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As a result, it has been widely investigated in the past decades [1-7] from a variety of
perspectives. The main problem investigated in the above works is whether the limit of
a left product limy_,o Ay - -- AgA; converges to a rank one matrix 1w ', where 1 is a
vector of all ones and w is a probability vector, i.e., entries of w are nonnegative and
sum to 1.

A less studied, yet critical, problem is to characterize the limit beyond the fact that
it is rank one. This amounts to the characterization of the probability vector w. In the
context of Markov chain, w is the limiting distribution while in the context of (weighted)
consensus, entries of w are the averaging weights in the convex combination. The problem
is hard to tackle. Indeed, barring simple cases such as using only commuting matrices,
the limit depends on the order in which the stochastic matrices appear in the infinite
products. This is true even if the matrices appearing in the product are chosen from
a finite set. See [3] for some illustrations of the above mentioned dependence. Thus,
without knowing the entire sequence a priori, it is in general infeasible to characterize
the limit (provided that it exists). In fact, even if one knows the order of the entire
sequence, the analysis for obtaining an explicit formula of the limit is often intractable.

In this paper, we address this latter problem, i.e., we characterize limits of certain
products of stochastic matrices. We elaborate below on the type of products considered in
the paper. As is usually done, we use a graph G = (V, E)) to represent the states of Markov
chain and the allowable transitions between these states. In the context of consensus, the
graph represents the information-flow topology between different agents. We introduce
a class of graphs, termed triangulated Laman graphs (TLGs), and use their structure
to define sets of stochastic matrices and the orders in which we can take their products.
Specifically, given any TLG, we assign a stochastic matrix to each triangle in the graph.
The matrix can be obtained by starting with the identity matrix and, then, replacing the
principal submatrix corresponding to the nodes in the triangle with an arbitrary 3 x 3
rank-one stochastic matrix. We call these matrices “local stochastic matrices” as the
transition probabilities (or the communications in the context of consensus) involve only
the nodes in that triangle. To describe the allowable products of those local stochastic
matrices, we introduce the notion of derived graph associated with a TLG. It is a graph
whose nodes are the triangles of a TLG, and whose edges capture a notion of adjacency
between these triangles — two triangles are adjacent if they share a common edge. The
allowable products are then the ones for which adjacent matrices correspond to adjacent
nodes in the derived graph.

A major contribution of the paper is to show that if a walk in the derived graph visits
every node infinitely often, then the limit of the associated product is a rank-one matrix.
Moreover, the limit depends only on the first node of the walk. Because the derived
graph is finite, there can only be finitely many different limits. The result is formulated
in Theorem 3.1, and a complete characterization of these limits is provided in Sec. 3.2.

There are several implications of the above result. For example, any simple random
walk on these derived graphs yields a convergent product of local stochastic matrices with
probability one and the limits are independent of the sample paths but for their starting
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nodes (Corollary 3.2). Another consequence of the result concerns absolute probability
vectors (APVs), which were introduced in [8] to study the convergence of products of
stochastic matrices (We recall its definition in Definition 3.2). Generically, the sequence
of APVs depends on a particular convergent product, and, moreover, takes infinitely
many different values, even when only a finite number of distinct matrices appear in the
product. In contrast, we show in Corollary 3.4 that one can assign to a TLG, together
with a set of local stochastic matrices, a finite set of vectors such that the sequence of
APVs attached to any allowable, convergent product of these local stochastic matrices
takes values only from that finite set.

A large part of the novelty of this work lies in the introduction of TLGs and their
derived graphs, as one may observe from the above description. To characterize their
properties, we will obtain a recursive construction for them. This construction is akin to
the celebrated Henneberg sequence that appears in rigidity theory [9], and we thus call
it Restricted Henneberg Construction (RHC). We prove that any TLG can be obtained
by an RHC and, reciprocally, any RHC yields a TLG. The proof may be of independent
interest—indeed, TLGs have also appeared in earlier work on formation control [10]—but
because it uses a set of ideas distinct from the ones used in the main part of the paper,
we relegate it to the Appendix.

What is perhaps the closest line of work, in spirit, to the present is the work on
gossiping [11-13]. A gossip can be described, in terms of message passing, as an operation
in which two agents communicate their values to each other and take the average. When
described in terms of stochastic matrices, this yields a matrix which is the identity save
for a 2-by-2 principal submatrix whose entries are 1/2. It is shown that the left-product of
such stochastic matrices converges, under some conditions, to the matrix with all entries
%. More recently, it has been extended to clique gossiping [14], where k agents in a clique
perform an averaging operation. In these works, the convergence to the averaging matrix
is a by-product of the fact that the matrices involved are in fact doubly-stochastic, i.e.,
all the row sums and column sums of the matrix are one. For an application of some of
the ideas developed in this work to gossip processes, see [15].

In terms of applications to consensus, besides the fact that our work allows for a
control of the limiting probability vector while requiring minimal information about the
allowable sequence (namely, only its starting node), it also enables the implementation
of simple secure-by-design consensus algorithms. Indeed, small networks are by nature
more secure than larger networks, since by definition they contain fewer possible points
of failure or attack. The smallest meaningful network in our case is the triangle. The
local stochastic matrices are so that after each iteration, each node of the triangle has
to agree on the same value. Furthermore, the adjacency rule is so that the next triangle
to update has two nodes in common with the previous triangle. Hence the third node
in the triangle can verify that it receives the same value from the other two nodes. This
built-in redundancy adds an obvious layer of security to the updates and complements
some existing secure consensus algorithm, e.g. [16], but of course does not make them
entirely impervious to tampering.
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The remainder of the paper is organized as follows: we end this section by introducing
key notations and terminologies used throughout the paper. In Sec. 2, we introduce the
basic objects used in the paper: namely, triangulated Laman graphs, their derived graphs,
and local stochastic matrices. Several key properties will be established in the section
as well. Next, in Sec. 3, we state the main results of the paper, including an explicit
formula for the limits of allowable convergent products. In Sec. 4, we prove the main
results, save for Theorem 2.1 concerning the construction of TLGs, which we relegate to
the appendix. Numerical studies are provided in Sec. 5, validating the main results and
showing that they do not hold if some of the assumptions are broken. The paper ends
with conclusions.

Notations and conventions. We denote by G = (V, E) be a graph, with node set V' and
edge set E. All graphs considered in the paper are simple, i.e., there have no self-arc.
We use v; to denote a node of G. If G is undirected, we denote an edge by (v;,v;), and
if G is directed, we denote an edge from v; to v; by v;v;. We refer to |V| as the size
of G. Given a subset of nodes V' C V, the subgraph of G induced by V"' is defined as
G = (V',E') where E' = {(v;,v;) | v;,v; € V' and (v;,v;) € E} (resp. E' = {v;v; |
v;,v; € V' and vv; € EY}).

We call a sequence of nodes v = vy --- v a walk in G if (v;,v;41) (resp. v;v;41) is an
edge of G, for all 1 < i <k — 1. We denote by v V v, the walk vy - - - viv, where (vg, vs)
(resp. vivs) needs to be an edge in G for the operation to be well-defined. We denote by
~~1 the reverse walk vy - - - v1.

We say that v is a closed walk if v is a walk with v; = . We emphasize that for
our purpose, a closed walk has a well-defined starting node. A path is a walk without
repetition of nodes. A cycle is a closed path, i.e., only the starting node and ending
node are repeated. The length of v is the number of edges traversed by -y, counted with
multiplicity. The cardinality of -y, denoted by |v|, is the number of nodes in v, counted
with multiplicity as well.

A triangle in a graph is a cycle of length 3. We denote triangles using the letter A,
and describe them as the sets of their constituent nodes, e.g., A = {v;,v;,v;} and we
can write v; € A.

We denote by {ej,...,e,} the standard basis in R™. Denote by 1,, the vector of all
1’s of dimension n. We omit the index when the dimension is clear from the context. For
any vector w = (wy, ..., w,), we use shorthand notation min w := min; <;<, w;. We call
w a positive (resp. nonnegative) vector if each entry w; is positive (resp. nonnegative),
and w a probability vector if it is nonnegative and its entries sum to 1. We denote by
splx(n — 1) the standard simplex in R™, which is comprised of all probability vectors.

2. Triangulated Laman graphs
We present in this section a class of graphs, termed Triangulated Laman Graphs

(TLGs), as well as a simple iterative algorithm to construct them, termed restricted
Henneberg construction (RHC).
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In order to introduce the TLGs, we first recall that a graph G = (V, E) is said to be
triangulated if for every cycle of length strictly greater than 3, there is an edge joining
two nonconsecutive vertices of the cycle. We call any cycle of length 3 a triangle. Any
edge e that belongs to only one triangle is called simple. TL graphs are also minimally
rigid, see the Appendix or [9] for a formal definition. We thus include “Laman” explicitly
in the definition:

Definition 2.1 (Triangulated Laman Graphs (TLGs)). A graph G is a triangulated Laman
Graph (TLG) if it is both triangulated and minimally rigid.

Because all minimally rigid graphs can be obtained by a so-called Henneberg con-
struction [9], so can be all TLGs. However, not every Henneberg construction gives rise
to a TLG. We now introduce below restricted Henneberg constructions that produce
TLGs and have the property that all TLGs can be obtained by such construction:

Initialization: Start from a graph G3 = (V3,F3) with V3 = {v1,v2,v3} and B3 =
{(v1,v2), (v2,v3), (v1,v3)}. It consists of one triangle.

Inductive step: Suppose that a subgraph Gj of k nodes wvy,...,v; has been con-
structed. Pick an edge e = (v, vy,) in Gg. Add a node vi11 and two edges
(v1,Vk4+1)5 (Vm, Vg41) to Gy, to obtain G4

Definition 2.2. We refer to the above construction as a restricted Henneberg construction
(RHC).

We have the following result:

Theorem 2.1. A graph is a TLG if and only if it can be constructed by a restricted
Henneberg construction.

A proof of the theorem is provided in the Appendix.

Derived graphs and their properties. We now introduce the notion of derived graph as-
sociated with a triangulated graph G. Roughly speaking, the derived graph is used to
reflect the adjacency of triangles in G, see Fig. 1 for an illustration.

Definition 2.3 (Derived graph). Let G be a triangulated graph. The derived graph D¢
of G is an undirected graph defined as follows: Fach node A; of D¢g corresponds to a
triangle of G. If two distinct triangles corresponding to A; and A; share a common edge
in G, then an edge (A;,A;) is in Dg.

Throughout the paper, we will view A; both as a node of Dg, and as a subgraph of
G—more precisely, a subgraph induced by three adjacent nodes. We will write v € A;
(resp. e € A;) to denote that the vertex v (resp. edge e) is in the subgraph A;.
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Fig. 1. Two triangulated graphs and their derived graphs (dashed). The graph on the left is not a TLG, as
it contains 8 nodes and 14 edges. The graph on the right is a TLG.

We next establish a few relevant properties for the derived graphs of TLGs. We start
with the following fact:

Proposition 2.2. Let G be a TLG on n nodes. Then, there are (n —2) triangles in G and
the derived graph D¢ is a connected, triangulated graph on (n — 2) nodes.

Proof. It should be clear from the RHC that G has (n — 2) triangles and that D¢ is
connected. We show below that D¢ is triangulated. The proof will be carried out by
induction on the number of nodes in G. For the base case n = 3, G contains one triangle
and D¢ is comprised of a single node. This proves the base case.

For the inductive step, we assume that the statement holds for (n— 1) and prove it for
n. Let G be a TLG on n nodes. By Theorem 2.1, it admits an RHC. Following this RHC
up to step (n — 3) yields a TLG G’ on (n — 1) nodes, which is a subgraph of G. By the
induction hypothesis, the derived graph D¢ is triangulated. We now focus on the last
step of the RHC, yielding G from G’. Denote by e = (v, v,,) the edge in G’ selected, and
by v,, the newly added node. Denote by A; ..., A; the triangles in G’ that contain the
edge e. Then, the subgraph of D¢ induced by these nodes is the complete graph K.

The newly added triangle A, _2 = {v;, Vm, v, } is a node in D¢. It is connected in D¢
to all the nodes A;,,...,A;,. We thus conclude that the subgraph of D¢g induced by
Ay, A Ay is a complete graph on (p+1) nodes. We denote by K11 the clique. We
now show that G is triangulated. By the induction hypothesis, it suffices to show that
cycles of length greater than 3 containing A,,_5 have a chord. To this end, observe that
if A,,_o is in a cycle of length greater than 3, then A, _, has 2 distinct neighbors in the
cycle. Denote them by A;; and A;, . Then, necessarily, both of them belong to K.
Hence, the edge (A;;,A;,) is a chord of the cycle. This completes the proof. O

In the sequel, we will require an RHC that yields a given TLG G with a particular
initialization. We thus show the following:

Proposition 2.3. Let G be an TLG on n nodes with triangles A;;1 < i < n — 2. Then,
for any A;, there exists an RHC starting with A; that yields G.
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Fig. 2. The TLG from Fig. 1b is reproduced and the are triangles labeled in the order of appearance with
respect to a certain RHC.

Proof. The proof will be carried out by induction on the number of nodes in G. The
base case of n = 3 is trivially true. We thus assume that the result holds for any TLG
on (n — 1) nodes and prove that it holds for TLGs on n nodes.

Let G be an TLG on n nodes with (n — 2) triangles. Then, there is an RHC that
builds G by Theorem 2.1. Without loss of generality, we let A, _o = {v1,v2,v,} (resp.
v,,) be the last triangle (resp. node) appearing in the RHC. Then, the degree of v,, is 2
and (v1,v92) is a common edge shared by A,_o with at least one another triangle, say
A = {v1,v9,v;} for some k <n —1.

Now, let G’ be the subgraph of G induced by the nodes vi,...,v,_1. Then, G’ is
constructed by stopping an RHC construction after (n — 3) steps, and is thus a TLG
graph on (n — 1) nodes. By the induction hypothesis, for each triangle A; C G’, there
exists an RHC starting with A; that produces G’. Note that A; is a also a triangle of
G. Continuing the above RHC by one step joining node v,, to nodes v; and vs yields an
RHC that builds G.

It remains to show that there is an RHC that produces G starting with triangle A,, 5.
This a two-step construction: First, starting from A, 5, we add node v, and connect
it to nodes v; and vs, thus obtaining a graph with 4 nodes and 2 triangles (A,,_ and
Aj). This graph is clearly a TLG. For the second step, we appeal again to the induction
hypothesis, to obtain an RHC that builds G’ starting with A;. Since the concatenation
of two RHCs is an RHC, using the two steps above, we have obtained an RHC that
produces G from A, 5. O

Example 2.1. We illustrate here Proposition 2.3. Consider the TLG of Fig. 2. From
Theorem 2.1, we know that there exists an RHC producing it. We label the triangles
in the order of appearance with respect to the RHC. The proposition says that one can
find an RHC yielding the same G starting from any A,. Starting from Ay, a valid RHC
iS, e.g., A4A3A5A1A2A6A7.

The next few propositions shed more light on the structure of the derived graph
Dg. In particular, both the triangulated and Laman character of G will come into play
to show the existence of so-called bottleneck nodes in D¢ (see Definition 2.4 below).
These bottleneck nodes will in turn be essential ingredients in obtaining the limits of the
products of local stochastic matrices.
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Fig. 3. The three triangles A, As, and A3 in 3a and 3b are pairwise adjacent, so the corresponding derived
graphs are triangles. However, the graph in 3a cannot be a subgraph of a TLG because it violates the
Laman condition for minimal rigidity. Fig. 3c illustrates the two cycles C; and C3 introduced in (1).

Proposition 2.4. Let AjAy--- ApAy be a cycle in Dg of length greater than 3. Then, all
of these triangles in G share a common edge. In particular, the subgraph of Dg induced
by nodes Ay, ..., A, is a complete graph.

Proof. The proof is carried out by induction on the length p of the cycle.

For the base case p = 3, we first note that two distinct triangles can share at most one
edge. Assume, without loss of generality, that A; = {v1,ve,v3} and A; = {v1,ve,v4},
i.e., (v1,v2) is the edge shared by A; and A;. If the same edge (v1,v2) is also shared by
Ay, then we are done. Suppose not, say A; and Ay share edge (vi,v3); then A; and Ay
must share edge (vq,v4) (it cannot be (vy,v4) because otherwise, Ay has four distinct
nodes vy, ..., vs.) But, then, the subgraph G’ of G induced by vy, . ..,v4 is K4. The total
number of edges in K, is 6, which violates the Laman condition, which states that the
number of edges of any induced subgraph on k nodes does not exceed (2k — 3). This
proves the base case. See Fig. 3a and Fig. 3b for illustration.

For the inductive step we assume that the statement holds for any p’ < p—1 and prove
for p. Since p > 4, by Proposition 2.2, there is a chord (A;,A;), with 1 <i < j <p,in
the cycle. Using this chord, we obtain the following two cycles:

Cri=A - DAGA 1 ApA (1)
Co = NAip1 - Aj1AGA;

of lengths strictly less than p. See Fig. 3c for illustration. By the induction hypothesis,
the triangles in each cycle Cy, for k = 1,2, share a common edge e;. Furthermore, note
that nodes A; and A; appear in both C; and Cy and, hence, e; and ey are shared by
both A; and Aj. If e; and ey are distinct, then A; = Aj, which is a contradiction. We
thus conclude that e; = e; =: €, i.e., the common edge e is shared by all of the triangles
in the original cycle. O

Let G be a TLG with derived graph D¢. For a node v in G, we denote by D¢g(v) the
subgraph of D¢ induced by the triangles that contain v. See Fig. 4 for illustration.
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Fig. 4. We depict the triangles that contain the starred node v and the corresponding subgraph they induce
in D¢, denoted by D¢ (v) (dashed).

Proposition 2.5. Let G be an arbitrary TLG and v be a node of G. Then, Dg(v) is a
connected subgraph of Dq.

Proof. We proceed by induction on the number of triangles in G that contain v. The
base case is such that v belongs to exactly one triangle, say Ay, in G. The subgraph of
D¢ induced by A; is a single node and thus connected. This proves the base case.

For the inductive step, we assume that the statement holds for (k — 1) and prove it
for k. Choose an RHC that builds G. Let £ (resp. m) be the step such that the RHC
stopped right after step ¢ (resp. step m) yields a subgraph G, C G with exactly (k — 1)
triangles containing v (resp. a subgraph G,, C G with k triangles containing v). Since
Gy is a TLG, by the induction hypothesis, D¢, (v) is a connected graph on (k —1) nodes.
Label these nodes as Aj,...,Aj, _,. At step m, the RHC chooses an existing edge
(v,v") € Gp—1 and adds a node to form a new triangle A;, that contains v. Without
loss of generality, we assume that A, is another triangle that contains the edge (v,v’).
As a consequence, (Aj,,Aj, ) is an edge in D¢, that connects A, with D¢, (v). In other
words, the subgraph D¢, (v) is connected. Finally, observe that D¢, (v) and D¢ (v) have
the same node set by assumption. Since the RHC does not remove existing nodes or edges
out of G (and, hence, D¢ as well) along the construction process, Dg(v) is connected as

well. O
We now introduce the notion of bottleneck nodes, see Fig. 5 for an illustration.

Definition 2.4. Let D be an undirected graph, a be a node of D, and D’ be a subgraph
of D. A node o* € D' is a bottleneck in D' for « if every walk from any node in D’ to «
contains a*.

If « € D', then clearly « is its own bottleneck in D’, i.e., a* = «. In most of the time,
we are interested in the case where o ¢ D’. We establish below some relevant properties
for bottlenecks. We start with the following one:

Lemma 2.1. If a bottleneck o* € D’ for a exists, then it is unique.

Proof. The proof is carried out by contradiction. Suppose that there exist two distinct
bottlenecks o and of in D’ for a. Let v = 71 ..., be an arbitrary finite walk with
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Fig. 5. Let « be a node in the graph depicted above. The subgraph depicted in blue (dotted) has a bottleneck
for a, denoted by a*. The subgraph depicted in red (dashed) does not have a bottleneck node for a.

starting node 71 = o and 7y, = «. Since &3 is a bottleneck distinct from of, there
/

exists k1 > 1 such that v;, = a3. But, then, 7' := v, -- -7, is a walk from o3 to o.
Note that || < p. Similarly, since af is a bottleneck, there exists another integer ks,
with ka > kq, such that 7, = «af. Define 4" := ~, - - - vp, which is a walk from of to
a. By repeatedly applying the above arguments, we obtain an infinite integer sequence
ki < ko < ks <---, such that v,,,, = a3 and ~,, = of. However, the original walk

has finite length, which is a contradiction. We thus have to conclude that af = 3. O

It should be clear that given the subgraph D’ and the node «, if a bottleneck exists,
then it is unique. The next proposition shows the existence of bottleneck nodes for any
subgraph D¢ (v) of Dg and any node outside Dg(v):

Proposition 2.6. Let Ay be a triangle and v be a node in G. Let Dg(v) be the subgraph of
D¢ induced by triangles that contain v in G. Then, there exists a bottleneck A* € Dg(v)
for Ag.

Proof. If Dg(v) contains one node Ag or if v € Ay, then clearly A is the bottleneck.
Hence we assume it contains at least two nodes and, moreover, v ¢ Ag, so Ag ¢ Dg(v).

The remainder of the proof is carried out by contradiction. Suppose that there is no
bottleneck. By Proposition 2.2, one can find two paths, v and ', that start with nodes
in Dg(v) and end at Agy. Moreover, by our assumption, v and 4’ can be chosen with the
property that they exit the subgraph Dg(v) through two distinct nodes.

More precisely, let 7, (resp. v,) the pth node in 7 (resp. 7). A node 1, is called the
exiting node of v if v, € Dg(v) and v, ¢ Dg(v) for any ¢ > p. Similarly, we let ~,,
be the exiting node of +'. Then, by the hypothesis, we can find v and ' such that the
two exiting nodes v, and 71’), are distinct. For convenience, we assume, by truncating the
two paths (if necessary), that the first nodes y; and +{ of the two paths are the exiting
nodes.

We will now construct a cycle in D¢ that contains nodes 71, 74, and at least one node
not in Dg(v). To this end, since Dg(v) is connected by Proposition 2.5, there exists a
path w in Dg(v) from 7 to 7.

Next, we let A be the first node that belongs to both « and 4. Since v and 4’ have the
same ending node Ay, the node A always exists (and it could be Ap). By concatenating
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Fig. 6. This figure shows that if the bottleneck does not exist, then there would be a cycle C' formed by the
conjunction of two paths w and w’ ~! as shown in the proof. The nodes in blue and square are nodes of
D¢ (v). The node A is outside D (v) but belongs to C, which leads to a contradiction.

the subpath 77 -+ A of o with the subpath A---~] of (y/)~!, we obtain a new path «’
joining 1 to 7.

Note, in particular, that only the starting and the ending nodes of w’ belong to D¢ (v).
By concatenating w with w’ ~!, we obtain the desired cycle. See Fig. 6 for illustration.

Denote the cycle by C. By Proposition 2.4, the triangles of G that correspond to the
nodes of C share a common edge, which we denote by e. Because both v; and ] belong
to Dg(v) and because y; # 74, the edge e must contain the node v. Since the triangle
A is also a node of C, it contains the edge e and, hence, the node v. On the other hand,
A does not belong to D¢ (v), which is a contradiction. O

3. Main results

In the section, we state three main results concerning products of local stochastic
matrices (which will be introduced below), namely Theorems 3.1, 3.6, and 3.7. Relying
on properties of TLGs and their derived graphs established in the previous section, we (1)
characterize the limits of these products, (2) make connections between these limits and
the so-called absolute probability vectors [8], and (3) show that for any given target limit,
one can find a set of local stochastic matrices so that their infinite products converge to
the target one.

In the sequel, we will view Dg as a directed graph by replacing an undirected edge
(vs,v;) with two directed ones, namely v;v; and v;v;. The purpose of doing so is to
emphasize the direction in which an edge of D¢ is traveled.

3.1. Local stochastic matrices and their infinite products

Local stochastic matrices. We now show how to attach a set of stochastic matrices A;
to a given TLG, and how the same graph can be used to generate an infinite family of
products of A; with a known limit distribution. Throughout this section, G is a TLG on
n nodes.

There are (n — 2) triangles in G by Proposition 2.2 and we denote them by
Aqy,...,A,_o. For each A; = {vj,vg, v}, with j < k < [, we assign weights to its
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three nodes. We denote these weights by a; ;, a; %, and a;; respectively. We emphasize
that a given node does not necessarily have a unique weight assigned, but has one weight
assigned per triangle to which it belongs. On occasion, we will use an, ., instead of a; j,
to denote the weight assigned to node v; in triangle A;.

We call a; = (ai}j, a; K, ;1) the local weight vector associated with A;. We next define
for each A; a stochastic matrix as follows:

A, = Z aiﬁk.eje,IJr Z eje;-r. (2)

v, €A viEN;

The structure of the A; is easy to state in words: The principal submatrix of A; corre-
sponding to A; is a 3-by-3 rank-one stochastic matrix while the remainder of the matrix
is simply the identity matrix. We illustrate this below a simple example:

Example 3.1 (Local stochastic matrices with n = 5). Consider a graph on n = 5
nodes consisting of the three triangles A; = {v1,v9,v3}, Ay = {v1,v2,v4}, and
As = {va,v3,v5}. In this case, we have the following local stochastic matrices:

ain a2 a3 00 a1 az2 0 azq O
ai1 a2 a3 0 0 az1 az2 0 azq O
A1: ail1 ai2 i3 0 0 s AQZ 0 0 1 0 0 s
0 0 0 1 0 az1 a22 0 2.4 0
0 0 0 0 1 0 0 0 0 1
and
1 0 0O 0 O
0 az2 az3z 0 ass
A3 = |0 a3z az3z 0 aszs
0 0 0 1 0
0 az2 az3z 0 ass

For a later purpose, we need a mild assumption on the local stochastic matrices:

Assumption 3.1. For each triangle A; and each nonsimple edge (v;,vi) in A;, a; j+a; , >
0.

Products of local stochastic matrices. We now describe allowable products of local
stochastic matrices. Let v be a walk in D¢g. We say that the walk « is infinite if |y| = oc.
To any walk v := A; A;, --- A, in the derived graph D¢, we associate the product of
stochastic matrices

P’Y = Alk cee AiQAil- (3)

We will mostly be interested in the case of infinite walks and, in particular, determining
the corresponding product P, .
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The problem, which is twofold in nature, is well-known to be difficult. First, one
has to guarantee that the infinite products exists (i.e., in the limit |y| — o0). Second,
provided that the limit exists, it usually depends on the complete sequence v, making its
characterization generically intractable. While the first problem has been the subject of
many investigations, as mentioned in the Introduction, the second problem has received
much less attention so far.

Surprisingly, under certain mild assumptions on the infinite walks (which we introduce
in Definition 3.1), a complete characterization of P, can be obtained. We state the results
below. To proceed, we first introduce the following definition:

Definition 3.1 (Ezhaustive walk). A finite walk v in D¢ is exhaustive if it visits every
node of D¢ at least once. An infinite walk v in D¢ is exhaustive if it visit every node of
D¢ infinitely often.

With the above definition, we now state the first main result, which says that P,
exists if the infinite walk - is exhaustive and, moreover, there exists a finite set of rank
one matrices to which the limit P, can belong.

Theorem 3.1. Let G be a TLG on n nodes, with triangles Aq,...,Ap_o. Let {Aq,. ..,
Ap_2} be an arbitrary set of local stochastic matrices that satisfy Assumption 3.1. Then,
there exist (n— 2) probability vectors Wy, ..., Wn—_a such that for every infinite exhaustive
walk v with starting node A;, 1 <i<mn-—2,

P, = 1w, .

We introduce below a few corollaries of Theorem 3.1.

Randomized scheduling. An infinite exhaustive walk v in Dg can be obtained easily
by periodic extension of a finite exhaustive walk whose starting and ending nodes are
adjacent. It can also be obtained via random walks as we describe below. Given a node
A; € D¢, we denote by N(A;) the set of neighbors of A; (the in-neighbors and the
out-neighbors of A; are the same). We call v a simple random walk in D¢, if v is an
infinite walk and the transition probability P (vi41 = A; | v = A;) is given by

e i A € N(A),
P(yier = A |y = Ay) = INA i< (A)
0 otherwise.

Because D¢ is connected, it is well known that a simple random walk visits every node of
D¢ infinitely often (and, hence, it is infinite exhaustive) with probability 1. The following
fact is then an immediate consequence of Theorem 3.1:

Corollary 3.2. Let v be a simple random walk with starting node A;. Then, P, = 1w,
with probability one.
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Connection to absolute probability vectors. Theorem 3.1 has a few notable consequences.
Let v and P, be as in the theorem’s statement. We use the common notation that for a
pair 0 < s < t of positive integers, the partial product corresponding to the indices is

P,(t:s)=A,A -A

Ye—2 " Ys+1°

With the above notation, we can write, e.g., Py(t: s)Py(s:7) = Py (t: 7).
Kolmogorov introduced in [8] the absolute probability vectors associated with a prod-
uct P, (see also [17,18]):

Definition 3.2 (Absolute probability vectors). A sequence of vectors {z,}52, are absolute
probability vectors (APVs) for P, if every z, is a probability vector and if for every pair
(s,t) of integers, with 0 <s < t, o] P,(t:s) ==z, .

APVs are tightly related to the existence of the limit lim; o Py (¢ : 0). For example,
it is known that the limit exists if and only if there is a unique set of APVs for P, and,
moreover,

. . _ T
Jim Pt ) = 1a], (4)
for any given s > 0. We refer the reader to the recent work [6] for more details on the

use of the APVs (note that the author uses “absolute probability sequence” instead of
APVs). As an immediate consequence of Theorem 3.1, we have the following corollary:

Corollary 3.3. If v is an infinite exhaustive walk, then there is a unique sequence of APVs
for P,.

Furthermore, a complete characterization of the values of the APVs can be obtained
using Theorem 3.1:

Corollary 3.4. Let v be an arbitrary infinite exhaustive walk and {xs}22, be the unique
sequence of APVs for P,. Let W, ..., Wn—2 be as in Theorem 3.1. Then, the image of
the map s — x4 s {W1,...,Wp_2}.

Proof. For any s > 0, we consider the sequence v := y511¥s42 -, i.€., 7 is obtained
from 7 by omitting its first s nodes. If v is exhaustive, then so is 4. Then, by Theorem 3.1,
P, = 1w,_,,. On the other hand, by (4), we have that P, = 1z]. It follows that
T = Ws,,,. This shows that the image of s — x, has finite cardinality. Finally, because
v is exhaustive, for every A;, there exists an s such that v, = A;. O

3.2. Characterization of the product limits

Theorem 3.1 states that limy_,oo Py (t : 0) exists and can only take value in a finite
set. We describe this set below.
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Al/A2/ &
Ul‘ ‘ i\
A3 A@ \‘~\*
Az

Fig. 7. We illustrate the construction of the entry w; ; for the case where v; ¢ A;. The graph G in the
figure is a TLG, and the triangles are labeled in order of appearance in a valid RHC starting at A;. We
choose A; = A7 (the shaded triangle) and v; = v1 (the star node). There are three triangles Ay, Az, and
Ag that contain vy, and Ay is the bottleneck for A7. The directed path v = A2 A4 A5AgA7 is shown in red
(dashed). The path crosses four edges in G, which are highlighted in blue. Each of these is shared by two
adjacent triangles along the path 5. To these edges correspond the four ratios r, . ., defined in (5). The
entry w; ;j is then the product of these four ratios and the local weight aa, ., from As.

Unnormalized APVs.

For each node A; in D¢, we define a positive vector w; € R™ according to the following
construction. Let w; ; be the jth entry of w; and recall that a; € R? is the local weight
vector of triangle A;, introduced at the beginning of Section 3.1.

Let Aj,,..., A, bethe triangles that contain v;. By Proposition 2.6, there is a unique
A, , for some k =1,...,m, such that A;, is the bottleneck in D¢ (v;) for A;. We have
two cases depending on whether v; € A; or v; € A;:

Case 1: v; € A;: In this case, A;, = A;. We then set w; ; := a; ;.

Case 2: v; ¢ A;: In this case, we let v be a finite walk in D¢ from Aj, to A;.
Let 7, be the pth node in the walk, with v, = A;, . Foreach p=1,...,|y| -1,
we let e, = (vp,, Up,) be the unique edge in G that is shared by triangles 7, and
Yp+1. Define the ratio

— Arypy1,0p + (rypy1,0py (5)
T’va'Yp+1 R a + a .
Yp>Vp1 YpsVpa

Now, define a product of the above ratios along the path v as follows:
lv[—1

Ry = H TYpypt1 e
p=1

Apparently, R, depends on 7. However, we will show in Proposition 3.5 that the
choice of the walk does not affect R, as long as the starting and ending nodes
are fixed.

With R, defined above, we set

Wi, j = Ay, j Ry, (6)

where a, ; is the weight of node v; for v; = A, . See Fig. 7 for illustration.
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In words, 7, ,,, is a ratio of the sums of the local weights assigned to the nodes
incident to e,: in the numerator, we take the weights from ~,, and in the denominator,
the weights from the next triangle in 7, namely, vp+1. We emphasize that the order of
the two subindices of r matters and it reflects the orientation of the edge vpyp+1 in 7.
By Assumption 3.1, the denominator in the ratio is strictly positive.

Note that the above two cases can actually be unified if one extends the definition
of R, to allow for v a path of cardinality 1 (i.e., a path comprised of a single node).
Specifically, we set R, = 1 for any such path. Then, we can express w; j, for v; € A;, as
Wi, 3 = a'i,jRAi = Qy,j-

We now prove the above claim about the independence of R, on the particular walk
chosen. It is a consequence of the following fact:

Proposition 3.5. Let w be a closed walk in D¢g. Then, R, = 1.

Proof. We first assume that w is a cycle and write w = wy - - - wrwy. By Proposition 2.4,
all the triangles wy,...,wy share a common edge in G, which we denote by (v1,vs).
Clearly, (v1,v2) is also the only edge shared by two distinct w; and w;. It then follows
that

R, = TwywaTwa,ws ™" Twy,wy
Qg o1 T Ouwg,vy Ouwg,vr T Ouwy,v; Oy 01 T Ouwy v,
Qw01 T Owy,vz Gws,vr T Ouws,vg Ay, vy T Qg vy

We now assume that w is a closed walk. One can always decompose w edge-wise and use
the directed edges in w to form multiple cycles. Label these cycles as C,...,C,,. Then,
it should be clear that R, = R¢, -+ Rc,,. Because Rg, = 1 for each i = 1,...,m, we
have that R, =1. O

Returning to the independence of R, on a particular path, assume that v and " are
two walks in Dg with the same starting and ending nodes. Then, by concatenating ~
with 4/ 1, we obtain a closed walk w. By Proposition 3.5, R,, = RyR., -1 = 1. On the
other hand, R,/ -1 = 1/R,,. It then follows that R, = R,/, as is claimed above.

Example 3.2 (Unnormalized APVs in case n = 5). We return to the case n = 5 illustrated
in Example 3.1, with three triangles A, Ao, and Az. We denote the associated local
weight vectors a1, as, and az. Then, the vectors wi, ws, and w3 obtained according to
the above construction are

ai,1+a1,2 ai2+ai3 T
w1 = (a1,1 a12 ai3 24 a2:1+a2:2 as.s a3:2+a3:3>
_ as 1+az 2 ai2+tai s azi1taz2
w2 = (a2’1 az22 a13 ai,1+ai2 G2.4 435 az2+taz3 ai1+ai 2 )
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—(a ag 2+as,s a a a ai,itai,2 az,2+as;s a T 0
w3 = 1,1 ai2+ai,s 3,2 3,3 2,4 az1+az2 a1 2+ai 3 3,5

It should be clear that each vector w; defined above is nonnegative and nonzero (the
entries w; 4, for v; € A;, defined in case 1 cannot all be zero because they sum to
one). However, each w; is not a probability vector because the sum of its entries is in
general greater than one. The following theorem explains why these vectors are called
unnormalized APVs:

Theorem 3.6. Let w1, ..., w,_o be the positive vectors defined above. Then, the vectors
Wi, ..., W2 in Theorem 3.1 are given by normalization:
_ Wi

Zj:l Wi, j
3.8. Surjectivity of left-eigenvector map

The remainder of the section concerns the design of stochastic matrices that yield a
desired rank one limit for the product P,. We have the following theorem:

Theorem 3.7. Let W™ be a positive probability vector. Then, for any given A;, there exist
local weight vectors a; € R3, for A; € Dg, such that w; = w*.

The statement is not surprising when one compares the dimensions of the local weight
vectors (totaling 2(n — 2)) with the dimension of a probability vector (which is (n —1)).
Nevertheless, the proof we provide is constructive. Since the proof relies on a different
set of arguments from the ones needed for the previous theorems and since it is relatively
simpler, we provide it here.

Proof. We proceed by induction on the number of nodes in the graph G. For the base
case n = 3, we follow Theorem 3.6 and set a = w*.

Now, let us assume that the statement holds for all TLGs G’ on n nodes. Given a TLG
G on (n+ 1) nodes it can be obtained from a TLG graph G’ on n nodes by performing
one step of RHC. By Proposition 2.3, we can assume that the subgraph G’ contains A;
(specifically, by Proposition 2.3, we can choose an RHC that starts with A;). We denote
by v,41 the newly added node going from G’ to G.

Let w* = (w},...,w},,,) € R™™! be an arbitrary positive probability vector. By
the induction hypothesis, we can choose local weights a;, 1 < j < n — 2, so that the
unnormalized vector (w;1,...,w; ) satisfies

w*’ , w*
(wi,h .. -awi,n) X %a
Die1 W

i.e., the right hand side is realized as the probability vector for G'.
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Let v be a path from A, 11 to A;. Without loss of generality, we can assume that A,,
is the second node in the path, so A,, and A, are adjacent, and we can label the nodes
of G so that (vy,vs) is the common edge shared by A, and A, ;. Let 4’ be a subpath
of v that starts from A, and ends at A;. Then, from the construction of w; in Eq. (6),
we have that

Win+1 = an+1,n+1R’y
ap,1 + An 2
=Uptintl—————— Ry
et Ap+1,1 T Gn41,2 K
Ap+1,n+1
= —"0 (a1 + an2)Ry, 7
Apt1,1 +an+1,2( " n.2) By Q
where the second equality follows by unwrapping the definition of r,, -, and the third
equality is just a rearrangement. Now choose the three entries an41,1, @n+1,2, and
@n+1,n+1 Of the local weight vector a,41 so that the last entry w; 41 of w; satisfies

_ wi,n —
Win4+1 = —5 Wypgq-
wn

This can done since (a1 + an,2) R, is independent of the local weight vector a,i. By
normalizing w;, we obtain w; = w*. O

4. Proof of main results
This section is devoted to the proofs of the main theorems stated in Sec. 3.
4.1. Properties of unnormalized APVs

We start by deriving some key properties of the unnormalized AP Vs w; of the products
P, introduced above.

Proposition 4.1. Let w; be defined in Sec. 3.2 and A; be the corresponding local stochastic
matriz. Then, w, A; = w; for anyi=1,...,n—2.

Proof. The result is a direct computation. Assume without loss of generality that A;
is comprised of the vertices v, v, and v3. Then, the matrix A; takes the form A; =
diag(13a; , I,,—3) where a; := (a;1,a;2,a;3). It thus suffices to show that

(wi,h W; 2, wi,3)T13aiT = (wi,ly Wi, 2, wz‘,3)T,

which follows from the fact that (w;1,w;2,w;3) = a; by construction of the vector
w;. O

The following Proposition is a major building block in the proofs of the main theorems.
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Proposition 4.2. Let A; and A; be any two adjacent triangles in G. Then,
ijAz = 7’,-7ij,
where 1; ; is defined in Eq. (5).
Proof. We prove the proposition by showing that w; ; = r; jw; ; forall k =1,...,n. To
do so, we first relabel the vertices (if necessary) so that A; (resp. A;) is comprised of

vertices v1, va, and v3 (resp. vi, v2, and vy). Then, we have that A; = diag(13a, , I,,_3)
with a; = (a41,a;2,a;3). We consider below two cases for the subindex k:

Case 1: k = 1,2,3. In this case, it suffices to show that
(wj,1,wj,2,w53) " 1za] = rij(win, w2, wiz)"
First, it should be clear that

(wi,1, wi2, wi3) = (i1, a2, ai3).
Next, note that A, is the bottleneck of Dg(vs) for A; because A; and A; are
adjacent. The construction of w; described in Sec. 3 yields that
(wj,1,wj,2,wj3) = (@j,1,a;2,ai37i;5).
It then follows that

T _ aj1—|—aj2_aj1—|—aj2_
()1, wj2, wi3) 13 = aj1 +aj2 + aiz— == == = =T,
Qi1+ aq2 Qi1+ a;2

where we have used the fact that a;1 +a;2 +a;3 = 1.
Case 2: k =4,...,n. It suffices to show that w; 4 = r; jw; 4 (because the principal sub-
matrix of A formed by the last (n — 3) rows/columns is the identity matrix).
From Proposition 2.6, there is a unique bottleneck A* in D¢ (vy) for A,. Because
A; and A; are adjacent, the same node A* is also the bottleneck in Dg(v) for
A;. To see this, let v be an arbitrary walk from a node in Dg(vg) to Aj. Then,
v =V A; is a walk from the same node in Dg(vg) to A;. Since A* is the
bottleneck for A;, it is necessarily contained in 7" and, hence, . Thus, all walks
from D¢ (v;) to Aj; contain A*. Since by Lemma 2.1 the bottleneck is unique,
it has be to A*.
Now, let v be a walk from the bottleneck A* to A; and 7' :=~ V A, as above.
Then, R, = r;;R,. On the other hand, we have w; 1, = aa~ 4, Ry and wj, =
ap+ v, Ry. It follows that w; = 7w, ;. Because r; ;r;; = 1, we have w;j =

T, Wi k-



M.-A. Belabbas, X. Chen / Linear Algebra and its Applications 619 (2021) 176-209 195

The proof is now complete. O
The above proposition has important implications as we state below:

Corollary 4.3. Let v be a finite walk in Dg that starts at A; and ends at either A; or at
T

i -

a node adjacent to A;. Then, w] P, = w

Proof. Let A; be an arbitrary node adjacent to A;, and v = 71 - - -y be a finite walk in
D¢, with 1 = A; and v, = A;. By adding a node A; to the end of v, one obtains the
closed walk 7/ := vV A;. We show that the statement holds for both v and +’.

For v, we repeatedly apply Proposition 4.2 to obtain that

Tp _..T
w; Py =w; Ay, --- Ay,

= T’ka'Ylw'YkA’Yk—l e A’Yl

_ T
= Tyvem T v,k ~ Ty Wi

= Rq,/wiT.

Because 7' is a closed walk, R, = 1 by Proposition 3.5.
T

Next, for v/, we note that by Proposition 4.1, w;'—Aﬂ,1 =w,] A; =w,, so

T T T T
w; Py =w; Ay Ay, - Ayy =wy Ay oo Ay =y Py
It is shown above that w, P, = w,". This completes the proof. O
4.2. Ezxhaustive walks and contraction property

We develop in this section the necessary tools to show that the limit P, exists when
~ is an infinite exhaustive walk in Dg.

Contraction property. We start by introducing the following semi-norm [1]: Let A = [a;;]
be an arbitrary n x m matrix. We set

Allg = e
1Als = max  max la;; — aiy;| (9)
It is known [2, Theorem 1] that if the matrices in the product P, are stochastic ma-
trices and if lim; o || Py (¢ : 0)||s = 0, then there exists a probability vector w so that
limg_, o0 Py(t: 0) = 1,w'.

We introduce below another known fact:

Lemma 4.1. Let A € R™*"™ be a stochastic matriz. Suppose that A has a positive column
z with min z > € > 0; then, for any matrix B € R"*™,
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[AB||s < (1 —¢)||B|s-

We do not provide a proof here, but refer to the proof of a similar statement in [19,
Lemma 3]. There, the author also assumes that B is a stochastic matrix. However, the
proof provided does not rely on this assumption.

Exhaustive walks and products with positive columns. We show that if G is a TLG with
derived graph D¢ and if v is a finite exhaustive walk in Dg, then P, has a positive
column. For that, we first have the following fact:

Lemma 4.2. Let A be a stochastic matriz and z be a nonnegative vector. Then, min(Az) >
min z.

Proof. Since A is row stochastic, every entry of the vector Az is a convex combination
of the entries of z, and thus larger than minz. O

We now establish the following result, as announced above:

Proposition 4.4. There is an € € (0,1) such that for any finite, exhaustive walk v in Dg,
the stochastic matriz P, has a positive column z with min z > e.

Proof. Let v be an arbitrary finite, exhaustive walk. Let p, be the number of distinct
nodes in 7y - - - yp. Then

I=m <pe <<y =n—2.

Because i, is an integer-valued increasing sequence and because pp11 — pp < 1 by
construction, there exist (n — 2) time steps t; < ta < +-+ < t,,—9 := |y| with the property
that pe, 41 —pe, = 1, for 1 <k < n — 3. Note that ¢; has to be 1 since D¢ is simple and
v is a walk in Dg.

For ease of analysis, but without loss of generality, we label the nodes of G such that
the triangles v1,...,7,, forallk =1,..., (n—2), cover nodes vy, ..., vxt2. Then, by the
definition (2) of A;, the matrix

P(t:0) = A, --- A, = diag[Qy. ), (10)

for k = 1,...,n — 2, is block diagonal with @ being an (k + 2) x (k + 2) stochastic
matrix and I being the identity matrix of dimension (n — k —2) x (n — k — 2).

We show below that for every kK = 1,...,n — 2, there exists an €, > 0, independent of
v, such that @ has a column z; with min 2z, > €. The proof is carried out by induction
on k. To proceed, we first define the minimum non-zero entry over all local weight vectors
of triangles:

aA v, 7’5 0,v; € A,A S Dg} . (11)

a := min {aa ,,
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It should be clear that a € (0,1].

For the base case k = 1, we have that ¢t; = 1 and P,(t; : 0) = A,, = diag[Q1,I]. It
follows that Q; = (13a{ ) = 13a; , where a; € R? is the local weight vector of triangle
A;. It should be clear that Q; has a positive column, which we denote by z;. Setting
€1 := a, we obtain that min z; > €.

For the inductive step, we assume that €,_; exists and prove the existence of €.
By (10), we have that

Pv(tkfl : 0) = diag[Qk,l,I],

where dim Qr_; is (kK + 1) x (k + 1). Now, consider the sub-walk ~;---7;, and the
corresponding product P, (ty : 0). We can express P (tx—1 + 1 : 0) = diag[Q},, I], where
% is of dimension (k + 2) x (k 4+ 2).

By an earlier assumption, triangle 7, ,+1 contains the node wvg42. Moreover, by
relabeling nodes vi,...,v,4+1, We can arrange matters so that -, ,4+1 has nodes
{Uk, U s1,Vps2}. Denote by Qr_; the matrix Q,_; after the relabeling, then Qp_; is
obtained by a permutation of rows/columns of Qj_1. It should be clear that if Qx_; has
a column z;_1 such that min z,_, > € for some € > 0, then so does Qy_1. For ease of
notation, we will still write Q,_1 instead of Qi_;. Using this labeling, we can compute
Q) from Qp_1 via the following expression:

Q). = diag[l, 13a "] diag[Qr_1,1],

where a € R? is the local weight vector corresponding to the triangle v;, ,+1 (the sub-
index of a has been omitted for simplicity).

By the induction hypothesis, there is a positive column zp_; of Qr_; such that
minzi_1 > €x—1. Then, [2;-1;0] is a column of diag[Qr—1,1]. Let zp_1; (resp. a;)
be the jth entry of zx_1 (resp. a). We compute below the column vector zj :=
diag[l, 13a " |[zk—1;0]:

Z;g7j:{2k_l,j forlgj.gkfl, (12)
1 Zg—1,k + 022k—1,k+1 for k <j<k+2.

From Assumption 3.1, a; and ag cannot both be zero, so @}, has a positive column z;,.
Moreover, because min zx_1 > €51 and a1, a2 > a (note that a < 1),

min zj, > ae_1 =: €, € (0,1).

Note that €}, is independent of  and, hence, a uniform lower bound.

By the definition of ti, the sub-walk ~; -- -7, covers the same set of nodes as the
sub-walk 71 -7, 41 does. In particular, using Eq. (10), the matrix P, (¢ : 0) takes
the form diag[Qg,I] with Q) and Q) of the same dimension. Moreover, Q) can be
expressed as Q = SkQ}, where Sy, is the (k+2) x (k + 2) leading principal submatrix of
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P, (tx : t—1+1). Note that Sy, is a stochastic matrix. By Lemma 4.2, min(Syz;,) > min zj,
which implies that () has a positive column z; and, moreover, min z > ¢, :=¢€,. O

Remark 4.1. A close inspection of the above arguments yields that ¢ can be chosen to

be € = a™ 2.

4.3. Proofs of main theorems

We now put the above results together to prove Theorems 3.1 and 3.6.

Let v be an infinite, exhaustive walk starting at node A;. Let ¢, for £k > 0, be
a monotonically increasing sequence of time steps at which the walk first revisits A;
after having visited all other nodes since tx_1, ie., 75, = A; and vy, -+~ Vgy -1 I8 @
finite, exhaustive walk. We set tg := 1. By assumption, (n — 2) < tg41 — ¢t < oco. For
convenience, we introduce s :=t; — 1, so sg = 0.

From Lemma 4.1, the semi-norm ||P,(s : 0)|ls is non-increasing in s and since it
is obviously lower-bounded, it converges to a limit. We now show that this limit is 0.
To this end, we use Proposition 4.4 to obtain an ¢ € (0,1) such that for each k > 0,
P, (sk+1 : sk) has a positive column z;, with min z; > €. Then, by repeatedly applying
Lemma 4.1, we have that

1P (sk = s0)lls = [Py (g = sp—1)Py(sk—1: s0)ls

< (1= IRy (ko1 s0)lls < (1— . (13)
It then follows that

12,15 = Jim [[Py (s < s0)]| = Jim (1 — ) =0,
as claimed. Using [2, Theorem 1], we conclude that P, converges to a rank-one stochastic
matrix.

Let w be such that P, = 1% 7. We next show that @ = w; as is in the statement
of Theorem 3.6. On the one hand, the convergence of P,(s; : so) to P, implies the
convergence of the row vectors w,' P, (sy : 89) to the row vector w, P, = w1 = .
On the other hand, each finite walk 7y, - - - y¢,—1 starts with v; and ends with a node
adjacent to ~y;. Thus, by Corollary 4.3, w, P,(si : so) = w,; . Combining the above
arguments, we have that

T_ g T ey TP AT
w;, = lim w; Py(sk:80) =w; Py=w".
k—o0

This completes the proofs of both Theorems 3.1 and 3.6. O
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Fig. 8. The graph in Fig. 8a is a triangulated rigid graph, but is not Laman. The graph in Fig. 8b is a TLG.
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Fig. 9. For random walks v, with |vy| = 10, in the derived graph of Fig. 8a, we evaluate the corresponding
left eigenvector w of P,. We plot the empirical distribution for each entry of w.

5. Numerical studies

We present here simulation results showing the validity of the main theorems and the
importance of the adjacency rule and the condition that the underlying graph is a TLG.
Precisely, we present three sets of experiments. In the first one, we show that if G is not
a TLG, but simply a triangulated graph, then the conclusions do not hold. In the second
set, we explore the importance of the structure of the local stochastic matrices. In the
last set, we show that the adjacency rule for the product, i.e., that v is a walk in Dg, is
critical as well.

Experiment 1: On triangulated Laman graphs. We consider in Fig. 8a a triangulated
graph with 5 triangles. The derived graph is a cycle of length 5. The graph is not Laman
because it violates the Laman condition, but it is rigid. To each triangle, we assign
a local weight vector, which yields the associated local stochastic matrix. These local
weight vectors are 4.i.d random variables uniformly drawn from splx(2).

We then sample N, = 50 - 10® random walks « in Dg. The cardinality of each walk
is N = 10* This length was sufficient to guarantee converge of the product P, to a
rank-one matrix, as was observed in the simulation (we took the absolute values of the
eigenvalues of the products and verified that there was only one nonzero value, namely
value one).

We denote by w the left eigenvector of P, corresponding to eigenvalue 1, i.e.,

P

= 1(w) . Then, w is a random variable taking value in splx(5). We plot in Fig. 9 the
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Fig. 10. For random walks ~, with |y| = 10, in the derived graph of Fig. 8b, we evaluate the corresponding
left eigenvector w of P,. We plot the empirical distribution for each entry of w.

(b)

Fig. 11. The “horse” graph G in Fig. 11a is a TLG on 18 nodes. We plot its derived graph D¢ in Fig. 11b. We
provide here a few (but not all) correspondences between triangles in G and nodes in Dg: Ay = {v1, v2,v3},
Az = {v2,v3,v4}, A5 = {v1,v2,v6}, and Ag = {v1,v3,v7}.

histograms for the 6 entries of w. We observe that the support of these empirical distri-
butions has non-zero measure, indicating that there is a continuum of limits, associated
to the chosen set of local weight vectors.

Experiment 2: On local stochastic matrices. We consider in Fig. 8b a TLG with 4 triangles
whose derived graph is line graph. To each triangle A;, we assign a random 3 x 3 stochastic
matrix, realized as the principal submatrix of A; corresponding to the nodes of A;. All
of the row vectors of these 3 x 3 matrices are 4.7.d random variables uniformly drawn
from splx(2). This construction of local weight matrices violates our assumption on the
A;’s, which requires these principal submatrices to have identical rows.

Similarly, we sample N, = 50 - 10 random walks ~ of cardinality N = 10* in Dg
(for which we observe convergence of every P,) and plot the empirical distribution of
the entries of the limiting left-eigenvector of P, (Fig. 10). We again observe that the
support of these empirical distributions have non-zero measures, indicating that there is
a continuum of limits.
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Fig. 12. For random sequences (not necessarily walks) «, with |y| = 30 - 10%, of nodes in the derived graph
shown in Fig. 11b, we evaluate the corresponding left eigenvector w of P,. We plot the empirical distribution
for each entry of w. The delta functions in red are distributions that correspond to random walks v in Dg.
The distributions in black correspond to sequences v of nodes in Dg chosen uniformly at random.

Ezperiment 3: On adjacency rules. In this last set of experiments, we verify that if the
assumptions are met, P, converges to a rank-one matrix whose value does not depend
on the walk «v in Dg. We also verify that if all assumptions are met but v is a random
sequence of triangles, and thus does not respect the adjacency rules afforded by D¢, the
conclusions do not hold. The simulations shown in Fig. 12 are based on a larger TLG
G with 18 nodes, depicted in Fig. 11a, with derived graph Dg on 16 nodes shown in
Fig. 11b. To each triangle, we assign a local weight vector, which yields the associated
local stochastic matrix. These local weight vectors are 4.i.d random variables uniformly
drawn from splx(2).
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We first sampled N, = 50 - 103 random walks v of cardinality N = 30 - 10® in Dg.
Every walk starts at node A; = {v1,v2,v3}. We observe convergence of every P, to a
common rank-one matrix. This provides numerical support of Theorem 3.1. Denote by
w the common left-eigenvector of P, corresponding to eigenvalue 1, and wj its entry. We
plot the delta functions in Fig. 12 in red at these w;.

We then sampled N, = 50 - 10® random sequences 7 of cardinality N = 30 - 103
in D¢ (for which we observe again convergence of every P, to a rank-one matrix). In
this case, each element of the sequence is a randomly chosen node in Dg. We plot in
Fig. 12 in black the empirical distributions for the entries of the left-eigenvector of P,
corresponding to the eigenvalue 1. Again, observe that the support of these empirical
distributions have non-zero measures, indicating that there is a continuum of limits.

6. Summary and outlook

We have shown how to construct sets of stochastic matrices (called local stochastic
matrices) and adjacency rules for taking product of these matrices that guarantee, under
some mild assumptions, convergence of the product to one out of a finite number of
possible limits. These limits are all rank-one matrices and, knowing the first matrix in
the product is enough to determine which limit the product will converge to.

Underlying our work is the notion of triangulated Laman graph (TLG), where we
recall that a Laman graph is a minimally rigid graph. The local stochastic matrices are
in one-to-one correspondence with the triangles of this graph, and the adjacency rules
for their product are encoded in the hereby defined derived graph of a TLG.

The connections between the minimal rigidity of the underlying graph and the con-
vergence of the product appear at several point in the proof: first, and foremost, in the
construction of the unnormalized APVs w;, where properties of the derived graph of
a TLG are integral to the argument; second, in the proof of convergence itself. These
connections are either direct, using characterizations of Laman graphs, or rely on the
existence of a Restricted Henneberg Construction for the graphs, a fact we proved in the
appendix and that requires the graph to be minimally rigid.

We have provided simulations showing that departing from our assumptions—e.g.,
using a rigid, but non-minimally rigid, graph, or changing the structure of the local
stochastic matrices, or disrespecting the adjacency rules in the products— would gener-
ically break the conclusions of the Theorems, in particular the conclusion about the
number of possible limits of the product.

Beyond their application in the present paper, we believe that some of the novel ideas
introduced can form the basis of a broader set of results. In particular, one of the key
facts for proving the finite cardinality of the set of possible limits is Proposition 4.2.

There, we have established the relation w;'—Al- = rm-wT where ¢ and j correspond to

7 7

adjacent nodes in the derived graph; indeed, the fact that the limits of the convergent
products are exactly 1@1T follow as a consequence of the proposition as shown in Sec. 4.3.
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The above relation motivates us to consider the following problem: Suppose that one
is given a finite set of stochastic matrices {A1,..., Ax} and a set of nonnegative vectors
{w1,...,w;}. Define a directed graph D on k nodes as follows: there is an edge from
node 7 to node j if w;'—AZ- o w;. Then, under what circumstances is the graph D strongly
connected? If it is, when is every P, a rank-one matrix for infinite exhaustive walk v in
D7 If we meet conditions so that the answer to the above questions are positive, then P,
is a rank-one matrix and if the product starts with matrix A;, then the rank-one matrix
has to be 1w, , where w; is again the normalized version of w;. The associated sequence
of absolute probability vectors take values why, ..., W.

A few simple examples fitting the above framework are the case of all matrices A;
being the same, or all matrices A; commuting with each other. In both cases, it is easy to
see that D is the complete graph and a positive answer to the above questions is obtained
whenever the A;’s are irreducible. A more involved example is the one of gossiping: in
this case, the matrices A; are doubly stochastic matrices, one-to-one correspondent to
the edges of a connected undirected graph. All the vectors w; are chosen to be 1. The
directed graph D is again the complete graph. The uniqueness of the limit for any
infinitely exhaustive walk in D is a consequence of the doubly-stochastic nature of the
A;’s. Finally, in the case of the present paper, the A;’s are local stochastic matrices in
one-to-one correspondence with triangles of a TLG, and the directed graph D is the
directed version of the derived graph D¢. Not much is known beyond these cases. By
proposing the framework, and the attendant questions raised above, we look for solutions
that generalize and unify the existing results and the results established in the present

paper.

Declaration of competing interest
There is no competing interest.

Acknowledgement

This work was supported by the National Science Foundation [ECCS-1809076, ECCS-
1809315] and the Air Force Office of Scientific Research [FA9550-20-1-0076, FA9550-20-
1-0333].

Appendix A. Proof of Theorem 2.1

On rigidity theory. A graph is rigid if, upon embedding the graph in a Euclidean space
R¥, fixing all edge lengths precludes motions of the vertices, save for translations and
rotations of the embedded graph. A graph is minimally rigid if it is rigid, and no edge
can be removed without losing that property. Rigidity in dimension two (i.e., k = 2) is
relatively well-understood, but many basic questions remain open in dimensions three
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and above. Minimally rigid graphs in dimension two are called Laman graphs. We refer
the reader to [9] for formal definitions.

A major result in rigidity theory is the so-called Laman condition, which completely
characterizes minimally rigid graphs in dimension two.

Lemma A.1 (Laman’s condition). An undirected graph G = (V, E) on n nodes is mini-
mally rigid if and only if:

1. There are (2n — 3) edges in G;
2. Every induced subgraph of G on k nodes, for 2 < k < n —1, has at most (2k — 3)
edges.

Henneberg construction. A basic tool in rigidity theory is the so-called Henneberg con-
struction. It is known that every minimally rigid graph admits a Henneberg construction
and, reciprocally, every Henneberg construction yields a minimally rigid graph. We
describe the Henneberg construction below: Starting with an edge, the Henneberg con-
struction iteratively adds a node by applying one of the following two operations at each
stage:

1. Node-add: Select two nodes v;, v; in Gy,—_1, add a node v,, and the edges (v;, v,) and
(vj,vy) to obtain G,,.

2. Edge-split: Select an edge (v;,v;) and a node vi in G,,—1, add a node v,, and edges
(vi,vp), (vj,v,) and (vg,vy,) remove edge (v;,v;).

The sequence of graphs obtained following the construction is called a Henneberg
sequence. Fach graph in a Henneberg sequence is minimally rigid. It should be clear that
the RHC introduced in Sec. 2 is a type of Henneberg construction that starts with a
triangle.

A Henneberg construction for TLGs. We introduce below a few preliminary results that
are needed for the proof of Theorem 2.1.

Lemma A.2. Let G be a TLG and Gs,--- ,G, be a sequence of graphs obtained by fol-
lowing the steps of an RHC, with G3 a triangle. Then, every graph in the sequence is a
TLG.

Proof. Since the RHC is a type of Henneberg construction, each G; in the sequence is
Laman. We show that it is also triangulated. We proceed by induction of the number of
nodes n in the graph. For n = 3, G5 is a triangle and the statement holds. Now assume
that G,,—1 is a TLG. Let vy, (vn,vi), (vn,v;) be the node and edges newly added to
G,,—1 to obtain G,,. Consider any cycle v of length greater than 3 in G,,. Either  does
not contain v,: it is then included in G,_1 and since G, _; is triangulated, it contains
a chord. Otherwise, v contains v,,: then it necessarily contains v; and v; as they are the
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Fig. 13. In the figure, vivs - - - vy is the chord-free cycle « inside G,,_1. We perform the edge-split operation
with (v1,v2) the selected edge and vy the selected node that belongs to the cycle. Then, there are two
chord-free cycles after the operation, namely viv,veve—1 - - - v1 in red and vavs - - - vV, V2 in blue.

only two nodes adjacent to v,. Since (v;,v;) is an edge in Gy and thus in G, the
cycle v has a chord, namely (v;,v;). O

In the following Lemma, we show that any Henneberg construction for a TLG yields
a sequence in which each graph is also a TLG.

Lemma A.3. Let G be a TLG. Fix a Henneberg construction for G and denote by
Gs, -+ ,G, = G the Laman graphs obtained in that construction, with Gs a triangle.
Then, each G; is triangulated.

Proof. We first show that G, _; is triangulated. Assume, by contradiction, that v =
v1 -+ UgV1, k > 4, is a chord-free cycle in G,,_; of length greater than 3. On the one
hand, if G,, is obtained from G,,_; with a node-add operation, then clearly ~ is also a
chord-free cycle in G,,. On the other hand, assume that G,, is obtained using an edge-
split operation. If the selected edge of the edge-split operation is not part of -, then
v is a chord-free cycle in G,,. We thus assume that the selected edge is part of v, say
(v1,v2), and denote by v, the selected node of G,,_1. Note that vy # vy, vs. If vy & 7,
then vyv,vovs -+ vEvy is a chord-free cycle of length (k + 1) in G,,. If v, € ~, then
V1V UgUp—1 + - - U1 and vavs - - - VUL V2 are two distinct chord-free cycles in G, (see Fig. 13
for illustration). The sum of the lengths of the two cycles is (k4 3) > 7, so at least one
of them is of length greater than 3. We have thus shown that if G,,_; has a chord-free
cycle of length greater than 3, then so does G,,. It thus contradicts the assumption that
G, is triangulated.

We have just shown that if G,, is triangulated, then so is G,,_1. Applying the above
arguments iteratively, we obtain that G,_2,...,G5 (in a reversed order) are all TLGs
as announced. O

The next result indicates which operations of a Henneberg construction create chord-
free cycles of lengths greater than 3. Owing to the previous Lemma, these operations
cannot be used to construct a TLG.
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Fig. 14. In Fig. 14a, (v;,v;) is a non-simple edge shared by two triangles in G’. Performing edge-split
operation on (v;,v;) with any node vy in G’ (v can be v, or v;) results in a chord-free cycle Vi U V5 Ve
of length 4. In Fig. 14b, the dashed lines indicate the shortest path v from v; to v; in G = G' — (v;, v;).
Performing edge-split operation on the edge (v;,v;) and a node v that belong to v yields two chord-free
cycles depicted in blue (v;vnvg - --v;) and red (vjv,vg ---vj), respectively. The total lengths of the two
cycles is the length of v plus 4.

Lemma A.4. Let G’ be a Laman graph. Let G be the graph obtained by performing on G’
one Henneberg step taken from the following options:

1. Node-add operation connecting a new node to two non-adjacent nodes;

2. Edge-split operation splitting a non-simple edge;

3. Edge-split operation performed on an edge e = (v;,v;) and a node vy, such that the
three nodes {v;,v;, v} do not form a triangle in G'.

Then, the resulting graph G is not triangulated.

Proof. We deal with the three options individually.

Option 1: Denote by v, the new node and v;,v; the existing nodes in G’ that are
connected to v, via the one-step Henneberg construction. By assumption, v; and v; are
not adjacent. Let v = v; - - - v; be the shortest path in G’ joining these two nodes. Then,
w = vV v,v; is a cycle in G. This cycle is chord-free because v is a shortest path.
Furthermore, since v; and v; are not adjacent, the length of w is greater than 3.

For the remaining two options, we let (v;,v;) and vy be the selected edge and node of
G’', respectively, for the edge-split operation.

Option 2: Since (v;,v;) is not simple, there exist two distinct triangles A = {v;, vj, v¢}
and A" = {v;,v;,v,} in G’ that share the edge. Because G’ is a Laman graph, (vs, vy,)
cannot be an edge of G’. To see this, note that if (v, v,,) is an edge, then there will
be 6 edges in the subgraph of G’ induced by the four nodes v;, v;, v¢, vy, which violates
Laman’s condition (Lemma A.1). But, then, after the edge-split operation, the edge
(vs,v;) is removed and, hence, v;v,,v;vev; is a chord-free cycle in G of length 4; see
Fig. 14a.

Option 3: Since G’ is Laman, it is two-edge-connected. Let G” be obtained from G’ by
removing the edge (v;,v;). Then, G” is connected. Denote by v = v; - - - v; the shortest
path in G” joining v; to v;. The length of v is at least 2. If v, does not belong to v, then
vV v,v; is chord-free (because v is a shortest path) and its length is at least 4. We now
assume that vy, belongs to . Note that v # v;v,v; because otherwise these three nodes
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formed a triangle in G’, contradicting our assumption. Hence, the length of v is at least
3. In this case, the cycle w := v V v,v; has a single chord, namely (vg,v,). Indeed, on
the one hand, v,, is only connected to vy by construction, so no other chord is incident
to v,; on the other hand, the fact that v is a shortest path precludes the existence of a
chord between any two nodes in the path. This shows that (vg,v,) is the only chord in
w, which can thus be split into two cycles of smaller lengths given by v; - - - vxv,v; and
Vg - - - VU, V. Moreover, the two cycles are chord-free. The sum of the lengths of these
two cycles is the length of v plus 4, which is at least 7. Thus, at least one of the two
cycles has its length greater than 3. See Fig. 14b for illustration. O

With the above preliminaries, we now prove Theorem 2.1:

Proof of Theorem 2.1. From Lemma A.2 every graph obtained by an RHC is a TLG.
We now show that the converse is also true, i.e., every TLG G can be obtained by an
RHC. Let H be a Henneberg construction for G. Note that H can be described by
either a sequence of graphs Gjs,...,G,, = G along the construction or by a sequence of
operations Hs, ..., H,_; applied to these graphs, i.e., operation H,, is applied to G}, to
obtain Gpy1. In the sequel, we will use both descriptions. To keep the notation simple,
we do not make explicit the argument of the operations H;. The arguments are an edge
for a node-add operation, and an edge and a node for an edge-split operation. Note that
an operation H), can be applied to any G, as long as G, contains the selected edge (and
node if H, is an edge-split).

By Lemma A.3, the Henneberg construction H can only contain operations of the
following two types: (1) node-add operation as described in the RHC, or (2) edge-split
operation performed on a simple edge (v;,v;) and a node vy so that {v;,v;, v} is a
triangle. We now prove that the operations of type (2) can be translated into operations of
type (1), thus showing that any Henneberg construction yielding a TLG can be replaced
by an RHC.

Let ¢ > 4 be the smallest integer such that an edge-split operation Hy_; as in (2)
above is used on G4_1 to obtain G,. Then, the triangle {v;, v;, v} belongs to G4_1 and,
furthermore, G, is obtained by using only the node-add operation. Hence, each H,
for p = 3,...,q — 2, is necessarily of type (1) and the truncated sequence Hs--- Hy_o
is in fact an RHC. The starting triangle of the RHC might not be {v;, v;,vi}. However,
by Proposition 2.3, we can always find another RHC that starts with {v;,v;, v} and
yields G4—1. We can thus assume, without loss of generality, that Gs = {v;,v;,v;} is
the starting triangle. It is important to note that because (v;,v;) is simple in G4_1, no
operation H,, for 3 <p < ¢ — 2, selects the edge (v;,v;), since it already belongs to the
triangle G3 = {v;,vj, v}

Next, we will exhibit an RHC H' = Hj--- H,_, that yields G. Starting from G5 =
{vi, vk, vq}, the operation Hj simply adds the node v; and edges (vj,vy) and (vj,v,),
so G is comprised of two triangles, namely {v;, vk, vq} and {v;, vg, v,}. Note that G}
can be also obtained by applying the sequence HsH,_1 to the triangle {v;, vj,vx}. Now,
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Fig. 15. The TLG depicted in Fig. 15a corresponds to G4—1 (here, ¢ = 8) in the proof and is obtained via
an RHC starting with A;. The indices of the triangles reflect the order of which they have been added
into the graph. The operation Hy selects (v1,vs), and Hs selects (va,vs3), etc. The operation H7 applied
to G7 is an edge-split operation on the edge (v1,v2) and the node vs. It yields the TLG Gg depicted in
Fig. 15b. Starting with G’3 = {v1,v3,vs}, we apply the node-add operation Hé by adding node v and edges
(v2,vs) and (vs, vs) to obtain G. Then, applying the sequence of operations Hy - - - H7, we add triangles
A%, .-+ ,Aj into the graph and obtain an RHC for Gs.

since Hs was applied to the triangle {v;,v;,vi}, but did not select edge (v;,v;), we can
apply the same operation to G to obtain G%, i.e., we let Hj := Hs. Next, observe that
the edge selected by Hy belongs to G4 and it is not (v;,v;). Because G4 (resp. G%)
is obtained from G35 (resp. G))) using the same operation Hj, the edge selected by Hy
belongs to Gf. We can thus set Hf := Hy. Furthermore, note that G§ can be obtained
by applying the sequence H3H4H, 1 to the triangle {v;,v;,v;}. Applying the above
arguments iteratively, we conclude that for any p =4,...,q — 1, the graph G; obtained
by applying HyHj--- H,, = H3H3--- Hy, 1 to the triangle G% = {v;, vx,v,} is the same
as the graph obtained by applying Hs --- H,_1Hy_1 to the triangle G3 = {v;,v;, v }. In
particular, for p = ¢ — 1, we obtain that G; =Gy

Now, replace the original Henneberg construction Hs--- H,,_; with the one Hj---
H; (H,---Hy, 1. By doing so, we reduce by one the number of edge-split operations.
One can repeatedly apply the above arguments until all the edge-split operations in the
original Henneberg construction are removed. This process ends with an RHC that yields
the graph G. O
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