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We derive conditions on the products of stochastic matrices 
guaranteeing the existence of a unique limit invariant distri-
bution. Belying our approach is the hereby defined notion of 
restricted triangulated Laman graphs. The main idea is the 
following: to each triangle in the graph, we assign a stochas-
tic matrix. Two matrices can be adjacent in a product only if 
their corresponding triangles share an edge in the graph. We 
provide an explicit formula for the limit invariant distribution 
of the product in terms of the individual stochastic matrices.
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1. Introduction

The issue of convergence of infinite product of (row) stochastic matrices arises natu-
rally in the study of finite-state Markov chains and in the design of consensus algorithms. 
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As a result, it has been widely investigated in the past decades [1–7] from a variety of 
perspectives. The main problem investigated in the above works is whether the limit of 
a left product limk→∞ Ak · · · A2A1 converges to a rank one matrix 1w�, where 1 is a 
vector of all ones and w is a probability vector, i.e., entries of w are nonnegative and 
sum to 1.

A less studied, yet critical, problem is to characterize the limit beyond the fact that 
it is rank one. This amounts to the characterization of the probability vector w. In the 
context of Markov chain, w is the limiting distribution while in the context of (weighted) 
consensus, entries of w are the averaging weights in the convex combination. The problem 
is hard to tackle. Indeed, barring simple cases such as using only commuting matrices, 
the limit depends on the order in which the stochastic matrices appear in the infinite 
products. This is true even if the matrices appearing in the product are chosen from 
a finite set. See [3] for some illustrations of the above mentioned dependence. Thus, 
without knowing the entire sequence a priori, it is in general infeasible to characterize 
the limit (provided that it exists). In fact, even if one knows the order of the entire 
sequence, the analysis for obtaining an explicit formula of the limit is often intractable.

In this paper, we address this latter problem, i.e., we characterize limits of certain 
products of stochastic matrices. We elaborate below on the type of products considered in 
the paper. As is usually done, we use a graph G = (V, E) to represent the states of Markov 
chain and the allowable transitions between these states. In the context of consensus, the 
graph represents the information-flow topology between different agents. We introduce 
a class of graphs, termed triangulated Laman graphs (TLGs), and use their structure 
to define sets of stochastic matrices and the orders in which we can take their products. 
Specifically, given any TLG, we assign a stochastic matrix to each triangle in the graph. 
The matrix can be obtained by starting with the identity matrix and, then, replacing the 
principal submatrix corresponding to the nodes in the triangle with an arbitrary 3 × 3
rank-one stochastic matrix. We call these matrices “local stochastic matrices” as the 
transition probabilities (or the communications in the context of consensus) involve only 
the nodes in that triangle. To describe the allowable products of those local stochastic 
matrices, we introduce the notion of derived graph associated with a TLG. It is a graph 
whose nodes are the triangles of a TLG, and whose edges capture a notion of adjacency 
between these triangles — two triangles are adjacent if they share a common edge. The 
allowable products are then the ones for which adjacent matrices correspond to adjacent 
nodes in the derived graph.

A major contribution of the paper is to show that if a walk in the derived graph visits 
every node infinitely often, then the limit of the associated product is a rank-one matrix. 
Moreover, the limit depends only on the first node of the walk. Because the derived 
graph is finite, there can only be finitely many different limits. The result is formulated 
in Theorem 3.1, and a complete characterization of these limits is provided in Sec. 3.2.

There are several implications of the above result. For example, any simple random 
walk on these derived graphs yields a convergent product of local stochastic matrices with 
probability one and the limits are independent of the sample paths but for their starting 
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nodes (Corollary 3.2). Another consequence of the result concerns absolute probability 
vectors (APVs), which were introduced in [8] to study the convergence of products of 
stochastic matrices (We recall its definition in Definition 3.2). Generically, the sequence 
of APVs depends on a particular convergent product, and, moreover, takes infinitely 
many different values, even when only a finite number of distinct matrices appear in the 
product. In contrast, we show in Corollary 3.4 that one can assign to a TLG, together 
with a set of local stochastic matrices, a finite set of vectors such that the sequence of 
APVs attached to any allowable, convergent product of these local stochastic matrices 
takes values only from that finite set.

A large part of the novelty of this work lies in the introduction of TLGs and their 
derived graphs, as one may observe from the above description. To characterize their 
properties, we will obtain a recursive construction for them. This construction is akin to 
the celebrated Henneberg sequence that appears in rigidity theory [9], and we thus call 
it Restricted Henneberg Construction (RHC). We prove that any TLG can be obtained 
by an RHC and, reciprocally, any RHC yields a TLG. The proof may be of independent 
interest—indeed, TLGs have also appeared in earlier work on formation control [10]—but 
because it uses a set of ideas distinct from the ones used in the main part of the paper, 
we relegate it to the Appendix.

What is perhaps the closest line of work, in spirit, to the present is the work on 
gossiping [11–13]. A gossip can be described, in terms of message passing, as an operation 
in which two agents communicate their values to each other and take the average. When 
described in terms of stochastic matrices, this yields a matrix which is the identity save 
for a 2-by-2 principal submatrix whose entries are 1/2. It is shown that the left-product of 
such stochastic matrices converges, under some conditions, to the matrix with all entries 
1
n . More recently, it has been extended to clique gossiping [14], where k agents in a clique 
perform an averaging operation. In these works, the convergence to the averaging matrix 
is a by-product of the fact that the matrices involved are in fact doubly-stochastic, i.e., 
all the row sums and column sums of the matrix are one. For an application of some of 
the ideas developed in this work to gossip processes, see [15].

In terms of applications to consensus, besides the fact that our work allows for a 
control of the limiting probability vector while requiring minimal information about the 
allowable sequence (namely, only its starting node), it also enables the implementation 
of simple secure-by-design consensus algorithms. Indeed, small networks are by nature 
more secure than larger networks, since by definition they contain fewer possible points 
of failure or attack. The smallest meaningful network in our case is the triangle. The 
local stochastic matrices are so that after each iteration, each node of the triangle has 
to agree on the same value. Furthermore, the adjacency rule is so that the next triangle 
to update has two nodes in common with the previous triangle. Hence the third node 
in the triangle can verify that it receives the same value from the other two nodes. This 
built-in redundancy adds an obvious layer of security to the updates and complements 
some existing secure consensus algorithm, e.g. [16], but of course does not make them 
entirely impervious to tampering.
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The remainder of the paper is organized as follows: we end this section by introducing 
key notations and terminologies used throughout the paper. In Sec. 2, we introduce the 
basic objects used in the paper: namely, triangulated Laman graphs, their derived graphs, 
and local stochastic matrices. Several key properties will be established in the section 
as well. Next, in Sec. 3, we state the main results of the paper, including an explicit 
formula for the limits of allowable convergent products. In Sec. 4, we prove the main 
results, save for Theorem 2.1 concerning the construction of TLGs, which we relegate to 
the appendix. Numerical studies are provided in Sec. 5, validating the main results and 
showing that they do not hold if some of the assumptions are broken. The paper ends 
with conclusions.

Notations and conventions. We denote by G = (V, E) be a graph, with node set V and 
edge set E. All graphs considered in the paper are simple, i.e., there have no self-arc. 
We use vi to denote a node of G. If G is undirected, we denote an edge by (vi, vj), and 
if G is directed, we denote an edge from vi to vj by vivj . We refer to |V | as the size 
of G. Given a subset of nodes V ′ ⊆ V , the subgraph of G induced by V ′ is defined as 
G′ = (V ′, E′) where E′ = {(vi, vj) | vi, vj ∈ V ′ and (vi, vj) ∈ E} (resp. E′ = {vivj |
vi, vj ∈ V ′ and vivj ∈ E}).

We call a sequence of nodes γ = v1 · · · vk a walk in G if (vi, vi+1) (resp. vivi+1) is an 
edge of G, for all 1 ≤ i ≤ k − 1. We denote by γ ∨ v∗ the walk v1 · · · vkv∗ where (vk, v∗)
(resp. vkv∗) needs to be an edge in G for the operation to be well-defined. We denote by 
γ−1 the reverse walk vk · · · v1.

We say that γ is a closed walk if γ is a walk with γ1 = γk. We emphasize that for 
our purpose, a closed walk has a well-defined starting node. A path is a walk without 
repetition of nodes. A cycle is a closed path, i.e., only the starting node and ending 
node are repeated. The length of γ is the number of edges traversed by γ, counted with 
multiplicity. The cardinality of γ, denoted by |γ|, is the number of nodes in γ, counted 
with multiplicity as well.

A triangle in a graph is a cycle of length 3. We denote triangles using the letter Δ, 
and describe them as the sets of their constituent nodes, e.g., Δ = {vi, vj , vk} and we 
can write vi ∈ Δ.

We denote by {e1, . . . , en} the standard basis in Rn. Denote by 1n the vector of all 
1’s of dimension n. We omit the index when the dimension is clear from the context. For 
any vector w = (w1, . . . , wn), we use shorthand notation min w := min1≤i≤n wi. We call 
w a positive (resp. nonnegative) vector if each entry wi is positive (resp. nonnegative), 
and w a probability vector if it is nonnegative and its entries sum to 1. We denote by 
splx(n − 1) the standard simplex in Rn, which is comprised of all probability vectors.

2. Triangulated Laman graphs

We present in this section a class of graphs, termed Triangulated Laman Graphs
(TLGs), as well as a simple iterative algorithm to construct them, termed restricted 
Henneberg construction (RHC).



180 M.-A. Belabbas, X. Chen / Linear Algebra and its Applications 619 (2021) 176–209
In order to introduce the TLGs, we first recall that a graph G = (V, E) is said to be 
triangulated if for every cycle of length strictly greater than 3, there is an edge joining 
two nonconsecutive vertices of the cycle. We call any cycle of length 3 a triangle. Any 
edge e that belongs to only one triangle is called simple. TL graphs are also minimally 
rigid, see the Appendix or [9] for a formal definition. We thus include “Laman” explicitly 
in the definition:

Definition 2.1 (Triangulated Laman Graphs (TLGs)). A graph G is a triangulated Laman 
Graph (TLG) if it is both triangulated and minimally rigid.

Because all minimally rigid graphs can be obtained by a so-called Henneberg con-
struction [9], so can be all TLGs. However, not every Henneberg construction gives rise 
to a TLG. We now introduce below restricted Henneberg constructions that produce 
TLGs and have the property that all TLGs can be obtained by such construction:

Initialization: Start from a graph G3 = (V3, E3) with V3 = {v1, v2, v3} and E3 =
{(v1, v2), (v2, v3), (v1, v3)}. It consists of one triangle.

Inductive step: Suppose that a subgraph Gk of k nodes v1, . . . , vk has been con-
structed. Pick an edge e = (vl, vm) in Gk. Add a node vk+1 and two edges 
(vl, vk+1), (vm, vk+1) to Gk to obtain Gk+1

Definition 2.2. We refer to the above construction as a restricted Henneberg construction
(RHC).

We have the following result:

Theorem 2.1. A graph is a TLG if and only if it can be constructed by a restricted 
Henneberg construction.

A proof of the theorem is provided in the Appendix.

Derived graphs and their properties. We now introduce the notion of derived graph as-
sociated with a triangulated graph G. Roughly speaking, the derived graph is used to 
reflect the adjacency of triangles in G, see Fig. 1 for an illustration.

Definition 2.3 (Derived graph). Let G be a triangulated graph. The derived graph DG

of G is an undirected graph defined as follows: Each node Δi of DG corresponds to a 
triangle of G. If two distinct triangles corresponding to Δi and Δj share a common edge 
in G, then an edge (Δi, Δj) is in DG.

Throughout the paper, we will view Δi both as a node of DG, and as a subgraph of 
G—more precisely, a subgraph induced by three adjacent nodes. We will write v ∈ Δi

(resp. e ∈ Δi) to denote that the vertex v (resp. edge e) is in the subgraph Δi.
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Fig. 1. Two triangulated graphs and their derived graphs (dashed). The graph on the left is not a TLG, as 
it contains 8 nodes and 14 edges. The graph on the right is a TLG.

We next establish a few relevant properties for the derived graphs of TLGs. We start 
with the following fact:

Proposition 2.2. Let G be a TLG on n nodes. Then, there are (n − 2) triangles in G and 
the derived graph DG is a connected, triangulated graph on (n − 2) nodes.

Proof. It should be clear from the RHC that G has (n − 2) triangles and that DG is 
connected. We show below that DG is triangulated. The proof will be carried out by 
induction on the number of nodes in G. For the base case n = 3, G contains one triangle 
and DG is comprised of a single node. This proves the base case.

For the inductive step, we assume that the statement holds for (n −1) and prove it for 
n. Let G be a TLG on n nodes. By Theorem 2.1, it admits an RHC. Following this RHC 
up to step (n − 3) yields a TLG G′ on (n − 1) nodes, which is a subgraph of G. By the 
induction hypothesis, the derived graph DG′ is triangulated. We now focus on the last 
step of the RHC, yielding G from G′. Denote by e = (vl, vm) the edge in G′ selected, and 
by vn the newly added node. Denote by Δi1 , . . . , Δip

the triangles in G′ that contain the 
edge e. Then, the subgraph of DG′ induced by these nodes is the complete graph Kp.

The newly added triangle Δn−2 = {vl, vm, vn} is a node in DG. It is connected in DG

to all the nodes Δi1 , . . . , Δip
. We thus conclude that the subgraph of DG induced by 

Δi1 , . . . , Δip
Δn is a complete graph on (p + 1) nodes. We denote by Kp+1 the clique. We 

now show that G is triangulated. By the induction hypothesis, it suffices to show that 
cycles of length greater than 3 containing Δn−2 have a chord. To this end, observe that 
if Δn−2 is in a cycle of length greater than 3, then Δn−2 has 2 distinct neighbors in the 
cycle. Denote them by Δij

and Δik
. Then, necessarily, both of them belong to Kp+1. 

Hence, the edge (Δij
, Δik

) is a chord of the cycle. This completes the proof. �
In the sequel, we will require an RHC that yields a given TLG G with a particular 

initialization. We thus show the following:

Proposition 2.3. Let G be an TLG on n nodes with triangles Δi, 1 ≤ i ≤ n − 2. Then, 
for any Δi, there exists an RHC starting with Δi that yields G.
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Fig. 2. The TLG from Fig. 1b is reproduced and the are triangles labeled in the order of appearance with 
respect to a certain RHC.

Proof. The proof will be carried out by induction on the number of nodes in G. The 
base case of n = 3 is trivially true. We thus assume that the result holds for any TLG 
on (n − 1) nodes and prove that it holds for TLGs on n nodes.

Let G be an TLG on n nodes with (n − 2) triangles. Then, there is an RHC that 
builds G by Theorem 2.1. Without loss of generality, we let Δn−2 = {v1, v2, vn} (resp. 
vn) be the last triangle (resp. node) appearing in the RHC. Then, the degree of vn is 2
and (v1, v2) is a common edge shared by Δn−2 with at least one another triangle, say 
Δj = {v1, v2, vk} for some k ≤ n − 1.

Now, let G′ be the subgraph of G induced by the nodes v1, . . . , vn−1. Then, G′ is 
constructed by stopping an RHC construction after (n − 3) steps, and is thus a TLG 
graph on (n − 1) nodes. By the induction hypothesis, for each triangle Δi ⊂ G′, there 
exists an RHC starting with Δi that produces G′. Note that Δi is a also a triangle of 
G. Continuing the above RHC by one step joining node vn to nodes v1 and v2 yields an 
RHC that builds G.

It remains to show that there is an RHC that produces G starting with triangle Δn−2. 
This a two-step construction: First, starting from Δn−2, we add node vk and connect 
it to nodes v1 and v2, thus obtaining a graph with 4 nodes and 2 triangles (Δn−2 and 
Δj). This graph is clearly a TLG. For the second step, we appeal again to the induction 
hypothesis, to obtain an RHC that builds G′ starting with Δj . Since the concatenation 
of two RHCs is an RHC, using the two steps above, we have obtained an RHC that 
produces G from Δn−2. �
Example 2.1. We illustrate here Proposition 2.3. Consider the TLG of Fig. 2. From 
Theorem 2.1, we know that there exists an RHC producing it. We label the triangles 
in the order of appearance with respect to the RHC. The proposition says that one can 
find an RHC yielding the same G starting from any Δi. Starting from Δ4, a valid RHC 
is, e.g., Δ4Δ3Δ5Δ1Δ2Δ6Δ7.

The next few propositions shed more light on the structure of the derived graph 
DG. In particular, both the triangulated and Laman character of G will come into play 
to show the existence of so-called bottleneck nodes in DG (see Definition 2.4 below). 
These bottleneck nodes will in turn be essential ingredients in obtaining the limits of the 
products of local stochastic matrices.
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Fig. 3. The three triangles Δ1, Δ2, and Δ3 in 3a and 3b are pairwise adjacent, so the corresponding derived 
graphs are triangles. However, the graph in 3a cannot be a subgraph of a TLG because it violates the 
Laman condition for minimal rigidity. Fig. 3c illustrates the two cycles C1 and C2 introduced in (1).

Proposition 2.4. Let Δ1Δ2 · · · ΔpΔ1 be a cycle in DG of length greater than 3. Then, all 
of these triangles in G share a common edge. In particular, the subgraph of DG induced 
by nodes Δ1, . . . , Δp is a complete graph.

Proof. The proof is carried out by induction on the length p of the cycle.
For the base case p = 3, we first note that two distinct triangles can share at most one 

edge. Assume, without loss of generality, that Δi = {v1, v2, v3} and Δj = {v1, v2, v4}, 
i.e., (v1, v2) is the edge shared by Δi and Δj . If the same edge (v1, v2) is also shared by 
Δk, then we are done. Suppose not, say Δi and Δk share edge (v1, v3); then Δj and Δk

must share edge (v1, v4) (it cannot be (v2, v4) because otherwise, Δk has four distinct 
nodes v1, . . . , v4.) But, then, the subgraph G′ of G induced by v1, . . . , v4 is K4. The total 
number of edges in K4 is 6, which violates the Laman condition, which states that the 
number of edges of any induced subgraph on k nodes does not exceed (2k − 3). This 
proves the base case. See Fig. 3a and Fig. 3b for illustration.

For the inductive step we assume that the statement holds for any p′ ≤ p −1 and prove 
for p. Since p ≥ 4, by Proposition 2.2, there is a chord (Δi, Δj), with 1 ≤ i < j ≤ p, in 
the cycle. Using this chord, we obtain the following two cycles:

C1 := Δ1 · · · ΔiΔjΔj+1 · · · ΔpΔ1
C2 := ΔiΔi+1 · · · Δj−1ΔjΔi

(1)

of lengths strictly less than p. See Fig. 3c for illustration. By the induction hypothesis, 
the triangles in each cycle Ck, for k = 1, 2, share a common edge ek. Furthermore, note 
that nodes Δi and Δj appear in both C1 and C2 and, hence, e1 and e2 are shared by 
both Δi and Δj . If e1 and e2 are distinct, then Δi = Δj , which is a contradiction. We 
thus conclude that e1 = e2 =: e, i.e., the common edge e is shared by all of the triangles 
in the original cycle. �

Let G be a TLG with derived graph DG. For a node v in G, we denote by DG(v) the 
subgraph of DG induced by the triangles that contain v. See Fig. 4 for illustration.
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Fig. 4. We depict the triangles that contain the starred node v and the corresponding subgraph they induce 
in DG, denoted by DG(v) (dashed).

Proposition 2.5. Let G be an arbitrary TLG and v be a node of G. Then, DG(v) is a 
connected subgraph of DG.

Proof. We proceed by induction on the number of triangles in G that contain v. The 
base case is such that v belongs to exactly one triangle, say Δ1, in G. The subgraph of 
DG induced by Δ1 is a single node and thus connected. This proves the base case.

For the inductive step, we assume that the statement holds for (k − 1) and prove it 
for k. Choose an RHC that builds G. Let � (resp. m) be the step such that the RHC 
stopped right after step � (resp. step m) yields a subgraph G� ⊂ G with exactly (k − 1)
triangles containing v (resp. a subgraph Gm ⊂ G with k triangles containing v). Since 
G� is a TLG, by the induction hypothesis, DG�

(v) is a connected graph on (k −1) nodes. 
Label these nodes as Δj1 , . . . , Δjk−1 . At step m, the RHC chooses an existing edge 
(v, v′) ∈ Gm−1 and adds a node to form a new triangle Δjk

that contains v. Without 
loss of generality, we assume that Δj1 is another triangle that contains the edge (v, v′). 
As a consequence, (Δj1 , Δjk

) is an edge in DGm
that connects Δjk

with DG�
(v). In other 

words, the subgraph DGm
(v) is connected. Finally, observe that DGm

(v) and DG(v) have 
the same node set by assumption. Since the RHC does not remove existing nodes or edges 
out of G (and, hence, DG as well) along the construction process, DG(v) is connected as 
well. �

We now introduce the notion of bottleneck nodes, see Fig. 5 for an illustration.

Definition 2.4. Let D be an undirected graph, α be a node of D, and D′ be a subgraph 
of D. A node α∗ ∈ D′ is a bottleneck in D′ for α if every walk from any node in D′ to α
contains α∗.

If α ∈ D′, then clearly α is its own bottleneck in D′, i.e., α∗ = α. In most of the time, 
we are interested in the case where α /∈ D′. We establish below some relevant properties 
for bottlenecks. We start with the following one:

Lemma 2.1. If a bottleneck α∗ ∈ D′ for α exists, then it is unique.

Proof. The proof is carried out by contradiction. Suppose that there exist two distinct 
bottlenecks α∗

1 and α∗
2 in D′ for α. Let γ = γ1 . . . γp be an arbitrary finite walk with 
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Fig. 5. Let α be a node in the graph depicted above. The subgraph depicted in blue (dotted) has a bottleneck 
for α, denoted by α∗. The subgraph depicted in red (dashed) does not have a bottleneck node for α.

starting node γ1 = α∗
1 and γp = α. Since α∗

2 is a bottleneck distinct from α∗
1, there 

exists k1 > 1 such that γk1 = α∗
2. But, then, γ′ := γk1 · · · γp is a walk from α∗

2 to α. 
Note that |γ′| < p. Similarly, since α∗

1 is a bottleneck, there exists another integer k2, 
with k2 > k1, such that γk2 = α∗

1. Define γ′′ := γk2 · · · γp, which is a walk from α∗
1 to 

α. By repeatedly applying the above arguments, we obtain an infinite integer sequence 
k1 < k2 < k3 < · · · , such that γk2i+1 = α∗

2 and γk2i
= α∗

1. However, the original walk γ
has finite length, which is a contradiction. We thus have to conclude that α∗

1 = α∗
2. �

It should be clear that given the subgraph D′ and the node α, if a bottleneck exists, 
then it is unique. The next proposition shows the existence of bottleneck nodes for any
subgraph DG(v) of DG and any node outside DG(v):

Proposition 2.6. Let Δ0 be a triangle and v be a node in G. Let DG(v) be the subgraph of 
DG induced by triangles that contain v in G. Then, there exists a bottleneck Δ∗ ∈ DG(v)
for Δ0.

Proof. If DG(v) contains one node Δ0 or if v ∈ Δ0, then clearly Δ0 is the bottleneck. 
Hence we assume it contains at least two nodes and, moreover, v /∈ Δ0, so Δ0 /∈ DG(v).

The remainder of the proof is carried out by contradiction. Suppose that there is no 
bottleneck. By Proposition 2.2, one can find two paths, γ and γ′, that start with nodes 
in DG(v) and end at Δ0. Moreover, by our assumption, γ and γ′ can be chosen with the 
property that they exit the subgraph DG(v) through two distinct nodes.

More precisely, let γp (resp. γ′
p) the pth node in γ (resp. γ′). A node γp is called the 

exiting node of γ if γp ∈ DG(v) and γq /∈ DG(v) for any q > p. Similarly, we let γ′
p′

be the exiting node of γ′. Then, by the hypothesis, we can find γ and γ′ such that the 
two exiting nodes γp and γ′

p′ are distinct. For convenience, we assume, by truncating the 
two paths (if necessary), that the first nodes γ1 and γ′

1 of the two paths are the exiting 
nodes.

We will now construct a cycle in DG that contains nodes γ1, γ′
1, and at least one node 

not in DG(v). To this end, since DG(v) is connected by Proposition 2.5, there exists a 
path ω in DG(v) from γ1 to γ′

1.
Next, we let Δ be the first node that belongs to both γ and γ′. Since γ and γ′ have the 

same ending node Δ0, the node Δ always exists (and it could be Δ0). By concatenating 
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Fig. 6. This figure shows that if the bottleneck does not exist, then there would be a cycle C formed by the 
conjunction of two paths ω and ω′ −1 as shown in the proof. The nodes in blue and square are nodes of 
DG(v). The node Δ is outside DG(v) but belongs to C, which leads to a contradiction.

the subpath γ1 · · · Δ of γ with the subpath Δ · · · γ′
1 of (γ′)−1, we obtain a new path ω′

joining γ1 to γ′
1.

Note, in particular, that only the starting and the ending nodes of ω′ belong to DG(v). 
By concatenating ω with ω′ −1, we obtain the desired cycle. See Fig. 6 for illustration.

Denote the cycle by C. By Proposition 2.4, the triangles of G that correspond to the 
nodes of C share a common edge, which we denote by e. Because both γ1 and γ′

1 belong 
to DG(v) and because γ1 �= γ′

1, the edge e must contain the node v. Since the triangle 
Δ is also a node of C, it contains the edge e and, hence, the node v. On the other hand, 
Δ does not belong to DG(v), which is a contradiction. �
3. Main results

In the section, we state three main results concerning products of local stochastic 
matrices (which will be introduced below), namely Theorems 3.1, 3.6, and 3.7. Relying 
on properties of TLGs and their derived graphs established in the previous section, we (1) 
characterize the limits of these products, (2) make connections between these limits and 
the so-called absolute probability vectors [8], and (3) show that for any given target limit, 
one can find a set of local stochastic matrices so that their infinite products converge to 
the target one.

In the sequel, we will view DG as a directed graph by replacing an undirected edge 
(vi, vj) with two directed ones, namely vivj and vjvi. The purpose of doing so is to 
emphasize the direction in which an edge of DG is traveled.

3.1. Local stochastic matrices and their infinite products

Local stochastic matrices. We now show how to attach a set of stochastic matrices Ai

to a given TLG, and how the same graph can be used to generate an infinite family of 
products of Ai with a known limit distribution. Throughout this section, G is a TLG on 
n nodes.

There are (n − 2) triangles in G by Proposition 2.2 and we denote them by 
Δ1, . . . , Δn−2. For each Δi = {vj , vk, vl}, with j < k < l, we assign weights to its 
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three nodes. We denote these weights by ai,j , ai,k, and ai,l respectively. We emphasize 
that a given node does not necessarily have a unique weight assigned, but has one weight 
assigned per triangle to which it belongs. On occasion, we will use aΔi,vj

, instead of ai,j , 
to denote the weight assigned to node vj in triangle Δi.

We call ai = (ai,j , ai,k, ai,l) the local weight vector associated with Δi. We next define 
for each Δi a stochastic matrix as follows:

Ai :=
∑

vj ,vk∈Δi

ai,keje�
k +

∑
vj /∈Δi

eje�
j . (2)

The structure of the Ai is easy to state in words: The principal submatrix of Ai corre-
sponding to Δi is a 3-by-3 rank-one stochastic matrix while the remainder of the matrix 
is simply the identity matrix. We illustrate this below a simple example:

Example 3.1 (Local stochastic matrices with n = 5). Consider a graph on n = 5
nodes consisting of the three triangles Δ1 = {v1, v2, v3}, Δ2 = {v1, v2, v4}, and 
Δ3 = {v2, v3, v5}. In this case, we have the following local stochastic matrices:

A1 =

⎡
⎢⎢⎢⎣

a1,1 a1,2 a1,3 0 0
a1,1 a1,2 a1,3 0 0
a1,1 a1,2 a1,3 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎣

a2,1 a2,2 0 a2,4 0
a2,1 a2,2 0 a2,4 0
0 0 1 0 0

a2,1 a2,2 0 a2,4 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ ,

and

A3 =

⎡
⎢⎢⎢⎣

1 0 0 0 0
0 a3,2 a3,3 0 a3,5
0 a3,2 a3,3 0 a3,5
0 0 0 1 0
0 a3,2 a3,3 0 a3,5

⎤
⎥⎥⎥⎦ .

For a later purpose, we need a mild assumption on the local stochastic matrices:

Assumption 3.1. For each triangle Δi and each nonsimple edge (vj, vk) in Δi, ai,j +ai,k >

0.

Products of local stochastic matrices. We now describe allowable products of local 
stochastic matrices. Let γ be a walk in DG. We say that the walk γ is infinite if |γ| = ∞. 
To any walk γ := Δi1Δi2 · · · Δik

in the derived graph DG, we associate the product of 
stochastic matrices

Pγ := Aik
· · · Ai2Ai1 . (3)

We will mostly be interested in the case of infinite walks and, in particular, determining 
the corresponding product Pγ .
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The problem, which is twofold in nature, is well-known to be difficult. First, one 
has to guarantee that the infinite products exists (i.e., in the limit |γ| → ∞). Second, 
provided that the limit exists, it usually depends on the complete sequence γ, making its 
characterization generically intractable. While the first problem has been the subject of 
many investigations, as mentioned in the Introduction, the second problem has received 
much less attention so far.

Surprisingly, under certain mild assumptions on the infinite walks (which we introduce 
in Definition 3.1), a complete characterization of Pγ can be obtained. We state the results 
below. To proceed, we first introduce the following definition:

Definition 3.1 (Exhaustive walk). A finite walk γ in DG is exhaustive if it visits every 
node of DG at least once. An infinite walk γ in DG is exhaustive if it visit every node of 
DG infinitely often.

With the above definition, we now state the first main result, which says that Pγ

exists if the infinite walk γ is exhaustive and, moreover, there exists a finite set of rank 
one matrices to which the limit Pγ can belong.

Theorem 3.1. Let G be a TLG on n nodes, with triangles Δ1, . . . , Δn−2. Let {A1, . . ., 
An−2} be an arbitrary set of local stochastic matrices that satisfy Assumption 3.1. Then, 
there exist (n −2) probability vectors w1, . . . , wn−2 such that for every infinite exhaustive 
walk γ with starting node Δi, 1 ≤ i ≤ n − 2,

Pγ = 1w�
i .

We introduce below a few corollaries of Theorem 3.1.

Randomized scheduling. An infinite exhaustive walk γ in DG can be obtained easily 
by periodic extension of a finite exhaustive walk whose starting and ending nodes are 
adjacent. It can also be obtained via random walks as we describe below. Given a node 
Δi ∈ DG, we denote by N(Δi) the set of neighbors of Δi (the in-neighbors and the 
out-neighbors of Δi are the same). We call γ a simple random walk in DG, if γ is an 
infinite walk and the transition probability P (γt+1 = Δj | γt = Δi) is given by

P (γt+1 = Δj | γt = Δi) =
{

1
|N(Δi)| if Δj ∈ N(Δi),
0 otherwise.

Because DG is connected, it is well known that a simple random walk visits every node of 
DG infinitely often (and, hence, it is infinite exhaustive) with probability 1. The following 
fact is then an immediate consequence of Theorem 3.1:

Corollary 3.2. Let γ be a simple random walk with starting node Δi. Then, Pγ = 1w�
i

with probability one.
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Connection to absolute probability vectors. Theorem 3.1 has a few notable consequences. 
Let γ and Pγ be as in the theorem’s statement. We use the common notation that for a 
pair 0 ≤ s < t of positive integers, the partial product corresponding to the indices is

Pγ(t : s) = Aγt
Aγt−2 · · · Aγs+1 .

With the above notation, we can write, e.g., Pγ(t : s)Pγ(s : r) = Pγ(t : r).
Kolmogorov introduced in [8] the absolute probability vectors associated with a prod-

uct Pγ (see also [17,18]):

Definition 3.2 (Absolute probability vectors). A sequence of vectors {xs}∞
s=0 are absolute 

probability vectors (APVs) for Pγ if every xs is a probability vector and if for every pair 
(s, t) of integers, with 0 ≤ s < t, x�

t Pγ(t : s) = x�
s .

APVs are tightly related to the existence of the limit limt→∞ Pγ(t : 0). For example, 
it is known that the limit exists if and only if there is a unique set of APVs for Pγ and, 
moreover,

lim
t→∞

Pγ(t : s) = 1x�
s , (4)

for any given s ≥ 0. We refer the reader to the recent work [6] for more details on the 
use of the APVs (note that the author uses “absolute probability sequence” instead of 
APVs). As an immediate consequence of Theorem 3.1, we have the following corollary:

Corollary 3.3. If γ is an infinite exhaustive walk, then there is a unique sequence of APVs 
for Pγ .

Furthermore, a complete characterization of the values of the APVs can be obtained 
using Theorem 3.1:

Corollary 3.4. Let γ be an arbitrary infinite exhaustive walk and {xs}∞
s=0 be the unique 

sequence of APVs for Pγ. Let w1, . . . , wn−2 be as in Theorem 3.1. Then, the image of 
the map s �→ xs is {w1, . . . , wn−2}.

Proof. For any s ≥ 0, we consider the sequence γ′ := γs+1γs+2 · · · , i.e., γ′ is obtained 
from γ by omitting its first s nodes. If γ is exhaustive, then so is γ′. Then, by Theorem 3.1, 
Pγ′ = 1wγs+1 . On the other hand, by (4), we have that Pγ′ = 1x�

s . It follows that 
xs = wγs+1 . This shows that the image of s �→ xs has finite cardinality. Finally, because 
γ is exhaustive, for every Δi, there exists an s such that γs = Δi. �
3.2. Characterization of the product limits

Theorem 3.1 states that limt→∞ Pγ(t : 0) exists and can only take value in a finite 
set. We describe this set below.
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Fig. 7. We illustrate the construction of the entry wi,j for the case where vj /∈ Δi. The graph G in the 
figure is a TLG, and the triangles are labeled in order of appearance in a valid RHC starting at Δ1. We 
choose Δi = Δ7 (the shaded triangle) and vj = v1 (the star node). There are three triangles Δ1, Δ2, and 
Δ3 that contain v1, and Δ2 is the bottleneck for Δ7. The directed path γ = Δ2Δ4Δ5Δ6Δ7 is shown in red 
(dashed). The path crosses four edges in G, which are highlighted in blue. Each of these is shared by two 
adjacent triangles along the path γ. To these edges correspond the four ratios rγp,γp+1 defined in (5). The 
entry wi,j is then the product of these four ratios and the local weight aΔ2,v1 from Δ2.

Unnormalized APVs.
For each node Δi in DG, we define a positive vector wi ∈ Rn according to the following 

construction. Let wi,j be the jth entry of wi and recall that ai ∈ R3 is the local weight 
vector of triangle Δi, introduced at the beginning of Section 3.1.

Let Δj1 , . . . , Δjm
be the triangles that contain vj . By Proposition 2.6, there is a unique 

Δjk
, for some k = 1, . . . , m, such that Δjk

is the bottleneck in DG(vj) for Δi. We have 
two cases depending on whether vj ∈ Δi or vj /∈ Δi:

Case 1: vj ∈ Δi: In this case, Δjk
= Δi. We then set wi,j := ai,j .

Case 2: vj /∈ Δi: In this case, we let γ be a finite walk in DG from Δjk
to Δi.

Let γp be the pth node in the walk, with γ1 = Δjk
. For each p = 1, . . . , |γ| − 1, 

we let ep = (vp1 , vp2) be the unique edge in G that is shared by triangles γp and 
γp+1. Define the ratio

rγp,γp+1 :=
aγp+1,vp1

+ aγp+1,vp2

aγp,vp1
+ aγp,vp2

. (5)

Now, define a product of the above ratios along the path γ as follows:

Rγ :=
|γ|−1∏
p=1

rγp,γp+1 .

Apparently, Rγ depends on γ. However, we will show in Proposition 3.5 that the 
choice of the walk does not affect Rγ, as long as the starting and ending nodes 
are fixed.
With Rγ defined above, we set

wi,j := aγ1,jRγ , (6)

where aγ1,j is the weight of node vj for γ1 = Δjk
. See Fig. 7 for illustration.
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In words, rγp,γp+1 is a ratio of the sums of the local weights assigned to the nodes 
incident to ep: in the numerator, we take the weights from γp, and in the denominator, 
the weights from the next triangle in γ, namely, γp+1. We emphasize that the order of 
the two subindices of r matters and it reflects the orientation of the edge γpγp+1 in γ. 
By Assumption 3.1, the denominator in the ratio is strictly positive.

Note that the above two cases can actually be unified if one extends the definition 
of Rγ to allow for γ a path of cardinality 1 (i.e., a path comprised of a single node). 
Specifically, we set Rγ = 1 for any such path. Then, we can express wi,j, for vj ∈ Δi, as 
wi,j = ai,jRΔi

= ai,j .
We now prove the above claim about the independence of Rγ on the particular walk 

chosen. It is a consequence of the following fact:

Proposition 3.5. Let ω be a closed walk in DG. Then, Rω = 1.

Proof. We first assume that ω is a cycle and write ω = ω1 · · · ωkω1. By Proposition 2.4, 
all the triangles ω1, . . . , ωk share a common edge in G, which we denote by (v1, v2). 
Clearly, (v1, v2) is also the only edge shared by two distinct ωi and ωj . It then follows 
that

Rω = rω1,ω2rω2,ω3 · · · rωk,ω1

= aω2,v1 + aω2,v2

aω1,v1 + aω1,v2

aω3,v1 + aω3,v2

aω2,v1 + aω2,v2

· · · aω1,v1 + aω1,v2

aωk,v1 + aωk,v2

= 1.

We now assume that ω is a closed walk. One can always decompose ω edge-wise and use 
the directed edges in ω to form multiple cycles. Label these cycles as C1, . . . , Cm. Then, 
it should be clear that Rω = RC1 · · · RCm

. Because RCi
= 1 for each i = 1, . . . , m, we 

have that Rω = 1. �
Returning to the independence of Rγ on a particular path, assume that γ and γ′ are 

two walks in DG with the same starting and ending nodes. Then, by concatenating γ
with γ′ −1, we obtain a closed walk ω. By Proposition 3.5, Rω = RγRγ′ −1 = 1. On the 
other hand, Rγ′ −1 = 1/Rγ′ . It then follows that Rγ = Rγ′ , as is claimed above.

Example 3.2 (Unnormalized APVs in case n = 5). We return to the case n = 5 illustrated 
in Example 3.1, with three triangles Δ1, Δ2, and Δ3. We denote the associated local 
weight vectors a1, a2, and a3. Then, the vectors w1, w2, and w3 obtained according to 
the above construction are

w1 =
(

a1,1 a1,2 a1,3 a2,4
a1,1+a1,2
a2,1+a2,2

a3,5
a1,2+a1,3
a3,2+a3,3

)�

w2 =
(

a2,1 a2,2 a1,3
a2,1+a2,2
a +a a2,4 a3,5

a1,2+a1,3
a +a

a2,1+a2,2
a +a

)�
1,1 1,2 3,2 3,3 1,1 1,2
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w3 =
(

a1,1
a3,2+a3,3
a1,2+a1,3

a3,2 a3,3 a2,4
a1,1+a1,2
a2,1+a2,2

a3,2+a3,3
a1,2+a1,3

a3,5

)� �
It should be clear that each vector wi defined above is nonnegative and nonzero (the 

entries wi,j , for vj ∈ Δi, defined in case 1 cannot all be zero because they sum to 
one). However, each wi is not a probability vector because the sum of its entries is in 
general greater than one. The following theorem explains why these vectors are called 
unnormalized APVs:

Theorem 3.6. Let w1, . . . , wn−2 be the positive vectors defined above. Then, the vectors 
w1, . . . , wn−2 in Theorem 3.1 are given by normalization:

wi := wi∑n
j=1 wi,j

.

3.3. Surjectivity of left-eigenvector map

The remainder of the section concerns the design of stochastic matrices that yield a 
desired rank one limit for the product Pγ . We have the following theorem:

Theorem 3.7. Let w∗ be a positive probability vector. Then, for any given Δi, there exist 
local weight vectors aj ∈ R3, for Δj ∈ DG, such that wi = w∗.

The statement is not surprising when one compares the dimensions of the local weight 
vectors (totaling 2(n − 2)) with the dimension of a probability vector (which is (n − 1)). 
Nevertheless, the proof we provide is constructive. Since the proof relies on a different 
set of arguments from the ones needed for the previous theorems and since it is relatively 
simpler, we provide it here.

Proof. We proceed by induction on the number of nodes in the graph G. For the base 
case n = 3, we follow Theorem 3.6 and set a = w∗.

Now, let us assume that the statement holds for all TLGs G′ on n nodes. Given a TLG 
G on (n + 1) nodes it can be obtained from a TLG graph G′ on n nodes by performing 
one step of RHC. By Proposition 2.3, we can assume that the subgraph G′ contains Δi

(specifically, by Proposition 2.3, we can choose an RHC that starts with Δi). We denote 
by vn+1 the newly added node going from G′ to G.

Let w∗ = (w∗
1, . . . , w∗

n+1) ∈ Rn+1 be an arbitrary positive probability vector. By 
the induction hypothesis, we can choose local weights aj, 1 ≤ j ≤ n − 2, so that the 
unnormalized vector (wi,1, . . . , wi,n) satisfies

(wi,1, . . . , wi,n) ∝ (w∗
1, . . . , w∗

n)∑n
i=1 w∗

i

,

i.e., the right hand side is realized as the probability vector for G′.
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Let γ be a path from Δn+1 to Δi. Without loss of generality, we can assume that Δn

is the second node in the path, so Δn and Δn+1 are adjacent, and we can label the nodes 
of G so that (v1, v2) is the common edge shared by Δn and Δn+1. Let γ′ be a subpath 
of γ that starts from Δn and ends at Δi. Then, from the construction of wi in Eq. (6), 
we have that

wi,n+1 = an+1,n+1Rγ

= an+1,n+1
an,1 + an,2

an+1,1 + an+1,2
Rγ′

= an+1,n+1

an+1,1 + an+1,2
(an,1 + an,2)Rγ′ , (7)

where the second equality follows by unwrapping the definition of rγ1,γ2 and the third 
equality is just a rearrangement. Now choose the three entries an+1,1, an+1,2, and 
an+1,n+1 of the local weight vector an+1 so that the last entry wi,n+1 of wi satisfies

wi,n+1 = wi,n

w∗
n

w∗
n+1.

This can done since (an,1 + an,2)Rγ′ is independent of the local weight vector an+1. By 
normalizing wi, we obtain wi = w∗. �
4. Proof of main results

This section is devoted to the proofs of the main theorems stated in Sec. 3.

4.1. Properties of unnormalized APVs

We start by deriving some key properties of the unnormalized APVs wi of the products 
Pγ introduced above.

Proposition 4.1. Let wi be defined in Sec. 3.2 and Ai be the corresponding local stochastic 
matrix. Then, w�

i Ai = w�
i for any i = 1, . . . , n − 2.

Proof. The result is a direct computation. Assume without loss of generality that Δi

is comprised of the vertices v1, v2, and v3. Then, the matrix Ai takes the form Ai =
diag(13a�

i , In−3) where ai := (ai,1, ai,2, ai,3). It thus suffices to show that

(wi,1, wi,2, wi,3)�13a�
i = (wi,1, wi,2, wi,3)�,

which follows from the fact that (wi,1, wi,2, wi,3) = ai by construction of the vector 
wi. �

The following Proposition is a major building block in the proofs of the main theorems.
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Proposition 4.2. Let Δi and Δj be any two adjacent triangles in G. Then,

w�
j Ai = ri,jw�

i ,

where ri,j is defined in Eq. (5).

Proof. We prove the proposition by showing that wj,k = ri,jwi,k for all k = 1, . . . , n. To 
do so, we first relabel the vertices (if necessary) so that Δi (resp. Δj) is comprised of 
vertices v1, v2, and v3 (resp. v1, v2, and v4). Then, we have that Ai = diag(13a�

i , In−3)
with ai = (ai,1, ai,2, ai,3). We consider below two cases for the subindex k:

Case 1: k = 1, 2, 3. In this case, it suffices to show that

(wj,1, wj,2, wj,3)�13a�
i = ri,j(wi,1, wi,2, wi,3)�.

First, it should be clear that

(wi,1, wi,2, wi,3) = (ai,1, ai,2, ai,3).

Next, note that Δi is the bottleneck of DG(v3) for Δj because Δi and Δj are 
adjacent. The construction of wj described in Sec. 3 yields that

(wj,1, wj,2, wj,3) = (aj,1, aj,2, ai,3ri,j).

It then follows that

(wj,1, wj,2, wj,3)�13 = aj,1 + aj,2 + ai,3
aj,1 + aj,2

ai,1 + ai,2
= aj,1 + aj,2

ai,1 + ai,2
= ri,j ,

where we have used the fact that ai,1 + ai,2 + ai,3 = 1.
Case 2: k = 4, . . . , n. It suffices to show that wj,4 = ri,jwi,4 (because the principal sub-

matrix of A formed by the last (n − 3) rows/columns is the identity matrix). 
From Proposition 2.6, there is a unique bottleneck Δ∗ in DG(vk) for Δi. Because 
Δi and Δj are adjacent, the same node Δ∗ is also the bottleneck in DG(vk) for 
Δj . To see this, let γ be an arbitrary walk from a node in DG(vk) to Δj . Then, 
γ′ := γ ∨ Δi is a walk from the same node in DG(vk) to Δi. Since Δ∗ is the 
bottleneck for Δi, it is necessarily contained in γ′ and, hence, γ. Thus, all walks 
from DG(vk) to Δj contain Δ∗. Since by Lemma 2.1 the bottleneck is unique, 
it has be to Δ∗.
Now, let γ be a walk from the bottleneck Δ∗ to Δj and γ′ := γ ∨ Δi as above. 
Then, Rγ′ = rj,iRγ . On the other hand, we have wi,k = aΔ∗,vk

Rγ′ and wj,k =
aΔ∗,vk

Rγ . It follows that wi,k = rj,iwj,k. Because ri,jrj,i = 1, we have wj,k =
ri,jwi,k.
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The proof is now complete. �
The above proposition has important implications as we state below:

Corollary 4.3. Let γ be a finite walk in DG that starts at Δi and ends at either Δi or at 
a node adjacent to Δi. Then, w�

i Pγ = w�
i .

Proof. Let Δj be an arbitrary node adjacent to Δi, and γ = γ1 · · · γk be a finite walk in 
DG, with γ1 = Δi and γk = Δj . By adding a node Δi to the end of γ, one obtains the 
closed walk γ′ := γ ∨ Δi. We show that the statement holds for both γ and γ′.

For γ, we repeatedly apply Proposition 4.2 to obtain that

w�
i Pγ = w�

i Aγk
· · · Aγ1

= rγk,γ1wγk
Aγk−1 · · · Aγ1

...

= rγk,γ1rγk−1,γk
· · · rγ1,γ2w�

i

= Rγ′w�
i .

(8)

Because γ′ is a closed walk, Rγ′ = 1 by Proposition 3.5.
Next, for γ′, we note that by Proposition 4.1, w�

i Aγ1 = w�
i Ai = w�

i , so

w�
i Pγ′ = w�

i Aγ1Aγk
· · · Aγ1 = w�

i Aγk
· · · Aγ1 = w�

i Pγ .

It is shown above that w�
i Pγ = w�

i . This completes the proof. �
4.2. Exhaustive walks and contraction property

We develop in this section the necessary tools to show that the limit Pγ exists when 
γ is an infinite exhaustive walk in DG.

Contraction property. We start by introducing the following semi-norm [1]: Let A = [aij ]
be an arbitrary n × m matrix. We set

‖A‖S := max
1≤j≤m

max
1≤i1,i2≤n

|ai1j − ai2j | (9)

It is known [2, Theorem 1] that if the matrices in the product Pγ are stochastic ma-
trices and if limt→∞ ‖Pγ(t : 0)‖S = 0, then there exists a probability vector w so that 
limt→∞ Pγ(t : 0) = 1nw�.

We introduce below another known fact:

Lemma 4.1. Let A ∈ Rn×n be a stochastic matrix. Suppose that A has a positive column 
z with min z ≥ ε > 0; then, for any matrix B ∈ Rn×m,
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‖AB‖S < (1 − ε)‖B‖S .

We do not provide a proof here, but refer to the proof of a similar statement in [19, 
Lemma 3]. There, the author also assumes that B is a stochastic matrix. However, the 
proof provided does not rely on this assumption.

Exhaustive walks and products with positive columns. We show that if G is a TLG with 
derived graph DG and if γ is a finite exhaustive walk in DG, then Pγ has a positive 
column. For that, we first have the following fact:

Lemma 4.2. Let A be a stochastic matrix and z be a nonnegative vector. Then, min(Az) ≥
min z.

Proof. Since A is row stochastic, every entry of the vector Az is a convex combination 
of the entries of z, and thus larger than min z. �

We now establish the following result, as announced above:

Proposition 4.4. There is an ε ∈ (0, 1) such that for any finite, exhaustive walk γ in DG, 
the stochastic matrix Pγ has a positive column z with min z ≥ ε.

Proof. Let γ be an arbitrary finite, exhaustive walk. Let μp be the number of distinct 
nodes in γ1 · · · γp. Then

1 = μ1 ≤ μ2 ≤ · · · ≤ μ|γ| = n − 2.

Because μp is an integer-valued increasing sequence and because μp+1 − μp ≤ 1 by 
construction, there exist (n − 2) time steps t1 < t2 < · · · < tn−2 := |γ| with the property 
that μtk+1 − μtk

= 1, for 1 ≤ k ≤ n − 3. Note that t1 has to be 1 since DG is simple and 
γ is a walk in DG.

For ease of analysis, but without loss of generality, we label the nodes of G such that 
the triangles γ1, . . . , γtk

, for all k = 1, . . . , (n −2), cover nodes v1, . . . , vk+2. Then, by the 
definition (2) of Ai, the matrix

Pγ(tk : 0) = Aγtk
· · · Aγ1 =: diag[Qk, I], (10)

for k = 1, . . . , n − 2, is block diagonal with Qk being an (k + 2) × (k + 2) stochastic 
matrix and I being the identity matrix of dimension (n − k − 2) × (n − k − 2).

We show below that for every k = 1, . . . , n − 2, there exists an εk > 0, independent of 
γ, such that Qk has a column zk with min zk ≥ εk. The proof is carried out by induction 
on k. To proceed, we first define the minimum non-zero entry over all local weight vectors 
of triangles:

a := min {aΔ,vi
| aΔ,vi

�= 0, vi ∈ Δ, Δ ∈ DG} . (11)
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It should be clear that a ∈ (0, 1].
For the base case k = 1, we have that t1 = 1 and Pγ(t1 : 0) = Aγ1 = diag[Q1, I]. It 

follows that Q1 = (13a�
1 ) = 13a�

1 , where a1 ∈ R3 is the local weight vector of triangle 
Δ1. It should be clear that Q1 has a positive column, which we denote by z1. Setting 
ε1 := a, we obtain that min z1 ≥ ε1.

For the inductive step, we assume that εk−1 exists and prove the existence of εk. 
By (10), we have that

Pγ(tk−1 : 0) = diag[Qk−1, I],

where dim Qk−1 is (k + 1) × (k + 1). Now, consider the sub-walk γ1 · · · γtk
and the 

corresponding product Pγ(tk : 0). We can express Pγ(tk−1 + 1 : 0) = diag[Q′
k, I], where 

Q′
k is of dimension (k + 2) × (k + 2).
By an earlier assumption, triangle γtk−1+1 contains the node vk+2. Moreover, by 

relabeling nodes v1, . . . , vk+1, we can arrange matters so that γtk−1+1 has nodes 
{vk, vk+1, vk+2}. Denote by Q̃k−1 the matrix Qk−1 after the relabeling, then Q̃k−1 is 
obtained by a permutation of rows/columns of Qk−1. It should be clear that if Qk−1 has 
a column zk−1 such that min zk−1 ≥ ε for some ε > 0, then so does Q̃k−1. For ease of 
notation, we will still write Qk−1 instead of Q̃k−1. Using this labeling, we can compute 
Q′

k from Qk−1 via the following expression:

Q′
k = diag[I, 13a�] diag[Qk−1, 1],

where a ∈ R3 is the local weight vector corresponding to the triangle γtk−1+1 (the sub-
index of a has been omitted for simplicity).

By the induction hypothesis, there is a positive column zk−1 of Qk−1 such that 
min zk−1 ≥ εk−1. Then, [zk−1; 0] is a column of diag[Qk−1, 1]. Let zk−1,j (resp. aj) 
be the jth entry of zk−1 (resp. a). We compute below the column vector z′

k :=
diag[I, 13a�][zk−1; 0]:

z′
k,j =

{
zk−1,j for 1 ≤ j ≤ k − 1,

a1zk−1,k + a2zk−1,k+1 for k ≤ j ≤ k + 2.
(12)

From Assumption 3.1, a1 and a2 cannot both be zero, so Q′
k has a positive column z′

k. 
Moreover, because min zk−1 ≥ εk−1 and a1, a2 ≥ a (note that a < 1),

min z′
k ≥ aεk−1 =: ε′

k ∈ (0, 1).

Note that ε′
k is independent of γ and, hence, a uniform lower bound.

By the definition of tk, the sub-walk γ1 · · · γtk
covers the same set of nodes as the 

sub-walk γ1 · · · γtk−1+1 does. In particular, using Eq. (10), the matrix Pγ(tk : 0) takes 
the form diag[Qk, I] with Qk and Q′

k of the same dimension. Moreover, Qk can be 
expressed as Qk = SkQ′

k where Sk is the (k + 2) × (k + 2) leading principal submatrix of 
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Pγ(tk : tk−1+1). Note that Sk is a stochastic matrix. By Lemma 4.2, min(Skz′
k) ≥ min z′

k, 
which implies that Qk has a positive column zk and, moreover, min zk ≥ εk := ε′

k. �
Remark 4.1. A close inspection of the above arguments yields that ε can be chosen to 
be ε = an−2.

4.3. Proofs of main theorems

We now put the above results together to prove Theorems 3.1 and 3.6.
Let γ be an infinite, exhaustive walk starting at node Δi. Let tk, for k ≥ 0, be 

a monotonically increasing sequence of time steps at which the walk first revisits Δi

after having visited all other nodes since tk−1, i.e., γtk
= Δi and γtk

· · · γtk+1−1 is a 
finite, exhaustive walk. We set t0 := 1. By assumption, (n − 2) ≤ tk+1 − tk < ∞. For 
convenience, we introduce sk := tk − 1, so s0 = 0.

From Lemma 4.1, the semi-norm ‖Pγ(s : 0)‖S is non-increasing in s and since it 
is obviously lower-bounded, it converges to a limit. We now show that this limit is 0. 
To this end, we use Proposition 4.4 to obtain an ε ∈ (0, 1) such that for each k ≥ 0, 
Pγ(sk+1 : sk) has a positive column zk with min zk ≥ ε. Then, by repeatedly applying 
Lemma 4.1, we have that

‖Pγ(sk : s0)‖S = ‖Pγ(sk : sk−1)Pγ(sk−1 : s0)‖S

≤ (1 − ε)‖Pγ(sk−1 : s0)‖S ≤ (1 − ε)k. (13)

It then follows that

‖Pγ‖S = lim
k→∞

‖Pγ(sk : s0)‖ = lim
k→∞

(1 − ε)k = 0,

as claimed. Using [2, Theorem 1], we conclude that Pγ converges to a rank-one stochastic 
matrix.

Let ŵ be such that Pγ = 1ŵ�. We next show that ŵ = wi as is in the statement 
of Theorem 3.6. On the one hand, the convergence of Pγ(sk : s0) to Pγ implies the 
convergence of the row vectors w�

i Pγ(sk : s0) to the row vector w�
i Pγ = w�

i 1ŵ� = ŵ�. 
On the other hand, each finite walk γt0 · · · γtk−1 starts with γi and ends with a node 
adjacent to γi. Thus, by Corollary 4.3, w�

i Pγ(sk : s0) = w�
i . Combining the above 

arguments, we have that

w�
i = lim

k→∞
w�

i Pγ(sk : s0) = w�
i Pγ = ŵ�.

This completes the proofs of both Theorems 3.1 and 3.6. �
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Fig. 8. The graph in Fig. 8a is a triangulated rigid graph, but is not Laman. The graph in Fig. 8b is a TLG.

Fig. 9. For random walks γ, with |γ| = 104, in the derived graph of Fig. 8a, we evaluate the corresponding 
left eigenvector w of Pγ . We plot the empirical distribution for each entry of w.

5. Numerical studies

We present here simulation results showing the validity of the main theorems and the 
importance of the adjacency rule and the condition that the underlying graph is a TLG. 
Precisely, we present three sets of experiments. In the first one, we show that if G is not 
a TLG, but simply a triangulated graph, then the conclusions do not hold. In the second 
set, we explore the importance of the structure of the local stochastic matrices. In the 
last set, we show that the adjacency rule for the product, i.e., that γ is a walk in DG, is 
critical as well.

Experiment 1: On triangulated Laman graphs. We consider in Fig. 8a a triangulated 
graph with 5 triangles. The derived graph is a cycle of length 5. The graph is not Laman 
because it violates the Laman condition, but it is rigid. To each triangle, we assign 
a local weight vector, which yields the associated local stochastic matrix. These local 
weight vectors are i.i.d random variables uniformly drawn from splx(2).

We then sample Nr = 50 · 103 random walks γ in DG. The cardinality of each walk 
is N = 104. This length was sufficient to guarantee converge of the product Pγ to a 
rank-one matrix, as was observed in the simulation (we took the absolute values of the 
eigenvalues of the products and verified that there was only one nonzero value, namely 
value one).

We denote by w the left eigenvector of Pγ corresponding to eigenvalue 1, i.e., 
Pγ = 1(w)�. Then, w is a random variable taking value in splx(5). We plot in Fig. 9 the 
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Fig. 10. For random walks γ, with |γ| = 104, in the derived graph of Fig. 8b, we evaluate the corresponding 
left eigenvector w of Pγ . We plot the empirical distribution for each entry of w.

Fig. 11. The “horse” graph G in Fig. 11a is a TLG on 18 nodes. We plot its derived graph DG in Fig. 11b. We 
provide here a few (but not all) correspondences between triangles in G and nodes in DG: Δ1 = {v1, v2, v3}, 
Δ2 = {v2, v3, v4}, Δ5 = {v1, v2, v6}, and Δ9 = {v1, v3, v7}.

histograms for the 6 entries of w. We observe that the support of these empirical distri-
butions has non-zero measure, indicating that there is a continuum of limits, associated 
to the chosen set of local weight vectors.

Experiment 2: On local stochastic matrices. We consider in Fig. 8b a TLG with 4 triangles 
whose derived graph is line graph. To each triangle Δi, we assign a random 3 ×3 stochastic 
matrix, realized as the principal submatrix of Ai corresponding to the nodes of Δi. All 
of the row vectors of these 3 × 3 matrices are i.i.d random variables uniformly drawn 
from splx(2). This construction of local weight matrices violates our assumption on the 
Ai’s, which requires these principal submatrices to have identical rows.

Similarly, we sample Nr = 50 · 103 random walks γ of cardinality N = 104 in DG

(for which we observe convergence of every Pγ) and plot the empirical distribution of 
the entries of the limiting left-eigenvector of Pγ (Fig. 10). We again observe that the 
support of these empirical distributions have non-zero measures, indicating that there is 
a continuum of limits.
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Fig. 12. For random sequences (not necessarily walks) γ, with |γ| = 30 · 103, of nodes in the derived graph 
shown in Fig. 11b, we evaluate the corresponding left eigenvector w of Pγ . We plot the empirical distribution 
for each entry of w. The delta functions in red are distributions that correspond to random walks γ in DG. 
The distributions in black correspond to sequences γ of nodes in DG chosen uniformly at random.

Experiment 3: On adjacency rules. In this last set of experiments, we verify that if the 
assumptions are met, Pγ converges to a rank-one matrix whose value does not depend 
on the walk γ in DG. We also verify that if all assumptions are met but γ is a random 
sequence of triangles, and thus does not respect the adjacency rules afforded by DG, the 
conclusions do not hold. The simulations shown in Fig. 12 are based on a larger TLG 
G with 18 nodes, depicted in Fig. 11a, with derived graph DG on 16 nodes shown in 
Fig. 11b. To each triangle, we assign a local weight vector, which yields the associated 
local stochastic matrix. These local weight vectors are i.i.d random variables uniformly 
drawn from splx(2).
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We first sampled Nr = 50 · 103 random walks γ of cardinality N = 30 · 103 in DG. 
Every walk starts at node Δ1 = {v1, v2, v3}. We observe convergence of every Pγ to a 
common rank-one matrix. This provides numerical support of Theorem 3.1. Denote by 
w the common left-eigenvector of Pγ corresponding to eigenvalue 1, and wi its entry. We 
plot the delta functions in Fig. 12 in red at these wi.

We then sampled Nr = 50 · 103 random sequences γ of cardinality N = 30 · 103

in DG (for which we observe again convergence of every Pγ to a rank-one matrix). In 
this case, each element of the sequence is a randomly chosen node in DG. We plot in 
Fig. 12 in black the empirical distributions for the entries of the left-eigenvector of Pγ

corresponding to the eigenvalue 1. Again, observe that the support of these empirical 
distributions have non-zero measures, indicating that there is a continuum of limits.

6. Summary and outlook

We have shown how to construct sets of stochastic matrices (called local stochastic 
matrices) and adjacency rules for taking product of these matrices that guarantee, under 
some mild assumptions, convergence of the product to one out of a finite number of 
possible limits. These limits are all rank-one matrices and, knowing the first matrix in 
the product is enough to determine which limit the product will converge to.

Underlying our work is the notion of triangulated Laman graph (TLG), where we 
recall that a Laman graph is a minimally rigid graph. The local stochastic matrices are 
in one-to-one correspondence with the triangles of this graph, and the adjacency rules 
for their product are encoded in the hereby defined derived graph of a TLG.

The connections between the minimal rigidity of the underlying graph and the con-
vergence of the product appear at several point in the proof: first, and foremost, in the 
construction of the unnormalized APVs wi, where properties of the derived graph of 
a TLG are integral to the argument; second, in the proof of convergence itself. These 
connections are either direct, using characterizations of Laman graphs, or rely on the 
existence of a Restricted Henneberg Construction for the graphs, a fact we proved in the 
appendix and that requires the graph to be minimally rigid.

We have provided simulations showing that departing from our assumptions—e.g., 
using a rigid, but non-minimally rigid, graph, or changing the structure of the local 
stochastic matrices, or disrespecting the adjacency rules in the products— would gener-
ically break the conclusions of the Theorems, in particular the conclusion about the 
number of possible limits of the product.

Beyond their application in the present paper, we believe that some of the novel ideas 
introduced can form the basis of a broader set of results. In particular, one of the key 
facts for proving the finite cardinality of the set of possible limits is Proposition 4.2. 
There, we have established the relation w�

j Ai = ri,jw�
i , where i and j correspond to 

adjacent nodes in the derived graph; indeed, the fact that the limits of the convergent 
products are exactly 1w�

i follow as a consequence of the proposition as shown in Sec. 4.3.
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The above relation motivates us to consider the following problem: Suppose that one 
is given a finite set of stochastic matrices {A1, . . . , Ak} and a set of nonnegative vectors 
{w1, . . . , wk}. Define a directed graph D on k nodes as follows: there is an edge from 
node i to node j if w�

j Ai ∝ wi. Then, under what circumstances is the graph D strongly 
connected? If it is, when is every Pγ a rank-one matrix for infinite exhaustive walk γ in 
D? If we meet conditions so that the answer to the above questions are positive, then Pγ

is a rank-one matrix and if the product starts with matrix Ai, then the rank-one matrix 
has to be 1w�

i , where wi is again the normalized version of wi. The associated sequence 
of absolute probability vectors take values w1, . . . , wk.

A few simple examples fitting the above framework are the case of all matrices Ai

being the same, or all matrices Ai commuting with each other. In both cases, it is easy to 
see that D is the complete graph and a positive answer to the above questions is obtained 
whenever the Ai’s are irreducible. A more involved example is the one of gossiping: in 
this case, the matrices Ai are doubly stochastic matrices, one-to-one correspondent to 
the edges of a connected undirected graph. All the vectors wi are chosen to be 1. The 
directed graph D is again the complete graph. The uniqueness of the limit for any 
infinitely exhaustive walk in D is a consequence of the doubly-stochastic nature of the 
Ai’s. Finally, in the case of the present paper, the Ai’s are local stochastic matrices in 
one-to-one correspondence with triangles of a TLG, and the directed graph D is the 
directed version of the derived graph DG. Not much is known beyond these cases. By 
proposing the framework, and the attendant questions raised above, we look for solutions 
that generalize and unify the existing results and the results established in the present 
paper.
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Appendix A. Proof of Theorem 2.1

On rigidity theory. A graph is rigid if, upon embedding the graph in a Euclidean space 
Rk, fixing all edge lengths precludes motions of the vertices, save for translations and 
rotations of the embedded graph. A graph is minimally rigid if it is rigid, and no edge 
can be removed without losing that property. Rigidity in dimension two (i.e., k = 2) is 
relatively well-understood, but many basic questions remain open in dimensions three 
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and above. Minimally rigid graphs in dimension two are called Laman graphs. We refer 
the reader to [9] for formal definitions.

A major result in rigidity theory is the so-called Laman condition, which completely 
characterizes minimally rigid graphs in dimension two.

Lemma A.1 (Laman’s condition). An undirected graph G = (V, E) on n nodes is mini-
mally rigid if and only if:

1. There are (2n − 3) edges in G;
2. Every induced subgraph of G on k nodes, for 2 ≤ k ≤ n − 1, has at most (2k − 3)

edges.

Henneberg construction. A basic tool in rigidity theory is the so-called Henneberg con-
struction. It is known that every minimally rigid graph admits a Henneberg construction
and, reciprocally, every Henneberg construction yields a minimally rigid graph. We 
describe the Henneberg construction below: Starting with an edge, the Henneberg con-
struction iteratively adds a node by applying one of the following two operations at each 
stage:

1. Node-add: Select two nodes vi, vj in Gn−1, add a node vn and the edges (vi, vn) and 
(vj , vn) to obtain Gn.

2. Edge-split: Select an edge (vi, vj) and a node vk in Gn−1, add a node vn and edges 
(vi, vn), (vj , vn) and (vk, vn) remove edge (vi, vj).

The sequence of graphs obtained following the construction is called a Henneberg 
sequence. Each graph in a Henneberg sequence is minimally rigid. It should be clear that 
the RHC introduced in Sec. 2 is a type of Henneberg construction that starts with a 
triangle.

A Henneberg construction for TLGs. We introduce below a few preliminary results that 
are needed for the proof of Theorem 2.1.

Lemma A.2. Let G be a TLG and G3, · · · , Gn be a sequence of graphs obtained by fol-
lowing the steps of an RHC, with G3 a triangle. Then, every graph in the sequence is a 
TLG.

Proof. Since the RHC is a type of Henneberg construction, each Gi in the sequence is 
Laman. We show that it is also triangulated. We proceed by induction of the number of 
nodes n in the graph. For n = 3, G3 is a triangle and the statement holds. Now assume 
that Gn−1 is a TLG. Let vn, (vn, vi), (vn, vj) be the node and edges newly added to 
Gn−1 to obtain Gn. Consider any cycle γ of length greater than 3 in Gn. Either γ does 
not contain vn: it is then included in Gn−1 and since Gn−1 is triangulated, it contains 
a chord. Otherwise, γ contains vn: then it necessarily contains vi and vj as they are the 
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Fig. 13. In the figure, v1v2 · · · vk is the chord-free cycle γ inside Gn−1. We perform the edge-split operation 
with (v1, v2) the selected edge and v� the selected node that belongs to the cycle. Then, there are two 
chord-free cycles after the operation, namely v1vnv�v�−1 · · · v1 in red and v2v3 · · · v�vnv2 in blue.

only two nodes adjacent to vn. Since (vi, vj) is an edge in Gn−1 and thus in Gn, the 
cycle γ has a chord, namely (vi, vj). �

In the following Lemma, we show that any Henneberg construction for a TLG yields 
a sequence in which each graph is also a TLG.

Lemma A.3. Let G be a TLG. Fix a Henneberg construction for G and denote by 
G3, · · · , Gn = G the Laman graphs obtained in that construction, with G3 a triangle. 
Then, each Gi is triangulated.

Proof. We first show that Gn−1 is triangulated. Assume, by contradiction, that γ =
v1 · · · vkv1, k ≥ 4, is a chord-free cycle in Gn−1 of length greater than 3. On the one 
hand, if Gn is obtained from Gn−1 with a node-add operation, then clearly γ is also a 
chord-free cycle in Gn. On the other hand, assume that Gn is obtained using an edge-
split operation. If the selected edge of the edge-split operation is not part of γ, then 
γ is a chord-free cycle in Gn. We thus assume that the selected edge is part of γ, say 
(v1, v2), and denote by v� the selected node of Gn−1. Note that v� �= v1, v2. If v� /∈ γ, 
then v1vnv2v3 · · · vkv1 is a chord-free cycle of length (k + 1) in Gn. If v� ∈ γ, then 
v1vnv�v�−1 · · · v1 and v2v3 · · · v�vnv2 are two distinct chord-free cycles in Gn (see Fig. 13
for illustration). The sum of the lengths of the two cycles is (k + 3) ≥ 7, so at least one 
of them is of length greater than 3. We have thus shown that if Gn−1 has a chord-free 
cycle of length greater than 3, then so does Gn. It thus contradicts the assumption that 
Gn is triangulated.

We have just shown that if Gn is triangulated, then so is Gn−1. Applying the above 
arguments iteratively, we obtain that Gn−2, . . . , G3 (in a reversed order) are all TLGs 
as announced. �

The next result indicates which operations of a Henneberg construction create chord-
free cycles of lengths greater than 3. Owing to the previous Lemma, these operations 
cannot be used to construct a TLG.
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Fig. 14. In Fig. 14a, (vi, vj) is a non-simple edge shared by two triangles in G′. Performing edge-split 
operation on (vi, vj) with any node vk in G′ (vk can be vm or vl) results in a chord-free cycle vivmvjv�

of length 4. In Fig. 14b, the dashed lines indicate the shortest path γ from vi to vj in G′′ = G′ − (vi, vj). 
Performing edge-split operation on the edge (vi, vj) and a node vk that belong to γ yields two chord-free 
cycles depicted in blue (vivnvk · · · vi) and red (vjvnvk · · · vj), respectively. The total lengths of the two 
cycles is the length of γ plus 4.

Lemma A.4. Let G′ be a Laman graph. Let G be the graph obtained by performing on G′

one Henneberg step taken from the following options:

1. Node-add operation connecting a new node to two non-adjacent nodes;
2. Edge-split operation splitting a non-simple edge;
3. Edge-split operation performed on an edge e = (vi, vj) and a node vk such that the 

three nodes {vi, vj , vk} do not form a triangle in G′.

Then, the resulting graph G is not triangulated.

Proof. We deal with the three options individually.
Option 1: Denote by vn the new node and vi, vj the existing nodes in G′ that are 

connected to vn via the one-step Henneberg construction. By assumption, vi and vj are 
not adjacent. Let γ = vi · · · vj be the shortest path in G′ joining these two nodes. Then, 
ω := γ ∨ vnvi is a cycle in G. This cycle is chord-free because γ is a shortest path. 
Furthermore, since vi and vj are not adjacent, the length of ω is greater than 3.

For the remaining two options, we let (vi, vj) and vk be the selected edge and node of 
G′, respectively, for the edge-split operation.

Option 2: Since (vi, vj) is not simple, there exist two distinct triangles Δ = {vi, vj , v�}
and Δ′ = {vi, vj , vm} in G′ that share the edge. Because G′ is a Laman graph, (v�, vm)
cannot be an edge of G′. To see this, note that if (v�, vm) is an edge, then there will 
be 6 edges in the subgraph of G′ induced by the four nodes vi, vj , v�, vm, which violates 
Laman’s condition (Lemma A.1). But, then, after the edge-split operation, the edge 
(vi, vj) is removed and, hence, vivmvjv�vi is a chord-free cycle in G of length 4; see 
Fig. 14a.

Option 3: Since G′ is Laman, it is two-edge-connected. Let G′′ be obtained from G′ by 
removing the edge (vi, vj). Then, G′′ is connected. Denote by γ = vi · · · vj the shortest 
path in G′′ joining vi to vj . The length of γ is at least 2. If vk does not belong to γ, then 
γ ∨ vnvi is chord-free (because γ is a shortest path) and its length is at least 4. We now 
assume that vk belongs to γ. Note that γ �= vivkvj because otherwise these three nodes 
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formed a triangle in G′, contradicting our assumption. Hence, the length of γ is at least 
3. In this case, the cycle ω := γ ∨ vnvi has a single chord, namely (vk, vn). Indeed, on 
the one hand, vn is only connected to vk by construction, so no other chord is incident 
to vn; on the other hand, the fact that γ is a shortest path precludes the existence of a 
chord between any two nodes in the path. This shows that (vk, vn) is the only chord in 
ω, which can thus be split into two cycles of smaller lengths given by vi · · · vkvnvi and 
vk · · · vjvnvk. Moreover, the two cycles are chord-free. The sum of the lengths of these 
two cycles is the length of γ plus 4, which is at least 7. Thus, at least one of the two 
cycles has its length greater than 3. See Fig. 14b for illustration. �

With the above preliminaries, we now prove Theorem 2.1:

Proof of Theorem 2.1. From Lemma A.2, every graph obtained by an RHC is a TLG. 
We now show that the converse is also true, i.e., every TLG G can be obtained by an 
RHC. Let H be a Henneberg construction for G. Note that H can be described by 
either a sequence of graphs G3, . . . , Gn = G along the construction or by a sequence of 
operations H3, . . . , Hq−1 applied to these graphs, i.e., operation Hp is applied to Gp to 
obtain Gp+1. In the sequel, we will use both descriptions. To keep the notation simple, 
we do not make explicit the argument of the operations Hi. The arguments are an edge 
for a node-add operation, and an edge and a node for an edge-split operation. Note that 
an operation Hp can be applied to any Gq as long as Gq contains the selected edge (and 
node if Hp is an edge-split).

By Lemma A.3, the Henneberg construction H can only contain operations of the 
following two types: (1) node-add operation as described in the RHC, or (2) edge-split 
operation performed on a simple edge (vi, vj) and a node vk so that {vi, vj , vk} is a 
triangle. We now prove that the operations of type (2) can be translated into operations of 
type (1), thus showing that any Henneberg construction yielding a TLG can be replaced 
by an RHC.

Let q ≥ 4 be the smallest integer such that an edge-split operation Hq−1 as in (2) 
above is used on Gq−1 to obtain Gq. Then, the triangle {vi, vj , vk} belongs to Gq−1 and, 
furthermore, Gq−1 is obtained by using only the node-add operation. Hence, each Hp, 
for p = 3, . . . , q − 2, is necessarily of type (1) and the truncated sequence H3 · · · Hq−2
is in fact an RHC. The starting triangle of the RHC might not be {vi, vj , vk}. However, 
by Proposition 2.3, we can always find another RHC that starts with {vi, vj , vk} and 
yields Gq−1. We can thus assume, without loss of generality, that G3 = {vi, vj , vk} is 
the starting triangle. It is important to note that because (vi, vj) is simple in Gq−1, no 
operation Hp, for 3 ≤ p ≤ q − 2, selects the edge (vi, vj), since it already belongs to the 
triangle G3 = {vi, vj , vk}.

Next, we will exhibit an RHC H ′ = H ′
3 · · · H ′

q−1 that yields Gq. Starting from G′
3 =

{vi, vk, vq}, the operation H ′
3 simply adds the node vj and edges (vj , vk) and (vj , vq), 

so G′
4 is comprised of two triangles, namely {vi, vk, vq} and {vj , vk, vq}. Note that G′

4
can be also obtained by applying the sequence H3Hq−1 to the triangle {vi, vj , vk}. Now, 
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Fig. 15. The TLG depicted in Fig. 15a corresponds to Gq−1 (here, q = 8) in the proof and is obtained via 
an RHC starting with Δ1. The indices of the triangles reflect the order of which they have been added 
into the graph. The operation H4 selects (v1, v3), and H5 selects (v2, v3), etc. The operation H7 applied 
to G7 is an edge-split operation on the edge (v1, v2) and the node v3. It yields the TLG G8 depicted in 
Fig. 15b. Starting with G′

3 = {v1, v3, v8}, we apply the node-add operation H′
3 by adding node v2 and edges 

(v2, v8) and (v3, v8) to obtain G′
4. Then, applying the sequence of operations H4 · · · H7, we add triangles 

Δ′
3, · · · , Δ′

6 into the graph and obtain an RHC for G8.

since H3 was applied to the triangle {vi, vj , vk}, but did not select edge (vi, vj), we can 
apply the same operation to G′

4 to obtain G′
5, i.e., we let H ′

4 := H3. Next, observe that 
the edge selected by H4 belongs to G4 and it is not (vi, vj). Because G4 (resp. G′

5) 
is obtained from G3 (resp. G′

4) using the same operation H3, the edge selected by H4
belongs to G′

5. We can thus set H ′
5 := H4. Furthermore, note that G′

5 can be obtained 
by applying the sequence H3H4Hq−1 to the triangle {vi, vj , vk}. Applying the above 
arguments iteratively, we conclude that for any p = 4, . . . , q − 1, the graph G′

p obtained 
by applying H ′

3H ′
4 · · · H ′

p = H ′
3H3 · · · Hp−1 to the triangle G′

3 = {vi, vk, vq} is the same 
as the graph obtained by applying H3 · · · Hp−1Hq−1 to the triangle G3 = {vi, vj , vk}. In 
particular, for p = q − 1, we obtain that G′

q = Gq.
Now, replace the original Henneberg construction H3 · · · Hn−1 with the one H ′

3 · · ·
H ′

q−1Hq · · · Hn−1. By doing so, we reduce by one the number of edge-split operations. 
One can repeatedly apply the above arguments until all the edge-split operations in the 
original Henneberg construction are removed. This process ends with an RHC that yields 
the graph G. �
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