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1 | INTRODUCTION
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Abstract

This paper presents a new and flexible prognostics framework based on a higher-
order hidden semi-Markov model (HOHSMM) for systems or components with
unobservable health states and complex transition dynamics. The HOHSMM
extends the basic hidden Markov model (HMM) by allowing the hidden state to
depend on its more distant history and assuming generally distributed state dura-
tion. An effective Gibbs sampling algorithm is designed for statistical inference of
the HOHSMM. We conduct a simulation study to evaluate the performance of the
proposed HOHSMM sampler and examine the impacts of the distant-history depen-
dency. We design a decoding algorithm to estimate the hidden health states using
the learned model. Remaining useful life is predicted using a simulation approach
given the decoded hidden states. The practical utility of the proposed prognostics
framework is demonstrated by a case study on National Aeronautics and Space
Administration (NASA) turbofan engines. We further compare the RUL predic-
tion performance between the proposed HOHSMM and a benchmark mixture of
Gaussians HMM prognostics method. The results show that the HOHSMM-based
prognostics framework provides good hidden health-state assessment and RUL
estimation for complex systems.
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remains a challenging problem. Many complex engineering

In the past decade, prognostics has emerged as one of the key
enablers for industrial systems to become more reliable, oper-
ationally available, and economically maintained (Sun, Zeng,
Kang, & Pecht, 2012). Prognostics technologies aim to mon-
itor the performance of a system (or a component), assess
the health status, and predict the remaining useful life (RUL).
Based on the predicted future performance, informed asset
management strategies can be better planned to reduce oper-
ational risks and costs. Prognostics has been used for various
engineering systems, such as engines (Peel, 2008; Wang &
Zhang, 2005; Zaidan, Mills, Harrison, & Fleming, 2016), bat-
teries (Saha, Goebel, Poll, & Christophersen, 2008; Zhang &
Lee, 2011), electronics (Pecht, 2009; Rouet, Minault, Dian-
court, & Foucher, 2007), and bearings (Huang et al., 2007; Li
et al., 1999; Li, Kurfess, & Liang, 2000; Qiu, Seth, Liang, &
Zhang, 2002). However, prognostics for complex systems still

systems, such as turbofan engines, heavy machinery equip-
ment (Xiao, Fang, Liu, & Zhou, 2018), and wind turbines
(Kandukuri, Klausen, Karimi, & Robbersmyr, 2016), have
complex failure mechanisms, for example, the health-state
transition is dependent on more distant history states. More-
over, inspection of the actual health conditions of these sys-
tems often requires disassembling which is costly and can
even induce failures. Thus, condition monitoring data (eg,
sensor measurements) are widely used to assess the health
states that are not directly observable. Advanced techniques
that can model such complex transition behaviors and assess
the hidden condition are of great practical importance. In
this paper, we propose a new and flexible prognostics frame-
work based on a higher-order hidden semi-Markov model
(HOHSMM) to assess the health state and estimate the RUL
for complex systems.
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Prognostics approaches can generally be classified into two
categories: model-based approach and data-driven approach.
There are also hybrid models (Acufia & Orchard, 2017; Bai
& Wang, 2016; Di Maio, Tsui, & Zio, 2012; Liu, Wang, Ma,
Yang, & Yang, 2012) that attempt to combine the strengths
of model-based and data-driven approaches by fusing these
two approaches. The model-based approaches require a good
understanding of system physics-of-failure mechanisms.
Most of model-based approaches deal with crack, wear-
ing, and corrosion phenomena. For example, Paris-Erdogan
equation is used to model fatigue crack growth in Myo-
tyri, Pulkkinen, and Simola (2006) and Lei et al. (2016).
Daigle and Goebel (2012) develop a model-based prog-
nostics framework for a centrifugal pump and characterize
the damage processes with physics-based models (eg, ero-
sive wear equation, friction coefficient equation). More
model-based prognostics methods can be found in Chiachio,
Chiachio, Sankararaman, Saxena, and Goebel (2015), Haile,
Riddick, and Assefa (2016), Liao (2013), and Qian, Yan, and
Gao (2017). Model-based approaches are built on the knowl-
edge of the processes and failure mechanisms occurring in
the system of concern, and the approaches provide RUL
estimation based on the developed physical model. However,
it is a difficult task to understand the physics of damage
occurring in complex systems.

With the rapid development of sensor technologies, it has
become much easier and less costly to obtain condition mon-
itoring data, including operational and environmental loads
as well as performance conditions of the monitored sys-
tem (eg, temperature, vibration, pressure, voltage, current)
(Cheng, Azarian, & Pecht, 2010). Advancements in modern
sensor instruments have greatly facilitated data-driven prog-
nostics. Data-driven approaches use several tools, most of
which originate from artificial intelligence (AI) and statisti-
cal domains. Neural networks (Guo, Li, Jia, Lei, & Lin, 2017,
Li, Ding, & Sun, 2018; Malhi, Yan, & Gao, 2011; Tian, 2012;
Zheng, Ristovski, Farahat, & Gupta, 2017), neuro-fuzzy sys-
tems (Chen, Vachtsevanos, & Orchard, 2012; Wang, 2007;
Wang, Golnaraghi, & Ismail, 2004), and support vector
machine/regression (Benkedjouh, Medjaher, Zerhouni, &
Rechak, 2015; S. Dong & Luo, 2013; Khelif et al., 2016;
Liu, Vitelli, Zio, & Seraoui, 2015; Widodo & Yang, 2011)
have been widely used for engineering system prognostics.
However, these Al techniques are always referred to “black
boxes” (Lei et al., 2018) since it is difficult to have physical
explanations of the constructed network structure (eg, the
number of hidden layers and the number of nodes used in
each layer) and the networks’ outputs. The hidden Markov
model (HMM), which characterizes doubly stochastic pro-
cesses, is commonly used to infer the hidden health state
directly from the observed data and predict the RUL (Baruah
& Chinnam, 2005; Bunks, McCarthy, & Al-Ani, 2000; Camci
& Chinnam, 2010; Giantomassi et al., 2011; Tobon-Mejia,
Medjaher, Zerhouni, & Tripot, 2012). Bunks et al. (2000)
illustrate the applications of HMMs by using the Westland

helicopter gearbox data set and show that HMMs can provide
a natural framework for both health diagnostics and prognos-
tics. Baruah and Chinnam (2005) employ HMMs to identify
the health state of metal cutting tools from sensor signals
and predict the RUL. Tobon-Mejia et al. (2012) develop
a mixture of Gaussians HMM (MoG-HMM) to assess the
current condition of a bearing and estimate its RUL. HMMs
have well-constructed theoretical basis and thus are allowed
for a wide range of practical applications. An added benefit
of employing HMMs is the ease of model interpretation in
comparison with pure “black-box” modeling methods. How-
ever, standard HMMs have two inherent limitations. One
is the assumption of first-order Markovian dynamics of the
hidden-state process. The other is that the state duration (ie,
sojourn time) implicitly follows a geometric distribution.
The first-order assumption can be restrictive as the health
state of complex systems usually evolves depending on its
more distant history, not just the current state. Moreover, the
duration time in one state does not always follow a geometric
distribution.

To provide a more adequate representation of temporal
structure, the hidden semi-Markov model (HSMM) extends
the basic HMM by assuming that the state duration is gener-
ally distributed. The explicit duration HSMM is widely used
in health monitoring of engineering systems, which assigns an
explicit distribution for duration of each state and the duration
distribution is only determined by corresponding state (Dong
& He, 2007; Liu, Dong, Lv, Geng, & Li, 2015; Yu, 2010).
Dong and He (2007) propose an HSMM-based diagnostics
and prognostics framework by adding an explicit tempo-
rary structure into HMM. Through the estimated hidden-state
duration distribution and the proposed backward recursive
equations, the RUL of the equipment can be predicted.
There also exist other special forms of HSMM used in
prognostics, which make different assumptions regarding
the dependence between state transition and duration. For
example, Wang, Sun, Cai, Zhang, and Saygin (2014) present
a duration-dependent HSMM for prognostics, which assumes
that the state transition probability depends on the previ-
ous state and its respective duration time. Liu, Zhu, and
Zeng (2018) propose a new HSMM that considers the depen-
dency between durations of adjacent degradation states to
assess the health state and predict the RUL. However, in
the aforementioned HSMMs, the history states’ dependency,
which commonly exists in complex systems, has not been
taken into account when modeling state transition probability.

In this paper, we propose a new prognostics frame-
work based on HOHSMMs for systems with unobservable
health-state and complex transition dynamics. In the
HOHSMM-based framework, the important features
extracted from the monitoring data are used as observations
and the underlying health status of the concerned system
is represented in the form of hidden states, which evolve
depending not only on the current state but also on its more
distant history. The sojourn time in each state is generally
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distributed and is assumed to follow an explicit distribution.
We design an effective Gibbs sampling algorithm for model
inference and conduct a simulation study to evaluate the per-
formance of the proposed HOHSMM sampler. The impacts
of the distant-history dependency are also examined in the
simulation study. The learned HOHSMM is then used to
assess the current health state of a functioning system in oper-
ation and predict its RUL. Decoding algorithm is developed
for health-state assessment using the learned model. The
RUL is estimated using a simulation approach by generating
paths from the current health state to the failure state. Fur-
thermore, we demonstrate the practical utility of the proposed
prognostics framework by conducting a case study on NASA
turbofan engines and comparing the RUL prediction per-
formance of the proposed method with that of a benchmark
MoG-HMM prognostics method (Tobon-Mejia et al., 2012).
The main contributions of this paper are twofold.

1. Develop a new and advanced HOHSMM-based prog-
nostics framework to assess hidden health state and
predict the RUL for complex systems. The proposed
HOHSMM includes the HMM and HSMM as two
special cases.

2. Design effective algorithms for HOHSMM inference,
hidden-state decoding, and RUL prediction. A Gibbs
sampling algorithm is developed for HOHSMM infer-
ence and the simulation study shows that the designed
HOHSMM sampler is effective for learning model
parameters from observations. Based on the learned
model, a decoding algorithm is developed for hid-
den health-state assessment and an RUL estimation
algorithm is developed for prognostics. The case
study on NASA turbofan engines shows that the
HOHSMM-based prognostics framework provides sat-
isfactory hidden health-state assessment and RUL esti-
mation for complex systems.

The remainder of this paper is organized as follows.
Section 2 provides preliminaries on the higher-order HMM
(HOHMM). In Section 3, we develop an HOHSMM and
design an effective sampling algorithm for statistical infer-
ence. Section 4 presents the hidden-state decoding procedure
using the learned model. The RUL is predicted using a simu-
lation approach in Section 5. We conduct a simulation study
to evaluate the performance of the proposed HOHSMM sam-
pler in Section 6. A case study on NASA turbofan engines is
demonstrated in Section 7. Section 8 discusses the concluding
remarks and future work.

2 | PRELIMINARIES ON HOHMM

This section provides a brief overview of the HOHMM by
summarizing the main results of Sarkar and Dunson (2018)
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and Yang and Dunson (2016). Based on the HOHMM in
Sarkar and Dunson (2018), we develop the HOHSMM.

An HOHMM consists of two processes: a hidden process
{c:}, which evolves according to a higher-order Markov chain
with discrete state space, and a potentially multivariate obser-
vation process {y, } observed sequentially over a set of discrete
time points t = 1, 2, ..., T. HOHMMs extend the idea of
basic HMMs by allowing the hidden-state sequence {c;} to
depend on its more distant past. An HOHMM of maximal
order ¢ makes the following set of conditional independence
assumptions:

plciler, ... c-1) = plelC—g):-1)s (1)

pOilets ey s yim1) = pyileo). (@)

Note that an HOHMM is said to be of maximal order
q if the distribution of ¢, only depends on a subset of
{ci—1, ..., ci—4}. If the distribution of ¢, actually varies with
the values at all the previous g time points, the HOHMM is
considered to be of full order g.

While the HOHMM relaxes the restrictive first-order
assumption of the basic HMM, it also brings significant
dimensionality challenges. For known state space € =
{1, ..., C}, the transition probabilities are now indexed by C¥
different possible values of the lags ¢ _). ;- 1) and involve
a total number of (C—1)C? parameters, which increases
exponentially with the order g. To address this issue, latent

allocation variables z;, forj=1, ...,gandt =g+1, ..., T
are introduced to shrink the total number of parameters. The
allocation variable z;,, taking values from {1, ..., k;}, is the

respective latent class that a particular state of ¢;_; is allocated
into. The total number of the latent classes k; (1 <k; < C) then
determines the inclusion of the jth lag ¢; _;. If k; = 1, it means
that ¢, _; is notan important lag for ¢;. If k; > 1 forallj=1, ...,
q,the HOHMM is of full order g. Based on the allocation vari-
able z;,, the hidden states {c,} are conditionally independent
as shown in Figure 1.

We denote the probability that the jth lag ¢,_; is allo-
cated into latent class h; by ﬂ}({)(c,_j), that is, ng)(c,_j) =
Pz = hjlci—j). Given the comb/ination of g alloca/ted latent
classes (hi, ..., hy), the state transition probability is denoted
by /lhlw,hq(c,) forc;,=1, ..., C,

s 2q0 = hg). (©)

Then the transition probability can be structured through
the following hierarchical formulation

Any....h(€) = plerziy = ha, .

(ilge =hpj=1. ... .q) ~Mult({1, ... .C}. A1,
D, ...y Apy, o, (O)), 4
@aley) ~ Mult({1, ... .k}, 7" (c,), ... ,n,g)(ct_,)). 5)

The parameters Ahl,.__,hq(c,) and ”,(;)(Ct—j) are nonnegative
and satisfy the constraints:
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Hidden state

Observation

(A) without allocation variables

Allocation variable

Hidden state

Observation

(B) with allocation variables

FIGURE 1
1. ZCC:=1 An,, ..., (cr) = 1, for each combination
(hl’ LA hq);
2. Zz’zl zr,(l’.)(c,_j) = 1, for each pair (j, ¢; ).
J J

In such a factorization, the number of parameters is reduced
to (C—-1) Hq ki + Czq ,(kj = 1), which is much smaller
than (C — l)Cq if Hq ki< (i,

Marginalizing out the latent-class indicators z;,, the tran-
sition probability p(c;lc-4).¢-1)) has an equivalent form
as

Zah, h(c»]'[n (c), (6)

where 1<k;<C for all j. The generic form of the emis-
sion distribution is expressed as p(y;|c;, 0) = f(y:|0.,), where

pcilCi-g):-1) = Z

=1

0={0.:c=1, ...,C} represents parameters indexed by the
hidden states. The joint distribution of y = {y;:t =1, ..., T},
c={c¢:t=q+1, .., Tyandz={z;:t=q+1, ...,T,j=1,
.., q} admits the following factorization:
pQ.c.z | A mi, ke, )
T
H {p(ctuz,)]'[p Gulwin ) ) [ Tr0n16e)

t=q+1 t=1

=p@le, O)p(clz, /1k, kp@zlw, i, k), (7

where w;; = ¢;_;, representing the history state of ¢;. The
conditional independence relationships encoded in the fac-
torization are used in deriving Markov chain Monte Carlo
(MCMC) algorithms to draw samples from the posteriors.
Detailed sampling algorithms for HOHMMs are referred to
Sarkar & Dunson (2018).

Dependence structure of a second-order hidden Markov model [Colour figure can be viewed at wileyonlinelibrary.com]

3 | HIGHER-ORDER HIDDEN
SEMI-MARKOV MODEL

In this paper, we extend an HOHMM to an HOHSMM, where
the hidden-state sequence is governed by a semi-Markov
chain. The HOHSMM is more flexible since it incorporates
additional temporal structure by allowing the state duration
to be generally distributed, rather than implicitly following a
geometric distribution as in an HOHMM.

3.1 | Model development

We first give a brief description of the HSMM and then
develop the HOHSMM. As discussed in the literature, there
exist several specific models of the HSMM in prognostics
by making different assumptions regarding the dependence
between state transition and duration. For model simplic-
ity and tractability, the explicit duration setting is widely
used in health monitoring of engineering systems (Dong &
He, 2007; Liu, Dong, et al., 2015), and we also use it to
model the temporal structure in the proposed HOHSMM.
Both HSMMs and HOHSMMs with explicit duration exclude
state self-transitions because the duration distribution cannot
fully capture a state’s possible duration time if self-transitions
are allowed.

An HSMM with explicit duration assumes that the under-
lying stochastic process is governed by a semi-Markov
chain. Each state has a variable duration that follows
an explicit state-specific distribution and a number of
corresponding observations are produced while in the
state (illustrated in Figure 2). The observation sequence
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Super-state
Observation
Y1 Ya, Ya,+1 Yd,+d, yr
h T h T I E—
Duration d, d, dg

FIGURE 2  An hidden semi-Markov model (HSMM) with explicit duration

Super-state

Observation

M1 Ya,

O -0

Ya,+1 Vd,+d,

Yii )’tg Vi Ya Yr

Y ! h T

Duration d, d,

FIGURE 3 A second-order hidden semi-Markov model (HSMM)

{y;:t =1, ...,T} is produced segmentally from the emis-
sion distribution f(y|6. ) indexed by the hidden super-state
sequence {c,:7 =1, ...,S}, where § is the number of seg-
ments. Observations are assumed to be collected discretely
by a unit time, and therefore the number of observations pro-
duced in each super-state represents the state duration. For
the zth segment, the state duration is denoted by d, and Ve
denotes the produced observations, where ¢! = 2y<ey + 1,
2= Zu/ <-dy - In the last segment, the observations may be
truncated, and we have 75 = min { ¥} _d,,, T}.

In the proposed HOHSMM with the explicit duration set-
ting, the hidden super-state sequence {c,} is assumed to be
governed by a higher-order Markov chain and the state dura-
tion follows an explicit distribution, denoted by g(-|&. ) with
the parameters indexed by the specific hidden super-state c,.
In general, the state duration can be modeled by Poisson,
Gaussian, and gamma distributions, all of which belong to
the exponential family (Yu, 2010). In real-world applications,
the choice of distribution can be determined by finding the
one that better fits the original histogram of state durations.
For the problem of our interest, the condition monitoring data
are typically collected on some discrete-time schedule (eg,
hourly, daily, or weekly), and it is thus reasonable for us to
employ the Poisson distribution to model the state duration.

An explicit-duration HOHSMM of maximal order g is
constructed as follows:

plezlet, oo s eemt) = pleelComgy oo sComt), T=q+1, ...,

d. ~gWd|&), T=1,...8S,

dd
Yae ~fOI0:), th=Yd, +1, 2=d,.
W<t 7642
Figure 3 illustrates a second-order HSMM. In this example,
the distribution of the hidden super-state ¢, depends on its

previous two states ¢, and ¢, _», and the duration time in

T R

ds d, dg

each super-state is generally distributed, following an explicit
state-specific distribution.

To design an efficient MCMC sampling algorithm for
HOHSMM inference, we first assign the prior distributions
to model parameters. In order to exclude self-transitions in
the super-state sequence for an HOHSMM, a modified hier-
archical Dirichlet prior on the transition probability tensor is
assigned as (Johnson & Willsky, 2013),

Aipy, ooy = iy, o, (D ooy iy, (O))

~ Dir{ado(l), ... ,ado(O)}, V(G ha, ..., hy), (8)
Ao = {Ao(1), ... , 4(C)} ~ Dir(ay/C, ... ,a0/C), (9)
= /e Ainy, ..., () s
ity iy (1) = m( i)
1 ifi=/{,
Oy = (10
0 otherwise.

Equation (10) ensures that the self-transition probabilities
are zeros. Note that i is the latent class the hidden super-state
¢, —1 (the immediate precedent super-state of c,) is allocated
into and i’ is the state of ¢, (ie, ¢, = i’). Therefore, to have a
valid comparison between i and i’ and exclude self-transitions,
each possible state of c¢,_; must be allocated to a distinct
latent class. In other words, each state of ¢,_; is a dis-
tinct latent class. To do so, we let k; = C and E(Cl)(cf_]) =

{22 (cemr)s o 72 (crm)} where 7 (cny) = 8y, Vi=1,
...,Candz=¢g+1, ..., S. For the remaining lags, the inde-

pendent priors on the allocation distribution m; are assigned
as

7 (cog) = {2 (€)oo 7 (eop)} ~ iy, ...
V(. ce),

S Vi)

i=2 ....q. (11)



LIAO ET AL.

% | \WiLEY

By introducing latent allocation variables z;, for j = 1,
.., qand 7 = g+1, ..., § with z;, = ¢;_1, the hid-
den super-states {c.} are conditionally independent and the
model can be represented through the following hierarchical
formulation:

(Ccelzie =12 =h,j=2,...,9)
~Mult({1, ..., C} iy, oo, (D oo s Ainy, . (C)),
(12)

@eleey) ~ Mult({1, ... .k}, 2 (crp), ... ,ng)(cf_j)),
Vi=1,..,q. (13)

The transition probability is then modeled as

C k kg
plele—g):-1) = z Z e z Aidy, ... n,(C2)
i=lhy=1  h=1
q -
S CE) ) A G (14)
j=2

For an HOHSMM of order g with transition probability
plc:le —g). (- - 1)) and emission distributions {f(y|0.) : ¢ €
€ }, the r-step ahead predictive density is given by

fpred,S+r(.V|y1 :S) = E(c,é') lz t Zf(ylcSH? 9

CS+r Cst1

X p(Csrle(sir—gy:(str—1).C) - -
X P(CS+1|C(S+1—q):S,§)] , (15)

where § is the number of segments for the observation
sequence y and § = (k, g, 7, 0).

Finally, the following independent priors are assigned on
ki’s

pojk) x exp(—qjk), j=2,...,q, k=1,..,C, (16)

where ¢ > 0. The prior p; assigns increasing probabilities to
smaller values of k; as the lag j becomes more distant, reflect-
ing the natural belief that increasing lags have diminishing
influence on the distribution of c¢;.

The joint distribution of y = {y;:t = 1,...,T},
c={c;it=q+1,..,S},andz={z,:t=q+1, ..., S,
j=1,---, g} can be presented as

p.¢.2 | A, i, k,d, 0)

S q ' s
= H {p(crlflz,)Hp(Zj,Tle,r’ ”/((]j), k]) }Hf@tlti |0c,)a
T=g+1 Jj=1 =1

a7

2
where wj. = co_j. and f(y.016c,) = TIL, f0il6.,). 1} =
Yy<dy + 1,17 = ¥, . d,. The conditional independence
relationships encoded in the joint distribution are used in
deriving MCMC algorithms for the HOHSMM.

3.2 | Model inference

We use the MCMC sampling method for explicit-duration
HOHSMM inference. The sampler is designed based on
the two-stage Gibbs sampling algorithms for HOHMM
(Sarkar & Dunson, 2018). There are additional challenges
in HOHSMM inference due to explicit temporal structure,
excluding self-transitions, and multiple observed trajectories
in the training data.

The first challenge is brought by incorporating explicit tem-
poral structure (ie, duration distribution), which requires addi-
tional sampling to determine the number of segments (ie, the
number of hidden super-states) and the duration time in each
state. Existing sampling inference methods for HSMMs often
use a message-backwards and sample-forwards technique to
address this problem (Johnson & Willsky, 2013). We cannot
directly apply these methods for an HOHSMM since the back-
wards messages are extremely difficult to define and compute
when higher-order transitions present. The reversible jump
MCMC provides a statistical inference strategy for Bayesian
model determination, where the dimensionality of the param-
eter vector is typically not fixed (eg, the multiple change-point
problem for Poisson processes) (Green, 1995). However, it
cannot be used to sample change points of a sequence in an
HOHSMM since there is no appropriate mechanism to update
the hidden super-states affected by the moves of change points
(eg, birth of a change point, death of a change point). The
second challenge is brought by excluding self-transitions. A
Dirichlet distribution is assigned as the conjugate prior for
transition probability parameters in the HOHMM, but the
conjugacy does not exist after setting self-transition proba-
bilities to zeros. A mechanism to recover the conjugacy for
updating transition probability parameters is needed. In addi-
tion, in many real-world applications, several identical units
are typically monitored at the same time to collect sensor
data. How to leverage all information provided by multiple
observed trajectories (ie, observation sequences) instead of
using just one sequence is the third challenge. We address
these difficulties in the following two sections.

3.2.1 | Update segmentation

We denote P run-to-failure observation sequences by y{!:")
and the pth observation sequence by y? = (' : ¢ =
1, ... ,T,}, where T}, is the observed lengthand p =1, ..., P.
These sequences are assumed to be independent. To address
the first challenge, we introduce a jump size threshold (a)
to identify change points. For each observation sequence,
if the Euclidean distance between a point and its immedi-
ate previous point is greater than «, this point is identified
as a change point. The prior of « is assigned to be a uni-
form distribution with support (@min, ¥max), Where ayi, and
amax are the 5th and 95th percentile values obtained from
the distances between two adjacent observed data points in
all observation sequences, respectively. We then update the
segmentation of the observation sequences and initialize the
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FIGURE 4 Illustration for updating segmentation and initializing hidden super-states given jump size threshold @ (using one-dimensional observation as an

example). (A), Identify change points given jump size threshold a. A red cross indicates a change point that is detected if the difference (absolute value)

between an observation and its previous one is larger than a. Nine change points are identified and the observation sequence is segmented accordingly as

presented by vertical dashed black lines. Clustering labels are derived by clustering the mean values of observations in these 10 segments. (B), Segmentation

and hidden super-states initialization after clustering and merging processes.

If two adjacent segments have the same clustering label, merge these two

segments and use the clustering label as the initialized hidden super-state [Colour figure can be viewed at wileyonlinelibrary.com]

hidden super-state sequences iteratively by sampling the jump
size threshold a.

In each iteration of the HOHSMM sampler, we propose
a new threshold a from U(@yin, @max). For each observation
sequence, we mark change points based on the computed
distances (illustrated in Figure 4(A)) and the sequence is seg-
mented accordingly. After the initial segmentation, we com-
pute the center of the observed data points for each segment
and label the segments by clustering the centers. The hid-
den super-states are initialized by using the clustering labels.
To exclude self-transitions, if two adjacent segments have
the same clustering label, we merge these two segments. For
example, the first two segments in Figure 4(A) share the same
label 1, and these two segments are merged into one. After
the clustering and merging processes, we obtain the final seg-
mentation and the initialized hidden super-states of an obser-
vation sequence for a given jump size threshold (illustrated

in Figure 4(B)). Based on the segmentation results, we also
obtain the number of segments and the state duration for each
observation sequence, denoted by S, and d¥, respectively.

The hidden super-state sequence ¢, latent allocation vari-
ables z), and other parameters k, mx, Ax, Ax, Ao, 0 are updated
using the two-stage Gibbs sampling algorithm for the pro-
posed HOHSMM. The first stage is to identify the important
lags by sampling k from the posterior. Given the determined
k, we collect the samples of other parameters in the sec-
ond stage. The obtained samples will be used to compute the
acceptance probability for updating jump size threshold «. In
general MCMC sampling, the acceptance probability can be
computed as

min{1, (likelihood ratio) X (prior ratio) X (proposal ratio)}.
(18)
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Since the prior of « is a uniform distribution and « is also
proposed from the uniform distribution, it is obvious that the
prior ratio and the proposal ratio are equal to 1. The poste-
rior mean of the likelihood can be approximated using the
obtained samples (Ando, 2010), which is provided as

N
_ 1 (1:P) | L(1:P)j g
Ly = ]T]Zf(y le ,9’,a>

=

= _Z[ﬁﬁf< Y zgleiim)]’ (19)

p=11=
where {0', ..., 0V, c:P-1 (PN s a set of posterior
samples generated from their posterior distributions.

Given all the collected samples of a, the most likely
jump size threshold «” is determined by computing the aver-
age value of the samples after burn-in. We then use a” to
update segmentation and repeat the two-stage Gibbs sam-
pling process to obtain the final segmentation and samples
for all parameters. Given an explicit distribution g(-|&.) for
each super-state’s duration, the MLEs {EC} for parameters
{é.:c =1, ...,C} can be easily obtained using the final
segmentation result.

3.2.2 | The two-stage Gibbs sampling algorithm

for HOHSMMs

Given the segmentation, we modify the two-stage Gibbs
sampling algorithm in Sarkar and Dunson (2018) to draw
samples of k, mx, A, Ik, Ao, 0, z, and ¢ from the poste-
riors in the HOHSMM. The first stage is to determine the
values of k = {ki, ..., k,}, which is the important lag indi-
cator. Given determined values of k, we update other model
parameters my, A, Ik, Ao, 0, latent allocation variables z, and
hidden super-state sequence ¢ in the second stage. In this pro-
posed sampling algorithm, the order of super-state transition
dynamics does not need to be prespecified, rather it is deter-
mined through the important lag indicators k. If only the first
lag is identified to be important (ie, k; >1 and k; = 1 for
Jj=2, ..., q), then the hidden super-state transition depends
only on the immediately previous super-state, indicating that
the hidden super-state sequence is governed by a Markov
chain. Therefore, the proposed two-stage sampling algorithm
allows to learn the history dependency from the observed data
by identifying the important lags. To address the third chal-
lenge of multiple trajectories, we use the joint distribution
of all observation sequences. Based on the assumption that
all sequences are independent, the joint distribution can be
obtained as follows:

p<y(1:P),c(1 :P)’Z(IIP)lzk’ n_k’k,d(ltP), 9)

»
=II» <y(”), ¢? .29 d, mi ke, d?, 0). (20)
p=1

The conditional independence relationships encoded in the
joint distribution are used in deriving the two-stage Gibbs
sampling algorithm for HOHSMMs.

Specifically, in the first stage, we identify important lags
and the corresponding number of latent classes by sampling
k. In this stage, we use an approximated model which forces
hard allocation of z;.’s instead of soft allocation. Hard allo-
cation means that, partition the state space into k; clusters for
the jth lag, then each cluster corresponds to its own latent
class. In other words, each state is allocated into one class with
probability 1. For example, partition the states {1,2,3,4,5,6}
into k; = 2 clusters with €;; = {1,2,3} and €;, = {4,5,6}
for the jth lag, hard allocation means that ¢,_; = 1, 2, and 3
will be allocated to the first latent class and ¢, _; = 4, 5, and
6 will be allocated to the second one with probability 1. In
soft allocation, one state can be allocated into several possible
classes with specific probabilities. The mixture probabilities
in the approximated model are denoted by 7, indicating hard
clustering while zy indicates soft allocation.

Based on the approximated model, samples of the param-
eters are drawn from their respective conditional posteriors
following the prespecified order. We first examine the pos-
teriors of the transition distributions A; and Ag. There exist
computational machineries of sampling from the posteriors
in hierarchical Dirichlet process (HDP) models (Teh, Jor-
dan, Beal, & Blei, 2006). In the HOHMM, the Dirichlet
distribution is the conjugate prior of transition probability
parameter, so it is straightforward to update the parameters
Ax. However, in our HOHSMM, the method used to exclude
self-transitions makes the model not fully conjugate Specifi-

®)
cally, letni,, . (c) = ZPZTI{Z1 =1, ZZT ha, ... 24, =
hq,c(fp) = ¢}, which counts the number of transitions from
the latent allocation classes (i, 2, ..., hy) to state c among all

observation sequences where i = 1, ,Cand hj =1,
kj for j =2, ..., g. Because of no self-transitions, we have
ni,hz,_”,hq(i) = 0. We consider the posterior distribution of

Ay ooy = A0y, om0y Ay, on (D) oo Ay, o, (O},

n, | A0, €,2) [/1”12’“”hq(l)]aao(l)q

3, QN Ay, (OO

Ay, h,(2) )
2>
(1 — A Jhy, hq(l))
Ay, ..., (C) Py, 1y (C) .
N\ 1= n, (D _ o

Because of the extra

P(Aip,, ...,
X [Arn,, ...

—— terms from the likeli-
1=A1 . ..

sy (D
hood by excluding self—transitidrqls, we cannot reduce this
expression to the Dirichlet form over the components of
,l],hzy,,,‘hq. Therefore, the model is not fully conjugate and
new posteriors need to be derived. To recover conju-
gacy, we introduce auxiliary variables {p,}_,,
Zle n,’hzqm,hq(c). Each p; is independently drawn from a
geometric distribution with specific success parameter 1 —
/1,-,;,2,”_,;,[’(1') (Johnson & Willsky, 2013). We adjust the sam-
pling algorithm by updating transition parameters 4, .. 5, =

{Aidyson, Dy oo s Aiy, o (D s Ay, (C)} from the

where n =
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Algorithm 1. Explicit-duration HOHSMM Sampler

Input: Observation sequences {y® : p =1, ..., P} and sample size L.
1: Initialization:

2:

N AEw

Compute distances between two adjacent data points in all sequences y* and use the 5th and 9th percentile values as
the lower bound and upper bound of the support (¥min, ¥max)-
Set initial likelihood value: Ly « ¢~10".

forv=1to/do

Sample a, ~ U(amin, ¥max)-

Update segmentation:
For each y), identify change points given a,. Compute the center of the observed data points for each segment and
initialize hidden super-state sequence {c(,")} by clustering the centers. Merge adjacent segments that have the same

label and derive the number of segment S, and duration times d” wherer =1, ... Sp,p=1,...,P

8: Stage 1 (Determine k):

9: Update A4:

10: Letnip, n(0)=2,2%, 1{Z1 =1, 22 =hy, ... ,ZqT = hy, ¢ =c}yandn = Zle Ri,,...n,(C), Wherei=1,...,C

andhj=1,... ,kiforj=2,...,q.
11: Independently sample p; ~ Geo(1 — 4ip,...., (i)) s=1,...,n
12: Sample Aip,,...n, = {Ainy,..n,(Ds ooy Aigy, o, (l) iy, (C) ~Dir{ado(1) +nip, n (1), ..., ado()+ X ps,
- @Ao(C) + iy, (CO)}.

13: Update A;: Compute Ay by Equation (10).

14: Update Ao:

15: Forr=1,...,np,,..., hq(c), sample x, ~ Bernoulli { % }

16: Let mip,,. 5, (c) = >, x, and my(c) = z(i,hz,.‘.,hq) Mi ..., (C).

17: Sample A9 = {40(1), ..., 4o(C)} ~ Dir{ay/C + my(1), ..., a0/C + my(C)}.

18: Update{c(,p) tr=1,...,5,}, {zj@ ct=q+1,...,8,j=1,...,q}, 0, k, &y as in Sarkar & Dunson (2018).
19: Stage 2 (Sample with determined Ié):
20: Update my:
21: Letnjw(h)—z > l{w](’;)—wj, P — = h;}, Wherew —c(p)
2. Sample ngj(w,) = {zPw)), ..., g)(w,)} ~ Dir{y; + nj,w],(l), o2+ 1y (k) )
23 Update A, Ax, Ao as in Stage 1.
24: Update z”): Sample from

P(Zie = hlzie = hi, L # j, A, Tk, €) Zh],...,hj_],h,h,-_,_],...,hq(c‘r)”;(l])(c‘r—j)-

25: Update ¢®: Sample from p(c, | Ak, mx, 6,7) ZZH,ZZI,,,,JW(cf)f(y,l:,3|Gcr) qu:1 (f)w( ).
26 Update 0 as in Stage 1.
27: Update «a: Compute likelihood value L,, from Equation (19).
28: if min "‘ ,1 ¢ > rand thena(v) < @, and Ly « L, .
29: else a(v) < a(v—1).
30: end if

31: end for

32: Determine a*:

33:  Use the average value of sampled « after burn-in as the most likely jump size threshold o*.

34:  Given a*, repeat Update segmentation, Stage 1 and Stage 2 and collect final samples.

35.  Compute the MLEs {£.} for duration distribution using samples of ¢ and d” for all p.
Output: o*, k, S;, {£.}, and samples of A, 7y, 6.
posterior distribution Then we compute A from Equation (10) and update 4.

Since the observation sequences are independent, ¢? and

Dir {aﬂo(l) + i (D o o) z® are updated sequence by seql%ence. For each' seque.nce,
‘ ¢? and z® are sampled by applying a Metropolis-Hastings

n step and using simulated annealing to facilitate the conver-

+Z Pss oor s @A(C) + iy, . ,hq(C) } . gence. The full conditionals of 8 will depend on the choice of

the emission distribution. Finally, a stochastic search variable
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FIGURE 5

selection method (George & McCulloch, 1997) is used to
sample k from their posteriors and 7y, are updated by the latent
allocation cluster mapping. In the first stage, important lags
can be determined and the number of latent classes for each
important lag can be derived based the samples of k.

The second stage, given the important lag inclusion result,
is to sample parameters mx, Ay, Ak, Ao, 0, 2, and ¢ itera-
tively. Given the segmentation, the elements of ¢, z, and
x; have either multinomial or Dirichlet full conditionals and
can be straightforwardly updated. Sampling of A, Ek, Ao, and
emission parameters 6 is the same as described in first stage.
Details of the HOHSMM inference method are summarized
in Algorithm 1.

4 | HEALTH-STATE DECODING

The ultimate purpose of a prognostics framework is to
assess the current condition of a system (or component)
and to make inferences regarding the remaining useful life
(RUL). In this section, we first present how to use the
HOHSMM-based prognostics framework to decode the hid-
den super-states. For an operating system with observation
sequence y, Equation (17) provides the joint distribution of
¥, ¢, and z conditioned on the learned model parameters k,
Ik, @y, 0, and duration times d. We can directly use it for
decoding the hidden super-states by sampling ¢ and z from the
posteriors. We need to first segment the observation sequence
based on the learned a* to determine state duration times d
and then initialize the hidden super-state for each segment.
Therefore, we use the same procedure described in Algorithm
1 by identifying change points given a”. Next, we initialize
the allocation variables z based on the initialized ¢ and the
learned allocation distribution ;. Given the values of k and
historical samples of A, 0 from the learned model, updating ¢
and z is the same as in Algorithm 1. The collected samples of
¢ are used to determine the hidden health states of this specific
system by using the most persistent sample (ie, the mode) for
each segment. Figure 5 provides an illustrative example. In
Figure 5, we can see that state 1 appears most in the posterior
samples for the first super-state ¢y, and is therefore used as the
estimated super-state for the first segment. The same selection
criterion is used to determine the hidden super-states for all

. @—» estimated current health state

lustration for determining the hidden health states [Colour figure can be viewed at wileyonlinelibrary.com]

segments. Details of the decoding procedure are summarized
in Algorithm 2.

5 | RUL ESTIMATION

In this section, we estimate the RUL given the decoded hid-
den health states. For notational convenience, we omit the
superscript of the number of segments S* in the following
analysis. It is impossible to analytically compute the RUL in
an HOHSMM due to higher-order state transitions. There-
fore, we use a simulation approach to predict the RUL, which
is the expected time from the current health state to the fail-
ure state. Before presenting the RUL estimation method, we
first show how to identify the failure state. The HOHSMM is
trained using multiple run-to-failure independent observation
sequences and historical samples of hidden super-states can
be used to identify the failure state. For each sequence, from
the decoded hidden super-states {c(,p)}, we identify the fail-

ure state C(I‘,U) by choosing the most persistent state in the last f
states (Tobon-Mejia et al., 2012),

_ . ® )
Super-state sequence = (c1 3Cy s e sC 1 ),
Lastf states = (C(S‘Z)_fﬂ, ey C(Si)_z, C(S’;)_l, C(S’;)). (22)

The value of f can be chosen based on experience. Then, the
final failure state cr is given as the most persistent state in all
c(lf), p=1, ..., P. Figure 6 illustrates the procedure to select
the final failure state. For illustrative purpose, we arbitrarily
use the last five super-states to identify the failure state for
each sequence by choosing the most persistent state appeared
in the last five states. We can see that state 5 appears most in
the last five states for sequence 1 and 2, and state 4 is the most
persistent state in the last five states for sequence P. We then
choose the most persistent state in the identified failure states

Sequence 1: 2 1 2 -+ 4 2 —> CE) =:—5_

Sequence2: 121 - 32[54545]>c®P =5

I —> =5

sequence P: 1 23 5343454 -)C,EP):

FIGURE 6
[Colour figure can be viewed at wileyonlinelibrary.com]

Illustration for identifying the failure state cg with f =5
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Algorithm 2. Decoding for the HOHSMM

Input: Model parameters o™, k, Ak, 7, O and observation sequence y.

1: Determine segmentation:

Compute distances between two adjacent data points in y and identify change points given threshold a*. Compute the center
of the observed data points for each segment and initialize the hidden super-state ¢, by determining the clustering label
based on the learned clustering rules. Merge adjacent segments that have the same label and derive the number of segments

S* and duration times d, where 7 =1, ..., S*.
: Decode:
Initialize z:

Update c:

Update z:
Sample z;,, from

® N R RN

Sample (zj;|c,—j) ~ Mult({1, ..., &}, ﬂY)(c,_j), s ﬂlg)(cf_j)), wherej=1,...,q.

PG = hlzie = hi, L # j, Ak T, €) % Zhl,...,hj_],h,hm,...,hq(CT)ﬁg)(Cr—jl

9: Determine hidden health states {¢,
Output: {¢; :7=1,...,5}.

:7=1,...,5%} by using the most persistent samples.

TABLE 1

True dynamics

Emission distribution
Variance 6?2

Duration distribution (&, &,, &3)

of all sequences as the final failure state, which is state 5 in
this example.

Given the decoded hidden health states {¢,
1, ..., S} and the identified failure state cr, we use a simu-
lation method to estimate the RUL. We simulate M hidden
super-state paths. Each path starts from states (Cs—g41, ... ,Cs)
and the next state cg;; is generated by drawing a sample
from the multinomial distribution with probabilities (p(cs+1 =
]lz(s_q_'_]);s), ,p(Cs+1 = Clz(g_q+1);s)), which are com-
puted using Equation (14) given the learned parameters "

T =

and m;. Repeat this procedure by considering cs; as the
current health state until the failure state cr is first reached.
Denote the ith paths by {csy1, ... , csyn, }, where N is the total
number of super-states generated in the ith paths and cs,n, =
cpforalli =1, ..., M. For each path, we sample the dura-
tion time for each super-state and use the sum of all sampled
duration times as the RUL. We then estimate the mean RUL
and the respective interval estimates based on the simulated
RULs. The computation procedure is summarized as follows:

M

I 1 ;

RUL nean = A—/[;RUL, (23)

5

N

— i 5
RULupper = RULpean + IM-11-a/2——> (25)

VM
where § is the sample standard deviation of the simulated
RUL and #y/_ 1,1 -4 is the upper (1 — a/2) critical point for

RULjower = RULpean — M-1,1-a/2 (24)

Mean (u1, pa, 43)

Parameter setting of the simulation experiments

Third, second, first

(=3,0,3), (—4.5,0,4.5), (—6,0,6)
0.5%, 12, 1.5%

(22,18,14)

the 7 distribution with M — 1 degrees of freedom. Details of
estimating RUL are summarized in Algorithm 3.

6 | SIMULATION STUDY

In this simulation study, we design the following experiments
to evaluate the performance of our proposed sampling method
for the HOHSMM with consideration of multiple independent
observation sequences.

6.1 | Model setting

Suppose the state space is € = {1,2,3}, the emission distri-
bution is Gaussian, that is, f(y|c; = ¢) = Normal(y| ., 62),
and the sojourn time at each super-state follows a Poisson
distribution g(d!&,.). Table 1 summarizes the parameter set-
ting considered in the sensitivity analysis. The total number
of experiments is 27.

For each experiment, we independently generate three
observation sequences with sample size 2500. The true tran-
sition probability tensors A, s, ,, in the third-order cases are
generated as follows (Sarkar & Dunson, 2018):

2
u
i 1 = L 5 up ~ U 0’1 5
hy oy (1) Zr(—m) 1 0,1
2
u
Ay gy (2) = 2 (1= Ay (D], w2 ~ U0, 1),

u% + (1 —u)?

Ay gy B) = 1 = Ay iy (1) = Any iy iy (2)s
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Algorithm 3. RUL estimation
Input: Model parameters ,Tk, T, {fc}, decoded hidden super-state sequence {¢, : = = 1,...,S}, failure state cp, and the

number of simulation paths M.

1: Compute transition probability matrix: For each possible combination of ¢(;_g): (:—1),compute p(c; = ¢|€(z-g):(-—1)) USing

Equation (14),c=1,...,C.
2: fori=1toMdo
3 Initialize: ¢ 0w < (Cs—g+1, ..., Cs), RUL < 0.
4 while ¢, (g) # cr do
5: Sample ¢ ~ Mult({1, ..., C}, p(c = 1|enow), - --
6 Sample d ~ g(d|&.).
7 RUL' < RUL +d.
3 Cow(l : (g — 1)) < €row(2 : g) and cyow(q) < c.
9: end while
10: end for
11: Compute mean RUL: RUL yeqn = ﬁ ¥ RUL.

7[7(6 = Clcnow))~

12: Compute confidence interval (R/ﬁk,wer, RUL pper) using Equations (25) and (24).

Output: RULpean, RULjowers RULypper-
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FIGURE 7 Convergence diagnostics: potential scale reduction factor (PSRF) plots [Colour figure can be viewed at wileyonlinelibrary.com]

where hy, hy, hs € {1,2,3}. By excluding self-transitions, we

obtain
1
bjj = 0

- - Aina, (DA = 6y)
The true transition probability tensors of the first and sec-

p 0 if i=j,

ihyhy ) = -

i 1 — iy, ()

ond orders are generated similarly. The hyper parameters in

otherwise.

the priors are set as ag = 1 and y; = 1/C = 1/3 for all j.

6.2 | Results

In each experiment, we run 5000 MCMC iterations and dis-
card the first 3000 iterations as burn-in. The remaining sam-
ples are thinned by retaining every 10th sample after burn-in
to reduce autocorrelation. We compute the potential scale
reduction factor (PSRF) (Gelman & Rubin, 1992) to diag-
nose the convergence, which is obtained based on normal
theory approximations to exact Bayesian posterior inference.
Figure 7 presents the convergence diagnostics results by pro-
viding two PSRF plots for the emission distribution parame-
ters ¢; and o1. The PSRF plots show good mixing behavior by

achieving the statistic’s asymptotic value 1. We have checked
other model parameters and obtained the same diagnostics
results. Therefore, the posterior samples generated by the pro-
posed sampling algorithm have good mixing behavior and
have produced stable estimates of the parameters of interest.
We evaluate the performance of our proposed HOHSMM
sampling algorithm in terms of important lags inclusion result
and hidden-state decoding performance. Table 2 summarizes
the important lags inclusion results under different data vari-
ances. We observe from Table 2 that all experiments correctly
identify the true order when variance is small (62 = 0.5%).
However, more than 50% experiments with large variances
fail to identify the important lags. This is because large vari-
ances in general cause more overlapping of the observations
at different hidden states. The decoding performance is quan-
tified using the Hamming distance between the true and the
decoded hidden-state sequences, which is the total number
of states that are decoded incorrectly. Table 3 shows the
hidden-state decoding results using the normalized Hamming
distance. We can see that the hidden-state decoding is satis-
factory, especially for observations with small variances. The
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TABLE 2 Important lags inclusion results:
percentage of experiments that correctly
identify the true order

o2 =0.5"

100%

2 _ 12
o;=1

77.78%

o2 =15

44.44%

TABLE 3 Hidden-state decoding results

Normalized hamming

True dynamics Data variance distance (%)
Third 62 =052 0.10
c2=1% 3.69
2 =152 11.52
Second 62 =0.5% 0.11
o2 =12 4.17
62=15% 12.03
First 62 =052 0.1
c2=1% 4.17
2 =152 11.76

proposed sampling method is effective for HOHSMM infer-
ence in the simulation study, including the first order as a
special case.

To examine the impacts of the distant-history dependency,
we evaluate the performance of our proposed HOHSMM and
the HSMM, which makes the strict first-order assumption for
the hidden super-state transitions. Specifically, we compare
the estimated one-, two-, and three-step ahead predictive den-
sities of the two methods. We arbitrarily select some exper-
iment settings in the sensivity analysis for illustration. We
generate observation sequences from Gaussian distributions
with (uy, uo, u3) = (—4.5,0,4.5) and consider three variances
62 = 0.5%, 62 = 12, and 62 = 1.5% for ¢ = 1,2,3. The state

duration follows a Poisson distribution with &, = 22,18,14 for

¢ = 1,2,3, respectively. Three dependencies are considered:
third, second, and first order.

For an HOHSMM of order ¢, the r-step ahead predic-
tive density fpreq s+ (V1 y1:5) is given by Equation (15). Based
on M samples {(c™,¢& (’”))}Anle drawn from the posterior,
Sored.s++(¥1y1:5) can be estimated as

M
FrasseO) = 20 - P f0lesin €)

m=lcg,, Cs+1

(m) (m)y . .. (m) (m)
P(CS+r|c(S+r_q):(S+,_1)’C ) p(CS+1|c(S+1_q):S’§ )
(26)

The corresponding true density, denoted by [?re dser)s
is obtained with true transition and emission distributions
and true hidden-state sequence. The integrated squared error
(ISE) (Sarkar & Dunson, 2018) is used to evaluated the
density prediction performance, which is estimated by

N
Z [?red’s_'_,.(yiA) _fpred,S+r (Y,A |yl :S)]2Ai’ (27)
i=1

where { yiA}?i are a set of grid points on the range of y and
A = yl.A - yiA_ , for all i. For the first-order HSMM, the ISE
is estimated similarly by setting g = 1. Table 4 summarizes
the density prediction results of the proposed HOHSMM and
the HSMM given different data variances. From Table 4, we
can see that ignoring the distant-history dependency gener-
ally leads to larger average ISEs in estimating one-, two-, and
three-step ahead predictive densities when higher-order tran-
sition dynamics present (ie, third- and second-order depen-
dency), which shows the necessity of taking the higher-order
dependency into consideration. We do not observe much
differences in ISEs estimated from the HOHSMM and the
HSMM when larger data variance presents. This is similarly

TABLE4 Average ISEs in estimating one-, two-, and three-step ahead predictive densities for the
HOHSMM and the HSMM given different data variances

Average ISE x100

HSMM HOHSMM
True dynamics One Two Three One Two Three
62 =0.5%
Third 4.36 7.05 5.60 3.98 4.09 3.14
Second 9.92 5.10 797 3.73 4.72 3.55
First 3.62 3.36 3.25 3.59 3.36 3.18
o2 =17
Third 5.63 4.60 6.47 3.58 3.47 542
Second 9.73 9.44 9.40 6.64 7.21 7.01
First 10.83 3.34 8.20 9.55 3.24 7.75
62=15%
Third 9.91 5.58 6.81 10.03 5.15 6.30
Second 9.92 10.48 11.23 10.18 10.43 10.88
First 17.85 7.23 10.82 18.10 5.52 9.67

Abbreviations: HSMM, hidden semi-Markov model; HOHSMM, higher-order hidden semi-Markov

model; ISEs, integrated squared errors.



272

LIAO ET AL.

WILEY
I
0.8 1
0.6 ]
0.4
0.2 1
0
0 1 2 3 4 5 6

FIGURE 8 The higher-order hidden semi-Markov model (HOHSMM):
The inclusion probability given " [Colour figure can be viewed at
wileyonlinelibrary.com]

because large variances pose challenges in identifying the true
order.

7 | CASE STUDY: TURBOFAN ENGINES
PROGNOSTICS ANALYSIS

To further demonstrate the practical utility of the proposed
HOHSMM on diagnostics and prognostics, we conduct a
case study on turbofan engines from the NASA Prognostic
Data Repository. The Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) data set is used in this
paper, which is generated using a model-based simulation
program developed by NASA (Saxena, Goebel, Simon, &
Eklund, 2008).

For illustrative purpose, only the training set in data set
FDOO1 is used in this paper, which contains 100 engines’
run-to-failure trajectories. All trajectories in this training set
are simulated under the same operational condition and have
only one fault mode caused by high-pressure compressor
degradation (Frederick, DeCastro, & Litt, 2007). Each trajec-
tory is recorded in a given operational cycle, consisting of
three values for operational settings and 21 values for engine
performance sensor measurements. We randomly choose 10

trajectories to train the HOHSMM and randomly choose
another four trajectories for testing.

Multiple sensor measurements bring dimensionality chal-
lenge for data analysis. To keep effective discriminant infor-
mation and eliminate the redundant one, feature fusion pro-
cess is used to transfer a set of sensors to a single health
indicator. To obtain the health indicator, we use principle
component analysis (PCA), which is an efficient technique
in compressing information and eliminating the correlations
between variables. The first principle component (FPC),
accounting for the largest variability in data, is used as the
health condition indicator (Moghaddass & Zuo, 2014). In the
HOHSMM, we assume that the health indicator (ie, FPC) fol-
lows a state-specific normal distribution. We assume there
are seven health states since it has been shown that the hid-
den health conditions are well represented by seven states
(Moghaddass & Zuo, 2014).

From the important lags inclusion result (shown in
Figure 8), we can see that the hidden health-state sequence is
governed by a second-order Markov chain, implying that the
health-state transition of turbofan engines depends on its past
two history states. The performance of hidden-state decoding
on training data is illustrated in Figure 9 using the first training
trajectory as an example. We compare the state-specific pos-
terior means of FPC and the true FPC computed from raw sen-
sor data. We can see the decoding performance is very good
since the estimated emission distributions and the decoded
hidden super-state sequence describe the computed FPC well.

Next, we use the learned HOHSMM to predict the RULs
for testing units using the simulation method presented in
Section 5. Since the degradation in a system is generally not
noticeable after the unit has been operated for some period of
time, it is reasonable to estimate the RUL using a piece-wise
linear function (Heimes, 2008), which limits the maximum
value of the RUL. Thus, a piece-wise RUL plot is used to rep-
resent the true RUL, which serves as the benchmark for the
predicted RUL. First, we compute the FPC for the four testing
units based on the PCA results obtained from the training

4 1 1 1 1

| —State-specific posterior means of FPC

100

120 140 160 180

FIGURE 9 The higher-order hidden semi-Markov model (HOHSMM): The state-specific posterior means of first principle component (FPC; blue solid
line) super-imposed over the FPC sequence (green dashed line) for training unit 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 The higher-order hidden semi-Markov model (HOHSMM): mean remaining useful life (RUL) prediction for testing units [Colour figure can be

viewed at wileyonlinelibrary.com]

150 . True RUL
M = ==HOHSMM
=== ——MoG-HMM
1
100 H :
1
------ N
9 -I
)
50
\
. !
'
0 %
0 50 100 150 200 250
(A) Testing unit 1
150 ——True RUL
- - -HOHSMM
""" s,  —=—MoG-HMM
100
1
N -
:
50 \,
A)
N
1
0 . ‘ ; —==h
0 50 100 150 200

FIGURE 11

(C) Testing unit 3

150 . True RUL
! ===HOHSMM
SN —=—MoG-HMM
1
1
N - - -
* -
1
50 .
~ \J
-9
1
N
0 &
0 50 100 150 200
(B) Testing unit 2
150 True RUL
- - ~-HOHSMM
----- 9 ': —=—MoG-HMM
100
50
1
0 . . . =
0 50 100 150

(D) Testing unit 4

Comparison of mean RUL estimations between the HOHSMM and the MoG-HMM. HOHSMM, higher-order hidden semi-Markov model;

MoG-HMM, mixture of Gaussians hidden Markov model; RUL, remaining useful life [Colour figure can be viewed at wileyonlinelibrary.com]


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

2 | \WiLEY

LIAO ET AL.

TABLE 5 Absolute mean RUL estimation errors of the HOHSMM
and the MoG-HMM

Model Unit 1 Unit 2 Unit 3 Unit 4
HOHSMM 7.73 5.47 9.02 14.84
MoG-HMM 31.28 28.77 34.62 45.46

Abbreviations: HOHSMM, higher-order hidden semi-Markov model;
MoG-HMM, mixture of Gaussians hidden Markov model; RUL, remaining
useful life.

data. The observations (ie, the computed FPC) of each testing
unit are continuously fed into the learned HOHSMM, which
are used for decoding the current health state and predicting
the RUL. By generating 100 paths, we obtain the estimated
mean RUL and the respective 95% confidence interval (CI)
for each time point, shown in Figure 10. The mean RUL esti-
mation results are very good for the testing units since the true
RUL is close to the estimated mean RUL and is within the
estimated 95% Cls at the majority of time points.

To further assess the performance of the proposed
HOHSMM on the RUL prediction, we compare the perfor-
mance of the proposed model with that of the mixture of
Gaussians HMM (MoG-HMM) in Tobon-Mejia et al. (2012),
which has been shown to be efficient in engineering sys-
tem prognostics. The Baum-Welch algorithm is used to esti-
mate the MoG-HMM parameters and the Viterbi algorithm
is used to assess the current health state of the system. The
RUL is predicted using simulation approach by generating
hidden-state sequences from the current state to the failure
state based on the estimated transition probabilities. We use
the same training units to train the MoG-HMM and estimate
the mean RUL on the same testing units. Figure 11 compares
the estimated mean RUL based on the proposed HOHSMM
and the MoG-HMM. We can see that the proposed HOHSMM
gives better prediction on all four testing units. We further
compute the absolute mean estimation errors of the testing
units for both models, which are summarized in Table 5. From
Table 5, we can see that the absolute mean RUL estimation
errors of HOHSMM are smaller than the MoG-HMM for all
testing units, indicating that our proposed method is effective
in real-world applications.

8 | CONCLUSIONS

In this paper, we consider the problem of decoding the hidden
health states and predicting the RUL for systems with unob-
servable health conditions and complex transition dynamics
based on observations. We develop a flexible prognostics
framework based on an HOHSMM. Our framework is flexi-
ble in that the HOHSMM allows the hidden state to depend
on its more distant history instead of only depending on the
current state and assumes generally distributed state duration.
The proposed HOHSMM includes the HMM and HSMM as
two special cases. A Gibbs sampling algorithm is designed for

HOHSMM inference and is evaluated by conducting a simu-
lation study. The results show that the proposed HOHSMM
sampler is effective for learning model parameters from the
observed data and it is necessary to consider distant-history
dependency when higher-order transition dynamics present.
Given the learned model, a decoding algorithm is developed
to assess the current hidden health state of a functioning
system in operation. The RUL is then predicted using a sim-
ulation approach by generating hidden-state sequences from
the current state to the failure state. The NASA turbofan
engine data set (ie, C-MAPSS data set) is used to demonstrate
the practical utility of the proposed prognostics framework.
Our case study shows that the HOHSMM-based prognostics
framework provides satisfactory hidden health-state assess-
ment and RUL estimation for complex systems. Furthermore,
the comparison on RUL prediction between the proposed
HOHSMM and the benchmark MoG-HMM shows that our
proposed prognostics framework is effective in real-world
applications.

The framework presented in this paper has raised a few
important questions that require further study. First, the state
space is generally unknown and the true number of states
also need to be learned from the observed data. The exist-
ing HDP-HMM provides a powerful framework for inferring
arbitrarily large state complexity from data (Teh et al., 2006).
Moreover, the HDP-HSMM allows for both Bayesian non-
parametric inference of state complexity as well as general
duration distributions (Johnson & Willsky, 2013). A promis-
ing direction for future research is to consider a more gen-
eral model, the hierarchical Dirichlet process HOHSMM,
to address the unknown state space issue in our proposed
HOHSMM-based prognostics framework. Second, there gen-
erally exists heterogeneity among different operating systems
(or components), even in the same environmental conditions.
It is also necessary to extend our prognostics framework to
account for the unit-to-unit differences in the future work.
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