
ar
X

iv
:2

10
4.

01
52

0v
2

 [c
s.G

T]
 2

7
M

ay
 2

02
1

Simple Uncoupled No-Regret Learning Dynamics for
Extensive-Form Correlated Equilibrium

GABRIELE FARINA, Carnegie Mellon University, USA

ANDREA CELLI, Politecnico di Milano, Italy

ALBERTO MARCHESI, Politecnico di Milano, Italy

NICOLA GATTI, Politecnico di Milano, Italy

The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in
normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known
for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form
game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form
(that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous
moves, as well as imperfect information. Because of the sequential nature and presence of private infor-
mation in the game, correlation in extensive-form games possesses significantly different properties than its
counterpart in normal-form games, many of which are still open research directions. Extensive-form corre-
lated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to the classical notion
of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of
EFCEs are significantly more complex, as the correlation device (a.k.a. mediator) must keep into account the
evolution of beliefs of each player as they make observations throughout the game. Due to that significant
added complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challeng-
ing open research question for a long time. In this article, we settle that question by giving the first uncoupled
no-regret dynamics that converge to the set of EFCEs in �푛-player general-sum extensive-form games with
perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and
that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play
is proven to be a �푂 (1/

√
�푇)-approximate EFCE with high probability after �푇 game repetitions, and an EFCE

almost surely in the limit.

CCS Concepts: • Theory of computation→Convergence and learning in games; Exact and approximate

computation of equilibria.

Additional KeyWords and Phrases: extensive-form games, correlated equilibrium, regret minimization, multi-

agent learning

1 INTRODUCTION

The Nash equilibrium (NE) [36] is the most common notion of rationality in game theory, and its
computation in two-player zero-sum games has been the flagship computational challenge in the
area at the interplay between computer science and game theory (see, e.g., the landmark results in
heads-up no-limit poker by Brown and Sandholm [3] and Moravčík et al. [33]). The assumption
underpinning NE is that the interaction among players is fully decentralized. Therefore, an NE is
an element of the uncorrelated strategy space of the game, that is, a product of independent proba-
bility distributions over actions, one per player. A competing notion of rationality is the correlated
equilibrium (CE) proposed by Aumann [1]. A correlated strategy is an arbitrary probability distri-
bution over joint action profiles—defining an action for each player—and it is customarily modeled

A short version of this article appeared in Advances in Neural Information Processing Systems 33: Annual Conference on

Neural Information Processing Systems 2020, NeurIPS 2020 [8].
Authors’ addresses: Gabriele Farina, gfarina@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
Pennsylvania, USA; Andrea Celli, andrea.celli@polimi.it, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy;
Alberto Marchesi, alberto.marchesi@polimi.it, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy; Nicola
Gatti, nicola.gatti@polimi.it, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy.

ArXiv preprint

http://arxiv.org/abs/2104.01520v2

2 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

via a trusted external mediator that draws an action profile from this distribution, and privately
recommends to each player their component. A correlated strategy is a CE if no player has an in-
centive to choose an action different from the mediator’s recommendation, because, assuming that
all other players follow their recommended action, the suggested action is the best in expectation.
Many real-world strategic interactions involve more than two players with arbitrary (i.e., general-

sum) utilities. In those settings, the CE is an appealing solution concept, as it overcomes several
weaknesses of the NE. First, the NE is prone to equilibrium selection issues, raising the question on
how players can select an equilibrium while they are assumed not to be able to communicate with
each other. Second, computing an NE is computationally intractable, being PPAD-complete even
in two-player games [10, 11], whereas a CE can be computed in polynomial time.1 Third, the social
welfare that can be attained by an NE may be arbitrarily lower than what can be achieved via a
CE [6, 29, 40]. Lastly, in normal-form (that is, simultaneous-move) games, the notion of CE arises
from simple uncoupled learning dynamics even in general-sum settings with an arbitrary num-
ber of players. In words, these learning dynamics are such that each player adjusts their strategy
on the basis of their own payoff function, and on other players’ strategies, but not on the payoff
functions of other players. The existence of uncoupled dynamics enables to overcome the—often
unreasonable—assumption that players have perfect knowledge of other players’ payoff functions,
while at the same time offering a parallel, scalable avenue for finding equilibria. In contrast, in
the case of the NE, uncoupled learning dynamics are only known in the two-player zero-sum set-
ting [9, 21, 23]. All of the above considerations contribute to the idea that CE is often a better
prescriptive solution concept than NE in general-sum and multiplayer settings.
Extensive-form correlated equilibrium (EFCE), introduced by von Stengel and Forges [46], is a

natural extension of the correlated equilibrium to the case of extensive-form (that is, tree-form, se-
quential) games. Extensive-form games generalize normal-form games by modeling both sequen-
tial and simultaneous moves, as well as imperfect information. In an EFCE, the mediator draws,
before the beginning of the sequential interaction, a recommended action for each of the possible
decision points (that is, information sets) that players may encounter in the game, but these rec-
ommendations are not immediately revealed to each player. Instead, the mediator incrementally
reveals relevant individual moves as players reach new information sets. At any decision point,
the acting player is free to deviate from the recommended action, but doing so comes at the cost
of future recommendations, which are no longer issued to that player if they deviate. It is up to
the mediator to make sure that the recommended behavior is indeed an equilibrium—that is, that
no player would be better off ever deviating from following the mediator’s recommendations at
each information set. Compared to the constraints that characterize the set of CEs in normal-form
games, those that define the set of EFCEs in extensive-form games are significantly more com-
plex. Indeed, the main challenge of the EFCE case is that the mediator must keep into account the
evolution of beliefs of each player as they make observations throughout the game tree.
In general-sum extensive-form games with an arbitrary number of players (including poten-

tially the chance player modeling exogenous stochastic events), the problem of computing a feasi-
ble EFCE can be solved in polynomial time in the size of the game tree [25] via a variation of the
Ellipsoid Against Hope algorithm [26, 38]. Dudík and Gordon [12] provide an alternative sampling-
based algorithm to compute EFCEs. However, their algorithm is centralized and based on MCMC
sampling, which limits its applicability on large-scale problems. In practice, these approaches can-
not scale beyond toy problems. On the other hand, methods based on uncoupled learning dynamics

1In normal-form games, a CE can be computed in polynomial time via linear programming. In extensive-form games, the
computational complexity of computing a CE depends on the specific notion of correlation that is adopted. As discussed
in more detail in the following, the problem can be solved in polynomial time for the notion studied in this article.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 3

usually work quite well in large real-world problems, while retaining the nice properties of uncou-
pled dynamics that we discussed above. The following fundamental research question remains
open: is it possible to devise simple uncoupled learning dynamics that converge to an EFCE?
We show that the answer is positive. To do so, we introduce the idea of trigger regret, which

builds on an equivalent formulation of EFCE based on the notion of trigger agent, introduced
by Gordon et al. [19]. This is a notion of internal regret suitable for extensive-form games that
naturally expresses the regret incurred by trigger agents in the definition of EFCE. Specifically,
trigger regret is a particular instantiation of the framework known as phi-regret minimization
introduced by Stoltz and Lugosi [42], and building on previous work by Greenwald and Jafari [20].
In general, phi-regret minimizationworkswith a notion of regret definedwith respect to a given set
of linear transformations on the decision set. In order to define trigger regret, we identify suitable
linear transformations that allow us to encode the behavior of trigger agents in the definition of
EFCE. We call them canonical trigger deviation functions. Intuitively, trigger deviation functions
encode the possible ways in which a trigger agent may deviate from recommended behavior in
the EFCE formulation; this happens whenever a corresponding action sequence is recommended,
which results in the agent playing from that point on some continuation strategy different from
the recommended one. Our core result on trigger regret is the following: if each player plays
according to any uncoupled no-regret learning dynamics that minimizes trigger regret, then the
resulting empirical frequency of play approaches the set of EFCEs.
In the rest of the article, we provide an efficient (that is, requiring time polynomial in the size of

the game tree at each iteration) algorithm that minimizes trigger regret. The algorithm is based on
the general framework by Gordon et al. [19], which builds a phi-regret minimizer by employing a
standard regret minimizer having the set of linear transformations defining phi-regret as decision
space. For our purposes, this boils down to designing a regret minimizer for the set of all valid
canonical trigger deviation functions, which we do by exploiting non-trivial combinatorial struc-
tures of the set. Moreover, in order to efficiently compute the next strategy to play at each iteration,
the framework by Gordon et al. [19] also needs that each linear transformation in the set admits a
fixed point, and that such fixed point can be computed efficiently. Thus, our algorithm requires a
procedure to compute a fixed point of any linear mapping defining a canonical trigger deviation
function in time polynomial in the size of the game tree. We show that such procedure can be
implemented by visiting the game tree in a top down fashion, so as to incrementally build a fixed
point. In conclusion, our main result is that the proposed algorithm minimizes trigger regret, ex-
hibiting�푂 (

√
�푇) trigger regret with high probability after�푇 iterations. Thus, when all players play

according to the uncoupled learning dynamics defined by our algorithm, the empirical frequency
of play after�푇 game repetitions is proven to be a�푂 (1/

√
�푇)-approximate EFCE with high probabil-

ity, and an EFCE almost surely in the limit. These results generalize the seminal work by Hart and
Mas-Colell [21] to the extensive-form game case via a simple and natural framework.

RelatedWork. The study of adaptive procedures leading to a CE dates back to at least the seminal
works by Foster and Vohra [15], Fudenberg and Levine [16, 18], and Hart and Mas-Colell [21, 22];
see also the monograph by Fudenberg and Levine [17]. In particular, the work by Hart and Mas-
Colell [21] proves that simple dynamics based on the notion of internal regret converge to a CE
in normal-form games. The strategy that the authors introduce—the so-called regret matching—is
conceptually simple, and guarantees that if all players follow this strategy, then the empirical fre-
quency of play converges to the set of CEs (see also Cahn [5]). Other works describe extensions
to the models studied in the aforementioned papers. For example, Stoltz and Lugosi [42] describe
an adaptive procedure converging to a CE in games with an infinite, but compact, set of actions,

ArXiv preprint

4 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

while Kakade et al. [27] consider efficient algorithms for computing correlated equilibria in graph-
ical games.
In more recent years, a growing effort has been devoted to understanding the relationships

between no-regret learning dynamics and equilibria in extensive-form games. These games pose
additional challenges when compared to normal-form games, due to their sequential nature and
the presence of imperfect information. While in two-player zero-sum extensive-form games it is
widely known that no-regret learning dynamics converge to an NE—with the counterfactual regret
minimization (CFR) algorithm and its variations being the state of the art for equilibrium finding
in such games [4, 31, 43, 44, 47]—the general case is less understood. Celli et al. [7] provide some
variations of the classical CFR algorithm for �푛-player general-sum extensive-form games, showing
that they provably converge to a normal-form coarse correlated equilibrium, which is based on a
form of correlation that is less appealing than that of EFCE in sequential games.
In a recent paper, Morrill et al. [35] conduct a study on various forms of correlation in extensive-

form games, defining a taxonomy of solution concepts. Each of their solution concepts is attained
by a particular set of no-regret learning dynamics, which is obtained by instantiating the phi-
regret minimization framework [19, 20, 42] with a suitably-defined deviation function. As part of
their analysis, Morrill et al. [35] investigate some properties of the well-established CFR regret
minimization algorithm [47] applied to �푛-player general-sum extensive-form games, establishing
that it is hindsight-rational with respect to a specific set of deviation functions, which the authors
coin blind counterfactual deviations.2

2 PRELIMINARIES

In this section we provide some standard definitions related to extensive-form games and regret
minimization which will be employed in the remainder of the article. A more comprehensive treat-
ment of basic concepts in game theory can be found in the book by Shoham and Leyton-Brown
[41], and an introduction to the theory of learning in games can be found in the book by Cesa-
Bianchi and Lugosi [9].

2.1 Mathematical Notation and Algorithmic Conventions

In this article we adopt the following notational and algorithmic conventions.

• We denote the set of real numbers as R, the set of nonnegative real numbers as R≥0, and the
set {1, 2, . . . } of positive integers as N>0.

• The set {1, . . . , �푛}, where �푛 ∈ N>0, is compactly denoted as [�푛]. The empty set is denoted as
∅.

• Given a set �푆 , we denote its convex hull with the symbol co�푆 .
• Vectors and matrices are marked in bold.
• Given a discrete set �푆 = {�푠1, . . . , �푠�푛}, we denote as R |�푆 | (resp., R |�푆 |

≥0) the set of real (resp.,
nonnegative real) |�푆 |-dimensional vectors whose entries are denoted as x [�푠1], . . . , x [�푠�푛].

2In a very recent working paper, Morrill et al. [34] extend their prior work [35] by identifying a general class of deviations—
called behavioral deviations—that induce equilibria that can be found through uncoupled no-regret learning dynamics. Be-
havioral deviations are defined as those specifying an action transformation independently at each information set of the
game. As the authors note, the deviation functions involved in the definition of EFCE do not fall under that category.
However, the authors suggest that a particular class of behavioral deviation functions—called causal partial sequence devi-

ations—induce solution concepts that are (subsets of) EFCEs. In private communications with the authors, they indicated
that they are working towards completing the proof of that claim. Once completed, their result would beget an alternative
set of no-regret learning dynamics that converge to EFCE, based on a different set of deviation functions than those we
use in this article.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 5

• Similarly, given a discrete set �푆 , we denote as R |�푆 |× |�푆 | (resp., R |�푆 |× |�푆 |
≥0) the set of real (resp.,

nonnegative real) |�푆 | × |�푆 | square matricesS whose entries are denoted asS [�푠�푟 , �푠�푐] (�푠�푟 , �푠�푐 ∈
�푆), where �푠�푟 corresponds to the row index and �푠�푐 to the column index.

• Given a discrete set �푆 , we denote by Δ
|�푆 | the |�푆 |-simplex, that is, the set Δ |�푆 |

≔ {x ∈ R |�푆 |
≥0 :∑

�푠∈�푆 x [�푠] = 1}. The symbol Δ�푛 , with �푛 ∈ N>0, is used to mean Δ
| [�푛] | .

• Given a discrete set �푆 , we use the symbol S |�푆 | ⊆ R |�푆 |× |�푆 |
≥0 to denote the set of stochastic

matrices, that is, nonnegative square matrices whose columns all sum up to 1. The symbol
S�푛 , where �푛 ∈ N>0, is used to mean S | [�푛] | .

• Given two functions �푓 : �푋 → �푌 and �푔 : �푌 → �푍 , we denote by �푔 ◦ �푓 : �푋 → �푍 their
composition x ↦→ �푔(�푓 (�푥)).

• Given a proposition p, we denote with 1{p} the indicator function of that proposition: 1{p} =
1 if p is true, and 1{p} = 0 if not.

• Given a partially ordered set (�푆,≺) and two elements �푠, �푠 ′ ∈ �푆 , we use the standard derived
symbols �푠 � �푠 ′ to mean that (�푠 = �푠 ′) ∨ (�푠 ≺ �푠 ′), �푠 ≻ �푠 ′ to mean that �푠 ′ ≺ �푠 , and �푠 � �푠 ′ to
mean that �푠 ′ � �푠 . Furthermore, we use the crossed symbols ⊀, �, ⊁, and � to mean that the
relations ≺,�, ≻, and � (respectively) do not hold.

• Several of the algorithms presented in this article take as input, give as output, or otherwise
manipulate, linear functions. Therefore, in order to study the complexity of our routines, it
is necessary to settle on a representation for such linear functions. Unless otherwise speci-
fied, we will always assume that a linear function �푓 is stored in memory using coordinates
relative to the canonical basis of their domain and codomain, and call that representation
the canonical representation of �푓 , denoted 〈�푓 〉. Specifically:
– If �푓 is a linear function from R |�푆 | (for some discrete set �푆) to R, then its canonical repre-
sentation 〈�푓 〉 is the (unique) vector v ∈ R |�푆 | such that

�푓 (x) = v⊤x ∀ x ∈ R |�푆 | ,

where ⊤ denotes transposition.
– If �푓 is a linear function from R |�푆 | to R |�푆 | (for some discrete set �푆), then its canonical repre-
sentation 〈�푓 〉 is the (unique) matrix S ∈ R |�푆 |× |�푆 | such that

�푓 (x) = Sx ∀ x ∈ R |�푆 | .

– If �퐹 is a linear functional, mapping linear functions �휙 : R |�푆 | → R |�푆 | to reals, then its
canonical representation 〈�퐹 〉 is the (unique) matrix � ∈ R |�푆 |× |�푆 | such that

�퐹 (�휙) =
∑

�푠�푟 ,�푠�푐 ∈�푆
�[�푠�푟 , �푠�푐] · 〈�휙〉[�푠�푟 , �푠�푐] ∀ �휙 : R |�푆 | → R |�푆 | , (1)

where 〈�휙〉 is the canonical representation of �휙 .

2.2 Extensive-Form Games

In this subsection we introduce some standard concepts, terminology, and notation that we will
use to deal with extensive-form games. A summary of the notation we introduce can be found in
Table 1. Examples 2.1 and 2.5 demonstrate some of the notation in a simple extensive-form game.

An extensive-form game is played on an oriented rooted game tree. We denote by H the set of
nodes of the game tree. Each nodeℎ ∈ H that is not a leaf of the game tree is called a decision node,
and has an associated player that acts at that node. In an �푛-player extensive-form game, the set of
valid players is the set [�푛] ∪ {�푐}, where �푐 denotes the chance player—a fictitious player that selects
actions according to a known fixed probability distribution and models exogenous stochasticity of
the environment (for example, a roll of a dice or a drawing a card from a deck). The player that

ArXiv preprint

6 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Symbol Description

H Set of nodes of the game tree.
H(�푖) Set of nodes at which Player �푖 acts.
A(ℎ) Actions available to the player acting at ℎ ∈ H (empty set if ℎ is a terminal node).
J(�푖) Information partition of Player �푖 .
A(�푗) Set of actions available at any node in the information set �푗 .

Z Set of terminal nodes (leaves of the game tree).
�푢 (�푖) (�푧) Payoff of Player �푖 at terminal node �푧 ∈ Z.
�푝 (�푐) (�푧) Product of probabilities of all the stochastic events on the path from the root to

terminal node �푧 ∈ Z.

Σ
(�푖) Set of sequences of Player �푖 , defined as Σ (�푖)

≔ {(�푗 , �푎) : �푗 ∈ J(�푖) , �푎 ∈ �퐴 �푗 } ∪ {∅},
∅ where the special element ∅ is called the empty sequence.

Σ
(�푖)
∗ Set of sequences of Player �푖 , excluding the empty sequence ∅.

�휎 (�푖) (�푧) Last sequence of Player �푖 encountered on the path from the root to node �푧 ∈ Z.
�휎 (�푖) (�푗) Last sequence of Player �푖 on the path from the root to any node in �푗 ∈ J(�푖) .

�푗 ′ ≺ �푗 Information set �푗 ∈ J(�푖) is an ancestor of �푗 ′ ∈ J(�푖) , that is, there exists a path in
the game tree connecting a node ℎ ∈ �푗 to some node ℎ′ ∈ �푗 ′.

�휎 ≺ �휎 ′ Sequence �휎 precedes sequence �휎 ′, where �휎, �휎 ′ belong to the same player.
�휎 � �푗 Sequence �휎 = (�푗 ′, �푎′) is such that �푗 ′ � �푗 .

Σ
(�푖)
�푗 Sequences at �푗 ∈ J(�푖) and all of its descendants, Σ (�푖)

�푗 ≔ {�휎 ∈ Σ
(�푖) : �휎 � �푗 }.

Q (�푖) Sequence-form strategies of Player �푖 (Definition 2.2).

Q (�푖)
�푗 Sequence-form strategies for the subtree4 rooted at �푗 ∈ J(�푖) (Definition 2.3).

Π
(�푖) Deterministic sequence-form strategies of Player �푖 .

Π
(�푖)
�푗 Deterministic sequence-form strategies for the subtree4 rooted at �푗 ∈ J(�푖) .

Π Set of joint deterministic sequence-form strategies, Π ≔
>

�푖 ∈[�푛] Π
(�푖) .

Table 1. Summary of game-theoretic notation used in this article.

acts at ℎ is free to pick any one of the actions A(ℎ) that are available at ℎ. For each possible action
�푎 ∈ A(ℎ), an edge connects ℎ to the node to which the game transitions whenever action �푎 is
picked at ℎ. Given a player �푖 ∈ [�푛] ∪ {�푐}, we denote with H(�푖) ⊆ H the set of all decision nodes
that belong to Player �푖 .
Leaves of the game tree are called terminal nodes, and represent the outcomes of the game. As

such, they are not associated with any acting player, and the set of actions is conventionally set
to the empty set. The set of all terminal nodes in the game is denoted with the letter Z. So, the set
of all nodes in the game tree is the disjoint union H = H(1) ∪ · · · ∪ H(�푛) ∪ Z. When the game
transitions to a terminal node �푧 ∈ Z, payoffs are assigned to each of the non-chance players by
the set of functions {�푢 (�푖) : Z → R}�푖 ∈[�푛] . Furthermore, we let �푝 (�푐) : Z → (0, 1) denote the function
assigning each terminal node �푧 ∈ Z to the product of probabilities of chance moves encountered
on the path from the root of the game tree to �푧.

2.2.1 Imperfect information. To model imperfect information, the nodes H(�푖) of each player �푖 ∈
[�푛] are partitioned into a set J(�푖) of groups, called information sets. Each information set �푗 ∈ J(�푖)

groups together nodes that Player �푖 cannot distinguish between. Since a player always knowswhat

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 7

actions are available at a decision node, any two nodes ℎ,ℎ′ ∈ �푗 must have the same action set,
that is, A(ℎ) = A(ℎ′). For that reason, we slightly overload notation and write A(�푗) to mean the
set of actions available at any node that belongs to information set �푗 .
As is standard in the literature, we assume that the extensive-form game has perfect recall, that

is, information sets are such that no player forgets information once acquired. An immediate con-
sequence of perfect recall is that, for any player �푖 ∈ [�푛] and any two nodes ℎ,ℎ′ in the same
information set �푗 ∈ J(�푖) , the sequence of Player �푖’s actions encountered along the path from the
root to ℎ and from the root to ℎ′ must coincide (or otherwise Player �푖 would be able to distinguish
among the nodes, since the player remembers all of the actions they played in the past). This sug-
gests the following partial ordering ≺ on the set J(�푖) : we write �푗 ≺ �푗 ′—and say that �푗 ∈ J(�푖) is an
ancestor of �푗 ′ ∈ J(�푖) or equivalently that �푗 ′ is a descendant of �푗—if there exist nodes ℎ′ ∈ �푗 ′ and
ℎ ∈ �푗 such that the path from the root of the game tree to ℎ′ passes through ℎ.

It is a well-known consequence of perfect recall that the partially ordered set (J(�푖) ,≺) is a forest
for any player �푖 ∈ [�푛], in the precise sense that, given any information set �푗 ∈ J(�푖) , the set of all of
its predecessors forms a chain (that is, it is well-ordered by ≺).

2.2.2 Sequences. For any player �푖 ∈ [�푛], and given an information set �푗 ∈ J(�푖) and an action
�푎 ∈ A(�푗), we denote as �휎 = (�푗 , �푎) the sequence of Player �푖’s actions encountered on the path from
the root of the game tree down to action �푎 (included) at any node in information set �푗 . In perfect-
recall extensive-form games, such sequence is guaranteed to be uniquely determined because paths
that reach decision nodes belonging to the same information set identify the same sequence of
Player �푖’s actions. A special element ∅ denotes the empty sequence of Player �푖 . Then, the set of
Player �푖’s sequences is defined as

Σ
(�푖)
≔

{
(�푗 , �푎) : �푗 ∈ J

(�푖) , �푎 ∈ A(�푗)
}
∪ {∅}.

Moreover, we let Σ (�푖)
∗ ≔ Σ

(�푖) \ {∅} be the set of all sequences of Player �푖 other than the empty one.
Given a node ℎ ∈ H, we denote by �휎 (�푖) (�푗) ∈ Σ

(�푖) the last sequence (information set-action
pair) of Player �푖 encountered on the path from the the root of the game tree to any node in �푗 . If
Player �푖 does not act before ℎ, then �휎 (�푖) (ℎ) is set to the empty sequence ∅. If �휎 (�푖) (�푗) = ∅ we say
that information set �푗 is a root information set of Player �푖 , while, whenever �휎 (�푖) (�푗) = (�푗 ′, �푎), we say
that information set �푗 is immediately reachable from sequence �휎 (�푖) (�푗), because �푗 ′ ≺ �푗 and Player �푖
does not need to take other actions after choosing �푎 at �푗 ′ in order to reach �푗 . Analogously, for all
�푧 ∈ Z, we define �휎 (�푖) (�푧) ∈ Σ

(�푖) as the last sequence of Player �푖’s actions encountered the path from
the root of the game tree to terminal node �푧 (notice that �휎 (�푖) (�푧) = ∅whenever Player �푖 never plays
on the path from the root to �푧).
Just like information sets, there exists a natural partial ordering on sequences, which we also

denote with the same symbol ≺. For every �푖 ∈ [�푛] and any pair of sequences �휎, �휎 ′ ∈ Σ
(�푖) , the

relation �휎 ≺ �휎 ′ holds if �휎 = ∅ ≠ �휎 ′, or if the sequences are of the form �휎 = (�푗 , �푎), �휎 ′
= (�푗 ′, �푎′),

and the set of Player �푖’s actions encountered on the path from the root of the tree to any node
in �푗 ′ includes playing action �푎 at one of information set �푗 ’s nodes. As for information sets, it is
a direct consequence of the perfect recall assumption that the partially ordered set (Σ (�푖), ≺) is a
forest. Finally, we introduce the overloaded notation �휎 � �푗 (or equivalently �푗 � �휎), defined for
any player �푖 ∈ [�푛], information set �푗 ∈ J(�푖) , and sequence �휎 ∈ Σ

(�푖) , to mean that the sequence
of Player �푖 ’s actions that is denoted by �휎 must lead the player to pass through (some node in) �푗 ;

formally �휎 = (�푗 ′, �푎′) ∈ Σ
(�푖)
∗ ∧ �푗 ′ � �푗 . With that, we let Σ (�푖)

�푗 ≔ {�휎 ∈ Σ
(�푖) : �휎 � �푗 } ⊆ Σ

(�푖) be the set
of Player �푖’s sequences that terminate at �푗 or any of its descendant information sets.

ArXiv preprint

8 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Example 2.1. To illustrate some of the concepts and notation described so far, we consider the
simple two-player extensive-form game in Figure 1, in which black round nodes belong to Player 1,
and white round nodes belong to Player 2. The gray clusters of nodes identify the information sets.
Since we chose different action numbers for different information sets, there exists a one-to-one
correspondence between actions and sequences, and we will sometimes refer to sequences using
the corresponding action number. For example, we will sometimes refer to sequence “3” to mean
sequence (b, 3), sequence “8” to mean sequence (d, 8), et cetera. Player 1 has four information
sets—denoted a, b, c, and d—with two actions each. Player 2 only has two information sets, r and
s, each with two actions. Information set d of Player 1 contains two nodes, and models Player 1’s
lack of knowledge of the action taken by Player 2 at information set s. The partial ordering between
information sets for Player 1 is a ≺ b,a ≺ c, a ≺ d. Moreover, we have that �휎 (1) (a) = ∅, �휎 (1) (b) =
�휎 (1) (c) = 1, and �휎 (1) (d) = 2. For the terminal node �푧 in the picture, �휎 (1) (�푧) = 3. Finally, we have

that Σ (1)
a = Σ

(1)
∗ = {1, 2, . . . , 8}, Σ (1)

b = {3, 4}, Σ (1)
c = {5, 6}, and Σ

(1)
d = {7, 8}.

1 2

3 4 5 6 7 8 7 8

r s

a

b c d

�푧

≻ ≺ ≺
a

b c d

(a ≺ b, a ≺ c, a ≺ d)

Fig. 1. (Le�) Example of an extensive-form game with two players. Black round nodes belong to Player 1,

white round nodes belong to Player 2. Small white square nodes represent terminal nodes. The gray partitions

represent the information sets of the game. The numbers on the edges identify each of Player 1’s actions.
(Right): Forest of information sets of Player 1, corresponding to the partially ordered set (J(1) ,≺).

2.2.3 Sequence-form strategies. Conceptually, a strategy for a player specifies a probability dis-
tribution over the actions at each information set for that player. So, perhaps the most intuitive
representation of a strategy, called a behavioral strategy in the literature, is as a vector that assigns

to each information set-action pair (�푗 , �푎) ∈ Σ
(�푖)
∗ the probability of picking action �푎 at information

set �푗 . That representation has a major drawback: the probability of reaching any given terminal
node �푧 ∈ Z is expressed as the product of several entries in the vector (one per each action on
the path from the root of the game tree to �푧), rendering critical quantities—including the expected
utility of a player—a non-convex function of the behavioral strategies of the players. As is stan-
dard in the literature, to soundly overcome the issue of non-convexity, throughout this article we
will exclusively use a different representation of strategies, known as the sequence-form represen-
tation [28, 39, 45].

Like behavioral strategies, a sequence-form strategy3 for Player �푖 ∈ [�푛] is a vector q ∈ R |Σ(�푖) |
≥0 .

However, unlike behavioral strategies, each entry q[(�푗 , �푎)] of a sequence-form strategy q contains
the product of the probabilities of playing all of Player �푖’s actions on the path from the root of the
game tree down to action �푎 at information set �푗 included. Furthermore, the entry q[∅] correspond-
ing to the empty sequence is defined as the constant value 1.

3Sequence-form strategies are also known under the term realization plans in the literature (e.g., [45]). We will not use that
latter term in this article.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 9

To ensure consistency, all sequence-form strategies must satisfy the probability-mass-conservation
constraints

q[∅] = 1, q[�휎 (�푖) (�푗)] =
∑

�푎∈A(�푗)
q[(�푗 , �푎)], ∀ �푗 ∈ J(�푖) .

The above probability-mass-conservation constraints are linear, and therefore the set of sequence-
form strategies is a convex polytope, suggesting the following definition.

Definition 2.2. The sequence-form strategy polytope for Player �푖 ∈ [�푛] is the convex polytope

Q (�푖)
≔



q ∈ R |Σ(�푖) |

≥0 : q[∅] = 1 and q[�휎 (�푖) (�푗)] =
∑

�푎∈A(�푗)
q[(�푗 , �푎)], ∀ �푗 ∈ J

(�푖)


.

As we mentioned in Section 2.2.2, the partially ordered set (J(�푖) ,≺) is a forest. Thus, it makes
sense to consider partial strategies that only specify behavior at an information set �푗 and all of its
descendants �푗 ′ ≻ �푗 . We make that formal through the following definition.

Definition 2.3. Let �푖 ∈ [�푛] be a player and �푗 ∈ J(�푖) be an information set for Player �푖 . The

set of sequence-form strategies for the subtree4 rooted at �푗 , denoted Q (�푖)
�푗 , is the set of all vectors

q ∈ R |Σ(�푖)
�푗 |

≥0 such that probability-mass-conservation constraints hold at information set �푗 and all of
its descendants �푗 ′ ≻ �푗 , specifically

Q (�푖)
�푗 ≔



q ∈ R |Σ(�푖)

�푗 |
≥0 :

∑
�푎∈A(�푗)

q[(�푗 , �푎)] = 1, and q[�휎 (�푖) (�푗 ′)] =
∑

�푎∈A(�푗′)
q[(�푗 ′, �푎)] ∀ �푗 ′ ≻ �푗



.

2.2.4 Deterministic sequence-form strategies. Deterministic strategies are those that select, at each
information set at which the player acts, exactly one action with probability one. Since the prob-
ability mass on each action is either 0 or 1, the set of deterministic sequence-form strategies for
Player �푖—which we denote with the capital letter Π (�푖)—corresponds exactly with the set of all
sequence-form strategies whose components are all either 0 or 1.

Definition 2.4. The set of deterministic sequence-form strategies for Player �푖 ∈ [�푛] is the set

Π
(�푖)
≔ Q (�푖) ∩ {0, 1} |Σ(�푖) | .

Similarly, the set of deterministic sequence-form strategies for the subtree4 rooted at �푗 is

Π
(�푖)
�푗 ≔ Q (�푖)

�푗 ∩ {0, 1} |Σ
(�푖)
�푗 | .

The set of deterministic sequence-form strategies corresponds one-to-one to the game-theoretic
notion of reduced normal-form strategies (e.g., von Stengel [45, Section 4]). Furthermore, Kuhn’s
Theorem [30] implies that

Q (�푖)
= coΠ (�푖) ,Q (�푖)

�푗 = coΠ (�푖)
�푗 ∀ �푖 ∈ [�푛], �푗 ∈ J

(�푖) .

When it is important to emphasize that an arbitrary sequence-form strategy q ∈ Q (�푖) (or q ∈
Q (�푖)

�푗 for some �푗 ∈ J(�푖)) of Player �푖 ∈ [�푛] need not be a deterministic sequence-form strategy, we
will say that q is a mixed sequence-form strategy.

4The term “subtree” does not refer to a subtree of the game tree, but rather to a subtree of the partially ordered set (J(�푖) , ≺) .
In other words, the term subtree here refers to the fact that the quantities are specified only at information set �푗 and all of
its descendants.

ArXiv preprint

10 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

q q135 q136 q145 q27 q28

1.00
0.50
0.50
0.25
0.25
0.10
0.40
0.00
0.50

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

1.0
1.0
0.0
1.0
0.0
1.0
0.0
0.0
0.0

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

1.0
1.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

1.0
1.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

1.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

1.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
1.0

©­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

Fig. 2. Examples of sequence-form strategies for Player �푖 in the game of Figure 1 (Le�).

Given a sequence-form strategy q ∈ Q (�푖) , it is possible to build an unbiased sampling scheme
resulting in a (random) deterministic strategy 0 ∈ Π

(�푖) such that E[0] = q. A natural unbiased
sampling procedure is the following. Start from any root information set of Player �푖 , that is, an in-
formation set �푗 ∈ J(�푖) such that�휎 (�푖) (�푗) = ∅. Given any information set �푗 ∈ J(�푖) , an action�푎 �푗 ∈ A(�푗)
is sampled with probability q[(�푗 , �푎 �푗)]/q[�휎 (�푖) (�푗)]; then, the same procedure is applied recursively
to all information sets immediately reachable from sequence (�푗 , �푎 �푗), that is, the information sets
�푗 ′ ∈ J(�푖) such that �휎 (�푖) (�푗 ′) = (�푗 , �푎 �푗). The process is repeated for all the root information sets of
Player �푖 . The final deterministic sequence-form strategy 0 is obtained by setting 0 [(�푗 , �푎 �푗)] = 1 for
each information set �푗 ∈ J(�푖) visited during the procedure, and all other entries equal to 0.
Finally, we denote as Π ≔

>
�푖 ∈[�푛] Π

(�푖) the set of joint deterministic sequence-form strategies of

all the players. Therefore, an element of Π is a tuple 0 = (0 (1) , . . . , 0 (�푛)) specifying a deterministic
sequence-form strategy 0 (�푖) for each player �푖 ∈ [�푛].

Example 2.5. Continuing Example 2.1, in Figure 2 we provide one (mixed) sequence-form strat-
egy q ∈ Q (1) , and five deterministic sequence-form strategies {q135, q136, q145, q27, q28} ⊆ Π

(1) for
the small game in Figure 1 (Left). One can check that these vectors are valid sequence-form strate-
gies by verifying that the probability-mass-conservation constraints of Definition 2.2 hold. Let us
consider the mixed sequence-form strategy q. There, q[1] = q[2] = 0.5, and therefore Player 1
will select a sequence between 1 and 2 uniformly at random. Suppose Player 1 selects sequence 1.
Then, if Player 1 reached information set b, she would select sequences 3 and 4 with probability
0.25/0.5 = 0.5 each. On the other hand, if Player 1 reached information set c, she would choose
sequence 5 with probability 0.1/0.5 = 0.2, and sequence 6 with probability 0.4/0.5 = 0.8. Analo-
gously, if Player 1 played sequence 2 at information set a, upon reaching information set d she
would play sequence 8 with probability 0.5/0.5 = 1. As expected, the probability of playing action
�푎 at a generic information set �푗 can be obtained by dividing q[(�푗 , �푎)] by q[�휎 (�푖) (�푗)]. As a second
example, consider the deterministic sequence-form strategy q136. When Player 1 plays according
to that strategy, she will always choose sequence 1 at information set a, sequence 3 at information
set b, and sequence 6 at information set c. It is impossible for the player to reach information set
d given her strategy at a and correspondigly q136 [7] = q136 [8] = 0.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 11

2.3 Extensive-Form Correlated Equilibrium (EFCE)

Extensive-form correlated equilibrium has been proposed by von Stengel and Forges [46] as the
natural counterpart to (normal-form) correlated equilibrium in extensive-form games. In an EFCE,
before the beginning of the game the mediator draws a recommended action for each of the pos-
sible information sets that players may encounter in the game, according to some probability
distribution defined over joint reduced normal-form strategies. These recommendations are not
immediately revealed to each player. Instead, the mediator incrementally reveals relevant action
recommendations as players reach new information sets. At any information set, the acting player
is free to deviate from the recommended action, but doing so comes at the cost of future recommen-
dations, which are no longer issued if the player deviates. In an EFCE, the recommended behavior
is incentive-compatible for each player, that is, no player is strictly better off ever deviating from
any of the mediator’s recommended actions.
Multiple equivalent definitions of EFCE can be given. In this article, we follow the equivalent

formulation given by Farina et al. [14] based on the concept of trigger agents introduced by Gordon
et al. [19] andDudík andGordon [12]. Inwhat follows, wewill assume that an extensive-form game
has been fixed.

Definition 2.6 (Trigger agent). Let �푖 ∈ [�푛] be a player, let �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , and let 0̂ ∈ Π

(�푖)
�푗 . The

(�̂휎, 0̂)-trigger agent is the agent that plays the game as Player �푖 according to the following rules.

• If the trigger agent has never been recommended to play action �푎 at information set �푗 , the
trigger agent will follow whatever recommendation is issued by the mediator.

• When the trigger agent reaches information set �푗 and is recommended to play action �푎, we
say that the trigger agent “gets triggered” by the trigger sequence �̂휎 = (�푗 , �푎). This means
that, from that point on, the trigger agent will disregard the recommendations and play
according to the continuation strategy 0̂ from information set �푗 onward (that is, at �푗 and all
of its descendant information sets).

An EFCE is a probability distribution - ∈ Δ
|Π | over Π such that for any player �푖 ∈ [�푛], trigger

sequence �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , and continuation strategy 0̂ ∈ Π

(�푖)
�푗 , the expected utility of the (�̂휎, 0̂)-

trigger agent is not strictly greater than the expected utility that Player �푖 would obtain by always
following all of the mediator’s recommendations.
In order to turn the above condition into an analytic expression, it is useful to introduce the

following additional quantities. Given a distribution - ∈ Δ
|Π | , we let �푟- (�푧) be the probability that

the game ends in terminal node �푧 ∈ Z when all players follow recommendations issued by the
mediator according to -; in particular, for every �푧 ∈ Z, it holds:

�푟- (�푧) ≔
∑

(0 (1) ,...,0 (�푛)) ∈Π
0

(�푖) [�휎 (�푖) (�푧)]=1 ∀�푖 ∈[�푛]

- [(0 (1) , . . . ,0 (�푛))],

where the summation is over all joint strategies (0 (1) , . . . ,0 (�푛)) ∈ Π such that terminal node �푧 is
reachable when each player �푖 ∈ [�푛] plays according to 0 (�푖) . Additionally, given a trigger sequence

�̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ for a player �푖 ∈ [�푛] and a continuation strategy 0̂ ∈ Π

(�푖)
�푗 , we let �푟 (�푖)

-,�̂휎→0̂
(�푧) be the

probability with which the (�̂휎, 0̂)-trigger agent reaches terminal node �푧. In particular, for every

ArXiv preprint

12 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

terminal node �푧 ∈ Z such that �휎 (�푖) (�푧) � �푗 it holds that:

�푟
(�푖)
-, �̂휎→0̂

(�푧) ≔

©­­­­­­­
«

∑
(0 (1) ,...,0 (�푛)) ∈Π

0
(�푖′) [�휎 (�푖′) (�푧)]=1 ∀�푖′≠�푖

0
(�푖) [�̂휎]=1

- [(0 (1) , . . . ,0 (�푛))]

ª®®®®®®®
¬
0̂ [�휎 (�푖) (�푧)] .

We can now state the formal definition of EFCE and approximate EFCE.

Definition 2.7 (�휖-EFCE; EFCE). Given �휖 ≥ 0, a probability distribution - ∈ Δ
|Π | is an �휖-approximate

EFCE (or �휖-EFCE for short) if, for every player �푖 ∈ [�푛], trigger sequence �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , and con-

tinuation strategy 0̂ ∈ Π
(�푖)
�푗 , the expected utility of the (�̂휎, 0̂)-trigger agent is larger than the

expected utility that Player �푖 would obtain by always following all of the mediator’s recommenda-
tions by at most an amount �휖 . In symbols,∑

�푧∈�푍
�휎 (�푖) (�푧) ��̂휎

�푢 (�푖) (�푧) �푝�푐 (�푧) �푟- (�푧) ≥
∑
�푧∈�푍

�휎 (�푖) (�푧) � �푗

�푢 (�푖) (�푧) �푝�푐 (�푧) �푟 (�푖)-, �̂휎→0̂
(�푧) − �휖.

A probability distribution - ∈ Δ
|Π | is an EFCE if it is a 0-EFCE.

2.4 Regret Minimization and Phi-Regret Minimization

In this article we will make heavy use of a mathematical object—one of the core abstractions in
the field of online optimization—called a regret minimizer.

Definition 2.8. LetX be a set. A regret minimizer forX is an abstract model for a decision maker
that repeatedly interacts with a black-box environment. At each time �푡 , the regret minimizer sup-
ports two operations:

• NextElement has the effect that the regret minimizer will output an element x�푡 ∈ X;
• ObserveUtility(ℓ�푡) provides the environment’s feedback to the regret minimizer, in the
form of a linear utility function ℓ�푡 : X → R that evaluates how good the last-output point
x�푡 was. The utility function can depend adversarially on the outputs x1, . . . ,x�푡−1 of the regret
minimizer, but not on x�푡 .

Calls to NextElement and ObserveUtility keep alternating to each other: first, the regret
minimizer will output a point x1, then it will received feedback ℓ1 from the environment, then it
will output a new point x2, and so on. The decision making encoded by the regret minimizer is
online, in the sense that at each time �푡 , the output of the regret minimizer can depend on the prior
outputs x1, . . . ,x�푡−1 and corresponding observed utility functions ℓ1, . . . , ℓ�푡−1, but no information
about future losses is available. The objective for the regret minimizer is to output points so that
the cumulative regret (or simply regret)

�푅�푇 ≔ max
x∗∈X

�푇∑
�푡=1

(
ℓ�푡 (x∗) − ℓ�푡 (x�푡)

)
(2)

grows asymptotically sublinearly in the time �푇 .
Many regret minimizers that guarantee a cumulative regret �푅�푇 = �푂 (

√
�푇) at all times �푇 for any

convex and compact set X are known in the literature (see, e.g., Cesa-Bianchi and Lugosi [9]).
A phi-regret minimizer is an extension of the concept of a regret minimizer introduced by Stoltz

and Lugosi [42], building on previous work by Greenwald and Jafari [20].

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 13

Definition 2.9. Given a set X of points and a set Φ of linear transformations �휙 : X → X, a
phi-regret minimizer relative to Φ for the set X—abbreviated in the term “Φ-regret minimizer”—is
an object with the same semantics and operations of a regret minimizer, but whose quality metric
is its cumulative phi-regret relative to Φ (or simply phi-regret relative to Φ, or Φ-regret for short)

�푅�푇 ≔ max
�휙∗∈Φ

�푇∑
�푡=1

(
ℓ�푡 (�휙∗ (x�푡)) − ℓ�푡 (x�푡)

)
, (3)

instead of its cumulative regret. Once again, the goal for a phi-regret minimizer is to guarantee
that its phi-regret grows asymptotically sublinearly as time �푇 increases.

In the special case of the set of constant transformations Φconst
≔ {X ∋ x ↦→ x̂ : x̂ ∈ X}, the

definition of cumulative phi-regret (3) reduces to that of cumulative regret given in (2). So, a regret
minimizer is a special case of a phi-regret minimizer.
A general construction by Gordon et al. [19] gives a way to construct a Φ-regret minimizer for

X starting from any regret minimizer (in the sense of Definition 2.8) for the set of functions Φ.
Specifically, let RΦ be a regret minimizer for the set of transformations Φwhose cumulative regret
grows sublinearly, and assume that every �휙 ∈ Φ admits a fixed point x = �휙 (x). Then, a Φ-regret
minimizer R can be constructed starting from RΦ as follows:

• Each call to R .NextElement first calls NextElement on RΦ to obtain the next transforma-
tion �휙�푡 . Then, a fixed point x�푡 = �휙�푡 (x�푡) is returned.

• Each call to R .ObserveUtility(ℓ�푡) with linear utility function ℓ�푡 constructs the linear utility
function �퐿�푡 : �휙 ↦→ ℓ�푡 (�휙 (x�푡)), where x�푡 is the last-output strategy, and passes it to RΦ by
calling RΦ .ObserveUtility(�퐿�푡).

The proof of correctness of the above construction is deceptively simple, andwe recall it next. Since
RΦ outputs transformations �휙1, �휙2, . . . and receives utilities �휙 ↦→ ℓ1 (�휙 (x1)), �휙 ↦→ ℓ2(�휙 (x2)), . . . ,
its cumulative regret �푅�푇

Φ
is

�푅�푇
Φ
= max

�휙∗∈Φ

�푇∑
�푡=1

(
ℓ�푡 (�휙∗ (x�푡)) − ℓ�푡 (�휙�푡 (x�푡))

)
.

Now, since x�푡 is a fixed point of �휙�푡 , �휙�푡 (x�푡) = x�푡 , and therefore we can write

�푅�푇
Φ
= max

�휙∗∈Φ

�푇∑
�푡=1

(
ℓ�푡 (�휙∗ (x�푡)) − ℓ�푡 (x�푡)

)
, (4)

where the right-hand side is exactly the Φ-regret �푅�푇 cumulated by R, as defined in (3). So, because
the regret cumulated by RΦ grows sublinearly by hypothesis, then so does the Φ-regret cumulated
by R.

3 TRIGGER REGRET AND RELATIONSHIP WITH EFCE

In this section, we introduce the notion of trigger deviation function, building on an idea by Gordon
et al. [19, Section 3]. We also introduce a connected notion of trigger regret minimization, which is
an instance of phi-regret minimization as recalled in Section 2.4. The central result of this section,
Theorem 3.7, establishes a formal connection between EFCE and agents that minimize their trigger
regret, thereby extending and generalizing the classic connection between correlated equilibrium
and no-internal-regret in normal-form games [21] to the extensive-form game counterpart.

ArXiv preprint

14 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Definition 3.1 (Trigger deviation function). Let �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , and 0̂ ∈ Π

(�푖)
�푗 . We call “trigger

deviation function corresponding to trigger �̂휎 and continuation strategy 0̂”, any linear function �푓 :

R |Σ(�푖) | → R |Σ(�푖) | whose effect on deterministic sequence-form strategies is as follows:

• all strategies 0 ∈ Π
(�푖) that do not prescribe the sequence �̂휎 are left unmodified. In symbols,

�푓 (0) = 0 ∀ 0 ∈ Π
(�푖) : 0 [�̂휎] = 0; (5)

• all strategies 0 ∈ Π
(�푖) that prescribe sequence �̂휎 = (�푗 , �푎) are modified so that the behavior

at �푗 and all of its descendants is replaced with the behavior prescribed by the continuation
strategy 0̂ . In symbols,

�푓 (0) [�휎] =
{
0 [�휎] if �휎 � �푗

0̂ [�휎] if �휎 � �푗 ,
∀ �휎 ∈ Σ

(�푖),0 ∈ Π
(�푖) : 0 [�̂휎] = 1. (6)

At this stage, it is technically unclear whether a linear function that satisfies Definition 3.1 exists
for all valid choices of �̂휎 and 0̂ . We show that this is indeed the case, by explicitly exhibiting a linear
function, which we call the canonical trigger deviation function. We start with a definition.

Definition 3.2. Let �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ and ~ ∈ R |Σ(�푖)

�푗 |
≥0 . We denote with S

(�푖)
�̂휎→~

∈ R |Σ(�푖) |× |Σ(�푖) |
≥0 the

matrix whose entries are defined as

S
(�푖)
�̂휎→~

[�휎�푟 , �휎�푐] =



1 if �휎�푐 � �̂휎 and �휎�푟 = �휎�푐

~[�휎�푟] if �휎�푐 = �̂휎 and �휎�푟 � �푗

0 otherwise,

∀ �휎�푟 , �휎�푐 ∈ Σ
(�푖) . (7)

Furthermore, we denote with the symbol �휙 (�푖)
�̂휎→~

the linear map R |Σ(�푖) | ∋ x ↦→ S
(�푖)
�̂휎→~

x .

In the following, wewill focus on trigger deviation functions defined through the linearmapping
of Equation (7). We call such deviation functions canonical trigger deviation functions. For every
player �푖 ∈ [�푛], we define Ψ(�푖) to be the set of all canonical trigger deviation functions. Formally:

Definition 3.3. Let �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ and 0̂ ∈ Π

(�푖)
�푗 . The function �휙

(�푖)
�̂휎→0̂

is called the “canonical
trigger deviation function corresponding to trigger �̂휎 and continuation strategy 0̂”. Furthermore, the
set of all canonical trigger deviation functions is denoted with the symbol

Ψ
(�푖)
≔

{
�휙
(�푖)
�̂휎→0̂

: �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , 0̂ ∈ Π

(�푖)
�푗

}
.

Lemma 3.4. For any �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ and 0̂ ∈ Π

(�푖)
�푗 , the linear function �휙

(�푖)
�̂휎→0̂

as defined in

Definition 3.3 is a trigger deviation function in the sense of Definition 3.1.

Proof. The proof just amounts to a simple application of several definitions. Let 0 ∈ Π
(�푖) be

an arbitrary deterministic sequence-form strategy. By expanding the matrix-vector multiplication

S
(�푖)
�̂휎→0̂

0 using the definition (7), we obtain that for all �휎 ∈ Σ
(�푖)

(S (�푖)
�̂휎→0̂

0) [�휎] = 0 [�휎]1{�휎��̂휎 } + 0̂ [�휎]0 [�̂휎]1{�휎� �푗 } . (8)

There are only two possibilities:

• If 0 [�̂휎] = 0, then (8) simplifies to

(S (�푖)
�̂휎→0̂

0) [�휎] =
{
0 [�휎] if �휎 � �̂휎

0 otherwise.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 15

S�푎 S�푏 S�푐

Trigger sequence: 1 Trigger sequence: 2 Trigger sequence: 3
Continuation: 2, 7 Continuation: 1, 3, 5 Continuation: 4

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

©­­­­­­­­­­­­­­­­
«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

∅ 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

©­­­­­­­­­­­­­­­­
«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

∅ 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

©­­­­­­­­­­­­­­­­
«

ª®®®®®®®®®®®®®®®®
¬

∅
1

2

3

4

5

6

7

8

∅ 1 2 3 4 5 6 7 8

Fig. 3. Matrices defining different canonical trigger deviation functions (Definition 3.3) for the simple

extensive-form game of Figure 1. Entries highlighted in dark gray represent the entries of the matrix de-

fined in the second case of Equation (7). Let �̂휎 = (�푗, �푎) ∈ Σ
(1)
∗ be the trigger sequence of the trigger deviation

function. All indices (�휎�푟 , �휎�푐) such that �휎�푟 , �휎�푐 � �푗 are highlighted in light gray.

Since by case hypothesis the probability of the sequence of actions from the root of the game
tree down to �̂휎 is zero, then necessarily the probability of any longer sequence of actions

�휎 � �̂휎 must be zero as well, that is 0 [�휎] = 0 for all �휎 � �̂휎 . So, S (�푖)
�̂휎→0̂

0 = 0 and (5) holds.

• Conversely, assume 0 [�̂휎] = 1. This means that at information set �푗 ∈ J(�푖) action �푎 is selected
(with probability 1), and therefore 0 [�휎] = 0 for all �휎 = (�푗 , �푎′) : �푎′ ∈ �퐴 �푗 , �푎

′
≠ �푎. This means

that 0 [�휎]1{�휎��̂휎 } = 0 [�휎]1{�휎� �푗 } for all �휎 ∈ Σ
(�푖) . Substituting that equality into (8) gives

Equation (6), as we wanted to show. �

In the following example we show how linear mappings of canonical trigger deviation functions
operate. In particular, we show how they modify some deterministic sequence-form strategies on
a simple extensive-form game.

Example 3.5. We build on the small extensive-form game of Figure 1, and the sequence-form
strategies defined in Example 2.1, to provide some concrete intuition behind canonical trigger
deviation functions as defined in Definition 3.3.

• First, let us consider the trigger deviation function �휙�푎 ≔ �휙
(1)
1→0̂�푎

is such that the trigger
sequence is �̂휎 = (a, 1), and the continuation strategy 0̂�푎 is such that Player 1 plays ac-
tion 2 at information set a, and subsequently sequence 7 at information set d. The matrix
defining the corresponding linear map according to Definition 3.2 and Definition 3.3 is de-
picted in Figure 3 (Left), and we denote it by S�푎 . In order to understand how this linear
mapping modifies sequence-form strategy vectors we provide some examples using deter-
ministic sequence-form strategy vectors defined in Figure 2. First, we observe that any de-
terministic sequence-form strategy choosing action 1with probability 1 triggers a deviation
which follows the continuation strategy 0̂ . The deviation for those sequence-form strategies
results in a final deterministic sequence-form strategy equal to q27. For example, using some

ArXiv preprint

16 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

of the deterministic-sequence form strategies of Figure 2, we have the following:

S�푎q135 = S�푎q136 = S�푎q145 = q27 .

On the other hand, deterministic sequence-form strategies that do not select sequence 1 are
left unmodified by the linear mapping. For instance,

S�푎q28 = q28 and S�푎q27 = q27 .

• Second, we examine the trigger deviation function �휙�푏 ≔ �휙
(1)
2→0̂�푏

for trigger sequence �̂휎 =

(a, 2), where the continuation strategy 0̂�푏 is defined so that Player 1 plays action 1 at in-
formation set a, sequence 3 at information set b, and action 5 at information set c. The
corresponding linear mapping is denoted by S�푏 and is reported in Figure 3 (Center). As in
the previous case, all deterministic sequence-form strategy vectors which choose action 2 at
information set awith probability 1 are modified so that be strategy at a and its descendants
b,c,d matches the continuation strategy. For example, we have that

S�푏q27 = S�푏q28 = q135 .

Moreover, sequence-form strategies which do not trigger Player 1 on �̂휎 are left unchanged.
This is the case for the following strategy vectors:

S�푏q136 = q136 and S�푏q145 = q145 .

• As a final example, Figure 3 (Right) reports the deviation matrix S�푐 corresponding to a

trigger deviation function �휙�푐 ≔ �휙
(1)
3→0̂�푐

defined by trigger sequence �̂휎 = (b, 3) and con-
tinuation strategy 0̂�푐 selecting action 4 at information set b. For instance, we have that
S�푐q135 = S�푐q145, and S�푐q145 = q145.

We are now ready to define the concept of trigger regret minimization, which extends and gen-
eralizes the homonymous notion in the conference version of this paper [8], as well as the notion
of internal regret minimization in normal-form games.

Definition 3.6. For every �푖 ∈ [�푛], we call trigger regret minimizer for player �푖 any Ψ
(�푖) -regret

minimizer for the set of deterministic sequence-form strategies Π (�푖) .

The following theorem shows that if each player �푖 ∈ [�푛] in the game plays according to a Ψ(�푖)-
regret minimizer, then the empirical frequency of play approaches the set of EFCEs.

Theorem3.7. For each player �푖 ∈ [�푛], let 0 (�푖), 1, 0 (�푖), 2, . . . , 0 (�푖),�푇 ∈ Π
(�푖) be deterministic sequence-

form strategies whose cumulative Ψ(�푖)-regret with respect to the sequence of linear utility functions

ℓ (�푖), �푡 : Π (�푖) ∋ 0 (�푖) ↦→
∑
�푧∈�푍

�푢 (�푖) (�푧) �푝�푐 (�푧)
(∏
�푖′≠�푖

0 (�푖′), �푡 [�휎 (�푖′) (�푧)]
)
0 (�푖) [�휎 (�푖) (�푧)] (9)

is �푅 (�푖),�푇 . Then, the empirical frequency of play defined as the probability distribution - ∈ Δ
|Π | that

draws each joint profile (0 (1) , . . . ,0 (�푛)) ∈ Π with probability

- [(0 (1) , . . . , 0 (�푛))] ≔ 1

�푇

�푇∑
�푡=1

1{ (0 (1) , �푡 ,...,0 (�푛) , �푡)=(0 (1) ,...,0 (�푛)) }

is an �휖-EFCE, where �휖 ≔ 1
�푇
max�푖 ∈[�푛] �푅

(�푖),�푇 .

Proof. It is immediate to check that - is indeed a valid element of the |Π|-simplex. Furthermore,
the utility function ℓ (�푖), �푡 clearly satisfies the requirement of being independent on 0 (�푖), �푡 , for all �푖 ∈
[�푛]. We will show that - defines an �휖-EFCE by verifying that the definition holds (Definition 2.7).

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 17

Fix any player �푖 ∈ [�푛], trigger sequence �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , and continuation strategy 0̂ ∈ Π

(�푖)
�푗 .

Since by hypothesis the cumulative Ψ
(�푖)-regret is upper bounded by �푅 (�푖),�푇 , and �푅 (�푖),�푇 ≤ �푇�휖 by

definition of �휖 , we must have

�푇�휖 ≥
�푇∑
�푡=1

ℓ (�푖), �푡
(
�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡)
)
− ℓ (�푖), �푡

(
0 (�푖), �푡

)
.

By expanding the definition of the utility function, which was given in (9), the previous inequality
is equivalent to

�푇�휖 ≥
�푇∑
�푡=1

∑
�푧∈Z

�훼
(�푖), �푡
�푧 ·

(
�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)]
)
, (10)

where we used the symbol

�훼
(�푖), �푡
�푧 ≔ �푢 (�푖) (�푧) �푝�푐 (�푧)

(∏
�푖′≠�푖

0 (�푖′), �푡 [�휎 (�푖′) (�푧)]
)

to lighten the notation. Since �휙 (�푖)
�̂휎→0̂

is a trigger deviation function (Lemma 3.4), (5) and (6) apply,
and in particular it follows that

�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎] = 0 (�푖), �푡 [�휎]

for all �푡 = 1, . . . ,�푇 and �휎 � �푗 . So, the summation term in (10) is zero for all terminal states �푧 ∈ Z

such that �휎 (�푖) (�푧) � �푗 , and thus we can safely restrict the domain of the summation over terminal

states �푧 ∈ Z
(�푖)
�푗 ≔ {�푧 ∈ Z : �휎 (�푖) (�푧) � �푗 } only, obtaining

�푇�휖 ≥
�푇∑
�푡=1

∑
�푧∈Z(�푖)

�푗

�훼
(�푖), �푡
�푧 ·

(
�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)]
)
. (11)

We now study the term �휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] for a generic �푡 ∈ {1, . . . ,�푇 } and �푧 ∈ Z
(�푖)
�푗 , by splitting

into cases contingent on the value of 0 (�푖), �푡 [�̂휎] ∈ {0, 1}. If 0 (�푖), �푡 [�̂휎] = 0, then (5) applies, and
therefore

�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)] = 0.

If, on the contrary, 0 (�푖), �푡 [�̂휎] = 1, then (6) applies, and �휙 (�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] = 0̂ [�휎 (�푖) (�푧)], where
we used the fact that �휎 (�푖) (�푧) � �푗 by definition of �푧 ∈ Z

(�푖)
�푗 . So, at all �푡 = 1, . . . ,�푇 and for all �푧 ∈ Z

(�푖)
�푗 ,

it holds that

�휙
(�푖)
�̂휎→0̂

(0 (�푖), �푡) [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)] = 0 (�푖), �푡 [�̂휎]
(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)]

)
,

and thus (11) can be equivalently written as

�푇�휖 ≥
�푇∑
�푡=1

∑
�푧∈Z(�푖)

�푗

0 (�푖), �푡 [�̂휎] �훼 (�푖), �푡
�푧 ·

(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖), �푡 [�휎 (�푖) (�푧)]

)
. (12)

ArXiv preprint

18 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

We now make the crucial observation that time �푡 appears in �훼
(�푖), �푡
�푧 and (12) only as a superscript

in the strategies 0 (1), �푡 , . . . , 0 (�푛), �푡 , and nowhere else. Therefore, by introducing the functions

�훼
(�푖)
�푧 : Π ∋ (0 (1), . . . , 0 (�푛)) ↦→ �푢 (�푖) (�푧) �푝�푐 (�푧)

(∏
�푖′≠�푖

0 (�푖′) [�휎 (�푖′) (�푧)]
)
, and (13)

�푣
(�푖)
�̂휎→0̂

: Π ∋ 0 = (0 (1), . . . , 0 (�푛)) ↦→
∑

�푧∈Z(�푖)
�푗

0 (�푖) [�̂휎] �훼 (�푖)
�푧 (0) ·

(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖) [�휎 (�푖) (�푧)]

)
, (14)

we can rewrite (12) as

�푇�휖 ≥
�푇∑
�푡=1

�푣
(�푖)
�̂휎→0̂

(0 (1), �푡 , . . . ,0 (�푛), �푡) =
�푇∑
�푡=1

∑
0 ∈Π

1{ (0 (1) , �푡 ,...,0 (�푛) , �푡)=0 } · �푣
(�푖)
�̂휎→0̂

(0)

=

∑
0 ∈Π

(
�푇∑
�푡=1

1{ (0 (1) , �푡 ,...,0 (�푛) , �푡)=0 }

)
�푣
(�푖)
�̂휎→0̂

(0) = �푇
∑
0 ∈Π

- [0]�푣 (�푖)
�̂휎→0̂

(0), (15)

where we used the definition of - in the third equality. Dividing by�푇 in (15), we can further write

�휖 ≥
∑
0 ∈Π

- [0] �푣 (�푖)
�̂휎→0̂

(0). (16)

By expanding the definition of �푣 (�푖)
�̂휎→0̂

in (16),

�휖 ≥
∑

0=(0 (1) ,...,0 (�푛)) ∈Π

©­­«
- [0]

∑
�푧∈Z(�푖)

�푗

0 (�푖) [�̂휎] �훼 (�푖)
�푧 (0) ·

(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖) [�휎 (�푖) (�푧)]

)ª®®
¬

=

∑
�푧∈Z(�푖)

�푗

∑
0=(0 (1) ,...,0 (�푛)) ∈Π

- [0] 0 (�푖) [�̂휎] �훼 (�푖)
�푧 (0) ·

(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖) [�휎 (�푖) (�푧)]

)
. (17)

The right-hand side of (17) can be simplified further by noticing that, by definition of �훼 (�푖)
�푧 (0),

0 (�푖) [�̂휎]�훼 (�푖)
�푧 (0 (1) , . . . , 0 (�푛)) = �푢 (�푖) (�푧)�푝�푐 (�푧)0 (�푖) [�̂휎]

(∏
�푖′≠�푖

0 (�푖′) [�휎 (�푖′) (�푧)]
)

=

{
�푢 (�푖) (�푧)�푝�푐 (�푧) if 0 (�푖) [�̂휎] = 1,0 (�푖′) [�휎 (�푖′) (�푧)] = 1 ∀�푖 ′ ≠ �푖

0 otherwise.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 19

Substituting the above expression into (17), we obtain

�휖 ≥
∑

�푧∈Z(�푖)
�푗

�푢 (�푖) (�푧)�푝�푐 (�푧)

©­­­­­­­
«

∑
(0 (1) ,...,0 (�푛)) ∈Π

0
(�푖′) [�휎 (�푖′) (�푧)]=1 ∀�푖′≠�푖

0
(�푖) [�̂휎]=1

- [(0 (1) , . . . ,0 (�푛))] ·
(
0̂ [�휎 (�푖) (�푧)] − 0 (�푖) [�휎 (�푖) (�푧)]

)ª®®®®®®®¬

=

∑
�푧∈Z(�푖)

�푗

�푢 (�푖) (�푧)�푝�푐 (�푧)�푟 (�푖)-, �̂휎→0̂
(�푧) −

∑
�푧∈Z(�푖)

�푗

�푢 (�푖) (�푧)�푝�푐 (�푧)

©­­­­­­­
«

∑
(0 (1) ,...,0 (�푛)) ∈Π

0
(�푖′) [�휎 (�푖′) (�푧)]=1 ∀�푖′∈[�푛]

0
(�푖) [�̂휎]=1

- [(0 (1) , . . . , 0 (�푛))]

ª®®®®®®®
¬
,

where, in order to get the last equality, we used the definition of �푟 (�푖)
-, �̂휎→0̂

and we dropped the factor

0 (�푖) [�휎 (�푖) (�푧)] ∈ {0, 1} in the second summation by adding the condition 0 (�푖) [�휎 (�푖) (�푧)] = 1 to its

domain. Notice that, by definition of Z(�푖)
�푗 , the first summation above is exactly the term appearing

in the left-hand-side of the inequality in the definition of �휖-EFCE (Definition 2.7). Moreover, since
for any (0 (1) , . . . , 0 (�푛)) ∈ Π it holds that 0 (�푖) [�휎 (�푖) (�푧)] = 1 and 0 (�푖) [�̂휎] = 1 only for terminal

nodes �푧 ∈ Z
(�푖)
�푗 such that �̂휎 � �휎 (�푖) (�푧), we can restrict the domain of the second summation above

to �푧 ∈ Z : �휎 (�푖) (�푧) � �̂휎 and equivalently rewrite it as

∑
�푧∈Z

�휎 (�푖) (�푧) ��̂휎

�푢 (�푖) (�푧)�푝�푐 (�푧)
©­­­­«

∑
(0 (1) ,...,0 (�푛)) ∈Π

0
(�푖′) [�휎 (�푖′) (�푧)]=1 ∀�푖′∈[�푛]

- [(0 (1) , . . . , 0 (�푛))]
ª®®®®
¬
=

∑
�푧∈Z

�휎 (�푖) (�푧) ��̂휎

�푢 (�푖) (�푧)�푝�푐 (�푧)�푟- (�푧),

which is exactly the first term appearing in the right-hand-side of the inequality in the definition
of �휖-EFCE (Definition 2.7). Thus, we obtain that

�휖 ≥
∑
�푧∈Z

�휎 (�푖) (�푧) � �푗

�푢 (�푖) (�푧)�푝�푐 (�푧)�푟 (�푖)-, �̂휎→0̂
(�푧) −

∑
�푧∈Z

�휎 (�푖) (�푧) ��̂휎

�푢 (�푖) (�푧)�푝�푐 (�푧)�푟- (�푧),

for all �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ and 0̂ ∈ Π

(�푖)
�푗 , which is the definition of - being an �휖-EFCE. �

4 EFFICIENT NO-TRIGGER-REGRET ALGORITHM

Theorem 3.7 in Section 3 immediately implies that if all players �푖 ∈ [�푛] play according to the
strategies output by a Ψ(�푖)-regret minimizer for the set of deterministic sequence-form strategies
Π

(�푖) , their empirical frequency of play converges to an EFCE. Therefore, the existence of uncoupled
no-regret learning dynamics that converge to EFCE can be proved constructively by showing that
one such Ψ

(�푖) -regret minimizer can be constructed for each player �푖 ∈ [�푛]. More precisely, in this
section we seek to solve the following problem.

Problem 1. Given any player �푖 ∈ [�푛], construct a Ψ(�푖) -regret minimizer for the set of the player’s

deterministic sequence-form strategies Π (�푖) , such that:

• it is efficient: the NextElement and the ObserveUtility operations both run in polynomial

time in the number |Σ (�푖) | of sequences of the player; and

ArXiv preprint

20 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

• it guarantees low regret: after any �푇 observed linear utility functions and for any �훿 ∈ (0, 1),
with probability at least 1 − �훿 the cumulative Ψ(�푖) -regret is �푂 (

√
�푇 +

√
�푇 log(1/�훿)).

The central result of this section, Corollary 4.17, provides a solution to Problem 1.

4.1 Overview

Before delving into the details of the construction of our Ψ(�푖) -regret minimizer for the set of de-
terministic sequence-form strategies Π (�푖) of a generic player �푖 ∈ [�푛], we give an overview of the
main logical steps that we use to attack Problem 1.

• In Section 4.2 we show that one can soundly move the attention from the set of deterministic

strategies Π (�푖) to the set of mixed strategies Q (�푖)
= coΠ (�푖) . In particular, in the rest of the

section we will seek to construct a Ψ(�푖) -regret minimizer for the set Q (�푖) (as opposed to Π (�푖))
that guarantees sublinear regret in the worst case.

• In Section 4.3 we show that the convex hull coΨ(�푖) of the set of canonical trigger deviation
functions possesses a combinatorial structure that can be leveraged to construct an efficient
regret minimizer for it.

• Finally, in Section 4.4 we prove that given any�휙 ∈ coΨ(�푖) , there exists a fixed-point sequence-
form strategy q ∈ Q (�푖) such that �휙 (q) = q, and that such a fixed-point strategy can be found
in polynomial time in the number of sequences |Σ (�푖) | of Player �푖 .

Together, the last two steps enable us to apply the construction by Gordon et al. [19] described
in Section 2.4 to obtain an efficient (coΨ(�푖))-regret minimizer for the set of sequence-form strate-
gies Q (�푖) with worst-case sublinear regret guarantees. Since coΨ(�푖) ⊇ Ψ

(�푖) , that (coΨ(�푖))-regret
minimizer is also a Ψ(�푖)-regret minimizer, and the construction is complete.

4.2 From Deterministic to Mixed Strategies

Suppose that a regret minimizer for a generic discrete set X were sought, but only regret minimiz-
ers for the convex hull coX were known. It seems natural to wonder whether one could take any
regret minimizer for coX and convert it into a regret minimizer for X, by sampling the outputs
x̄�푡 of the former using an unbiased estimator x�푡 ∈ X, with E[x�푡] = x̄�푡 . It is a folkore result, justi-
fied by a concentration argument, that this is indeed the case (see, for instance, [9, page 192]). In
particular, in the case of our interest where X = Π

(�푖) , the following can be shown.

Lemma 4.1. Let �푖 ∈ [�푛] be any player, and R̄ (�푖) be any Ψ
(�푖) -regret minimizer for the set Q (�푖) of

mixed sequence-form strategies, guaranteeing �푅 (�푖),�푇
= �푂 (

√
�푇) regret in the worst case upon observing

�푇 linear utility functions. Consider the algorithm R (�푖) whose NextElement and ObserveUtility

operations are defined as follows at all times �푡 .

• R (�푖) .NextElement calls R̄ (�푖) .NextElement, thereby obtaining a mixed sequence-form strat-

egy q (�푖), �푡 ∈ Q (�푖) . Then, an unbiased sampling scheme (such as the natural sampling scheme de-

scribed in Section 2.2) is used to sample a random deterministic sequence-form strategy 0 (�푖), �푡 ∈
Π

(�푖) in linear time in the number of sequences |Σ (�푖) |. Finally, 0 (�푖), �푡 is returned to the caller;
• R (�푖) .ObserveUtility(ℓ�푡) calls R̄ (�푖) .ObserveUtility(ℓ�푡) with the same utility function ℓ�푡 .

Furthermore, assume that the observed utility functions ℓ1, ℓ2, . . . have range upper bounded by a

constant �퐷 , that is, max
q,q′∈Q (�푖) {ℓ�푡 (q) − ℓ�푡 (q′)} ≤ �퐷 for all �푡 = 1, . . . ,�푇 . Then, R (�푖) is a Ψ(�푖) -regret

minimizer for the set of deterministic sequence-form strategies Π (�푖) , whose cumulative Ψ
(�푖) -regret

satisfies, at all times �푇 and for all �훿 ∈ (0, 1), the inequality

P

[
�푅 (�푖),�푇 ≤ �푅 (�푖),�푇 + �퐷

√
8�푇 log(1/�훿)

]
≥ 1 − �훿.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 21

Proof. Let ℓ1, ℓ2, . . . be the sequence of linear utility functions observed by R (�푖) , and fix any
�휙 ∈ Ψ

(�푖) . We introduce the discrete-time stochastic process

�푤�푡
≔ ℓ�푡 (�휙 (0 (�푖), �푡)) − ℓ�푡 (0 (�푖), �푡) − ℓ�푡 (�휙 (q (�푖), �푡)) + ℓ�푡 (q (�푖), �푡). (18)

Since i) ℓ�푡 and �휙 are both linear functions, ii) ℓ�푡 is independent on 0 (�푖), �푡 , and iii) 0 (�푖), �푡 is an
unbiased estimator of q (�푖), �푡 at all times �푡 by hypothesis, then�푤�푡 is a martingale difference sequence.
Furthermore, each increment |�푤�푡 | can be easily upper bounded, at all times �푡 , according to

|�푤�푡 | ≤ |ℓ�푡 (�휙 (0 (�푖), �푡)) − ℓ�푡 (0 (�푖), �푡) | + |ℓ�푡 (�휙 (q (�푖), �푡)) − ℓ�푡 (q (�푖), �푡) | ≤ 2�퐷, (19)

where the second inequality follows from the fact that�휙 maps sequence-form strategies to sequence-
form strategies, as well as the hypothesis that ℓ�푡 has range upper bounded by �퐷 .
For any�푇 , let �푅 (�푖),�푇 (�휙) and �푅 (�푖),�푇 (�휙) denote the regret cumulated by R (�푖) and R̄ (�푖) , respectively,

compared to always picking transformation �휙 ; in symbols

�푅 (�푖),�푇 (�휙) ≔
�푇∑
�푡=1

ℓ�푡 (�휙 (0 (�푖), �푡)) − ℓ�푡 (0 (�푖), �푡), �푅 (�푖),�푇 (�휙) ≔
�푇∑
�푡=1

ℓ�푡 (�휙 (q (�푖), �푡)) − ℓ�푡 (q (�푖), �푡).

It is immediate to see from definition (18) of�푤�푡 , that

�푇∑
�푡=1

�푤�푡
= �푅 (�푖),�푇 (�휙) − �푅 (�푖),�푇 (�휙) ∀�푇 ∈ {1, 2, . . . }. (20)

Hence, using the Azuma-Hoeffding concentration inequality5, it follows that, for all �푇 ,

P


�푅 (�푖),�푇 (�휙) − �푅 (�푖),�푇 (�휙) ≤ �퐷

√
8�푇 log

(
1

�훿

)
= P


�푇∑
�푡=1

�푤�푡 ≤ �퐷

√
2�푇 log

(
1

�훿

)
≥ 1 − exp



− 2∑�푇

�푡=1 |�푤�푡 |2
©­
«
�퐷

√
8�푇 log

(
1

�훿

)ª®¬
2


≥ 1 − exp



− 2

(4�퐷)2�푇
©­
«
�퐷

√
8�푇 log

(
1

�훿

)ª®¬
2

= 1 − �훿, (21)

where we used (20) in the equality and (19) in the second inequality. Since the above analysis holds
for any choice of �휙 ∈ Ψ

(�푖) , it holds in particular for any �휙∗ that maximizes �푅 (�푖),�푇 (�휙), yielding

P


�푅 (�푖),�푇 ≤ �푅 (�푖),�푇 + �퐷

√
8�푇 log

(
1

�훿

)
= P


�푅 (�푖),�푇 (�휙∗) ≤ �푅 (�푖),�푇 + �퐷

√
8�푇 log

(
1

�훿

)
≥ P


�푅 (�푖),�푇 (�휙∗) ≤ �푅 (�푖),�푇 (�휙∗) + �퐷

√
8�푇 log

(
1

�훿

)
≥ 1 − �훿,

where the first inequality follows from the fact that �푅 (�푖),�푇
= max�휙 ∈Ψ (�푖) �푅 (�푖),�푇 (�휙) ≥ �푅 (�푖),�푇 (�휙∗) and

the second inequality follows from (21). �

5We recall the classic Azuma-Hoeffding inequality [2, 24] for martingale difference sequences (e.g., [32, Theorem 3.14]).

Lemma 4.2 (Azuma-Hoeffding ineqality). Let �푌1, . . . , �푌�푛 be a martingale difference sequence with �푎�푘 ≤ �푌�푘 ≤ �푏�푘 for

each �푘 , for suitable constants �푎�푘 , �푏�푘 . Then for any �휏 ≥ 0, P[∑�푌�푘 ≤ �휏] ≥ 1 − �푒−2�휏
2/∑(�푏�푘−�푎�푘)2 .

ArXiv preprint

22 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Lemma 4.1 immediately implies that in order to solve Problem 1 it is enough to solve the follow-
ing problem.

Problem 2. Given any player �푖 ∈ [�푛], construct a Ψ
(�푖) -regret minimizer for the set of mixed

sequence-form strategies Q (�푖) such that:

• it is efficient: both the NextElement and the ObserveUtility operations can be implemented

in polynomial time in |Σ (�푖) |; and
• it guarantees low regret: after any �푇 observed utilities, the cumulative Ψ

(�푖)-regret is upper
bounded as �푂 (

√
�푇).

The remainder of this section gives an algorithm that solves Problem 2 and, thus, indirectly also
Problem 1.

4.3 Regret Minimizer for the Convex Hull of the Set of Trigger Deviation Functions

In this subsection we begin the construction of a phi-regret minimizer relative to the convex hull
coΨ(�푖) of the set of trigger deviation functions Ψ(�푖) , for the set Q (�푖) . Since coΨ(�푖) ⊇ Ψ

(�푖) , any such
(coΨ(�푖))-regret minimizer is trivially also a Ψ(�푖) -regret minimizer for Q (�푖) .
In order to obtain our (coΨ(�푖))-regret minimizer, we will leverage the general construction due

to Gordon et al. [19] that we recalled at the end of Section 2.4. In our particular case, that framework
reduces to showing the following:

(1) existence of a regret minimizer for the set of deviations coΨ(�푖) ; and
(2) existence of a fixed point q = �휙 (q) for any �휙 ∈ coΨ(�푖) .

In this subsection we will focus on point (1), while in the next subsection we will focus on point
(2). Specifically, the central result of this subsection, Theorem 4.6, will constructively establish the
existence of an efficient regret minimizer R̃ (�푖) for the set coΨ(�푖) .
The starting point of our approach is the observation that, because the convex hull operation is

associative, coΨ(�푖)
= co{�휙 (�푖)

�̂휎→0̂
: �̂휎 = (�푗 , �푎) ∈ Σ

(�푖)
∗ , 0̂ ∈ Π

(�푖)
�푗 } can be evaluated in two stages: first,

for each sequence �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ one can define the set

Ψ̄
(�푖)
�̂휎
≔ co

{
�휙
(�푖)
�̂휎→0̂

: 0̂ ∈ Π
(�푖)
�푗

}
;

and, then, one can take the convex hull of all Ψ̄(�푖)
�̂휎

, that is,

coΨ(�푖)
= co

{
Ψ̄

(�푖)
�̂휎

: �̂휎 ∈ Σ
(�푖)
∗

}
. (22)

Our construction of R̃ (�푖) will follow a similar structure. First, for each �̂휎 ∈ Σ
(�푖)
∗ we will construct

a regret minimizer R̃ (�푖)
�̂휎

for the set of deviations Ψ̄(�푖)
�̂휎

(Section 4.3.1). Then, we will combine all the

regret minimizers R̃ (�푖)
�̂휎

into a composite regret minimizer R̃ (�푖) for coΨ(�푖) (Section 4.3.2).

4.3.1 Regret Minimizer for Ψ̄
(�푖)
�̂휎

. Fix any �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ . As we will show, a regret minimizer

for the set Ψ̄(�푖)
�̂휎

can be constructed starting from any regret minimizer for the set Q (�푖)
�푗 . The crucial

insight lies in the observation that the mapping

ℎ
(�푖)
�̂휎

: R
|Σ(�푖)

�푗 | ∋ ~ ↦→ �휙
(�푖)
�̂휎→~

is affine, since the entries in S
(�푖)
�̂휎→~

are defined using only constants and linear combinations of

entries in ~ (Definition 3.2). Hence, using the properties of affine functions, we can write

Ψ̄
(�푖)
�̂휎

= co
{
�휙
(�푖)
�̂휎→0̂

: 0̂ ∈ Π
(�푖)
�푗

}
= coℎ (�푖)

�̂휎
(Π (�푖)

�푗) = ℎ
(�푖)
�̂휎

(coΠ (�푖)
�푗) = ℎ

(�푖)
�̂휎

(Q (�푖)
�푗),

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 23

which ultimately informs the following characterization of the set Ψ̄(�푖)
�̂휎

.

Lemma 4.3. For all sequences �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , Ψ̄

(�푖)
�̂휎

is the image of Q (�푖)
�푗 under the affine mapping

ℎ
(�푖)
�̂휎
. In symbols,

Ψ̄
(�푖)
�̂휎

=

{
�휙
(�푖)
�̂휎→q�̂휎

: q�̂휎 ∈ Q (�푖)
�푗

}
.

As a consequence of Lemma 4.3, given any �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , all transformations �휙 ∈ Ψ̄

(�푖)
�̂휎

are

of the form �휙 = �휙
(�푖)
�̂휎→q�̂휎

for some q�̂휎 ∈ Q (�푖)
�푗 . Thus, the cumulative regret incurred by a generic se-

quence of transformations �휙1
= �휙

(�푖)
�̂휎→q

1
�̂휎

, . . . , �휙�푇 = �휙
(�푖)
�̂휎→q

�푇
�̂휎

against linear utility functions �퐿1, . . . , �퐿�푇

can be written as

max
�휙∗∈Ψ̄ (�푖)

�̂휎

�푇∑
�푡=1

�퐿�푡 (�휙∗) − �퐿�푡 (�휙�푡) = max
q̂∗∈Q (�푖)

�푗

�푇∑
�푡=1

�퐿�푡 (�휙 (�푖)
�̂휎→q̂∗) − �퐿�푡 (�휙 (�푖)

�̂휎→q
�푡
�̂휎

)

= max
q̂∗∈Q (�푖)

�푗

�푇∑
�푡=1

(�퐿�푡 ◦ ℎ (�푖)
�̂휎
) (q̂∗) − (�퐿�푡 ◦ ℎ (�푖)

�̂휎
) (q�푡�̂휎). (23)

Since �퐿�푡 is linear and ℎ (�푖)
�̂휎

is affine, their composition �퐿�푡 ◦ ℎ (�푖)
�̂휎

is affine, and therefore the shifted
function

�푔
(�푖), �푡
�̂휎

: R |Σ(�푖)
�푗 | ∋ x ↦→ �퐿�푡 (ℎ (�푖)

�̂휎
(x)) − �퐿�푡 (ℎ (�푖)

�̂휎
(0))

is linear.6 Furthermore, from (23) it follows that

max
�휙∗∈Ψ̄ (�푖)

�̂휎

�푇∑
�푡=1

�퐿�푡 (�휙∗) − �퐿�푡 (�휙 (�푖)
�̂휎→q

�푡
�̂휎

) = max
q̂∗∈Q (�푖)

�푗

�푇∑
�푡=1

�푔
(�푖), �푡
�̂휎

(q̂∗) − �푔
(�푖), �푡
�̂휎

(q�푡�̂휎). (24)

Equation (24) suggests that if the continuation strategies q�푡
�̂휎
∈ Q (�푖)

�푗 are picked by a regret mini-

mizer R̃ (�푖)
Q,�̂휎 that observes the linear utility functions �푔 (�푖), �푡

�̂휎
at all times �푡 , the regret cumulated with

respect to utility functions �퐿�푡 by the corresponding elements �휙 (�푖)
�̂휎→q

�푡
�̂휎

grows sublinearly. We make

that construction explicit in Algorithm 1. Its formal guarantees are stated in Proposition 4.4.

Algorithm 1 can be instantiated with any regret minimizer R̃ (�푖)
Q, �̂휎 for the set of sequence-form

strategies Q (�푖)
�푗 . The following proposition formalizes the cumulative regret guarantee when R̃ (�푖)

Q, �̂휎
is set to the CFR algorithm [47], which so far has arguably been the most widely used regret
minimizer for sequence-form strategy spaces.

Proposition 4.4. Let �푖 ∈ [�푛] be any player, and �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ be any trigger sequence, and

consider the regret minimizer R̃ (�푖)
�̂휎

(Algorithm 1), where R̃Q, �̂휎 is set to be the CFR regret minimizer [47].

Upon observing a sequence of linear utility functions �퐿1, . . . , �퐿�푇 : coΨ(�푖) → R, the regret cumulated

by the elements �휙1
= �휙

(�푖)
�̂휎→q

1
�̂휎

, . . . , �휙�푇 = �휙
(�푖)
�̂휎→q

�푇
�̂휎

output by R̃ (�푖)
�̂휎

satisfies

�푅�푇 = max
�휙∗∈Ψ̄ (�푖)

�̂휎

�푇∑
�푡=1

�퐿�푡 (�휙∗) − �퐿�푡 (�휙�푡) ≤ �퐷 |Σ (�푖)
�푗 |

√
�푇 ,

6We shift �퐿�푡 ◦ℎ (�푖)
�̂휎

purely for technical reasons. We do it so that �푔 (�푖), �푡 is a linear utility function, and thus it can be passed

in as feedback to a regret minimizer.

ArXiv preprint

24 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Algorithm 1: Regret minimizer R̃ (�푖)
�̂휎

for the set Ψ̄(�푖)
�̂휎
≔ {�휙 (�푖)

�̂휎→q�̂휎
: q�̂휎 ∈ Q (�푖)

�푗 }
Data: • �푖 ∈ [�푛] player

• �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ trigger sequence

• R̃ (�푖)
Q, �̂휎 regret minimizer for set Q (�푖)

�푗 (e.g., the CFR algorithm [47])

1 function NextElement()

2 q�푡
�̂휎
← R̃ (�푖)

Q, �̂휎 .NextElement()
3 return �휙

(�푖)
�̂휎→q

�푡
�̂휎

, represented in memory implicitly through the vector q�푡
�̂휎

4 function ObserveUtility(�퐿�푡)

5 �푔
(�푖), �푡
�̂휎

← linear function R |Σ(�푖)
�푗 | ∋ x ↦→ �퐿�푡 (ℎ (�푖)

�̂휎
(x)) − �퐿�푡 (ℎ (�푖)

�̂휎
(0))

6 R̃ (�푖)
Q, �̂휎 .ObserveUtility(�푔

(�푖), �푡
�̂휎

)

where �퐷 is the maximum range of �퐿1, . . . , �퐿�푡 , that is, any constant such that max
�휙,�휙 ′∈Ψ̄ (�푖)

�̂휎

{�퐿�푡 (�휙) −
�퐿�푡 (�휙 ′)} ≤ �퐷 for all �푡 = 1, . . . ,�푇 . Furthermore, the NextElement and the ObserveUtility operations

run in�푂 (|Σ (�푖) |) time.

Proof. The regret cumulated by R̃ (�푖)
�̂휎

upon observing linear utility functions �퐿1, . . . , �퐿�푡 equals

the regret cumulated by the CFR algorithm upon observing linear utility functions �푔 (�푖), �푡
�̂휎

: R |Σ(�푖)
�푗 | ∋

x ↦→ �퐿�푡 (ℎ (�푖)
�̂휎

(x)) − �퐿�푡 (ℎ (�푖)
�̂휎

(0)), as shown in (24). Furthermore, the range of �푔 (�푖), �푡
�̂휎

satisfies the
inequality

max
q, q′∈Q (�푖)

�푗

�푔
(�푖), �푡
�̂휎

(q) − �푔
(�푖), �푡
�̂휎

(q′) = max
q,q′∈Q (�푖)

�푗

�퐿�푡 (ℎ (�푖)
�̂휎

(q)) − �퐿�푡 (ℎ (�푖)
�̂휎

(q′))

= max
�휙,�휙 ′∈Ψ̄ (�푖)

�̂휎

�퐿�푡 (�휙) − �퐿�푡 (�휙 ′) ≤ �퐷.

So, applying the regret bound of the CFR algorithm (Theorems 3 and 4 of Zinkevich et al. [47]),

�푅�푇 ≤ �퐷

(∑
�푗′� �푗

√
|A(�푗 ′) |

)
√
�푇 ≤ �퐷

(∑
�푗′� �푗

|A(�푗 ′) |
)
√
�푇 = �퐷 |Σ (�푖)

�푗 |
√
�푇 ,

completing the proof of the regret bound.
The complexity analysis of the NextElement operation follows trivially from the fact that

CFR’s NextElement operation runs in linear time in |Σ (�푖)
�푗 |. So, we focus on the complexity of

the ObserveUtility operation. Fix any time �푡 , and let ��푡
≔ 〈�퐿�푡 〉 be the canonical representation

of the linear utility function �퐿�푡 (Section 2.1). Since the canonical representation of ℎ (�푖)
�̂휎

(x) is the

matrix S (�푖)
�̂휎→x

for all x ∈ R |Σ(�푖)
�푗 |

≥0 , using (1) we obtain

�퐿�푡 (ℎ (�푖)
�̂휎

(x)) − �퐿�푡 (ℎ (�푖)
�̂휎

(0)) =
∑

�휎�푟 ,�휎�푐 ∈Σ(�푖)
�푗

�
�푡 [�휎�푟 , �휎�푐]

(
S

(�푖)
�̂휎→x

[�휎�푟 , �휎�푐] −S
(�푖)
�̂휎→0

[�휎�푟 , �휎�푐]
)

=

∑
�휎�푟 ≥ �푗

�
�푡 [�휎�푟 , �̂휎] x [�휎�푟],

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 25

where the second equality follows from expanding the definitions of S (�푖)
�̂휎→x

[�휎�푟 , �휎�푐] and S
(�푖)
�̂휎→0

given in (7). So, the canonical representation 〈�푔 (�푖), �푡
�̂휎

〉 of �푔 (�푖), �푡
�̂휎

is the vector (��푡 [�휎�푟 , �̂휎])�휎�푟 ∈Σ(�푖)
�푗

, which

can be clearly computed and stored in memory in �푂 (|Σ (�푖)
�푗 |) time. Using the fact that CFR’s Ob-

serveUtility operation runs in linear time in |Σ (�푖)
�푗 |, the complexity bound of the statement fol-

lows. �

4.3.2 Regret Minimizer for coΨ(�푖) . Recently, Farina et al. [13] showed that a regret minimizer for
a composite set of the form co{X1, . . . ,X�푚} can be constructed by combining any individual regret
minimizers forX1, . . . ,X�푚 through a construction—called a regret circuit—which we describe next.

Proposition 4.5 (Farina et al. [13], Section 4.37). Let X1, . . . ,X�푚 be a finite collection of sets,
and let R1, . . . ,R�푚 be any regret minimizers for them. Furthermore, let RΔ be any regret minimizer
for the �푚-simplex Δ

�푚
≔ {(�휆1, . . . , �휆�푚) ∈ R�푚≥0,

∑
�푘 �휆�퐾 = 1}. A regret minimizer Rco for the set

co{X1, . . . ,X�푚} can be constructed starting from R1, . . . ,R�푚 and RΔ as follows.

• Rco.NextElement calls NextElement on each of the regret minimizers R1, . . . ,R�푚 , obtaining
elements x�푡1, . . . ,x

�푡
�푚 . Then, it calls the NextElement operation on RΔ, obtaining an element of

the simplex ,�푡
= (�휆�푡1, . . . , �휆�푡�푚). Finally, it returns the element

�휆�푡1x
�푡
1 + · · · + �휆�푡�푚x

�푡
�푚 ∈ co{X1, . . . ,X�푚}.

• Rco.ObserveUtility(�퐿�푡) forwards the linear utility function �퐿�푡 to each of the regret minimizers
R1, . . . ,R�푚 . Then, it calls the ObserveUtility operation on Rco with the linear utility function
(�휆1, . . . , �휆�푚) ↦→ �퐿�푡 (x�푡1)�휆1 + · · · + �퐿�푡 (x�푡�푚)�휆�푚 .

In doing so, the regret �푅�푇co cumulated by Rco upon observing any �푇 linear utility functions relates to
the regrets �푅�푇1 , . . . , �푅

�푇
�푚, �푅

�푇
Δ
cumulated by R1, . . . ,R�푚,RΔ, respectively, according to the inequality

�푅�푇co ≤ �푅�푇
Δ
+max{�푅�푇1 , . . . , �푅�푇�푚}. (25)

We apply the construction described in Proposition 4.5 to obtain our regret minimizer R (�푖) for

the set coΨ(�푖)
= co{Ψ̄(�푖)

�̂휎
: �̂휎 ∈ Σ

(�푖)} starting from the regret minimizers R̃ (�푖)
�̂휎

(Algorithm 1), one for

each sequence �̂휎 ∈ Σ
(�푖)
∗ , as well as any regret minimizer R (�푖)

Δ
for the simplex Δ |Σ(�푖)

∗ | . Pseudocode is
given in Algorithm 2.
Combining Proposition 4.5 and Proposition 4.4, we obtain the following result.

Theorem 4.6. Consider the regret minimizer R̃ (�푖) (Algorithm 2), where R (�푖)
Δ

is set to the regret

matching algorithm, and R̃ (�푖)
�̂휎

is instantiated as described in Proposition 4.4. Upon observing a se-

quence of linear utility functions �퐿1, . . . , �퐿�푇 : coΨ(�푖) → R, the regret cumulated by R̃ (�푖) satisfies

�푅�푇 = max
�휙∗∈coΨ (�푖)

�푇∑
�푡=1

�퐿�푡 (�휙∗) − �퐿�푡 (�휙�푡) ≤ 2�퐷 |Σ (�푖) |
√
�푇 ,

where �퐷 is the maximum range of �퐿1, . . . , �퐿�푡 , that is, any constant such that max�휙,�휙 ′∈coΨ (�푖) {�퐿�푡 (�휙) −
�퐿�푡 (�휙 ′)} ≤ �퐷 for all �푡 = 1, . . . ,�푇 . Furthermore, the NextElement and the ObserveUtility operations

run in�푂 (|Σ (�푖) |2) time.

7Technically, Farina et al. [13] only prove the bound (25) for the case�푚 = 2. However, as mentioned by the authors, the
extension to generic�푚 ∈ N>0 is direct.

ArXiv preprint

26 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Algorithm 2: Regret minimizer R̃ (�푖) for the set coΨ(�푖)
= co{Ψ̄(�푖)

�̂휎
: �̂휎 ∈ Σ

(�푖)}
Data: • �푖 ∈ [�푛] player

• R̃ (�푖)
�̂휎

(one for each �̂휎 ∈ Σ
(�푖)
∗) regret minimizer for Ψ̄(�푖)

�̂휎
as defined in Algorithm 1

• R (�푖)
Δ

regret minimizer for Δ |Σ(�푖)
∗ | (e.g., regret matching [21])

1 function NextElement()

2 ,�푡 ← R̃ (�푖)
Δ
.NextElement()

3 for �̂휎 ∈ Σ
(�푖)
∗ do

4 �휙
(�푖)
�̂휎→q

�푡
�̂휎

← R̃ (�푖)
�̂휎
.NextElement()

5 return
∑

�̂휎 ∈Σ(�푖)
∗
,�푡 [�̂휎] �휙 (�푖)

�̂휎→q
�푡
�̂휎

, represented in memory implicitly as list

{(,�푡 [�̂휎], q�푡
�̂휎
)}

�̂휎 ∈Σ(�푖)
∗

6 function ObserveUtility(�퐿�푡)

7 for �̂휎 ∈ Σ
(�푖)
∗ do

8 R̃ (�푖)
�̂휎
.ObserveUtility(�퐿�푡)

9 ℓ�푡
�휆
← linear utility function , ↦→ ∑

�̂휎 ∈Σ(�푖)
∗
, [�̂휎] �퐿�푡 (�휙 (�푖)

�̂휎→q
�푡
�̂휎

)

10 R̃ (�푖)
Δ
.ObserveUtility(ℓ�푡

�휆
)

Proof. At all �푡 , the range of the linear utility function , ↦→ ∑
�̂휎 ∈Σ(�푖)

∗
, [�̂휎] �퐿�푡 (�휙 (�푖)

�̂휎→q
�푡
�̂휎

) is upper
bounded by �퐷 . Hence, from the known regret bound of the regret matching algorithm, the regret

cumulated by R (�푖)
Δ

after�푇 iterations is upper bound as

�푅�푇
Δ
≤ �퐷

√
|Σ (�푖) |

√
�푇 ≤ �퐷 |Σ (�푖) |

√
�푇 .

On the other hand, the regret bound in Proposition 4.4 shows that, for all �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ , the

regret �푅�푇
�̂휎
cumulated by R̃ (�푖)

�̂휎
is upper bounded as �푅�푇

�̂휎
≤ �퐷 |Σ (�푖)

�푗 |
√
�푇 . So, using (25) together with the

fact that |Σ (�푖)
�푗 | ≤ |Σ (�푖) | for all �푗 ∈ J(�푖) , yields the regret bound in the statement.

The complexity analysis of NextElement is completely straightforward. So, we focus on the
complexity of ObserveLoss. There, the only operation whose analysis is not immediately obvious

is the construction of the linear utility function ℓ�푡
�휆
: , ↦→ ∑

�̂휎 ∈Σ(�푖)
∗
, [�̂휎] �퐿�푡 (�휙 (�푖)

�̂휎→q
�푡
�̂휎

), where it is neces-

sary to check that its canonical representation (Section 2.1), given by the vector
(
�퐿�푡 (�휙 (�푖)

�̂휎→q
�푡
�̂휎

)
)
�̂휎 ∈Σ(�푖)

∗
,

can be computed in �푂 (|Σ (�푖) |2) time. Fix any �̂휎 ∈ Σ
(�푖)
∗ . The canonical representation of �휙 (�푖)

�̂휎→q
�푡
�̂휎

is

S
(�푖)
�̂휎→q

�푡
�̂휎

, which is a matrixwith�푂 (|Σ (�푖) |) nonzero entries. So, using (1), the evaluation of �퐿�푡 (�휙 (�푖)
�̂휎→q

�푡
�̂휎

)

via the canonical representations of �퐿�푡 (given as input) and �휙 (�푖)
�̂휎→q

�푡
�̂휎

takes�푂 (|Σ (�푖) |) time. So, the rep-

resentation of ℓ�휆 can be computed in�푂 (|Σ (�푖) |2) time, confirming the analysis in the statement. �

4.4 Computation of the Next Strategy

In this subsection we complete the construction of our (coΨ(�푖))-regret minimizer for Q (�푖) (Prob-
lem 2) started in Section 4.3, by showing that every transformation�휙 ∈ coΨ(�푖) admits a fixed point

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 27

Q (�푖) ∋ q = �휙 (q), and that such a fixed point can be computed in time quadratic in the number of
sequences Σ (�푖) of Player �푖 .
As a key step in our algorithm, we will use the following well-known result about stationary

distributions of stochastic matrices.

Lemma 4.7. Let S ∈ S�푚 be a stochastic matrix. Then, S admits a fixed point Δ�푚 ∋ x = Sx .
Furthermore, such a fixed point can be computed in polynomial time in�푚.

Several algorithms are known for computing fixed points of stochastic matrices (see, e.g., [37]
for a comparison of eight different methods). Since the particular choice of method is irrelevant,
in this article we will make the following assumption.

Assumption 1. Given any�푚 ∈ N>0, we assume access to an oracle for computing a fixed point of
any�푚 ×�푚 stochastic matrix S . Furthermore, we assume that the oracle requires at most �푂 (FP(�푚))
time in the worst case to compute any such fixed point.

Our algorithm for computing the fixed point requires that the transformation �휙 ∈ coΦ be ex-

pressed as a convex combination of elements from the sets {Ψ̄(�푖)
�̂휎

}
�̂휎 ∈Σ(�푖)

∗
, that is, an expression of

the form

�휙 =

∑
�̂휎 ∈Σ(�푖)

∗

�휆�̂휎 �휙
(�푖)
�̂휎→q�̂휎

, where
∑

�̂휎 ∈Σ(�푖)
∗

�휆�̂휎 = 1, and �휆�̂휎 ≥ 0, q�̂휎 ∈ Q (�푖)
�푗 ∀ �̂휎 = (�푗 , �푎) ∈ Σ

(�푖)
∗ , (26)

in accordance with the characterization of coΨ(�푖) established in Equation (22), and Lemma 4.3.
Note that our regret minimizer R̃ (�푖) for the set coΨ(�푖) (Algorithm 2) already outputs transforma-
tions �휙 expressed in the form above. Our algorithm operates incrementally, constructing a fixed
point strategy q for �휙 information set by information set, in a top down fashion. To formalize this
notion of top-down construction, we will make use of the two following definitions.

Definition 4.8. Let �푖 ∈ [�푛] be a player, and �퐽 ⊆ J(�푖) be a subset of that player’s information sets.
We say that �퐽 is a trunk of J(�푖) if, for every �푗 ∈ �퐽 , all predecessors of �푗 (that is, all �푗 ′ ∈ J(�푖) , �푗 ′ ≺ �푗)
are also in �퐽 .

Example 4.9. In the small game of Figure 1 (Left), the sets ∅, {a}, {a, b}, {a, c}, {a, d}, {a, b, d},
{a, c,d}, and {a, b, c d} = J(1) are all possible valid trunks for Player 1. Contrarily, set �퐽 = {b} is
not a trunk for Player 1, because a ≺ b and yet a ∉ �퐽 .

Definition 4.10. Let �푖 ∈ [�푛] be a player, �퐽 ⊆ J(�푖) be a trunk of J(�푖) (Definition 4.8), and�휙 ∈ coΨ(�푖) .

We say that a vector x ∈ R |Σ(�푖) |
≥0 is a �퐽 -partial fixed point of �휙 if it satisfies the sequence-form

constraints at all �푗 ∈ �퐽 , that is,

x [∅] = 1, x [�휎 (�푖) (�푗)] =
∑

�푎∈A(�푗)
x [(�푗 , �푎)] ∀ �푗 ∈ �퐽 , (27)

and furthermore

�휙 (x) [∅] = x [∅] = 1, �휙 (x) [(�푗 , �푎)] = x [(�푗 , �푎)] ∀ �푗 ∈ �퐽 , �푎 ∈ A(�푗). (28)

It follows from Definition 4.10 that a J(�푖)-partial fixed point of �휙 is a vector q ∈ Q (�푖) such that
q = �휙 (q). The core insight of our algorithm lies in the fact that a �퐽 -partial fixed point can be
cheaply promoted to be a (�퐽 ∪ { �푗∗})-partial fixed point where �푗∗ ∈ J(�푖) \ �퐽 is any information set
whose predecessors are all in �퐽 . Algorithm 3 below gives an implementation of such a promotion:
Extend(�휙, �퐽 , �푗∗, x) starts with a �퐽 -partial fixed point x of �휙 , and modifies all entries x [(�푗∗, �푎)],
�푎 ∈ A(�푗∗), so that x becomes a (�퐽 ∪ { �푗∗})-partial fixed point. Therefore, at a conceptual level, one

ArXiv preprint

28 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

can repeatedly invoke Extend, growing the trunk �퐽 one information set at a time until �퐽 = J(�푖) .
The following simple lemma establishes the basis of induction, by exhibiting an ∅-partial fixed
point for any transformation �휙 ∈ coΨ(�푖) .

Lemma 4.11. Let �푖 ∈ [�푛] be a player, and �휙 =
∑

�̂휎 ∈Σ(�푖)
∗
�휆�̂휎�휙

(�푖)
�̂휎→q�̂휎

be any transformation in coΨ(�푖) .

Then, the vector x0 ∈ R |Σ(�푖) |
≥0 , whose entries are all zeros except for x0 [∅] = 1, is a ∅-partial fixed point

of �휙 .

Proof. Condition (27) is straightforward. So, we focus on (28). Fix any �̂휎 = (�푗 , �푎) ∈ Σ
(�푖)
∗ . The

definition of S (�푖)
�̂휎→q̂

, given in (7), implies that

S
(�푖)
�̂휎→q̂�̂휎

[�휎�푟 ,∅] =
{
1 if �휎�푟 = ∅
0 otherwise

∀�휎�푟 ∈ Σ
(�푖) .

Consequently, �휙 (�푖)
�̂휎→q̂�̂휎

(x0) = S
(�푖)
�̂휎→q̂�̂휎

x0 = x0 (from expanding the matrix-vector multiplication).

So, �휙 (x0) =
∑

�̂휎 ∈Σ(�푖)
∗
�휆�̂휎�휙

(�푖)
�̂휎→q̂�̂휎

(x0) = x0 and in particular �휙 (x0) [∅] = x0 [∅] = 1. So, (28) holds, as

we wanted to show. �

Before giving a proof of correctness and an analysis of the complexity of Extend, we illustrate
an application of the algorithm in the simple extensive-form game of Figure 1.

Example 4.12. Consider the simple extensive-form game of Figure 1 (Left), and recall the three

deviation functions �휙 (1)
1→0̂�푎

, �휙
(1)
2→0̂�푏

, �휙
(1)
3→0̂�푐

considered in Example 3.5. We will illustrate two appli-
cations of Extend, with respect to the transformation

�휙 ≔
1

2
�휙
(1)
1→0̂�푎

+ 1

3
�휙
(1)
2→0̂�푏

+ 1

6
�휙
(1)
3→0̂�푐

∈ coΨ(1) .

• In the first application, consider the trunk �퐽 = ∅, information set �푗∗ = a, and the ∅-partial
fixed point described in Lemma 4.11, that is, the vector x whose components are all 0 except
for the entry corresponding to the empty sequence ∅, which is set to 1. In this case, �휎�푝 =

�휎 (�푖) (�푗∗) (Line 1) is the empty sequence. Since no information set �푗 ′ can possibly satisfy
�푗 ′ � �휎�푝 , the vector r defined on Line 2 is the zero vector. Consequently, the matrix]

defined on Line 3 is

] =

1/2 1/3
1/2 2/3

©­«
ª®®
¬

1

2

1 2

which is a stochastic matrix. A fixed point for] is given by the vector b ≔ (2/5, 3/5) ∈ Δ
| {2,3} | .

So, the vector x ′ returned by extend is given by

x ′ [∅] = 1, x ′ [(a, 1)] = 2

5
, x ′[(a, 2)] = 3

5

and zero entries everywhere else. Direct inspection reveals that x ′ is indeed a {a}-partial
fixed point of �휙 .

• In the second application of Extend, we start from the {a}-partial fixed point that we com-
puted in the previous bullet point, and extend it to a {a,d}-partial fixed point. Here, �푗∗ = d,
and so �휎�푝 = (a, 2). The only �푗 ′ � �휎�푝 is a, and so the vector r defined on Line 2 is

r [7] = 1

5
, r [8] = 0.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 29

Algorithm 3: Extend(�휙, �퐽 , �푗∗, x)
Input : • �휙 =

∑
�̂휎 ∈Σ(�푖)

∗
�휆�̂휎�휙

(�푖)
�̂휎→q�̂휎

∈ coΨ(�푖) transformation for a player �푖 ∈ [�푛],
represented

in memory implicitly as the list
{(�휆�̂휎 , q�̂휎)}�̂휎 ∈Σ(�푖)

∗
• �퐽 ⊆ J(�푖) trunk for Player �푖
• �푗∗ ∈ J(�푖) information set not in �퐽 such that its immediate predecessor is in �퐽

• x ∈ R |Σ(�푖) |
≥0 �퐽 -partial fixed point of �휙

Output: • x ′ ∈ R |Σ(�푖) |
≥0 (�퐽 ∪ { �푗∗})-partial fixed point of �휙

1 �휎�푝 ← �휎 (�푖) (�푗∗)
2 Let r ∈ R |A(�푗∗) |

≥0 be the vector whose entries are defined, for all �푎 ∈ A(�푗∗), as
r [�푎] ≔

∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎)] x [(�푗 ′, �푎′)]

3 Let] ∈ x [�휎�푝] · S |A(�푗∗) | be the matrix whose entries are defined, for all �푎�푟 , �푎�푐 ∈ A(�푗∗), as

] [�푎�푟 , �푎�푐] ≔ r [�푎�푟] +
©­­«
�휆(�푗∗,�푎�푐)q (�푗∗,�푎�푐) [(�푗∗, �푎�푟)] +

©­­«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®
¬
1{�푎�푟=�푎�푐 }

ª®®
¬
x [�휎�푝]

4 if x [�휎�푝] = 0 then

5 w ← 0 ∈ R |A(�푗∗) |
≥0

6 else

7 b ∈ Δ
|A(�푗∗) | ← fixed point of stochastic matrix 1

x [�휎�푝]]

8 w ← x [�휎�푝] b
9 x ′ ← x

10 for �푎 ∈ A(�푗∗) do
11 x ′[(�푗∗, �푎)] ← w [(�푗∗, �푎)]
12 return x ′

Consequently, the matrix] defined on Line 3 is

] =

3/5 1/5
0 2/5

©­
«

ª®®¬
7

8

7 8

As expected,] ∈ 3/5S | {7,8} | = x [(a, 2)] S | {7,8} | . A fixed point for 1
x [(a,2)]] = 5/3] is given

by the vector b ≔ (1, 0). So, the vector x ′ returned by Extend is given by

x ′[∅] = 1, x ′ [(a, 1)] = 2

5
, x ′[(a, 2)] = 3

5
, x ′[(d, 7)] = 3

5
, x ′ [(d, 8)] = 0

and zero entries everywhere else. Once again, direct inspection reveals that x ′ is indeed a
{a,d}-partial fixed point of �휙 .

In order to prove correctness of Extend in Proposition 4.14, we will find useful the following
technical lemma.

ArXiv preprint

30 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Lemma 4.13. Let �푖 ∈ [�푛] be any player, and �휙 =
∑

�̂휎 ∈Σ(�푖)
∗
�휆�̂휎 �휙

(�푖)
�̂휎→q�̂휎

be any linear transformation

in coΨ(�푖) expressed as in (26). Then, for all �휎 ∈ Σ
(�푖) ,

�휙 (x) [�휎] =
©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎

�휆�̂휎
ª®®¬
x [�휎] +

∑
�푗′��휎

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎] x [(�푗 ′, �푎′)] .

Proof. Fix any trigger sequence �̂휎 = (�푗 ′, �푎′) ∈ Σ
(�푖)
∗ . By expanding the matrix-vector multiplica-

tion between S
(�푖)
�̂휎→q�̂휎

(Definition 3.2) and x , we have that for all �휎 ∈ Σ
(�푖) ,

�휙
(�푖)
�̂휎→q�̂휎

(x) [�휎] = x [�휎]1{�휎��̂휎 } + q�̂휎 [�휎]x [�̂휎]1{�휎� �푗′} . (29)

Therefore, for all �휎 ∈ Σ
(�푖) ,

�휙 (x) [�휎] =
∑

�̂휎 ∈Σ(�푖)
∗

�휆�̂휎 �휙
(�푖)
�̂휎→q�̂휎

(x) [�휎] =
∑

�̂휎=(�푗′,�푎′) ∈Σ(�푖)
∗

�휆�̂휎
(
x [�휎]1{�휎��̂휎 } + q�̂휎 [�휎]x [�̂휎]1{�휎� �푗′}

)

=
©­­
«

∑
�̂휎 ∈Σ(�푖)

∗ , �휎��̂휎

�휆�̂휎
ª®®
¬
x [�휎] +

∑
�푗′��휎

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎] x [(�푗 ′, �푎′)]

=
©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎

�휆�̂휎
ª®®¬
x [�휎] +

∑
�푗′��휎

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎] x [(�푗 ′, �푎′)],

as we wanted to show. �

Proposition 4.14. Let �푖 ∈ [�푛] be a player, �휙 =
∑

�̂휎 ∈Σ(�푖)
∗
�휆�̂휎 �휙

(�푖)
�̂휎→q�̂휎

be a linear transformation in

coΨ(�푖) expressed as in (26), x ∈ R |Σ(�푖) |
≥0 be a �퐽 -partial fixed point of �휙 , and �푗∗ ∈ J(�푖) be a information

set not in �퐽 such that its immediate predecessor is in �퐽 . Then, Extend(�휙, �퐽 , �푗∗, x), given in Algorithm 3,

computes a (�퐽 ∪{ �푗∗})-partial fixed point of �휙 in time upper bound by�푂 (|Σ (�푖) | |A(�푗∗) | +FP(|A(�푗∗) |)).

Proof. We break the proof into four parts. In the first part, we analyze the sum of the entries of
vector r defined in Line 2 of Algorithm 3. In the second part, we prove that 1

x [�휎�푝]] ∈ S |A(�푗∗) | , as

stated in Line 3. In the third part, we show that the output x ′ of the algorithm is indeed a (�퐽 ∪{ �푗∗})-
partial fixed point of �휙 . Finally, in the fourth part we analyze the computational complexity of the
algorithm.

Part 1: sum of the entries of r . In this first part of the proof, we study the sum of the entries of
the vector r defined on Line 2 in Algorithm 3. By hypothesis the immediate predecessor of �푗∗ is
in �퐽 , and since x is a �퐽 -partial fixed point, the sequence �휎�푝 ≔ �휎 (�푖) (�푗∗) satisfies �휙 (x) [�휎�푝] = x [�휎�푝].
Hence, expanding the �휙 (x) [�휎�푝] using Lemma 4.13, we conclude that

©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®¬
x [�휎�푝] +

∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎�푝] x [(�푗 ′, �푎′)] = x [�휎�푝] .

So, by rearranging terms, we have

∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎�푝] x [(�푗 ′, �푎′)] =
©­­«

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®
¬
x [�휎�푝] . (30)

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 31

On the other hand, since q (�푗′,�푎′) ∈ Q (�푖)
�푗′ for all �푗 ′ � �휎�푝 , �푎

′ ∈ A(�푗 ′), the vector q (�푗′,�푎′) satisfy the
the sequence-form (probability-mass-conservation) constraint

q (�푗′,�푎′) [�휎�푝] =
∑

�푎∈A(�푗∗)
q (�푗′,�푎′) [(�푗∗, �푎)] .

Hence, and we can rewrite (30) as

©­­«
∑

�̂휎 ∈Σ(�푖)
∗ , �̂휎��휎�푝

�휆�̂휎
ª®®
¬
x [�휎�푝] =

∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

∑
�푎∈A(�푗∗)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎)] x [(�푗 ′, �푎′)]

=

∑
�푎∈A(�푗∗)

©­«
∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎)] x [(�푗 ′, �푎′)]
ª®
¬

=

∑
�푎∈A(�푗∗)

r [�푎],

where the last equality follows from the definition of r in Line 2 of Algorithm 3. So, in conclusion,

∑
�푎∈A(�푗∗)

r [�푎] =
©­­
«

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®
¬
x [�휎�푝] . (31)

Part 2:] belongs to x [�휎�푝] · S |A(�푗∗) | . In this second part of the proof, we will prove that] as
constructed on Line 3 of Algorithm 3 is a non-negative matrix whose columns sum to the value
x [�휎�푝]. Fix any �푎�푐 ∈ A(�푗∗). Then, the sum of the column of] corresponding to action �푎�푐 is

∑
�푎�푟 ∈A(�푗∗)

] [�푎�푟 , �푎�푐] =
∑

�푎�푟 ∈A(�푗∗)
r [�푎�푟] +

©­­
«
�휆(�푗∗,�푎�푐)q (�푗∗,�푎�푐) [(�푗∗, �푎�푟)] +

©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®¬
1{�푎�푟=�푎�푐 }

ª®®¬
x [�휎�푝]

=
©­­«

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®
¬
x [�휎�푝] + x [�휎�푝] �휆(�푗∗,�푎�푐)

©­
«

∑
�푎�푟 ∈A(�푗∗)

q (�푗∗,�푎�푐) [(�푗∗, �푎�푟)]
ª®
¬
+
©­­«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®
¬
x [�휎�푝]

=
©­­«

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®
¬
x [�휎�푝] + x [�휎�푝] �휆(�푗∗,�푎�푐) +

©­­«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®
¬
x [�휎�푝],

where we used (31) in the second equality, and the fact that q (�푗∗,�푎�푐) ∈ Q (�푖)
�푗∗ (Definition 2.3) in the

third. Using the fact that the set of all predecessors of sequence (�푗∗, �푎�푐) is the union between all
predecessors of �휎�푝 and {(�푗∗, �푎�푐)} itself, we can write

∑
�푎�푟 ∈A(�푗∗)

] [�푎�푟 , �푎�푐] =
©­­
«

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎
ª®®¬
x [�휎�푝] + x [�휎�푝] �휆(�푗∗,�푎�푐) +

©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®¬
x [�휎�푝]

= x [�휎�푝]
©­­
«
1 + �휆(�푗∗,�푎�푐) +

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎��휎�푝

�휆�̂휎 −
∑

�̂휎 ∈Σ(�푖)
∗ , �̂휎�(�푗∗,�푎�푐)

�휆�̂휎
ª®®¬

= x [�휎�푝] .

ArXiv preprint

32 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

So, all columns of the nonnegative matrix] sum to the same nonnegative quantity x [�휎�푝] and
therefore] ∈ x [�휎�푝] · S |A(�푗∗) | .

Part 3: x ′ is a (�퐽 ∪{ �푗∗})-partial fixed point of�휙 . We start by arguing that x ′ satisfies the sequence-
form constraints (27) for all �푗 ∈ �퐽 ∪{ �푗∗}. The crucial observation is that Algorithm 3 only modifies
the indices corresponding to sequences (�푗∗, �푎) for �푎 ∈ A(�푗∗) and keeps all other entries unmodified.
In particular,

x ′ [(�푗 , �푎)] = x [(�푗 , �푎)] ∀ �푗 ∈ �퐽 , �푎 ∈ A(�푗). (32)

Furthermore, because �퐽 is a trunk for Player �푖 , the above equation implies that

x ′[�휎 (�푖) (�푗)] = x [�휎 (�푖) (�푗)] ∀ �푗 ∈ �퐽 .

Hence, using the hypothesis that x is a �퐽 -partial fixed point of �휙 at the beginning of the call, we
immediately conclude that (27) holds for x ′ for all �푗 ∈ �퐽 , and the only condition that remains to be
verified is that

x ′ [�휎�푝] =
∑

�푎∈A(�푗∗)
x ′ [(�푗∗, �푎)] . (33)

To verify that, observe that if x [�휎�푝] = 0, then all entries x ′ [(�푗∗, �푎)] are set to 0 and so (33) is trivially
satisfied. On the other hand, if x [�휎�푝] ≠ 0, then x ′[(�푗∗, �푎)] = x [�휎�푝] b [�푎], and since b belongs to the
simplex Δ

|A(�푗∗) | , (33) holds in this case too. So, x ′ satisfies (27) for all �푗 ∈ �퐽 ∪ { �푗∗} as we wanted
to show.
We now turn our attention to conditions (28). From Lemma 4.13 it follows that �휙 (x) [�휎] only

depends on the values of x [(�푗 ′, �푎′)] for �푗 ′ � �휎, �푎′ ∈ A(�푗 ′). So, from (32) it follows that

�휙 (x ′) [(�푗 , �푎)] = x [(�푗 , �푎)] = x ′[(�푗 , �푎)] ∀ �푗 ∈ �퐽 , �푎 ∈ A(�푗),
and the only condition that remains to be verified is that

�휙 (x ′) [(�푗∗, �푎∗)] = x ′[(�푗∗, �푎∗)] ∀ �푎∗ ∈ A(�푗∗). (34)

Pick any �푎∗ ∈ A(�푗∗). We break the analysis into two cases.

• If x [�휎�푝] = 0, thenw = 0 (Line 5) and therefore x ′[(�푗∗, �푎∗)] = 0. Hence, to show that (34) holds,
we need to show that �휙 (x ′) [(�푗∗, �푎∗)] = 0. To show that, we start from applying Lemma 4.13:

�휙 (x ′) [(�푗∗, �푎∗)] =
∑

�푗′�(�푗∗,�푎∗)

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎∗)] x ′[(�푗 ′, �푎′)] .

Now, using the fact that { �푗 ′ ∈ J(�푖) : �푗 ′ � (�푗∗, �푎∗)} is equal to the dijoint union { �푗 ′ ∈ J(�푖) :
�푗 ′ � �휎�푝} ∪ { �푗∗}, and that x ′[(�푗∗, �푎′)] = 0 for all �푎′ ∈ A(�푗∗), we have

�휙 (x ′) [(�푗∗, �푎∗)] =
∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎∗)] x ′[(�푗 ′, �푎′)] . (35)

Since q (�푗′,�푎′) ∈ Q (�푖)
�푗′ , from Definition 2.3 it follows that

q (�푗′,�푎′) [�휎�푝] =
∑

�푎∈A(�푗∗)
q (�푗′,�푎′) [(�푗∗, �푎)] ≥ q (�푗′,�푎′) [(�푗∗, �푎∗)] . (36)

Hence, substituting (36) into (35),

�휙 (x ′) [(�푗∗, �푎∗)] ≤
∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎�푝] x ′[(�푗 ′, �푎′)]

= �휙 (x ′) [�휎�푝] = x ′ [�휎�푝] = 0,

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 33

where the first equality follows again from Lemma 4.13 for all �푎 ∈ A(�푗∗) in the first equality,
and the second equality follows from the inductive hypothesis that x ′ is a �퐽 -partial fixed
point of �휙 . Since x ′ is a nonnegative vector and �휙 clearly maps nonnegative vectors to non-
negative vectors, we conclude that �휙 (x ′) [(�푗∗, �푎∗)] = 0 as we wanted to show.

• If x [�휎�푝] ≠ 0, then b is a fixed point of the stochastic matrix 1
x [�휎�푝]] , and therefore it satisfies∑

�푎�푐 ∈A(�푗∗)
] [�푎∗, �푎�푐] b [�푎�푐] = x [�휎�푝] b [�푎∗] .

Hence, by using the fact that x ′ [(�푗∗, �푎∗)] = x [�휎�푝] b [�푎∗] (Line 11), we can write

x ′[(�푗∗, �푎∗)] =
∑

�푎�푐 ∈A(�푗∗)
] [�푎∗, �푎�푐] b [�푎�푐] .

By expanding the definition of] [�푎∗, �푎�푐] (Line 3) on the right-hand side

x ′[(�푗∗, �푎∗)] =
∑

�푎�푐 ∈A(�푗∗)


r [�푎∗] +

©­­­­
«
�휆(�푗∗,�푎�푐)q (�푗∗,�푎�푐) [(�푗∗, �푎∗)] +

©­­­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗
�̂휎�(�푗∗,�푎�푐)

�휆�̂휎

ª®®®®¬
1{�푎∗=�푎�푐 }

ª®®®®¬
x [�휎�푝]


b [�푎�푐]

= r [�푎∗] +
©­­«
1 −

∑
�̂휎∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎∗)

�휆�̂휎
ª®®
¬
x ′[(�푗∗, �푎∗)] +

∑
�푎�푐 ∈A(�푗∗)

�휆(�푗∗,�푎�푐)q (�푗∗,�푎�푐) [(�푗∗, �푎∗)]x ′[(�푗∗, �푎�푐)]

where in the second equality we used the fact that b ∈ Δ
|A(�푗∗) | , and the fact that x ′ [(�푗∗, �푎)] =

x [�휎�푝] b [�푎] for all �푎 ∈ A(�푗∗) (Line 11). Using the definition of r (Line 2),

x ′ [(�푗∗, �푎∗)] =
∑
�푗′��휎�푝

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [(�푗∗, �푎∗)] x [(�푗 ′, �푎′)] +
©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎∗)

�휆�̂휎
ª®®¬
x ′[(�푗∗, �푎∗)]

+
∑

�푎�푐 ∈A(�푗∗)
�휆(�푗∗,�푎�푐)q (�푗∗,�푎�푐) [(�푗∗, �푎∗)]x ′[(�푗∗, �푎�푐)]

=
©­­
«
1 −

∑
�̂휎 ∈Σ(�푖)

∗ , �̂휎�(�푗∗,�푎∗)

�휆�̂휎
ª®®
¬
x ′[(�푗∗, �푎∗)] +

∑
�푗′�(�푗∗,�푎∗)

∑
�푎′∈A(�푗′)

�휆(�푗′,�푎′) q (�푗′,�푎′) [�휎] x ′[(�푗 ′, �푎′)]

= �휙 (x ′) [(�푗∗, �푎∗)],
where we used Lemma 4.13 in the last equality.

Part 4: Complexity analysis. In this part, we bound the number of operations required by Algo-
rithm 3.

• Line 2: each entry r [�푎] can be trivially computed in �푂 (|Σ (�푖) |) time by traversing all prede-
cessors of �푗∗. So, the vector r requires�푂 (|Σ (�푖) | |A(�푗∗) |) operations to be computed.

• Line 3: if �푎�푟 = �푎�푐 , then the number of operations required to compute] [�푎�푟 , �푎�푐] is domi-
nated by the computation of

∑
�̂휎�(�푗∗,�푎�푐) �휆�̂휎 , which requires �푂 (|Σ (�푖) |) operations. Otherwise,

if �푎�푟 ≠ �푎�푐 , the computation of] [�푎�푟 , �푎�푐] can be carried out in a constant number of opera-
tions. Hence, the computation of] [�푎�푟 , �푎�푐] for all �푎�푟 , �푎�푐 ∈ A(�푗∗) requires �푂 (|Σ (�푖) | |A(�푗∗) | +
|A(�푗∗) |2) time. Since |A(�푗∗) | ≤ |Σ (�푖) |, the total number of operations required to compute
all entries of] is �푂 (|Σ (�푖) | |A(�푗∗) |).

ArXiv preprint

34 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Algorithm 4: FixedPoint(�휙)
Input : • �휙 =

∑
�̂휎 ∈Σ(�푖)

∗
�휆�̂휎�휙

(�푖)
�̂휎→q�̂휎

∈ coΨ(�푖) transformation for a player �푖 ∈ [�푛]
Output: • q ∈ Q (�푖) such that q = �휙 (q)

1 q ← 0 ∈ R |Σ(�푖) |, q[∅] ← 1
2 �퐽 ← ∅
3 for �푗 ∈ J(�푖) in top-down order8 do
4 q ← Extend(�휙, �퐽 , �푗 ,q)
5 �퐽 ← �퐽 ∪ { �푗 }
6 return q

• Lines 4 to 8: if x [�휎�푝] = 0, then the computation of w requires �푂 (|A(�푗∗) |) operations. If, on
the other hand, x [�휎�푝] ≠ 0, then the computation ofw requires�푂 (FP(|A(�푗∗) |)+|A(�푗∗) |) oper-
ation. Since clearly any fixed point oracle for a square matrix of order |A(�푗∗) | needs to spend
time at least |A(�푗∗) | time writing the output, �푂 (FP(|A(�푗∗) |) + |A(�푗∗) |) = �푂 (FP(|A(�푗∗) |)).
So, no matter the value of x [�휎�푝], the number of iterations is bounded by�푂 (FP(|A(�푗∗) |)).

• Line 11: finally, the algorithm spends�푂 (|A(�푗∗) |) operations to set entries of x .

Summing the number of operations of each of the different steps of the algorithm, we conclude
that each call to Extend(�휙, �퐽 , �푗∗, x) requires at most�푂 (|Σ (�푖) | |A(�푗∗) |+FP(|A(�푗∗) |)) operations. �

A fixed point for �휙 ∈ coΨ(�푖) can therefore be computed by repeatedly invoking Extend to
grow the trunk �퐽 one information set at a time, until �퐽 = J(�푖) , starting from the ∅-partial fixed
point x0 ∈ R |Σ(�푖) |

≥0 introduced in Lemma 4.11. This leads to Algorithm 4, whose correctness and
computational complexity is a straightforward corollary of Proposition 4.14.

Corollary 4.15. Let �푖 ∈ [�푛] be a player, and let �휙 =
∑

�̂휎 ∈Σ(�푖)
∗
�휆�̂휎�휙

(�푖)
�̂휎→q�̂휎

be a transformation in

coΨ(�푖) expressed as in (26). Then, Algorithm 4 computes a fixed point Q (�푖) ∋ q = �휙 (q) in time upper

bounded as �푂 (|Σ (�푖) |2 +∑
�푗 ∈J(�푖) FP(|A(�푗) |)).

Algorithm 5: (coΨ(�푖))-regret minimizer R̄ (�푖) for the set Q (�푖)

Data: • �푖 ∈ [�푛] player
• R̃ (�푖) regret minimizer for Ψ(�푖) , defined in Algorithm 2

1 function NextElement()

2 �휙�푡
=
∑

�̂휎 ∈Σ(�푖)
∗
�휆�푡
�̂휎
�휙
(�푖)
�̂휎→q

�푡
�̂휎

∈ coΨ(�푖) ← R̃ (�푖) .NextElement()
3 q�푡 ∈ Q (�푖) ← FixedPoint(�휙�푡)
4 return q�푡

5 function ObserveUtility(ℓ�푡)
6 �퐿�푡 ← linear utility function �휙 ↦→ ℓ�푡 (�휙 (q�푡))
7 R̃ (�푖) .ObserveUtility(�퐿�푡)

8That is, according to a pre-order tree traversal: if �푗 ≺ �푗 ′, then �푗 appears before �푗 ′ in the iteration order.
9As discussed in Lemma 4.1, in principle any unbiased sampling scheme will work. For the purposes of analyzing the
complexity of Algorithm 6, however, we will assume that the natural sampling scheme described in Section 2.2 is used.
That sampling scheme runs in linear time in |Σ(�푖) |.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 35

Algorithm 6: Ψ(�푖)-regret minimizer R (�푖) for the set Π (�푖)

Data: • �푖 ∈ [�푛] player
• R̄ (�푖) , (coΨ(�푖))-regret minimizer for Q (�푖) , defined in Algorithm 5

1 function NextElement()
2 q�푡 ∈ Q (�푖) ← R̄ (�푖) .NextElement()
3 Sample9 a deterministic sequence-form strategy 0 �푡 ∈ Π

(�푖) so that it is an unbiased
estimator of q�푡 , using the natural sampling scheme described in Section 2.2

4 return 0 �푡

5 function ObserveUtility(ℓ�푡)
6 R̄ (�푖) .ObserveUtility(ℓ�푡)

4.5 The Complete Algorithm

In this subsection we put together all the pieces we constructed in the previous subsections, in
order to build the desired Ψ

(�푖) -regret minimizer that solves Problem 1.
First, we provide in Algorithm 5 our (coΨ(�푖))-regret minimizer. Its correctness follows from

the correctness of the construction by Gordon et al. [19] described in Section 2.4, and by using
Theorem 4.6 and Corollary 4.15. Formally:

Theorem 4.16. Let �푖 ∈ [�푛] be any player. R̄ (�푖) , defined in Algorithm 5, is a (coΨ(�푖))-regret min-

imizer for the set Q (�푖) , whose cumulative regret upon observing linear utility functions ℓ1, . . . , ℓ�푇

satisfies

�푅�푇 ≤ 2�퐷 |Σ (�푖) |
√
�푇 ,

where �퐷 is any constant such that maxq,q′ ℓ�푡 (q) − ℓ�푡 (q′) ≤ �퐷 for all �푡 = 1, . . . ,�푇 . Furthermore, the

ObserveUtility operation requires time �푂 (|Σ (�푖) |2), and the NextElement operation requires time

�푂 (|Σ (�푖) |2 +∑
�푗 ∈J(�푖) FP(|A(�푗) |)) at all �푡 .

Proof. From the properties of Gordon et al.’s construction [19] (Section 2.4), the cumulativeΨ(�푖)-
regret incurred by R̄ (�푖) is equal, at all times, to the cumulative regret incurred by the underlying
regret minimizer R̃ (�푖) for the set of deviations Ψ(�푖) . So, the regret bound follows from the regret
analysis of Theorem 4.6.
Similarly, the complexity analysis follows from combining the analysis of R̃ (�푖) and of Fixed-

Point (Algorithm 4), together with the observation that the canonical representation 〈�퐿�푡 〉 of the
linear utility function coΨ(�푖) ∋ �휙 ↦→ ℓ�푡 (�휙 (q�푡)) is the matrix 〈ℓ�푡 〉(q�푡)⊤, which can be trivially
computed in �푂 (|Σ (�푖) |2) time. �

Since coΨ(�푖) ⊇ Ψ
(�푖) , Algorithm 5 is in particular also a Ψ

(�푖)-regret minimizer for the set Q (�푖) .
So, Theorem 4.16 establishes that Algorithm 5 provides a solution to Problem 2. Consequently,
by applying Lemma 4.1, we immediately get the following characterization of Algorithm 6, our
Ψ

(�푖)-regret minimizer R (�푖) for the set of deterministic sequence-form strategies Π (�푖) of Player �푖 .

Corollary 4.17. Let �푖 ∈ [�푛] be any player. R (�푖) , defined in Algorithm 6, is aΨ(�푖) -regret minimizer

for the set Π (�푖) , whose cumulative regret �푅�푇 upon observing linear utility functions ℓ1, . . . , ℓ�푇 satisfies

�푅�푇 ≤ 2�퐷 |Σ (�푖) |
√
�푇 + �퐷

√
8�푇 log(1/�훿) with probability at least 1 − �훿,

where �퐷 is any constant such that maxq,q′{ℓ�푡 (q) − ℓ�푡 (q′)} ≤ �퐷 for all �푡 = 1, . . . ,�푇 . Furthermore, the

ObserveUtility operation requires time �푂 (|Σ (�푖) |2), and the NextElement operation requires time

�푂 (|Σ (�푖) |2 +∑
�푗 ∈J(�푖) FP(|A(�푗) |)) at all �푡 .

ArXiv preprint

36 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

Therefore, Algorithm 6 is a solution to Problem 1.

5 CONVERGENCE TO EFCE

Theorem 3.7 implies that if all players �푖 ∈ [�푛] play the game repeatedly according to the outputs
of a Ψ

(�푖) -regret minimizer for Π (�푖) that observes, at each time �푡 , the linear utility function given
in (9), then the empirical frequency of play is a (1�푇 max�푖 �푅 (�푖),�푇)-EFCE, where �푅 (�푖),�푇 is the regret

cumulated by the Ψ(�푖) -regret minimizer for Player �푖 . In particular, when all players play according
to the strategies recommended by Algorithm 6, the following can be shown.

Theorem 5.1. When all players �푖 = 1, . . . , �푛 play according to the outputs of the regret minimizer

R (�푖) defined in Algorithm 6, receiving as feedback at all times �푡 the linear utility functions ℓ (�푖),�푡 defined
in (9), the empirical frequency of play after �푇 repetitions of the game is a(

�퐷
2|H| +

√
8 log(�푛/�훿)
√
�푇

)
-EFCE with probability at least 1 − �훿,

where �퐷 is the difference between the maximum and minimum payoff of the game, and |H| is the
number of nodes in the game tree.

Proof. Let �푅 (�푖),�푇 be the regret cumulated by Player �푖 up to time �푇 when playing according to
Algorithm 6. From Corollary 4.17, we have that for all �훿 ′ ∈ (0, 1),

P

[
�푅 (�푖),�푇 ≤ 2�퐷 |H|

√
�푇 + �퐷

√
8�푇 log(1/�훿 ′)

]
≥ P

[
�푅 (�푖),�푇 ≤ 2�퐷 |Σ (�푖) |

√
�푇 + �퐷

√
8�푇 log(1/�훿 ′)

]
≥ 1 − �훿 ′,

where the first inequality follows from the fact that |Σ (�푖) | = ∑
�푗 ∈J(�푖) |A(�푗) | ≤ ∑

ℎ∈H |A(ℎ) | ≤ |H|
(the number of edges in a tree is always less than the number of nodes). So,

P

[
max
�푖

�푅 (�푖),�푇 ≤ 2�퐷 |H|
√
�푇 + �퐷

√
8�푇 log(1/�훿 ′)

]
= P

[⋂
�푖

{
�푅 (�푖),�푇 ≤ 2�퐷 |H|

√
�푇 + �퐷

√
8�푇 log(1/�훿 ′)

}]

≥ 1 − �푛�훿 ′,

where the inequality follows from the union bound. Substituting �훿 ≔ �푛�훿 ′ and using Theorem 3.7
yields the result. �

A standard application of the Borel-Cantelli lemma enables one tomove from the high-probability
guarantees at finite time of Theorem 5.1 to almost-sure guarantees in the limit.

Corollary 5.2. When all players �푖 = 1, . . . , �푛 play infinitely many repetitions of the game ac-

cording to the outputs of the regret minimizer R (�푖) defined in Algorithm 6, receiving as feedback at

all times �푡 the linear utility functions ℓ (�푖),�푡 defined in (9), the empirical frequency of play converges,
almost surely, to an EFCE.

ACKNOWLEDGMENTS

We thank Dustin Morrill, Marc Lanctot, and Mike Bowling for a useful discussion about behav-
ioral deviation functions, and for pointing out an incorrect statement related to their recent frame-
work [34] in a preliminary version of this article. We are also grateful to the anonymous reviewers
at NeurIPS 2020, where a preliminary version of this article appeared, for their useful comments.
This work is based on work supported by the National Science Foundation under grants IIS-

1718457, IIS-1617590, IIS-1901403, and CCF-1733556, the ARO under awards W911NF-17-1-0082
and W911NF2010081, and the Italian MIUR PRIN 2017 Project ALGADIMAR “Algorithms, Games,
and Digital Market”. Gabriele Farina is supported by a Facebook fellowship.

ArXiv preprint

Simple Uncoupled No-Regret Learning Dynamics for Extensive-Form Correlated Equilibrium 37

REFERENCES

[1] Robert J Aumann. 1974. Subjectivity and correlation in randomized strategies. Journal of mathematical Economics 1,
1 (1974), 67–96.

[2] Kazuoki Azuma. 1967. Weighted sums of certain dependent random variables. Tohoku Mathematical Journal 19, 3
(1967), 357–367.

[3] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit poker: Libratus beats top profes-
sionals. Science 359, 6374 (2018), 418–424.

[4] Noam Brown and Tuomas Sandholm. 2019. Solving imperfect-information games via discounted regret minimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 1829–1836.

[5] Amotz Cahn. 2004. General procedures leading to correlated equilibria. International Journal of Game Theory 33, 1
(2004), 21–40.

[6] A. Celli and N. Gatti. 2018. Computational Results for Extensive-Form Adversarial Team Games. In AAAI Conference

on Artificial Intelligence (AAAI).
[7] Andrea Celli, Alberto Marchesi, Tommaso Bianchi, and Nicola Gatti. 2019. Learning to Correlate in Multi-Player

General-Sum Sequential Games. In Advances in Neural Information Processing Systems. 13055–13065.
[8] Andrea Celli, Alberto Marchesi, Gabriele Farina, and Nicola Gatti. 2020. No-regret learning dynamics for extensive-

form correlated equilibrium. In Advances in Neural Information Processing Systems, Vol. 33.
[9] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games. Cambridge University Press.
[10] Xi Chen and Xiaotie Deng. 2006. Settling the complexity of two-player Nash equilibrium. In 2006 47th Annual IEEE

Symposium on Foundations of Computer Science. IEEE, 261–272.
[11] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. 2009. The complexity of computing a

Nash equilibrium. SIAM J. Comput. 39, 1 (2009), 195–259.
[12] Miroslav Dudík and Geoffrey J Gordon. 2009. A sampling-based approach to computing equilibria in succinct

extensive-form games. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 151–160.
[13] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. 2019. Regret Circuits: Composability of Regret Minimizers.

In Proceedings of the International Conference on Machine Learning. 1863–1872.
[14] Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. 2019. Correlation in extensive-form games: Saddle-

point formulation and benchmarks. In Advances in Neural Information Processing Systems. 9229–9239.
[15] Dean P Foster and Rakesh V Vohra. 1997. Calibrated learning and correlated equilibrium. Games and Economic

Behavior 21, 1-2 (1997), 40.
[16] Drew Fudenberg and David K Levine. 1995. Consistency and cautious fictitious play. Journal of Economic Dynamics

and Control 19, 5-7 (1995), 1065–1089.
[17] Drew Fudenberg and David K Levine. 1998. The theory of learning in games. Vol. 2. MIT press.
[18] Drew Fudenberg and David K Levine. 1999. Conditional universal consistency. Games and Economic Behavior 29, 1-2

(1999), 104–130.
[19] Geoffrey J Gordon, Amy Greenwald, and Casey Marks. 2008. No-regret learning in convex games. In International

Conference on Machine learning. 360–367.
[20] Amy Greenwald and Amir Jafari. 2003. A general class of no-regret learning algorithms and game-theoretic equilibria.

In Learning theory and kernel machines. Springer, 2–12.
[21] Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibrium. Economet-

rica 68, 5 (2000), 1127–1150.
[22] Sergiu Hart and Andreu Mas-Colell. 2001. A general class of adaptive strategies. Journal of Economic Theory 98, 1

(2001), 26–54.
[23] Sergiu Hart and Andreu Mas-Colell. 2003. Uncoupled Dynamics Do Not Lead to Nash Equilibrium. The American

Economic Review 93, 5 (2003), 1830–1836.
[24] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random Variables. J. Amer. Statist. Assoc. 58,

301 (1963), 13–30.
[25] Wan Huang and Bernhard von Stengel. 2008. Computing an extensive-form correlated equilibrium in polynomial

time. In International Workshop on Internet and Network Economics. Springer, 506–513.
[26] Albert Xin Jiang and Kevin Leyton-Brown. 2015. Polynomial-time computation of exact correlated equilibrium in

compact games. Games and Economic Behavior 91 (2015), 347–359.
[27] Sham Kakade, Michael Kearns, John Langford, and Luis Ortiz. 2003. Correlated equilibria in graphical games. In

Proceedings of the 4th ACM Conference on Electronic Commerce. 42–47.
[28] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. 1996. Efficient Computation of Equilibria for Extensive

Two-Person Games. Games and Economic Behavior 14, 2 (1996), 247–259.
[29] Elias Koutsoupias and Christos Papadimitriou. 1999. Worst-case equilibria. In Annual Symposium on Theoretical As-

pects of Computer Science. Springer, 404–413.

ArXiv preprint

38 Gabriele Farina, Andrea Celli, Alberto Marchesi, and Nicola Ga�i

[30] H. W. Kuhn. 1953. Extensive Games and the Problem of Information. Princeton University Press, 193–216.
[31] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael H Bowling. 2009. Monte Carlo Sampling for Regret

Minimization in Extensive Games.. In Advances in Neural Information Processing Systems. 1078–1086.
[32] Colin McDiarmid. 1998. Concentration. Springer Berlin Heidelberg, Berlin, Heidelberg, 195–248.

https://doi.org/10.1007/978-3-662-12788-9_6
[33] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh,

Michael Johanson, and Michael Bowling. 2017. Deepstack: Expert-level artificial intelligence in heads-up no-limit
poker. Science 356, 6337 (2017), 508–513.

[34] Dustin Morrill, Ryan D’Orazio, Marc Lanctot, James R Wright, Michael Bowling, and Amy Greenwald. 2021. Efficient
Deviation Types and Learning for Hindsight Rationality in Extensive-Form Games. arXiv preprint arXiv:2102.06973

(2021).
[35] Dustin Morrill, Ryan D’Orazio, Reca Sarfati, Marc Lanctot, James Wright, Amy Greenwald, and Michael Bowling.

2020. Hindsight and Sequential Rationality of Correlated Play. In The Thirty-Fourth AAAI Conference on Artificial

Intelligence (AAAI-20).
[36] John F Nash. 1950. Equilibrium points in n-person games. Proceedings of the national academy of sciences 36, 1 (1950),

48–49.
[37] C.C. Paige, George P.H. Styan, and Peter G. Wachter. 1975. Computation of the stationary distribution of a markov

chain. Journal of Statistical Computation and Simulation 4, 3 (1975), 173–186.
[38] Christos H Papadimitriou and Tim Roughgarden. 2008. Computing correlated equilibria in multi-player games. J.

ACM 55, 3 (2008), 14.
[39] I. Romanovskii. 1962. Reduction of a Game with Complete Memory to a Matrix Game. Soviet Mathematics 3 (1962).
[40] Tim Roughgarden and Éva Tardos. 2002. How bad is selfish routing? J. ACM 49, 2 (2002), 236–259.
[41] Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic, game-theoretic, and logical foundations.

Cambridge University Press.
[42] Gilles Stoltz and Gábor Lugosi. 2007. Learning correlated equilibria in games with compact sets of strategies. Games

and Economic Behavior 59, 1 (2007), 187–208.
[43] Oskari Tammelin. 2014. Solving large imperfect information games using CFR+. arXiv preprint arXiv:1407.5042 (2014).
[44] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. 2015. Solving Heads-Up Limit Texas Hold’em..

In International Joint Conferences on Artificial Intelligence. 645–652.
[45] Bernhard von Stengel. 1996. Efficient Computation of Behavior Strategies. Games and Economic Behavior 14, 2 (1996),

220–246.
[46] Bernhard von Stengel and Françoise Forges. 2008. Extensive-form correlated equilibrium: Definition and computa-

tional complexity. Mathematics of Operations Research 33, 4 (2008), 1002–1022.
[47] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. 2008. Regret minimization in games

with incomplete information. In Advances in Neural Information Processing Systems. 1729–1736.

ArXiv preprint

https://doi.org/10.1007/978-3-662-12788-9_6

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Mathematical Notation and Algorithmic Conventions
	2.2 Extensive-Form Games
	2.3 Extensive-Form Correlated Equilibrium (EFCE)
	2.4 Regret Minimization and Phi-Regret Minimization

	3 Trigger Regret and Relationship with EFCE
	4 Efficient No-Trigger-Regret Algorithm
	4.1 Overview
	4.2 From Deterministic to Mixed Strategies
	4.3 Regret Minimizer for the Convex Hull of the Set of Trigger Deviation Functions
	4.4 Computation of the Next Strategy
	4.5 The Complete Algorithm

	5 Convergence to EFCE
	Acknowledgments
	References

