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Abstract
This paper presents a new and flexible prognostics framework based on a higher-

order hidden semi-Markov model (HOHSMM) for systems or components with

unobservable health states and complex transition dynamics. The HOHSMM

extends the basic hidden Markov model (HMM) by allowing the hidden state to

depend on its more distant history and assuming generally distributed state dura-

tion. An effective Gibbs sampling algorithm is designed for statistical inference of

the HOHSMM. We conduct a simulation study to evaluate the performance of the

proposed HOHSMM sampler and examine the impacts of the distant-history depen-

dency. We design a decoding algorithm to estimate the hidden health states using

the learned model. Remaining useful life is predicted using a simulation approach

given the decoded hidden states. The practical utility of the proposed prognostics

framework is demonstrated by a case study on National Aeronautics and Space

Administration (NASA) turbofan engines. We further compare the RUL predic-

tion performance between the proposed HOHSMM and a benchmark mixture of

Gaussians HMM prognostics method. The results show that the HOHSMM-based

prognostics framework provides good hidden health-state assessment and RUL

estimation for complex systems.
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1 INTRODUCTION
In the past decade, prognostics has emerged as one of the key

enablers for industrial systems to become more reliable, oper-

ationally available, and economically maintained (Sun, Zeng,

Kang, & Pecht, 2012). Prognostics technologies aim to mon-

itor the performance of a system (or a component), assess

the health status, and predict the remaining useful life (RUL).

Based on the predicted future performance, informed asset

management strategies can be better planned to reduce oper-

ational risks and costs. Prognostics has been used for various

engineering systems, such as engines (Peel, 2008; Wang &

Zhang, 2005; Zaidan, Mills, Harrison, & Fleming, 2016), bat-

teries (Saha, Goebel, Poll, & Christophersen, 2008; Zhang &

Lee, 2011), electronics (Pecht, 2009; Rouet, Minault, Dian-

court, & Foucher, 2007), and bearings (Huang et al., 2007; Li

et al., 1999; Li, Kurfess, & Liang, 2000; Qiu, Seth, Liang, &

Zhang, 2002). However, prognostics for complex systems still

remains a challenging problem. Many complex engineering

systems, such as turbofan engines, heavy machinery equip-

ment (Xiao, Fang, Liu, & Zhou, 2018), and wind turbines

(Kandukuri, Klausen, Karimi, & Robbersmyr, 2016), have

complex failure mechanisms, for example, the health-state

transition is dependent on more distant history states. More-

over, inspection of the actual health conditions of these sys-

tems often requires disassembling which is costly and can

even induce failures. Thus, condition monitoring data (eg,

sensor measurements) are widely used to assess the health

states that are not directly observable. Advanced techniques

that can model such complex transition behaviors and assess

the hidden condition are of great practical importance. In

this paper, we propose a new and flexible prognostics frame-

work based on a higher-order hidden semi-Markov model

(HOHSMM) to assess the health state and estimate the RUL

for complex systems.
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Prognostics approaches can generally be classified into two

categories: model-based approach and data-driven approach.

There are also hybrid models (Acuña & Orchard, 2017; Bai

& Wang, 2016; Di Maio, Tsui, & Zio, 2012; Liu, Wang, Ma,

Yang, & Yang, 2012) that attempt to combine the strengths

of model-based and data-driven approaches by fusing these

two approaches. The model-based approaches require a good

understanding of system physics-of-failure mechanisms.

Most of model-based approaches deal with crack, wear-

ing, and corrosion phenomena. For example, Paris-Erdogan

equation is used to model fatigue crack growth in Myö-

tyri, Pulkkinen, and Simola (2006) and Lei et al. (2016).

Daigle and Goebel (2012) develop a model-based prog-

nostics framework for a centrifugal pump and characterize

the damage processes with physics-based models (eg, ero-

sive wear equation, friction coefficient equation). More

model-based prognostics methods can be found in Chiachío,

Chiachío, Sankararaman, Saxena, and Goebel (2015), Haile,

Riddick, and Assefa (2016), Liao (2013), and Qian, Yan, and

Gao (2017). Model-based approaches are built on the knowl-

edge of the processes and failure mechanisms occurring in

the system of concern, and the approaches provide RUL

estimation based on the developed physical model. However,

it is a difficult task to understand the physics of damage

occurring in complex systems.

With the rapid development of sensor technologies, it has

become much easier and less costly to obtain condition mon-

itoring data, including operational and environmental loads

as well as performance conditions of the monitored sys-

tem (eg, temperature, vibration, pressure, voltage, current)

(Cheng, Azarian, & Pecht, 2010). Advancements in modern

sensor instruments have greatly facilitated data-driven prog-

nostics. Data-driven approaches use several tools, most of

which originate from artificial intelligence (AI) and statisti-

cal domains. Neural networks (Guo, Li, Jia, Lei, & Lin, 2017;

Li, Ding, & Sun, 2018; Malhi, Yan, & Gao, 2011; Tian, 2012;

Zheng, Ristovski, Farahat, & Gupta, 2017), neuro-fuzzy sys-

tems (Chen, Vachtsevanos, & Orchard, 2012; Wang, 2007;

Wang, Golnaraghi, & Ismail, 2004), and support vector

machine/regression (Benkedjouh, Medjaher, Zerhouni, &

Rechak, 2015; S. Dong & Luo, 2013; Khelif et al., 2016;

Liu, Vitelli, Zio, & Seraoui, 2015; Widodo & Yang, 2011)

have been widely used for engineering system prognostics.

However, these AI techniques are always referred to “black

boxes” (Lei et al., 2018) since it is difficult to have physical

explanations of the constructed network structure (eg, the

number of hidden layers and the number of nodes used in

each layer) and the networks’ outputs. The hidden Markov

model (HMM), which characterizes doubly stochastic pro-

cesses, is commonly used to infer the hidden health state

directly from the observed data and predict the RUL (Baruah

& Chinnam, 2005; Bunks, McCarthy, & Al-Ani, 2000; Camci

& Chinnam, 2010; Giantomassi et al., 2011; Tobon-Mejia,

Medjaher, Zerhouni, & Tripot, 2012). Bunks et al. (2000)

illustrate the applications of HMMs by using the Westland

helicopter gearbox data set and show that HMMs can provide

a natural framework for both health diagnostics and prognos-

tics. Baruah and Chinnam (2005) employ HMMs to identify

the health state of metal cutting tools from sensor signals

and predict the RUL. Tobon-Mejia et al. (2012) develop

a mixture of Gaussians HMM (MoG-HMM) to assess the

current condition of a bearing and estimate its RUL. HMMs

have well-constructed theoretical basis and thus are allowed

for a wide range of practical applications. An added benefit

of employing HMMs is the ease of model interpretation in

comparison with pure “black-box” modeling methods. How-

ever, standard HMMs have two inherent limitations. One

is the assumption of first-order Markovian dynamics of the

hidden-state process. The other is that the state duration (ie,

sojourn time) implicitly follows a geometric distribution.

The first-order assumption can be restrictive as the health

state of complex systems usually evolves depending on its

more distant history, not just the current state. Moreover, the

duration time in one state does not always follow a geometric

distribution.

To provide a more adequate representation of temporal

structure, the hidden semi-Markov model (HSMM) extends

the basic HMM by assuming that the state duration is gener-

ally distributed. The explicit duration HSMM is widely used

in health monitoring of engineering systems, which assigns an

explicit distribution for duration of each state and the duration

distribution is only determined by corresponding state (Dong

& He, 2007; Liu, Dong, Lv, Geng, & Li, 2015; Yu, 2010).

Dong and He (2007) propose an HSMM-based diagnostics

and prognostics framework by adding an explicit tempo-

rary structure into HMM. Through the estimated hidden-state

duration distribution and the proposed backward recursive

equations, the RUL of the equipment can be predicted.

There also exist other special forms of HSMM used in

prognostics, which make different assumptions regarding

the dependence between state transition and duration. For

example, Wang, Sun, Cai, Zhang, and Saygin (2014) present

a duration-dependent HSMM for prognostics, which assumes

that the state transition probability depends on the previ-

ous state and its respective duration time. Liu, Zhu, and

Zeng (2018) propose a new HSMM that considers the depen-

dency between durations of adjacent degradation states to

assess the health state and predict the RUL. However, in

the aforementioned HSMMs, the history states’ dependency,

which commonly exists in complex systems, has not been

taken into account when modeling state transition probability.

In this paper, we propose a new prognostics frame-

work based on HOHSMMs for systems with unobservable

health-state and complex transition dynamics. In the

HOHSMM-based framework, the important features

extracted from the monitoring data are used as observations

and the underlying health status of the concerned system

is represented in the form of hidden states, which evolve

depending not only on the current state but also on its more

distant history. The sojourn time in each state is generally
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distributed and is assumed to follow an explicit distribution.

We design an effective Gibbs sampling algorithm for model

inference and conduct a simulation study to evaluate the per-

formance of the proposed HOHSMM sampler. The impacts

of the distant-history dependency are also examined in the

simulation study. The learned HOHSMM is then used to

assess the current health state of a functioning system in oper-

ation and predict its RUL. Decoding algorithm is developed

for health-state assessment using the learned model. The

RUL is estimated using a simulation approach by generating

paths from the current health state to the failure state. Fur-

thermore, we demonstrate the practical utility of the proposed

prognostics framework by conducting a case study on NASA

turbofan engines and comparing the RUL prediction per-

formance of the proposed method with that of a benchmark

MoG-HMM prognostics method (Tobon-Mejia et al., 2012).

The main contributions of this paper are twofold.

1. Develop a new and advanced HOHSMM-based prog-

nostics framework to assess hidden health state and

predict the RUL for complex systems. The proposed

HOHSMM includes the HMM and HSMM as two

special cases.

2. Design effective algorithms for HOHSMM inference,

hidden-state decoding, and RUL prediction. A Gibbs

sampling algorithm is developed for HOHSMM infer-

ence and the simulation study shows that the designed

HOHSMM sampler is effective for learning model

parameters from observations. Based on the learned

model, a decoding algorithm is developed for hid-

den health-state assessment and an RUL estimation

algorithm is developed for prognostics. The case

study on NASA turbofan engines shows that the

HOHSMM-based prognostics framework provides sat-

isfactory hidden health-state assessment and RUL esti-

mation for complex systems.

The remainder of this paper is organized as follows.

Section 2 provides preliminaries on the higher-order HMM

(HOHMM). In Section 3, we develop an HOHSMM and

design an effective sampling algorithm for statistical infer-

ence. Section 4 presents the hidden-state decoding procedure

using the learned model. The RUL is predicted using a simu-

lation approach in Section 5. We conduct a simulation study

to evaluate the performance of the proposed HOHSMM sam-

pler in Section 6. A case study on NASA turbofan engines is

demonstrated in Section 7. Section 8 discusses the concluding

remarks and future work.

2 PRELIMINARIES ON HOHMM

This section provides a brief overview of the HOHMM by

summarizing the main results of Sarkar and Dunson (2018)

and Yang and Dunson (2016). Based on the HOHMM in

Sarkar and Dunson (2018), we develop the HOHSMM.

An HOHMM consists of two processes: a hidden process

{ct}, which evolves according to a higher-order Markov chain

with discrete state space, and a potentially multivariate obser-

vation process {yt} observed sequentially over a set of discrete

time points t = 1, 2, … , T . HOHMMs extend the idea of

basic HMMs by allowing the hidden-state sequence {ct} to

depend on its more distant past. An HOHMM of maximal

order q makes the following set of conditional independence

assumptions:

p(ct|c1, … , ct−1) = p(ct|c(t−q)∶(t−1)), (1)

p(yt|c1, … , ct, y1, … , yt−1) = p(yt|ct). (2)

Note that an HOHMM is said to be of maximal order

q if the distribution of ct only depends on a subset of

{ct− 1, … , ct− q}. If the distribution of ct actually varies with

the values at all the previous q time points, the HOHMM is

considered to be of full order q.

While the HOHMM relaxes the restrictive first-order

assumption of the basic HMM, it also brings significant

dimensionality challenges. For known state space 𝒞 =
{1, … ,C}, the transition probabilities are now indexed by Cq

different possible values of the lags c(t− q) : (t− 1) and involve

a total number of (C − 1)Cq parameters, which increases

exponentially with the order q. To address this issue, latent

allocation variables zj,t for j = 1, … , q and t = q+ 1, … , T
are introduced to shrink the total number of parameters. The

allocation variable zj,t, taking values from {1, … , kj}, is the

respective latent class that a particular state of ct− j is allocated

into. The total number of the latent classes kj (1≤ kj ≤C) then

determines the inclusion of the jth lag ct− j. If kj = 1, it means

that ct− j is not an important lag for ct. If kj > 1 for all j= 1, … ,

q, the HOHMM is of full order q. Based on the allocation vari-

able zj,t, the hidden states {ct} are conditionally independent

as shown in Figure 1.

We denote the probability that the jth lag ct− j is allo-

cated into latent class hj by 𝜋
(j)
hj
(ct−j), that is, 𝜋

(j)
hj
(ct−j) =

p(zj,t = hj|ct−j). Given the combination of q allocated latent

classes (h1, … , hq), the state transition probability is denoted

by 𝜆h1,… ,hq(ct) for ct = 1, … , C,

𝜆h1,… ,hq(ct) = p(ct|z1,t = h1, … , zq,t = hq). (3)

Then the transition probability can be structured through

the following hierarchical formulation

(ct|zj,t = hj, j = 1, … , q) ∼ Mult({1, … ,C}, 𝜆h1,… ,hq

(1), … , 𝜆h1,… ,hq (C)), (4)

(zj,t|ct−j) ∼ Mult({1, … , kj}, 𝜋(j)
1
(ct−j), … , 𝜋

(j)
kj
(ct−j)). (5)

The parameters 𝜆h1,… ,hq(ct) and 𝜋
(j)
hj
(ct−j) are nonnegative

and satisfy the constraints:
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FIGURE 1 Dependence structure of a second-order hidden Markov model [Colour figure can be viewed at wileyonlinelibrary.com]

1.
∑C

ct=1 𝜆h1,… ,hq(ct) = 1, for each combination

(h1, … , hq);

2.
∑kj

hj=1
𝜋
(j)
hj
(ct−j) = 1, for each pair (j, ct− j).

In such a factorization, the number of parameters is reduced

to (C − 1)
∏q

j=1
kj + C

∑q
j=1

(kj − 1), which is much smaller

than (C − 1)Cq if
∏q

j=1
kj ≪ Cq.

Marginalizing out the latent-class indicators zj,t, the tran-

sition probability p(ct | c(t− q) : (t− 1)) has an equivalent form

as

p(ct|c(t−q)∶(t−1)) =
k1∑

h1=1

· · ·
kq∑

hq=1

𝜆h1,… ,hq (ct)
q∏

j=1

𝜋
(j)
hj
(ct−j), (6)

where 1≤ kj ≤C for all j. The generic form of the emis-

sion distribution is expressed as p(yt|ct,𝜽) = f (yt|𝜽ct ), where

𝜽 = {𝜽c : c = 1, … , C} represents parameters indexed by the

hidden states. The joint distribution of y = {yt : t = 1, … , T},

c = {ct : t = q+ 1, … , T} and z = {zj,t : t = q+ 1, … , T , j = 1,

… , q} admits the following factorization:

p(y, c, z ∣ 𝝀k,𝝅k, k,𝜽)

=
T∏

t=q+1

{p(ct|𝝀zt )
q∏

j=1

p
(
zj,t|wj,t,𝝅

(j)
kj
, kj

)
}

T∏
t=1

f (yt|𝜽ct )

= p(y|c,𝜽)p(c|z,𝝀k, k)p(z|w,𝝅k, k), (7)

where wj,t = ct− j, representing the history state of ct. The

conditional independence relationships encoded in the fac-

torization are used in deriving Markov chain Monte Carlo

(MCMC) algorithms to draw samples from the posteriors.

Detailed sampling algorithms for HOHMMs are referred to

Sarkar & Dunson (2018).

3 HIGHER-ORDER HIDDEN
SEMI-MARKOV MODEL

In this paper, we extend an HOHMM to an HOHSMM, where

the hidden-state sequence is governed by a semi-Markov

chain. The HOHSMM is more flexible since it incorporates

additional temporal structure by allowing the state duration

to be generally distributed, rather than implicitly following a

geometric distribution as in an HOHMM.

3.1 Model development

We first give a brief description of the HSMM and then

develop the HOHSMM. As discussed in the literature, there

exist several specific models of the HSMM in prognostics

by making different assumptions regarding the dependence

between state transition and duration. For model simplic-

ity and tractability, the explicit duration setting is widely

used in health monitoring of engineering systems (Dong &

He, 2007; Liu, Dong, et al., 2015), and we also use it to

model the temporal structure in the proposed HOHSMM.

Both HSMMs and HOHSMMs with explicit duration exclude

state self-transitions because the duration distribution cannot

fully capture a state’s possible duration time if self-transitions

are allowed.

An HSMM with explicit duration assumes that the under-

lying stochastic process is governed by a semi-Markov

chain. Each state has a variable duration that follows

an explicit state-specific distribution and a number of

corresponding observations are produced while in the

state (illustrated in Figure 2). The observation sequence

http://wileyonlinelibrary.com
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FIGURE 2 An hidden semi-Markov model (HSMM) with explicit duration

FIGURE 3 A second-order hidden semi-Markov model (HSMM)

{yt : t = 1, … , T} is produced segmentally from the emis-

sion distribution f (y|𝜃c𝜏 ) indexed by the hidden super-state

sequence {c𝜏 : 𝜏 = 1, … , S}, where S is the number of seg-

ments. Observations are assumed to be collected discretely

by a unit time, and therefore the number of observations pro-

duced in each super-state represents the state duration. For

the 𝜏th segment, the state duration is denoted by d𝜏 and yt1
𝜏
∶t2

𝜏

denotes the produced observations, where t1
𝜏 =

∑
𝜓<𝜏d𝜓 + 1,

t2
𝜏 =

∑
𝜓≤𝜏d𝜓 . In the last segment, the observations may be

truncated, and we have t2
S = min

{∑
𝜓≤Sd𝜓 , T

}
.

In the proposed HOHSMM with the explicit duration set-

ting, the hidden super-state sequence {c𝜏} is assumed to be

governed by a higher-order Markov chain and the state dura-

tion follows an explicit distribution, denoted by g(⋅|𝜉c𝜏 ) with

the parameters indexed by the specific hidden super-state c𝜏 .

In general, the state duration can be modeled by Poisson,

Gaussian, and gamma distributions, all of which belong to

the exponential family (Yu, 2010). In real-world applications,

the choice of distribution can be determined by finding the

one that better fits the original histogram of state durations.

For the problem of our interest, the condition monitoring data

are typically collected on some discrete-time schedule (eg,

hourly, daily, or weekly), and it is thus reasonable for us to

employ the Poisson distribution to model the state duration.

An explicit-duration HOHSMM of maximal order q is

constructed as follows:

p(c𝜏 |c1, … , c𝜏−1) = p(c𝜏 |c𝜏−q, … , c𝜏−1), 𝜏 = q+ 1, … , S,

d𝜏 ∼ g(d|𝜉c𝜏 ), 𝜏 = 1, … , S,

yt1
𝜏∶t2

𝜏

iid∼ f (y|𝜃c𝜏 ), t1
𝜏 =

∑
𝜓<𝜏

d𝜓 + 1, t2
𝜏 =

∑
𝜓≤𝜏

d𝜓 .

Figure 3 illustrates a second-order HSMM. In this example,

the distribution of the hidden super-state c𝜏 depends on its

previous two states c𝜏 − 1 and c𝜏 − 2, and the duration time in

each super-state is generally distributed, following an explicit

state-specific distribution.

To design an efficient MCMC sampling algorithm for

HOHSMM inference, we first assign the prior distributions

to model parameters. In order to exclude self-transitions in

the super-state sequence for an HOHSMM, a modified hier-

archical Dirichlet prior on the transition probability tensor is

assigned as (Johnson & Willsky, 2013),

𝝀i,h2,… ,hq = {𝜆i,h2,… ,hq (1), … , 𝜆i,h2,… ,hq(C)}

∼ Dir{𝛼𝜆0(1), … , 𝛼𝜆0(C)}, ∀(i, h2, … , hq), (8)

𝝀0 = {𝜆0(1), … , 𝜆0(C)} ∼ Dir(𝛼0∕C, … , 𝛼0∕C), (9)

𝜆i,h2,… ,hq (i
′) ≔

𝜆i,h2,… ,hq(i
′)

1 − 𝜆i,h2,… ,hq (i)
(1 − 𝛿ii′ ),

𝛿ii′ =

{
1 if i = i′,
0 otherwise.

(10)

Equation (10) ensures that the self-transition probabilities

are zeros. Note that i is the latent class the hidden super-state

c𝜏 − 1 (the immediate precedent super-state of c𝜏) is allocated

into and i′ is the state of c𝜏 (ie, c𝜏 = i′). Therefore, to have a

valid comparison between i and i′ and exclude self-transitions,

each possible state of c𝜏 − 1 must be allocated to a distinct

latent class. In other words, each state of c𝜏 − 1 is a dis-

tinct latent class. To do so, we let k1 = C and 𝝅
(1)
C (c𝜏−1) =

{𝜋(1)
1
(c𝜏−1), … , 𝜋(1)

C (c𝜏−1)}, where 𝜋(1)
i (c𝜏−1) = 𝛿i,c𝜏−1

, ∀i = 1,

… , C and 𝜏 = q+ 1, … , S. For the remaining lags, the inde-

pendent priors on the allocation distribution 𝝅k are assigned

as

𝝅
(j)
kj
(c𝜏−j) = {𝜋(j)

1
(c𝜏−j), … , 𝜋

(j)
kj
(c𝜏−j)} ∼ Dir(𝛾j, … , 𝛾j),

∀(j, c𝜏−j), j = 2, … , q. (11)
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By introducing latent allocation variables zj,𝜏 for j = 1,

… , q and 𝜏 = q+ 1, … , S with z1,𝜏 = c𝜏 − 1, the hid-

den super-states {c𝜏} are conditionally independent and the

model can be represented through the following hierarchical

formulation:

(c𝜏 |z1,𝜏 = i, zj,𝜏 = hj, j = 2, … , q)

∼ Mult({1, … ,C}, 𝜆i,h2,… ,hq (1), … , 𝜆i,h2,… ,hq(C)),
(12)

(zj,𝜏 |c𝜏−j) ∼ Mult({1, … , kj}, 𝜋(j)
1
(c𝜏−j), … , 𝜋

(j)
kj
(c𝜏−j)),

∀j = 1, … , q. (13)

The transition probability is then modeled as

p(c𝜏 |c(𝜏−q)∶(𝜏−1)) =
C∑

i=1

k2∑
h2=1

· · ·
kq∑

hq=1

𝜆i,h2,… ,hq (c𝜏)

× 𝜋(1)
i (c𝜏−1)

q∏
j=2

𝜋
(j)
hj
(c𝜏−j). (14)

For an HOHSMM of order q with transition probability

p(c𝜏 | c(𝜏 − q) : (𝜏 − 1)) and emission distributions {f (y|𝜽c) ∶ c ∈
𝒞 }, the r-step ahead predictive density is given by

fpred,S+r(y|y1∶S) = E(c,𝜻)

[∑
cS+r

· · ·
∑
cS+1

f (y|cS+r, 𝜻)

× p
(
cS+r|c(S+r−q)∶(S+r−1), 𝜻

)
· · ·

× p
(
cS+1|c(S+1−q)∶S, 𝜻

)]
, (15)

where S is the number of segments for the observation

sequence y and 𝜻 = (k,𝝀k,𝝅k,𝜽).
Finally, the following independent priors are assigned on

kj’s

p0,j(k) ∝ exp(−𝜑jk), j = 2, … , q, k = 1, … ,C, (16)

where 𝜑> 0. The prior p0,j assigns increasing probabilities to

smaller values of kj as the lag j becomes more distant, reflect-

ing the natural belief that increasing lags have diminishing

influence on the distribution of c𝜏 .

The joint distribution of y = {yt : t = 1, … , T},

c = {c𝜏 : 𝜏 = q+ 1, … , S}, and z = {zj,𝜏 : 𝜏 = q+ 1, … , S,

j = 1, · · ·, q} can be presented as

p(y, c, z ∣ 𝝀k,𝝅k, k, d,𝜽)

=
S∏

𝜏=q+1

{
p(c𝜏 |𝝀z𝜏 )

q∏
j=1

p
(
zj,𝜏 |wj,𝜏 ,𝝅

(j)
kj
, kj

)} S∏
𝜏=1

f (yt1
𝜏∶t2

𝜏
|𝜽c𝜏 ),

(17)

where wj,𝜏 = c𝜏 − j, and f (yt1
𝜏∶t2

𝜏
|𝜽c𝜏 ) =

∏t2
𝜏

i=t1
𝜏

f (yi|𝜽c𝜏 ), t1
𝜏 =∑

𝜓<𝜏d𝜓 + 1, t2
𝜏 =

∑
𝜓≤𝜏d𝜓 . The conditional independence

relationships encoded in the joint distribution are used in

deriving MCMC algorithms for the HOHSMM.

3.2 Model inference

We use the MCMC sampling method for explicit-duration

HOHSMM inference. The sampler is designed based on

the two-stage Gibbs sampling algorithms for HOHMM

(Sarkar & Dunson, 2018). There are additional challenges

in HOHSMM inference due to explicit temporal structure,

excluding self-transitions, and multiple observed trajectories

in the training data.

The first challenge is brought by incorporating explicit tem-

poral structure (ie, duration distribution), which requires addi-

tional sampling to determine the number of segments (ie, the

number of hidden super-states) and the duration time in each

state. Existing sampling inference methods for HSMMs often

use a message-backwards and sample-forwards technique to

address this problem (Johnson & Willsky, 2013). We cannot

directly apply these methods for an HOHSMM since the back-

wards messages are extremely difficult to define and compute

when higher-order transitions present. The reversible jump

MCMC provides a statistical inference strategy for Bayesian

model determination, where the dimensionality of the param-

eter vector is typically not fixed (eg, the multiple change-point

problem for Poisson processes) (Green, 1995). However, it

cannot be used to sample change points of a sequence in an

HOHSMM since there is no appropriate mechanism to update

the hidden super-states affected by the moves of change points

(eg, birth of a change point, death of a change point). The

second challenge is brought by excluding self-transitions. A

Dirichlet distribution is assigned as the conjugate prior for

transition probability parameters in the HOHMM, but the

conjugacy does not exist after setting self-transition proba-

bilities to zeros. A mechanism to recover the conjugacy for

updating transition probability parameters is needed. In addi-

tion, in many real-world applications, several identical units

are typically monitored at the same time to collect sensor

data. How to leverage all information provided by multiple

observed trajectories (ie, observation sequences) instead of

using just one sequence is the third challenge. We address

these difficulties in the following two sections.

3.2.1 Update segmentation
We denote P run-to-failure observation sequences by y(1 : P)

and the pth observation sequence by y(p) = {y(p)t ∶ t =
1, … , Tp}, where Tp is the observed length and p = 1, … , P.

These sequences are assumed to be independent. To address

the first challenge, we introduce a jump size threshold (𝛼)

to identify change points. For each observation sequence,

if the Euclidean distance between a point and its immedi-

ate previous point is greater than 𝛼, this point is identified

as a change point. The prior of 𝛼 is assigned to be a uni-

form distribution with support (𝛼min, 𝛼max), where 𝛼min and

𝛼max are the 5th and 95th percentile values obtained from

the distances between two adjacent observed data points in

all observation sequences, respectively. We then update the

segmentation of the observation sequences and initialize the
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FIGURE 4 Illustration for updating segmentation and initializing hidden super-states given jump size threshold 𝛼 (using one-dimensional observation as an

example). (A), Identify change points given jump size threshold 𝛼. A red cross indicates a change point that is detected if the difference (absolute value)

between an observation and its previous one is larger than 𝛼. Nine change points are identified and the observation sequence is segmented accordingly as

presented by vertical dashed black lines. Clustering labels are derived by clustering the mean values of observations in these 10 segments. (B), Segmentation

and hidden super-states initialization after clustering and merging processes. If two adjacent segments have the same clustering label, merge these two

segments and use the clustering label as the initialized hidden super-state [Colour figure can be viewed at wileyonlinelibrary.com]

hidden super-state sequences iteratively by sampling the jump

size threshold 𝛼.

In each iteration of the HOHSMM sampler, we propose

a new threshold 𝛼 from U(𝛼min, 𝛼max). For each observation

sequence, we mark change points based on the computed

distances (illustrated in Figure 4(A)) and the sequence is seg-

mented accordingly. After the initial segmentation, we com-

pute the center of the observed data points for each segment

and label the segments by clustering the centers. The hid-

den super-states are initialized by using the clustering labels.

To exclude self-transitions, if two adjacent segments have

the same clustering label, we merge these two segments. For

example, the first two segments in Figure 4(A) share the same

label 1, and these two segments are merged into one. After

the clustering and merging processes, we obtain the final seg-

mentation and the initialized hidden super-states of an obser-

vation sequence for a given jump size threshold (illustrated

in Figure 4(B)). Based on the segmentation results, we also

obtain the number of segments and the state duration for each

observation sequence, denoted by Sp and d(p), respectively.

The hidden super-state sequence c(p), latent allocation vari-

ables z(p), and other parameters k, 𝝅k, 𝝀k, 𝝀k, 𝝀0, 𝜽 are updated

using the two-stage Gibbs sampling algorithm for the pro-

posed HOHSMM. The first stage is to identify the important

lags by sampling k from the posterior. Given the determined

k, we collect the samples of other parameters in the sec-

ond stage. The obtained samples will be used to compute the

acceptance probability for updating jump size threshold 𝛼. In

general MCMC sampling, the acceptance probability can be

computed as

min{1, (likelihood ratio) × (prior ratio) × (proposal ratio)}.
(18)

http://wileyonlinelibrary.com
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Since the prior of 𝛼 is a uniform distribution and 𝛼 is also

proposed from the uniform distribution, it is obvious that the

prior ratio and the proposal ratio are equal to 1. The poste-

rior mean of the likelihood can be approximated using the

obtained samples (Ando, 2010), which is provided as

L𝛼 = 1

N

N∑
j=1

f
(

y(1∶P) ∣ c(1∶P),j,𝜽j, 𝛼
)

= 1

N

N∑
j=1

[ P∏
p=1

Sp∏
𝜏=1

f
(

y(p)t1
𝜏∶t2

𝜏

|𝜽j
c(p),j𝜏

)]
, (19)

where {𝜽1, … , 𝜽N , c(1 : P), 1, … , c(1 : P), N} is a set of posterior

samples generated from their posterior distributions.

Given all the collected samples of 𝛼, the most likely

jump size threshold 𝛼* is determined by computing the aver-

age value of the samples after burn-in. We then use 𝛼* to

update segmentation and repeat the two-stage Gibbs sam-

pling process to obtain the final segmentation and samples

for all parameters. Given an explicit distribution g(⋅| 𝜉c) for

each super-state’s duration, the MLEs {𝜉c} for parameters

{𝜉c : c = 1, … , C} can be easily obtained using the final

segmentation result.

3.2.2 The two-stage Gibbs sampling algorithm
for HOHSMMs
Given the segmentation, we modify the two-stage Gibbs

sampling algorithm in Sarkar and Dunson (2018) to draw

samples of k, 𝝅k, 𝝀k, 𝝀k, 𝝀0, 𝜽, z, and c from the poste-

riors in the HOHSMM. The first stage is to determine the

values of k = {k1, … , kq}, which is the important lag indi-

cator. Given determined values of k, we update other model

parameters 𝝅k, 𝝀k, 𝝀k, 𝝀0, 𝜽, latent allocation variables z, and

hidden super-state sequence c in the second stage. In this pro-

posed sampling algorithm, the order of super-state transition

dynamics does not need to be prespecified, rather it is deter-

mined through the important lag indicators k. If only the first

lag is identified to be important (ie, k1 > 1 and kj = 1 for

j = 2, … , q), then the hidden super-state transition depends

only on the immediately previous super-state, indicating that

the hidden super-state sequence is governed by a Markov

chain. Therefore, the proposed two-stage sampling algorithm

allows to learn the history dependency from the observed data

by identifying the important lags. To address the third chal-

lenge of multiple trajectories, we use the joint distribution

of all observation sequences. Based on the assumption that

all sequences are independent, the joint distribution can be

obtained as follows:

p
(

y(1∶P), c(1∶P), z(1∶P)|𝝀k,𝝅k, k, d(1∶P),𝜽
)

=
P∏

p=1

p
(

y(p), c(p), z(p)|𝝀k,𝝅k, k, d(p),𝜽
)
. (20)

The conditional independence relationships encoded in the

joint distribution are used in deriving the two-stage Gibbs

sampling algorithm for HOHSMMs.

Specifically, in the first stage, we identify important lags

and the corresponding number of latent classes by sampling

k. In this stage, we use an approximated model which forces

hard allocation of zj,𝜏’s instead of soft allocation. Hard allo-

cation means that, partition the state space into kj clusters for

the jth lag, then each cluster corresponds to its own latent

class. In other words, each state is allocated into one class with

probability 1. For example, partition the states {1,2,3,4,5,6}

into kj = 2 clusters with 𝒞j,1 = {1,2,3} and 𝒞j,2 = {4,5,6}
for the jth lag, hard allocation means that c𝜏 − j = 1, 2, and 3

will be allocated to the first latent class and c𝜏 − j = 4, 5, and

6 will be allocated to the second one with probability 1. In

soft allocation, one state can be allocated into several possible

classes with specific probabilities. The mixture probabilities

in the approximated model are denoted by 𝝅k, indicating hard

clustering while 𝝅k indicates soft allocation.

Based on the approximated model, samples of the param-

eters are drawn from their respective conditional posteriors

following the prespecified order. We first examine the pos-

teriors of the transition distributions 𝝀k and 𝝀0. There exist

computational machineries of sampling from the posteriors

in hierarchical Dirichlet process (HDP) models (Teh, Jor-

dan, Beal, & Blei, 2006). In the HOHMM, the Dirichlet

distribution is the conjugate prior of transition probability

parameter, so it is straightforward to update the parameters

𝝀k. However, in our HOHSMM, the method used to exclude

self-transitions makes the model not fully conjugate. Specifi-

cally, let ni,h2,… ,hq(c) =
∑

p
∑

𝜏1{z(p)
1,𝜏

= i, z(p)
2,𝜏

= h2, … , z(p)q,𝜏 =
hq, c(p)𝜏 = c}, which counts the number of transitions from

the latent allocation classes (i, h2, … , hq) to state c among all

observation sequences where i = 1, … , C and hj = 1, … ,

kj for j = 2, … , q. Because of no self-transitions, we have

ni,h2,… ,hq(i) = 0. We consider the posterior distribution of

𝝀1,h2,… ,hq = {𝜆1,h2,… ,hq(1), 𝜆1,h2,… ,hq(2), … , 𝜆1,h2,… ,hq(C)},

p(𝝀1,h2,… ,hq ∣ 𝝀0, c, z) ∝ [𝜆1,h2,… ,hq (1)]
𝛼𝜆0(1)−1

× [𝜆1,h2,… ,hq(2)]
𝛼𝜆0(2)−1 · · · [𝜆1,h2,… ,hq (C)]𝛼𝜆0(C)−1

×

(
𝜆1,h2,… ,hq(2)

1 − 𝜆1,h2,… ,hq (1)

)n1,h2 ,… ,hq (2)

· · ·

(
𝜆1,h2,… ,hq(C)

1 − 𝜆1,h2,… ,hq(1)

)n1,h2 ,… ,hq (C)

. (21)

Because of the extra
1

1−𝜆1,h2 ,… ,hq (1)
terms from the likeli-

hood by excluding self-transitions, we cannot reduce this

expression to the Dirichlet form over the components of

𝝀1,h2,… ,hq . Therefore, the model is not fully conjugate and

new posteriors need to be derived. To recover conju-

gacy, we introduce auxiliary variables {𝜌s}n
s=1

, where n =∑C
c=1 ni,h2,… ,hq(c). Each 𝜌s is independently drawn from a

geometric distribution with specific success parameter 1 −
𝜆i,h2,… ,hq(i) (Johnson & Willsky, 2013). We adjust the sam-

pling algorithm by updating transition parameters 𝝀i,h2,… ,hq =
{𝜆i,h2,… ,hq(1), … , 𝜆i,h2,… ,hq(i), … , 𝜆i,h2,… ,hq(C)} from the
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Algorithm 1. Explicit-duration HOHSMM Sampler

Input: Observation sequences {y(p) ∶ p = 1,… ,P} and sample size l.
1: Initialization:

2: Compute distances between two adjacent data points in all sequences y(p) and use the 5th and 9th percentile values as

the lower bound and upper bound of the support (𝛼min, 𝛼max).
3: Set initial likelihood value: L0 ← e−1010

.

4: for v = 1 to l do
5: Sample 𝛼v ∼ U(𝛼min, 𝛼max).
6: Update segmentation:

7: For each y(p), identify change points given 𝛼v. Compute the center of the observed data points for each segment and

initialize hidden super-state sequence {c(p)𝜏 } by clustering the centers. Merge adjacent segments that have the same

label and derive the number of segment Sp and duration times d(p), where 𝜏 = 1,… , Sp, p = 1,… ,P.

8: Stage 1 (Determine k):

9: Update 𝝀k:

10: Let ni,h2,…,hq (c) =
∑

p
∑

𝜏 1{z(p)
1,𝜏

= i, z(p)
2,𝜏

= h2,… , z(p)q,𝜏 = hq, c(p)𝜏 = c} and n =
∑C

c=1 ni,h2,…,hq (c), where i = 1,… ,C
and hj = 1,… , kj for j = 2,… , q.

11: Independently sample 𝜌s ∼ Geo(1 − 𝜆i,h2,…,hq (i)), s = 1,… , n.

12: Sample 𝝀i,h2,…,hq = {𝜆i,h2,…,hq (1),… , 𝜆i,h2,…,hq (i),… , 𝜆i,h2,…,hq (C) ∼Dir{𝛼𝜆0(1)+ni,h2,…,hq (1),… , 𝛼𝜆0(i)+
∑n

s=1 𝜌s,

… , 𝛼𝜆0(C) + ni,h2,…,hq (C)}.

13: Update 𝝀̄k: Compute 𝝀̄k by Equation (10).

14: Update 𝝀0:

15: For r = 1,… , ni,h2,…,hq (c), sample xr ∼ Bernoulli
{

𝛼𝜆0(c)
r−1+𝛼𝜆0(c)

}
.

16: Let mi,h2,…,hq (c) =
∑

r xr and m0(c) =
∑

(i,h2,…,hq)
mi,h2,…,hq (c).

17: Sample 𝝀0 = {𝜆0(1),… , 𝜆0(C)} ∼ Dir{𝛼0∕C + m0(1),… , 𝛼0∕C + m0(C)}.

18: Update{c(p)𝜏 ∶ 𝜏 = 1,… , Sp}, {z(p)j,𝜏 ∶ 𝜏 = q + 1,… , Sp, j = 1,… , q}, 𝜽, k, 𝝅̃k as in Sarkar & Dunson (2018).

19: Stage 2 (Sample with determined k):

20: Update 𝝅k:

21: Let nj,wj (hj) =
∑

p
∑

𝜏 1{w(p)
j,𝜏 = wj, z(p)j,𝜏 = hj}, where w(p)

j,𝜏 = c(p)
𝜏−j.

22: Sample 𝝅
(j)
kj
(wj) = {𝜋(j)

1
(wj),… , 𝜋

(j)
kj
(wj)} ∼ Dir{𝛾j + nj,wj (1),… , 𝛾j + nj,wj (kj)}.

23: Update 𝝀k, 𝝀̄k, 𝝀0 as in Stage 1.

24: Update z(p): Sample from

p(zj,𝜏 = h|zl,𝜏 = hl, l ≠ j, 𝝀̄k,𝝅k, c) ∝ 𝜆̄h1,…,hj−1,h,hj+1,…,hq (c𝜏)𝜋
(j)
h (c𝜏−j).

25: Update c(p): Sample from p(c𝜏 |𝝀̄k,𝝅k,𝜽, z) ∝ 𝜆̄z1,𝜏 ,z2,𝜏 ,…,zq,𝜏 (c𝜏)f (yt1
𝜏∶t2

𝜏
|𝜽c𝜏 )

∏q
j=1

𝜋
(j)
zj,𝜏+j

(c𝜏).
26: Update 𝜽 as in Stage 1.

27: Update 𝛼: Compute likelihood value L𝛼v from Equation (19).

28: if min
{ L𝛼v

L0

, 1
}
> rand then𝛼(v) ← 𝛼v and L0 ← L𝛼v .

29: else 𝛼(v) ← 𝛼(v − 1).
30: end if
31: end for
32: Determine 𝛼∗:

33: Use the average value of sampled 𝛼 after burn-in as the most likely jump size threshold 𝛼∗.

34: Given 𝛼∗, repeat Update segmentation, Stage 1 and Stage 2 and collect final samples.

35: Compute the MLEs {𝜉c} for duration distribution using samples of c(p) and d(p) for all p.

Output: 𝛼∗, k, S∗
p, {𝜉c}, and samples of 𝝀̄k, 𝝅k, 𝜽.

posterior distribution

Dir

{
𝛼𝜆0(1) + ni,h2,… ,hq(1), … , 𝛼𝜆0(i)

+
n∑

s=1

𝜌s, … , 𝛼𝜆0(C) + ni,h2,… ,hq(C)

}
.

Then we compute 𝝀k from Equation (10) and update 𝝀0.

Since the observation sequences are independent, c(p) and

z(p) are updated sequence by sequence. For each sequence,

c(p) and z(p) are sampled by applying a Metropolis-Hastings

step and using simulated annealing to facilitate the conver-

gence. The full conditionals of 𝜽 will depend on the choice of

the emission distribution. Finally, a stochastic search variable
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FIGURE 5 Illustration for determining the hidden health states [Colour figure can be viewed at wileyonlinelibrary.com]

selection method (George & McCulloch, 1997) is used to

sample k from their posteriors and 𝝅k are updated by the latent

allocation cluster mapping. In the first stage, important lags

can be determined and the number of latent classes for each

important lag can be derived based the samples of k.

The second stage, given the important lag inclusion result,

is to sample parameters 𝝅k, 𝝀k, 𝝀k, 𝝀0, 𝜽, z(p), and c(p) itera-

tively. Given the segmentation, the elements of c(p), z(p), and

𝝅k have either multinomial or Dirichlet full conditionals and

can be straightforwardly updated. Sampling of 𝝀k, 𝝀k, 𝝀0, and

emission parameters 𝜽 is the same as described in first stage.

Details of the HOHSMM inference method are summarized

in Algorithm 1.

4 HEALTH-STATE DECODING

The ultimate purpose of a prognostics framework is to

assess the current condition of a system (or component)

and to make inferences regarding the remaining useful life

(RUL). In this section, we first present how to use the

HOHSMM-based prognostics framework to decode the hid-

den super-states. For an operating system with observation

sequence y, Equation (17) provides the joint distribution of

y, c, and z conditioned on the learned model parameters k,

𝝀k, 𝝅k, 𝜽, and duration times d. We can directly use it for

decoding the hidden super-states by sampling c and z from the

posteriors. We need to first segment the observation sequence

based on the learned 𝛼* to determine state duration times d
and then initialize the hidden super-state for each segment.

Therefore, we use the same procedure described in Algorithm

1 by identifying change points given 𝛼*. Next, we initialize

the allocation variables z based on the initialized c and the

learned allocation distribution 𝝅k. Given the values of k and

historical samples of 𝝀k, 𝜽 from the learned model, updating c
and z is the same as in Algorithm 1. The collected samples of

c are used to determine the hidden health states of this specific

system by using the most persistent sample (ie, the mode) for

each segment. Figure 5 provides an illustrative example. In

Figure 5, we can see that state 1 appears most in the posterior

samples for the first super-state c1, and is therefore used as the

estimated super-state for the first segment. The same selection

criterion is used to determine the hidden super-states for all

segments. Details of the decoding procedure are summarized

in Algorithm 2.

5 RUL ESTIMATION

In this section, we estimate the RUL given the decoded hid-

den health states. For notational convenience, we omit the

superscript of the number of segments S* in the following

analysis. It is impossible to analytically compute the RUL in

an HOHSMM due to higher-order state transitions. There-

fore, we use a simulation approach to predict the RUL, which

is the expected time from the current health state to the fail-

ure state. Before presenting the RUL estimation method, we

first show how to identify the failure state. The HOHSMM is

trained using multiple run-to-failure independent observation

sequences and historical samples of hidden super-states can

be used to identify the failure state. For each sequence, from

the decoded hidden super-states {c(p)𝜏 }, we identify the fail-

ure state c(p)F by choosing the most persistent state in the last f
states (Tobon-Mejia et al., 2012),

Super-state sequence = (c(p)
1
, c(p)

2
, … , c(p)Sp

),

Last f states = (c(p)Sp−f+1
, … , c(p)Sp−2

, c(p)Sp−1
, c(p)Sp

). (22)

The value of f can be chosen based on experience. Then, the

final failure state cF is given as the most persistent state in all

c(p)F , p = 1, … , P. Figure 6 illustrates the procedure to select

the final failure state. For illustrative purpose, we arbitrarily

use the last five super-states to identify the failure state for

each sequence by choosing the most persistent state appeared

in the last five states. We can see that state 5 appears most in

the last five states for sequence 1 and 2, and state 4 is the most

persistent state in the last five states for sequence P. We then

choose the most persistent state in the identified failure states

FIGURE 6 Illustration for identifying the failure state cF with f = 5

[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Algorithm 2. Decoding for the HOHSMM

Input: Model parameters 𝛼∗, k, 𝝀̄k, 𝝅k, 𝜽 and observation sequence y.

1: Determine segmentation:

Compute distances between two adjacent data points in y and identify change points given threshold 𝛼∗. Compute the center

of the observed data points for each segment and initialize the hidden super-state c𝜏 by determining the clustering label

based on the learned clustering rules. Merge adjacent segments that have the same label and derive the number of segments

S∗ and duration times d, where 𝜏 = 1,… , S∗.

2: Decode:

3: Initialize z:

4: Sample (zj,𝜏 |c𝜏−j) ∼ Mult({1,… , kj}, 𝜋(j)
1
(c𝜏−j),… , 𝜋

(j)
kj
(c𝜏−j)), where j = 1,… , q.

5: Update c:

6: Sample c𝜏 from p(c𝜏 |𝝀̄k,𝝅k,𝜽, z) ∝ 𝜆̄z1,𝜏 ,z2,𝜏 ,…,zq,𝜏 (c𝜏)f (yt1
𝜏∶t2

𝜏
|𝜽c𝜏 )

∏q
j=1

𝜋
(j)
zj,𝜏+j

(c𝜏).
7: Update z:

8: Sample zj,𝜏 from

p(zj,𝜏 = h|zl,𝜏 = hl, l ≠ j, 𝝀̄k,𝝅k, c) ∝ 𝜆̄h1,…,hj−1,h,hj+1,…,hq (c𝜏)𝜋
(j)
h (c𝜏−j).

9: Determine hidden health states {c̃𝜏 ∶ 𝜏 = 1,… , S∗} by using the most persistent samples.

Output: {c̃𝜏 ∶ 𝜏 = 1,… , S∗}.

TABLE 1 Parameter setting of the simulation experiments

True dynamics Third, second, first

Emission distribution Mean (𝜇1,𝜇2,𝜇3) (−3,0,3), (−4.5,0,4.5), (−6,0,6)

Variance 𝜎2
c 0.52, 12, 1.52

Duration distribution (𝝃1, 𝝃2, 𝝃3) (22,18,14)

of all sequences as the final failure state, which is state 5 in

this example.

Given the decoded hidden health states {c̃𝜏 ∶ 𝜏 =
1, … , S} and the identified failure state cF, we use a simu-

lation method to estimate the RUL. We simulate M hidden

super-state paths. Each path starts from states (̃cS−q+1, … , c̃S)
and the next state cS+ 1 is generated by drawing a sample

from the multinomial distribution with probabilities (p(cS+1 =
1|̃c(S−q+1)∶S), … , p

(
cS+1 = C|̃c(S−q+1)∶S

)
), which are com-

puted using Equation (14) given the learned parameters 𝝀k
and 𝝅k. Repeat this procedure by considering cS+ 1 as the

current health state until the failure state cF is first reached.

Denote the ith paths by {cS+1, … , cS+Ni}, where Ni is the total

number of super-states generated in the ith paths and cS+Ni =
cF for all i = 1, … , M. For each path, we sample the dura-

tion time for each super-state and use the sum of all sampled

duration times as the RUL. We then estimate the mean RUL

and the respective interval estimates based on the simulated

RULs. The computation procedure is summarized as follows:

R̂ULmean = 1

M

M∑
i=1

RULi, (23)

R̂ULlower = R̂ULmean − tM−1,1−𝛼∕2
ŝ√
M
, (24)

R̂ULupper = R̂ULmean + tM−1,1−𝛼∕2
ŝ√
M
, (25)

where ŝ is the sample standard deviation of the simulated

RUL and tM − 1,1− 𝛼/2 is the upper (1− 𝛼/2) critical point for

the t distribution with M − 1 degrees of freedom. Details of

estimating RUL are summarized in Algorithm 3.

6 SIMULATION STUDY

In this simulation study, we design the following experiments

to evaluate the performance of our proposed sampling method

for the HOHSMM with consideration of multiple independent

observation sequences.

6.1 Model setting

Suppose the state space is 𝒞 = {1,2,3}, the emission distri-

bution is Gaussian, that is, f (y|c𝜏 = c) = Normal(y|𝜇c, 𝜎
2
c ),

and the sojourn time at each super-state follows a Poisson

distribution g(d| 𝜉c). Table 1 summarizes the parameter set-

ting considered in the sensitivity analysis. The total number

of experiments is 27.

For each experiment, we independently generate three

observation sequences with sample size 2500. The true tran-

sition probability tensors 𝝀h1,h2,h3
in the third-order cases are

generated as follows (Sarkar & Dunson, 2018):

𝜆h1,h2,h3
(1) =

u2
1

u2
1
+ (1 − u1)2

, u1 ∼ U(0, 1),

𝜆h1,h2,h3
(2) =

u2
2

u2
2
+ (1 − u2)2

[1 − 𝜆h1,h2,h3
(1)], u2 ∼ U(0, 1),

𝜆h1,h2,h3
(3) = 1 − 𝜆h1,h2,h3

(1) − 𝜆h1,h2,h3
(2),
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Algorithm 3. RUL estimation

Input: Model parameters 𝝀̄k, 𝝅k, {𝜉c}, decoded hidden super-state sequence {c̃𝜏 ∶ 𝜏 = 1,… , S}, failure state cF, and the

number of simulation paths M.

1: Compute transition probability matrix: For each possible combination of c(𝜏−q)∶(𝜏−1),compute p(c𝜏 = c|c(𝜏−q)∶(𝜏−1)) using

Equation (14), c = 1,… ,C.

2: for i = 1 to M do
3: Initialize: cnow ← (c̃S−q+1,… , c̃S), RULi ← 0.

4: while cnow(q) ≠ cF do
5: Sample c ∼ Mult({1,… ,C}, p(c = 1|cnow),… , p(c = C|cnow)).
6: Sample d ∼ g(d|𝜉c).
7: RULi ← RULi + d.

8: cnow(1 ∶ (q − 1)) ← cnow(2 ∶ q) and cnow(q) ← c.

9: end while
10: end for
11: Compute mean RUL: R̂ULmean = 1

M

∑M
i=1 RULi.

12: Compute confidence interval (R̂ULlower, R̂ULupper) using Equations (25) and (24).

Output: R̂ULmean, R̂ULlower, R̂ULupper.

FIGURE 7 Convergence diagnostics: potential scale reduction factor (PSRF) plots [Colour figure can be viewed at wileyonlinelibrary.com]

where h1, h2, h3 ∈ {1,2,3}. By excluding self-transitions, we

obtain

𝜆i,h2,h3
(j) =

𝜆i,h2,h3
(j)(1 − 𝛿ij)

1 − 𝜆i,h2,h3
(i)

, 𝛿ij =

{
1 if i = j,
0 otherwise.

The true transition probability tensors of the first and sec-

ond orders are generated similarly. The hyper parameters in

the priors are set as 𝛼0 = 1 and 𝛾 j = 1/C = 1/3 for all j.

6.2 Results

In each experiment, we run 5000 MCMC iterations and dis-

card the first 3000 iterations as burn-in. The remaining sam-

ples are thinned by retaining every 10th sample after burn-in

to reduce autocorrelation. We compute the potential scale

reduction factor (PSRF) (Gelman & Rubin, 1992) to diag-

nose the convergence, which is obtained based on normal

theory approximations to exact Bayesian posterior inference.

Figure 7 presents the convergence diagnostics results by pro-

viding two PSRF plots for the emission distribution parame-

ters 𝜇1 and 𝜎1. The PSRF plots show good mixing behavior by

achieving the statistic’s asymptotic value 1. We have checked

other model parameters and obtained the same diagnostics

results. Therefore, the posterior samples generated by the pro-

posed sampling algorithm have good mixing behavior and

have produced stable estimates of the parameters of interest.

We evaluate the performance of our proposed HOHSMM

sampling algorithm in terms of important lags inclusion result

and hidden-state decoding performance. Table 2 summarizes

the important lags inclusion results under different data vari-

ances. We observe from Table 2 that all experiments correctly

identify the true order when variance is small (𝜎2
c = 0.52).

However, more than 50% experiments with large variances

fail to identify the important lags. This is because large vari-

ances in general cause more overlapping of the observations

at different hidden states. The decoding performance is quan-

tified using the Hamming distance between the true and the

decoded hidden-state sequences, which is the total number

of states that are decoded incorrectly. Table 3 shows the

hidden-state decoding results using the normalized Hamming

distance. We can see that the hidden-state decoding is satis-

factory, especially for observations with small variances. The

http://wileyonlinelibrary.com
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TABLE 2 Important lags inclusion results:
percentage of experiments that correctly
identify the true order

𝝈2
c = 0.52 𝝈2

c = 12 𝝈2
c = 1.52

100% 77.78% 44.44%

TABLE 3 Hidden-state decoding results

True dynamics Data variance
Normalized hamming
distance (%)

Third 𝜎2
c = 0.52 0.10

𝜎2
c = 12 3.69

𝜎2
c = 1.52 11.52

Second 𝜎2
c = 0.52 0.11

𝜎2
c = 12 4.17

𝜎2
c = 1.52 12.03

First 𝜎2
c = 0.52 0.11

𝜎2
c = 12 4.17

𝜎2
c = 1.52 11.76

proposed sampling method is effective for HOHSMM infer-

ence in the simulation study, including the first order as a

special case.

To examine the impacts of the distant-history dependency,

we evaluate the performance of our proposed HOHSMM and

the HSMM, which makes the strict first-order assumption for

the hidden super-state transitions. Specifically, we compare

the estimated one-, two-, and three-step ahead predictive den-

sities of the two methods. We arbitrarily select some exper-

iment settings in the sensivity analysis for illustration. We

generate observation sequences from Gaussian distributions

with (𝜇1,𝜇2,𝜇3) = (−4.5,0,4.5) and consider three variances

𝜎2
c = 0.52, 𝜎2

c = 12, and 𝜎2
c = 1.52 for c = 1,2,3. The state

duration follows a Poisson distribution with 𝜉c = 22,18,14 for

c = 1,2,3, respectively. Three dependencies are considered:

third, second, and first order.

For an HOHSMM of order q, the r-step ahead predic-

tive density f pred,S+ r(y| y1 : S) is given by Equation (15). Based

on M samples {(c(m), 𝜻 (m))}M
m=1

drawn from the posterior,

f pred,S+ r(y| y1 : S) can be estimated as

f̂pred,S+r(y|y1∶S) =
1

M

M∑
m=1

∑
cS+r

· · ·
∑
cS+1

f (y|cS+r, 𝜻
(m))

p(cS+r|c(m)
(S+r−q)∶(S+r−1), 𝜻

(m)) · · · p(cS+1|c(m)
(S+1−q)∶S, 𝜻

(m)).
(26)

The corresponding true density, denoted by f 0
pred,S+r(y),

is obtained with true transition and emission distributions

and true hidden-state sequence. The integrated squared error

(ISE) (Sarkar & Dunson, 2018) is used to evaluated the

density prediction performance, which is estimated by

N∑
i=1

[f 0
pred,S+r(y

Δ
i ) − f̂pred,S+r

(
yΔi |y1∶S

)
]2Δi, (27)

where {yΔi }
N
i=1

are a set of grid points on the range of y and

Δi = yΔi − yΔi−1
for all i. For the first-order HSMM, the ISE

is estimated similarly by setting q = 1. Table 4 summarizes

the density prediction results of the proposed HOHSMM and

the HSMM given different data variances. From Table 4, we

can see that ignoring the distant-history dependency gener-

ally leads to larger average ISEs in estimating one-, two-, and

three-step ahead predictive densities when higher-order tran-

sition dynamics present (ie, third- and second-order depen-

dency), which shows the necessity of taking the higher-order

dependency into consideration. We do not observe much

differences in ISEs estimated from the HOHSMM and the

HSMM when larger data variance presents. This is similarly

TABLE 4 Average ISEs in estimating one-, two-, and three-step ahead predictive densities for the
HOHSMM and the HSMM given different data variances

Average ISE ×100

HSMM HOHSMM

True dynamics One Two Three One Two Three

𝜎2
c = 0.52

Third 4.36 7.05 5.60 3.98 4.09 3.14

Second 9.92 5.10 7.97 3.73 4.72 3.55

First 3.62 3.36 3.25 3.59 3.36 3.18

𝜎2
c = 12

Third 5.63 4.60 6.47 3.58 3.47 5.42

Second 9.73 9.44 9.40 6.64 7.21 7.01

First 10.83 3.34 8.20 9.55 3.24 7.75

𝜎2
c = 1.52

Third 9.91 5.58 6.81 10.03 5.15 6.30

Second 9.92 10.48 11.23 10.18 10.43 10.88

First 17.85 7.23 10.82 18.10 5.52 9.67

Abbreviations: HSMM, hidden semi-Markov model; HOHSMM, higher-order hidden semi-Markov

model; ISEs, integrated squared errors.
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FIGURE 8 The higher-order hidden semi-Markov model (HOHSMM):

The inclusion probability given 𝛼* [Colour figure can be viewed at

wileyonlinelibrary.com]

because large variances pose challenges in identifying the true

order.

7 CASE STUDY: TURBOFAN ENGINES
PROGNOSTICS ANALYSIS

To further demonstrate the practical utility of the proposed

HOHSMM on diagnostics and prognostics, we conduct a

case study on turbofan engines from the NASA Prognostic

Data Repository. The Commercial Modular Aero-Propulsion

System Simulation (C-MAPSS) data set is used in this

paper, which is generated using a model-based simulation

program developed by NASA (Saxena, Goebel, Simon, &

Eklund, 2008).

For illustrative purpose, only the training set in data set

FD001 is used in this paper, which contains 100 engines’

run-to-failure trajectories. All trajectories in this training set

are simulated under the same operational condition and have

only one fault mode caused by high-pressure compressor

degradation (Frederick, DeCastro, & Litt, 2007). Each trajec-

tory is recorded in a given operational cycle, consisting of

three values for operational settings and 21 values for engine

performance sensor measurements. We randomly choose 10

trajectories to train the HOHSMM and randomly choose

another four trajectories for testing.

Multiple sensor measurements bring dimensionality chal-

lenge for data analysis. To keep effective discriminant infor-

mation and eliminate the redundant one, feature fusion pro-

cess is used to transfer a set of sensors to a single health

indicator. To obtain the health indicator, we use principle

component analysis (PCA), which is an efficient technique

in compressing information and eliminating the correlations

between variables. The first principle component (FPC),

accounting for the largest variability in data, is used as the

health condition indicator (Moghaddass & Zuo, 2014). In the

HOHSMM, we assume that the health indicator (ie, FPC) fol-

lows a state-specific normal distribution. We assume there

are seven health states since it has been shown that the hid-

den health conditions are well represented by seven states

(Moghaddass & Zuo, 2014).

From the important lags inclusion result (shown in

Figure 8), we can see that the hidden health-state sequence is

governed by a second-order Markov chain, implying that the

health-state transition of turbofan engines depends on its past

two history states. The performance of hidden-state decoding

on training data is illustrated in Figure 9 using the first training

trajectory as an example. We compare the state-specific pos-

terior means of FPC and the true FPC computed from raw sen-

sor data. We can see the decoding performance is very good

since the estimated emission distributions and the decoded

hidden super-state sequence describe the computed FPC well.

Next, we use the learned HOHSMM to predict the RULs

for testing units using the simulation method presented in

Section 5. Since the degradation in a system is generally not

noticeable after the unit has been operated for some period of

time, it is reasonable to estimate the RUL using a piece-wise

linear function (Heimes, 2008), which limits the maximum

value of the RUL. Thus, a piece-wise RUL plot is used to rep-

resent the true RUL, which serves as the benchmark for the

predicted RUL. First, we compute the FPC for the four testing

units based on the PCA results obtained from the training

FIGURE 9 The higher-order hidden semi-Markov model (HOHSMM): The state-specific posterior means of first principle component (FPC; blue solid

line) super-imposed over the FPC sequence (green dashed line) for training unit 1 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 10 The higher-order hidden semi-Markov model (HOHSMM): mean remaining useful life (RUL) prediction for testing units [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 11 Comparison of mean RUL estimations between the HOHSMM and the MoG-HMM. HOHSMM, higher-order hidden semi-Markov model;

MoG-HMM, mixture of Gaussians hidden Markov model; RUL, remaining useful life [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 5 Absolute mean RUL estimation errors of the HOHSMM
and the MoG-HMM

Model Unit 1 Unit 2 Unit 3 Unit 4

HOHSMM 7.73 5.47 9.02 14.84

MoG-HMM 31.28 28.77 34.62 45.46

Abbreviations: HOHSMM, higher-order hidden semi-Markov model;

MoG-HMM, mixture of Gaussians hidden Markov model; RUL, remaining

useful life.

data. The observations (ie, the computed FPC) of each testing

unit are continuously fed into the learned HOHSMM, which

are used for decoding the current health state and predicting

the RUL. By generating 100 paths, we obtain the estimated

mean RUL and the respective 95% confidence interval (CI)

for each time point, shown in Figure 10. The mean RUL esti-

mation results are very good for the testing units since the true

RUL is close to the estimated mean RUL and is within the

estimated 95% CIs at the majority of time points.

To further assess the performance of the proposed

HOHSMM on the RUL prediction, we compare the perfor-

mance of the proposed model with that of the mixture of

Gaussians HMM (MoG-HMM) in Tobon-Mejia et al. (2012),

which has been shown to be efficient in engineering sys-

tem prognostics. The Baum-Welch algorithm is used to esti-

mate the MoG-HMM parameters and the Viterbi algorithm

is used to assess the current health state of the system. The

RUL is predicted using simulation approach by generating

hidden-state sequences from the current state to the failure

state based on the estimated transition probabilities. We use

the same training units to train the MoG-HMM and estimate

the mean RUL on the same testing units. Figure 11 compares

the estimated mean RUL based on the proposed HOHSMM

and the MoG-HMM. We can see that the proposed HOHSMM

gives better prediction on all four testing units. We further

compute the absolute mean estimation errors of the testing

units for both models, which are summarized in Table 5. From

Table 5, we can see that the absolute mean RUL estimation

errors of HOHSMM are smaller than the MoG-HMM for all

testing units, indicating that our proposed method is effective

in real-world applications.

8 CONCLUSIONS

In this paper, we consider the problem of decoding the hidden

health states and predicting the RUL for systems with unob-

servable health conditions and complex transition dynamics

based on observations. We develop a flexible prognostics

framework based on an HOHSMM. Our framework is flexi-

ble in that the HOHSMM allows the hidden state to depend

on its more distant history instead of only depending on the

current state and assumes generally distributed state duration.

The proposed HOHSMM includes the HMM and HSMM as

two special cases. A Gibbs sampling algorithm is designed for

HOHSMM inference and is evaluated by conducting a simu-

lation study. The results show that the proposed HOHSMM

sampler is effective for learning model parameters from the

observed data and it is necessary to consider distant-history

dependency when higher-order transition dynamics present.

Given the learned model, a decoding algorithm is developed

to assess the current hidden health state of a functioning

system in operation. The RUL is then predicted using a sim-

ulation approach by generating hidden-state sequences from

the current state to the failure state. The NASA turbofan

engine data set (ie, C-MAPSS data set) is used to demonstrate

the practical utility of the proposed prognostics framework.

Our case study shows that the HOHSMM-based prognostics

framework provides satisfactory hidden health-state assess-

ment and RUL estimation for complex systems. Furthermore,

the comparison on RUL prediction between the proposed

HOHSMM and the benchmark MoG-HMM shows that our

proposed prognostics framework is effective in real-world

applications.

The framework presented in this paper has raised a few

important questions that require further study. First, the state

space is generally unknown and the true number of states

also need to be learned from the observed data. The exist-

ing HDP-HMM provides a powerful framework for inferring

arbitrarily large state complexity from data (Teh et al., 2006).

Moreover, the HDP-HSMM allows for both Bayesian non-

parametric inference of state complexity as well as general

duration distributions (Johnson & Willsky, 2013). A promis-

ing direction for future research is to consider a more gen-

eral model, the hierarchical Dirichlet process HOHSMM,

to address the unknown state space issue in our proposed

HOHSMM-based prognostics framework. Second, there gen-

erally exists heterogeneity among different operating systems

(or components), even in the same environmental conditions.

It is also necessary to extend our prognostics framework to

account for the unit-to-unit differences in the future work.
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