high
probability, our algorithm can be used for all purposes de-
scribed in Section 3, including computing an approximate
Nash equilibrium in a two-player zero-sum extensive-form
game whose structure is a priori unknown.

6 Empirical Evaluation
In our experiments, we used our algorithm to compute an
approximate Nash equilibrium. We compared our method to
established model-free algorithms from the multiagent rein-
forcement learning and computational game theory literature
for this setting: neural fictitious self-play (NFSP) (Heinrich
and Silver 2016), the policy gradient (PG) approach of Srini-
vasan et al. (2018), and the online variant of Monte-Carlo
CFR (online MCCFR) mentioned in (Lanctot et al. 2009). In
line with prior empirical evaluations of those methods, we
compare the algorithms on two standard benchmark games:
Kuhn poker (Kuhn 1950) and Leduc poker (Southey et al.
2005). The games are reviewed in Appendix C in the full
version of this paper.

We used the implementations of PG and NFSP provided in
OpenSpiel (Lanctot et al. 2019).They internally use Tensor-
flow. For PG, we tested the RPG and QPG policy gradient for-
mulations, but not the RM formulation (it performed worst in
the original paper (Srinivasan et al. 2018)). We implemented
online MCCFR and our algorithm in C++ (online MCCFR
is not implemented in OpenSpiel). We ran every algorithm
with five random seeds. In the figures below, we plot the
average exploitability (a standard measure of closeness to
equilibrium) of the players averaged across the five seeds.
The shaded areas indicate the maximum and minimum over
the five random seeds. For NFSP we used the hyperparameter
recommended by the OpenSpiel implementation. For Kuhn
poker, we used the settings for PG that were tuned and found
to work the best by Srinivasan et al. (2018)—they are pub-
licly available through OpenSpiel. For PG in Leduc poker,
we performed a hyperparameter sweep and selected for the
two PG plot (RPG and QPG formulation) the best combina-
tion hyperparameters (full details are in the appendix). For
both online MCCFR and our algorithm, we used RM+ (Tam-
melin 2014) as the local (full-feedback) regret minimizer.
For our algorithm, we only show performance for the on-
path-flipping variant. The upfront-flipping variant performed
significantly worse and data is available in the appendix of
the full version of this paper. We tested k ∈ {0.5, 1, 10, 20}
and set ht to either the uniform exploration function (ht con-
stant) or the theoretically-optimal exploration function ht
that measures the number of terminal nodes as explained in
Section 4. The performance of the two exploration functions
was nearly identical, so in Figure 2 we show our algorithm
with the uniform exploration function. We chose k = 10
since that performed well on both games. The plots for all
other hyperparameter combinations for our algorithm are in
the appendix. For online MCCFR, the only hyperparameter
is ε, which controls the ε-greediness of the exploration term
added before sampling and outputting the strategy at each
time t. We tested ε = 0.6 (which was found useful for the dif-
ferent self-play MCCFR algorithm (Lanctot et al. 2009)), 0.1,
and 0.0 (which corresponds to pure exploitation); Figure 2
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Figure 2: Comparison of the algorithms.

shows the setting that performed best.
Out of all the algorithms, ours is the only one that guar-

antees sublinear regret with high probability. This superior
guarantee appears to translate into superior practical perfor-
mance as well. In both benchmark games, our algorithm has
lowest exploitability, often by a factor 2x-4x.

7 Conclusions and Future Research
We introduced a new online learning model, which we coined
the interactive bandit model, that captures tree-form sequen-
tial decision making. We developed an algorithm that guar-
antees sublinear O(T 3/4) regret with high probability in this
model, even when the structure of the underlying decision
problem is at first unknown to the agent and must be explored
as part of the learning process. This is, to our knowledge, the
first in-high-probability regret minimizer for this setting. It
can be used for multiagent reinforcement learning. Its regret
guarantee enables it to be used in any application for which
regret minimization is useful: approximating Nash equilib-
rium or quantal response equilibrium (Ling, Fang, and Kolter
2018; Farina, Kroer, and Sandholm 2019) in two-player zero-
sum games, approximating coarse correlated equilibrium in
multi-player games (Moulin and Vial 1978; Celli et al. 2020),
learning a best response, safe opponent exploitation (Farina,
Kroer, and Sandholm 2019), online play against an unknown
opponent/environment, etc. It is open whether better than
O(T 3/4) regret is achievable in this important setting.
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