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SUMMARY

Directed evolution of proteins often involves a greedy optimization in which the mutation in the highest-
fitness variant identified in each round of single-site mutagenesis is fixed. The efficiency of such a single-
step greedy walk depends on the order in which beneficial mutations are identified—the process is path
dependent. Here, we investigate and optimize a path-independent machine learning-assisted directed evo-
lution (MLDE) protocol that allows in silico screening of full combinatorial libraries. In particular, we evaluate
the importance of different protein encoding strategies, training procedures, models, and training set design
strategies on MLDE outcome, finding the most important consideration to be the implementation of strate-
gies that reduce inclusion of minimally informative “holes” (protein variants with zero or extremely low
fitness) in training data. When applied to an epistatic, hole-filled, four-site combinatorial fitness landscape,
our optimized protocol achieved the global fithess maximum up to 81-fold more frequently than single-
step greedy optimization. A record of this paper’s transparent peer review process is included in the supple-

mental information.

INTRODUCTION

Enzyme engineering has revolutionized multiple industries by
making chemical processes cheaper, greener, less wasteful,
and, overall, more efficient. Enzymes and other proteins are en-
gineered by searching the protein fithess landscape (Box 1), a
surface in a high-dimensional space that relates a desired func-
tion (“fitness”) to amino acid sequences (Smith, 1970; Romero
and Arnold, 2009). Exploring this landscape is extremely chal-
lenging: the search space grows exponentially with the number
of amino acid positions considered, functional proteins are
extremely rare, and experimental screening of proteins can be
resource intensive, with researchers often limited to testing a
few hundred or thousand variants. Directed evolution (DE) can
overcome these challenges by employing a greedy local search
to optimize protein fitness (Arnold, 2018). In its lowest-
screening-burden form (hereafter referred to as “traditional
DE"), DE starts from a protein having some level of the desired
function, then iterates through rounds of mutation and
screening, where in each round single mutations are made
(e.g., by site-saturation mutagenesis) to create a library of vari-
ants and the best variant is identified and fixed; iteration con-

tinues until a suitable level of improvement is achieved
(Figure 1A).

By focusing on single mutations rather than combinations of mu-
tations, traditional DE can be used to optimize protein fitness with a
low screening burden. The process is highly effective when the
beneficial effects of mutations made at different sequence posi-
tions are additive; however, focusing on single mutants ignores
the codependence of mutations (epistasis) (Miton and Tokuriki,
2016; Starr and Thornton, 2016). Epistasis is commonly observed,
for example, between residues close together in an enzyme active
site or protein binding pocket, where mutations often affect func-
tion. Epistatic effects can decrease the efficiency of DE by altering
the shape of the protein fitness landscape. Specifically, epistasis
can alter gradients on the fitness landscape to make the route to
a global optimum (Box 1) very long (Kaznatcheev, 2019), or it can
introduce local optima (Box 1) at which traditional DE can become
trapped (Figure 1B). Both lower the average fitness that can be
achieved for a given screening burden. The only way to account
for epistasis during optimization is to evaluate and fix combina-
tions of mutations, bypassing the path-dependence of traditional
DE. Due to limited screening capacity, however, this is intractable
for most protein engineering projects.
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Box 1. Glossary

A glossary of common technical terms used throughout this manuscript.

Active learning: a machine learning strategy where a model can propose a set of data points for a researcher to collect. The
researcher then collects the data and feeds them into the model, which in turn recommends a new set of data to collect. This cycle
continues until a desired engineering goal is achieved.

Cross-validation error: the mean validation error (see below) of all folds tested in k-fold cross-validation (see below).
Cross-validation indices: an “index” in programing is an integer that gives the position of an object in a list-like ordering of data. In
this work, we use the term “cross-validation indices” to refer to a set of indices that give the positions of all datapoints used in each
fold of k-fold cross-validation (see below). Two experiments using the same cross-validation indices thus split the data in the same
way for performing k-fold cross-validation.

Encoding: machine learning models operate on numerical inputs. As a result, non-numerical inputs (e.g., a protein sequence) must
first be represented—or, “encoded” —using a set of numbers. In this work, we use the term “encoding” to refer to (1) the general
set of features (see below) that are used for representing protein sequences, (2) a vector of features that describes a specific pro-
tein sequence, or (3) the process of converting a non-numerical input to a numerical one (e.g., encoding produces a vector of fea-
tures from a protein sequence).

Feature: a numerical value that describes some aspect of a non-numerical input to a machine learning model. A set of features
makes up an encoding (see above).

Fitness landscape: a conceptualization of the relationship between protein sequence and protein fitness. This is a surface in a
high-dimensional space defined by the function f(sequence) = fitness.

Global optimum: a function can have multiple optima. The global optimum is the most extreme of all optima. On a protein fithess
landscape (see above), the global optimum would be defined by the sequence with the highest possible fitness.

K-fold cross-validation: the performance of a machine learning model is typically described using both a training error and vali-
dation error. Training error represents the ability of a model to predict the correct values for the training data and is directly used to
learn model parameters. Validation error represents the ability of the model to predict the correct values for data not used to train it.
Validation error is used to select the optimal model architecture for a task to avoid selecting an architecture that has obtained good
training error by overfitting to noise or other idiosyncrasies in the training data. When working with limited data, however, it is often
undesirable to set aside a set of data for validation error calculation, as that data will by definition not be used for training. In such a
case, k-fold cross-validation can be used. In this procedure, data are split into k chunks, or “folds.” Then, a model is trained using
k-minus-1 folds and validation error is calculated on the held-out fold. A new model is then instantiated and trained on a different
combination of k-minus-1 folds, again calculating a validation error on the held-out fold. The procedure iterates until all folds have
been used for calculating validation error and a mean “cross-validation error” is returned. Model architectures that achieve good
cross-validation error are assumed to be the most effective for a given task.

Labeled data: data that consist of both x and y values. The y value is typically referred to as the “label” of the x value. For proteins,
for example, labeled data might consist of a set of protein sequences with associated fitness scores. The fitness scores would be
the labels of the sequences.

Learned embedding: for the purposes of this work, a “learned embedding” is an automatically learned encoding (see above)
derived from unlabeled data (see below).

Learning objective: machine learning models are trained to optimize some loss function (e.g., they might be trained to minimize
mean-squared error). The loss function chosen for optimization is often referred to as the “learning objective” for a given training
procedure.

Local optimum: a function can have multiple optima. Each of these optima is considered a “local optimum” as they are optimal
relative to their local environment. On a protein fitness landscape, for instance, a local optimum is defined by a sequence from
which a single-step greedy walker would not be able to leave.

Model architecture: at a high level, the goal of machine learning is to fit a model (a function) to a dataset for the purpose of either (1)
extracting useful information from that data or (2) making predictions on as-yet unseen data. The parameterization of the model
(i.e., the structure of the formula that defines the model) is known as the “architecture” of that model.

Model ensemble: a set of models, often with different model architectures (see above).

One-hot: a simple strategy for encoding categorical data. Each category is assigned an index in a vector. At this index, the vector
has value “1”; at all other positions, it has value “0.” As an example, for a protein of length L, a one-hot encoding would result in a
matrix with shape L x 20. A given row would consist of 19 values of 0 and a single value of 1; the column containing that value of “1”
would depend on the identity of the amino acid at the position in the protein represented by the row.

Random seed: computers rely on pseudorandom number generators to approximate processes of randomness. A random seed
can be fed into a random number generator to produce reproducible patterns of randomness. In other words, two random pro-
cesses run with the same random seed will yield identical results.

Training error: a value that represents the ability of a model to predict the correct values for the data used to train it. Training error
is optimized to learn model parameters during model training.

Training set: the data used to train a machine learning model.

(Continued on next page)

2 Cell Systems 12, 1-20, November 17, 2021



Cell Systems (2021), https://doi.org/10.1016/j.cels.2021.07.008

Please cite this article in press as: Wittmann et al., Informed training set design enables efficient machine learning-assisted directed protein evolution,

Cell Systems

¢? CellPress

Box 1. Continued

considered unlabeled.

Unlabeled data: data that consists of x-values alone. For proteins, a dataset consisting of protein sequence data alone would be

Validation error: a value that represents the ability of a model to predict the correct values for the data not used to train it.
Validation set: data that is held aside during training of a machine learning model. After training, the validation set is used to calcu-
late a validation error (see above) and evaluate how effectively the model learned to generalize beyond the training data.
Zero-shot prediction: for the purposes of this work, “zero-shot prediction” refers to a prediction made using a model that can be
trained or used without the need for additional experimental collection of data (i.e., collecting additional labeled data).

Increasingly, machine learning (ML) is being used to ease
experimental screening burden by evaluating proteins in silico
(luchi et al., 2021; Li et al., 2019, 2021; Mazurenko et al., 2020;
Siedhoff et al., 2020; Sinai and Kelsic, 2020; Wittmann et al.,
2021; Xu et al., 2020; Yang et al., 2019). Data-driven ML models
learn a function that approximates the protein fitness landscape,
and they require little to no physical, chemical, or biological
knowledge of the problem. Once trained, these models are
used to predict the fitness of previously unseen protein variants,
dramatically increasing screening capacity and expanding the
scope of the protein fitness landscape that can be explored by
replacing expensive laboratory experimentation with in silico
screening. We recently demonstrated a machine learning-assis-
ted directed evolution (MLDE) strategy for navigating epistatic
fitness landscapes that cover a small number of amino acid sites
(Wu et al., 2019). MLDE works by training an ML model on a small
sample (10'-10%) of variants from a multi-site simultaneous-
saturation mutagenesis (“combinatorial”) library, each with an
experimentally determined fitness (i.e., a model is trained using
a small sample of sequence data labeled by fitness); the model
is then used to predict the fitness of all remaining variants in
the combinatorial library (104—1 0°), effectively exploring the full
combinatorial space. Combinations with the highest predicted
fitness are experimentally evaluated, the best combination is
fixed, and another round of MLDE is started at a new set of po-
sitions (Figure 1C). The iterative nature of MLDE is identical to
that of traditional DE, but by evaluating and fixing multiple coop-
erative mutations, MLDE avoids some local fitness traps or long
paths to the global optimum for each combinatorial library.

Our original MLDE work serves as a baseline, as it did not
explore the many design considerations of MLDE (Figure 1C,
bold and underlined questions) (Wu et al., 2019). Two notable
considerations are (1) the choice of encoding (Box 1) strategy
and (2) the handling of low-fitness variants in combinatorial li-
braries. Protein sequences must be numerically encoded to be
used in ML algorithms, and the choice of encoding will affect
the outcome of learning. In our original implementation, we
used a one-hot (Box 1) encoding scheme, which is a simple cat-
egorical encoding that captures no information about the
biochemical similarities and differences of amino acids. Mutating
an amino acid to a similar one (in terms of size, charge, etc.) is
less likely to affect protein fitness than mutating it to a very
different one, however, and this knowledge can be transferred
into ML models via the encoding strategy. The effectiveness of
an ML model is also determined by the information content of
the data used to train it, and so the choice of variants to use
for the training stage of MLDE is important. Combinatorial li-
braries tend to be enriched in zero- or extremely low-fitness var-
iants, particularly when constructed in regions critical to protein

function like an enzyme active site (Arnold, 2011; Bloom et al.,
2005; Romero et al., 2013). These “holes” provide minimal infor-
mation about the topology of the regions of interest in a fitness
landscape (i.e., they provide no information about regions with
functioning proteins and no information about the extent to
which different mutations affect fithess) and can bias ML models
to be more effective at predicting low-fitness variants than high-
fitness ones, the opposite of our goal. In our original implemen-
tation, we opted to sample randomly from full combinatorial
spaces to generate training data with high sequence diversity.
Because combinatorial landscapes tend to be dominated by
holes, however, this random draw primarily returned sequences
with extremely low or zero fithess, resulting in training data that,
despite containing diverse sequences, was information poor.

In this work, we evaluate various design considerations by
simulating MLDE on the empirically determined four-site combi-
natorial fitness landscape (total theoretical size of 20* = 160,000
protein variants) of protein G domain B1 (GB1) (Figure 1D) (Wu
et al.,, 2016). This landscape contains multiple fitness peaks
(the routes to which are not always direct) and is heavily popu-
lated by zero- and low-fitness variants (92% have fitness below
1% of that of the global maximum), and thus not only presents an
ideal testing ground in which to compare the abilities of tradi-
tional DE and MLDE to navigate epistatic fithess landscapes,
but also serves to test the ability of ML methods to navigate
hole-filled regions of protein fitness landscapes. We begin by
evaluating a number of alternate encoding strategies to one-
hot, including physicochemical encodings (encodings that cap-
ture physical and chemical properties of different amino acids)
and learned embeddings (Box 1) derived from eight different nat-
ural language processing models (which are encodings ex-
tracted from ML models that represent physicochemical and
contextual information about different amino acids—more back-
ground is provided in the relevant section) (EInaggar et al., 2020;
Georgiev, 2009; Rao et al., 2019, 2021; Rives et al., 2021). Next,
we demonstrate how integration of models and training proced-
ures better tailored for protein fitness landscapes into the work-
flow can improve MLDE performance (Bai et al., 2018; Chen and
Guestrin, 2016; Zhang et al., 2020). We then show the impor-
tance of reducing uninformative holes in MLDE training sets
(Box 1) and propose integrating a form of zero-shot prediction
(i-e., prediction of variant fitness prior to data collection; Box 1)
into the MLDE pipeline to generate more informative training
data. We call the general strategy of running MLDE with training
sets designed to avoid holes “focused training MLDE” (ftMLDE).
We next evaluate the effectiveness of a number of zero-shot
strategies for designing training data for ftMLDE applied to
GB1, including state-of-the-art strategies that leverage local
evolutionary information from multiple sequence alignments
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Figure 1. Directed evolution strategies and the effects of landscape topology

(A) Directed evolution (DE) by single-mutation greedy walk (“Traditional DE”). In this approach, mutations are fixed iteratively by walking up the steepest fitness
gradient.

(B) Smooth (left) versus rugged (right) fitness landscapes. A smooth fitness landscape contains a single fitness maximum, so traditional DE is guaranteed to
eventually reach the global optimum, though the number of steps needed will depend on the topology of the peak. A rugged fitness landscape contains multiple
fitness maxima. Traditional DE is only guaranteed to reach alocal fitness optimum here; the maximum achieved will depend on the starting protein variant and the
order in which positions are chosen for mutagenesis and testing.

(C) Machine learning-assisted directed evolution (MLDE). In this approach, standard molecular biology techniques are used to construct a “combinatorial library”
by making mutations at multiple positions simultaneously (e.g., through use of “NNK” degenerate primers). Samples are drawn from this library (e.g., picking
colonies from a plate), sequenced, expressed, assayed, and then used to train an ensemble of regressors. This ensemble is used to predict which combinations
not seen in the initial draw will have the highest fitness, which are then constructed and tested experimentally. Because the best mutations are fixed simulta-
neously, MLDE operates in a path-independent manner, so the global optimum of a combinatorial space can be achieved regardless of the starting point. Once
mutations are fixed for a given set of positions, a new set is chosen and the procedure is repeated, allowing for larger, more efficient steps through sequence
space. The MLDE procedure has many design considerations, which are highlighted as questions under each step.

(D) The simulation procedure used throughout this study to evaluate improvements to the MLDE workflow, with the tests performed to evaluate the different
design considerations given above each step. The simulation procedure is repeated many times using data from the GB1 landscape. The effectiveness of a
simulated MLDE experiment is determined by (1) evaluating the max and mean true fitness of the top M variants according to predicted fitness and (2) calculating
the normalized discounted cumulative gain (NCDG) over all predictions in the simulation.

(MSAs) (Hopf et al., 2017; Riesselman et al., 2018), a “masked-
token prediction” strategy that leverages global sequence infor-
mation derived from large sequence databases (Devlin et al,,
2018; Elnaggar et al., 2020; Rao et al.,, 2021; Rives et al,,
2021), and predicted AAG of protein stability upon mutation.
We then use the effective zero-shot predictors to generate infor-
mation-rich training data. Finally, using this training data, we test
the effect of training set size, the zero-shot predictor used for
training set construction, and protein encoding on the outcome
of ftMLDE.
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In all, we found that, while using more informative encodings
and models better tailored for combinatorial fitness landscapes
could improve MLDE outcome, the most important design
consideration was training set design, with ftMLDE generally
showing improved identification of the GB1 global fitness
maximum compared to MLDE. Our most effective combination
of MLDE design considerations— 384 training points chosen us-
ing predicted AAG as the zero-shot predictor and with se-
quences encoded using embeddings derived from the recently
published MSA Transformer (Rao et al., 2021)—successfully
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identified the GB1 global maximum in 99.70% of 2,000 simulated
ftMLDE experiments. This represents an 81.1-fold improvement
over traditional DE (which achieved the global maximum 1.23%
of the time in simulated experiments) and at least a 12.2-fold
improvement over our originally published method (which
achieved the global optimum 8.17% of the time with a screening
burden of 570 total variants—90 more than were used in
our work).

This paper describes improvements to our original MLDE
method. It also highlights (1) the importance of considering the
unique attributes of fithess landscapes when applying ML to pro-
tein engineering problems, (2) the importance of informative
training set design for building effective ML models in protein en-
gineering, and (3) how tools developed across a variety of protein
engineering domains can be combined into a cohesive, highly
efficient engineering pipeline. To improve access to such a pipe-
line, we introduce the MLDE software package, made available
on the Amold Lab GitHub (https://github.com/fhalab/MLDE).
Designed to be accessible to non-ML and non-computational
experts, this repository contains Python scripts that allow execu-
tion of MLDE and ftMLDE on arbitrary combinatorial fithness land-
scapes, thus enabling wet-lab application.

RESULTS

MLDE procedure, simulated MLDE, and evaluation
metrics

MLDE attempts to learn a function that maps protein sequence
to protein fitness for a multi-site simultaneous-saturation muta-
genesis (“combinatorial™) library (Figure 1C). More concretely,
MLDE attempts to regress a function f(x) = y describing the
fitness landscape of the combinatorial library where the protein
sequence is “x” and the protein fitness (i.e., the sequence’s la-
bel) is “y.” We provide detailed information about the program-
matic implementation of MLDE in the STAR Methods section
(MLDE programmatic implementation). Briefly, however, and at
a high level, the procedure begins with gathering the sequences
and fitnesses of a small subsample from the combinatorial li-
brary. These sequence-function pairs are then used to train an
ensemble (Box 1) of regressors with varied model architecture
(roughly, this can be interpreted as fitting a variety of different
functions to the fitness landscape) (inbuilt models). A variety of
models are trained because the shape of the fithess landscape
is not known a priori; it is thus not possible to confidently recom-
mend which model architectures would be most effective prior to
evaluating their effectiveness on the given landscape. The
models are evaluated and ranked based on a 5-fold cross-vali-
dation error (Box 1). Predictions from the top-performing trained
models in the ensemble (those with the lowest cross-validation
error) are then averaged to predict fitness values for the un-
sampled (unlabeled; Box 1) variants that were not in the training
set. These variants are ranked according to predicted fitness,
and the top M are evaluated experimentally to identify the
best-performing ones.

Throughout this work, we evaluate design considerations of
MLDE through simulation on the empirically determined four-
site combinatorial fitness landscape of protein G domain B1
(GB1). Originally reported by Wu et al., this landscape consists
of 149,361 experimentally determined fitness measurements

¢ CellP’ress

for 160,000 possible variants, where fitness is defined by both
the ability of the protein to fold and the ability of the protein to
bind antibody IgG-Fc (Wu et al., 2016). To our knowledge, this
landscape is the only published one of its kind (i.e., the only
almost-complete combinatorial landscape where fitness is re-
ported as scalar values amenable to training the regression
models used in MLDE). By imputing the fitness of the remaining
10,639 variants and evaluating the resultant complete land-
scape, Wu et al. identified 30 local optima, the routes to which
were often indirect (e.g., if a local optimum was four mutations
away from a starting point, it would take more than four muta-
tions to travel by single-mutation greedy walk from the starting
point to the optimum). Epistatic interactions are thus highly prev-
alent in the GB1 landscape. The goal of simulated MLDE is to
mimic what we would observe had we performed thousands of
MLDE experiments on GB1. Thus, to ensure that our simulations
match what would have been observed experimentally had our
simulated experiments actually been performed, we do not use
the variants with imputed fitness in this study.

A simulated MLDE experiment begins with generating training
data (Figure 1D). Here, a small set of variants is drawn from the
GB1 landscape (values of 24, 48, or 384 are used throughout
this study) and their known fitness values are attached (the var-
iants are labeled; Box 1). This stage of the simulation is analo-
gous to building a combinatorial library (e.g., by using “NNK”
degenerate primers to make mutations at multiple positions
simultaneously), picking colonies from an agar plate, then
sequencing, expressing, and assaying the variants harbored
by the colonies. The training data are then fed into the MLDE
pipeline and the average predictions of an ensemble of the top
three models are used to rank the unlabeled variants not in the
training data (148,977 or more total variants, depending on the
number of samples in the training data) by predicted fitness.
The quality of the returned ordering is evaluated using a combi-
nation of metrics, including (1) the max fitness of the M-highest-
ranked variants, (2) the mean fitness of the M-highest-ranked
variants, and (3) the ranking metric “normalized discounted
cumulative gain” (NDCG) (evaluation metrics) (Jarvelin and
Kekalainen, 2002). Whenever reported, mean and max fitness
achieved are normalized to the highest fitness in the unlabeled
dataset and so can typically be interpreted as a fraction of the
global maximum in the GB1 dataset.

Each evaluation metric summarizes different information
about the outcome of an MLDE simulation. The max and mean
fitness of the M-highest-ranked variants (hereafter also referred
to as “max fithess achieved” and “mean fitness achieved”) are
the most practically relevant in terms of laboratory application
of MLDE, as they are analogous to the max and mean fitness
that would be observed if the M protein variants predicted to
have highest fitness were experimentally evaluated. Consistent
realization of high maximum fitness achieved over many simula-
tions indicates that an MLDE design condition is typically effec-
tive at finding at least one high-fitness variant; consistent
realization of a high mean fitness achieved over many simula-
tions indicates that the design condition is typically effective at
identifying many high-fitness variants. NDCG does not capture
specifics about how MLDE can be expected to perform in a lab-
oratory setting but instead provides a holistic measure of how
well a given MLDE design condition is able to identify and rank
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the most-fit variants in the GB1 landscape without the need to
set an arbitrary cutoff such as “the top M” predictions.

NDCG is commonly used to assess the quality of information
retrieval algorithms such as search engines, a task that parallels
the goal of MLDE (Jarvelin and Kekalainen, 2002). To explain, the
goal of search engines is to return a list of relatively rare, highly
relevant documents identified among a population of many irrel-
evant ones; the most-relevant documents should be provided at
the top of the list and the least relevant at the bottom. Because
combinatorial fitness landscapes tend to be dominated by
zero- and low-fitness variants (Arnold, 2011; Bloom et al.,
2005; Romero et al., 2013), the goal of MLDE is likewise to iden-
tify high-fitness (high-relevance) protein variants among a sea of
irrelevant ones; the highest-fitness variants should ideally be the
ones ranked highest by MLDE. For both search engines and
MLDE, more weight should be placed on correctly identifying
and ranking the most relevant items than the least relevant as
these are the ultimate items of interest. Indeed, NDCG provides
just this type of implicit weighting, which is clear from the equa-
tion used to calculate it. The equation for NDCG is

N f N i )
NDCG = (Z; Iogz(i+1))/(§_:1 Iogz(1'+1))’ (Equation 1)

where the numerator gives the sum of the true variant fitnesses (f)
divided by a logarithmic “discount” based on their predicted
ranking and the denominator gives the sum of true variant fitness
divided by a logarithmic discount based on a perfect ranking. A
higher value of NDCG is thus better, and the maximum NDCG
possible is “1.” Variants with low fitness contribute minimally
to the denominator (both due to having a low “f” and, in a perfect
ordering, a high logarithmic discount), and so unless they are
incorrectly ranked as the very top variants, they will have minimal
effect on the score. Correct ranking among high-fitness variants
is thus weighted more strongly than correct ranking among low-
fitness variants, but incorrect identification of a low-fitness
variant as a high-fitness variant is punished. NDCG as an
MLDE evaluation metric thus provides a more holistic view of
how well models are able to (1) identify the most-fit variants
and (2) correctly rank those variants.

More informative encodings can improve MLDE
outcome
Protein sequences must be numerically encoded by a set of fea-
tures (numerical descriptors that describe a protein sequence;
Box 1) to be used in ML algorithms. Our previous implementation
of MLDE used one-hot encoding, an uninformative categorical
encoding strategy that captures no information about the
biochemical relatedness of different amino acids. The descrip-
tiveness of the features used for encoding can affect the
outcome of learning, however, by passing in relevant information
to an ML model about the similarities and differences between
different datapoints. To investigate the effects of more informa-
tive encodings on MLDE, we tested encoding using physico-
chemical parameters as well as learned protein embeddings.
Physicochemical parameters are manually engineered fea-
tures that describe amino acid qualities such as hydrophobicity,
volume, mutability, etc. Encoding a protein sequence using
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these features provides an ML model with information on the
physicochemical similarities and differences between amino
acids. For instance, valine and alanine would have a more similar
“hydrophobicity” score than valine and glutamate. In this work,
we used the set of physicochemical parameters developed by
Georgiev, which is a low-dimensional representation of over
500-amino-acid indices from the AAlndex database (Georgiev,
2009; Kawashima et al., 2008; Ofer and Linial, 2015).

Unlike manually crafted physicochemical parameters, learned
protein embeddings are featurizations of protein sequences that
have been automatically learned by ML models through a strat-
egy known as “representation learning” (luchi et al., 2021; Li
et al., 2021; Wittmann et al., 2021). All extant protein sequences
have been selected by natural evolution to perform a function
that is useful for their host organism. The goal of representation
learning is to directly learn features that describe these proteins,
thereby capturing a numerical encoding (an embedding) of the
essence of what defines a functional and useful protein. Exactly
how this learning is accomplished varies, though most strategies
and models currently used are adapted from the field of natural
language processing and rely on ever-growing protein sequence
databases as a source of training data (UniProt Consortium,
2019; luchi et al., 2021; Li et al., 2021; Wittmann et al., 2021;
Young et al.,, 2018). As with physicochemical parameters,
learned protein embeddings capture the similarities and
differences between specific amino acids; they also, however,
capture contextual information about amino acid positions in a
protein, with the exact embedding for a given amino acid chang-
ing based on the identities of other amino acids in the same pro-
tein sequence (Rives et al., 2021; Vig et al., 2020).

A number of studies have been performed to train models for
the production of learned protein embeddings (luchi et al., 2021).
Given a protein sequence, such models output a matrix of values
that are then used to encode the protein. In this work, we test the
effectiveness of learned protein embeddings generated from a
variety of models of different sizes and architectures made avail-
able in the tasks assessing protein embeddings (TAPE), evolu-
tionary scale modeling (ESM), and ProtTrans GitHub repositories
(Elnaggar et al., 2020; Rao et al., 2019, 2021; Rives et al., 2021).
The models tested from TAPE were trained using 30 million pro-
tein sequences from the Pfam database (El-Gebali et al., 2019)
and have varied architectures, including a transformer architec-
ture (“TAPE Transformer”) (Devlin et al., 2018; Vaswani et al.,
2017), three separate LSTM-based architectures (“LSTM,”
“UniRep,” and “Bepler”) (Alley et al., 2019; Bepler and Berger,
2019; Hochreiter and Schmidhuber, 1997), and a dilated residual
network architecture (“ResNet”) (Yu et al., 2017)); all models in
TAPE are defined by around 38 million learnable parameters.

Larger models than those in TAPE trained on more sequences
can potentially learn a richer representation of protein sequences
(Brown et al., 2020; Rives et al., 2021). To test this potential effect
of model and training set size on the quality of learned embed-
dings for MLDE, we also investigated embeddings generated
from the state-of-the-art models “esm1b_t33_650M_UR50S”
(hereafter referred to as “ESM1b”) from the ESM repository as
well as “ProtBert-BFD” from the ProtTrans repository. Both of
these models have a transformer architecture. ESM1b is a 850-
million-parameter model trained on 27.1 million sequences from
the UniRef50 database (UniProt Consortium, 2019; Rives et al.,
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2021). ProtBert-BFD is a 420-million-parameter model trained on
2.1 billion protein sequences from the Big Fat Database (BFD) (EI-
naggar et al., 2020; Steinegger and Soding, 2018). A final model
investigated for learned embedding generation was the MSA
Transformer, also made available in the ESM repository (Rao et
al., 2021). Unlike the other models, which were all trained on pro-
tein sequences, the 100-million-parameter MSA Transformer was
trained on 26 million protein MSAs; the learned embeddings from
the MSA Transformer are thus generated from an MSA of the
target protein rather than the target protein sequence alone.
MSAs more directly represent information relevant to protein en-
gineering: specifically, related sequences aligned to a reference
provide evidence for what mutations are and are not allowed at
given positions. We included the MSA Transformer to test if the
additional information provided by embeddings generated from
an MSA could lead to an improved MLDE outcome.

For each encoding considered, we performed 2,000 rounds of
MLDE simulations at three different training set sizes. The
training data, cross-validation indices (i.e., the different folds
used for measuring a cross-validation error; Box 1), and random
seeds (values that enable reproducible random number genera-
tion; Box 1) were kept the same for each encoding strategy in
each simulation. For a given simulation, the training data con-
sisted of either 384, 48, or 24 GB1 variants drawn at random
from the comprehensive (consisting of all 149,361 possible
GB1 variants) landscape—only the choice of encoding and
training set size were considered as design considerations in
these experiments. If 384 variants were used for training, the
top 96 predictions were tested; if 48 variants were used for
training, the top 32 predictions were tested; if 24 variants were
used for training, the top 56 predictions were tested (encoding
comparison simulations). Training using 384 samples and testing
96 predictions evaluates simulations on a scale that approxi-
mates the typical experimental screening burdens for standard
DE approaches (Wu et al., 2019). Because the ultimate goal of
using ML in protein engineering is to reduce or eliminate the
number of protein variants that must be experimentally charac-
terized, the ability to train an ML model using limited data is
also valuable (Biswas et al., 2021). Training using 24 or 48 sam-
ples evaluates the effectiveness of each encoding in this “low-N"
setting. We tested 56 or 32 predictions, respectively, to match
the total screening burden (80 variants) of an idealized traditional
DE pipeline over a four-site landscape where all 20 amino acids
at each position are deterministically evaluated. We note that,
due to the cost of synthesizing variants individually, deterministic
evaluation of mutations is rarely performed, and researchers
instead opt to stochastically sample from pools of mutants
(thus raising the required screening burden above 80). The total
screening burden of deterministic traditional DE does provide,
however, a reasonable “low-N" threshold for MLDE.

Violin plots showing the results of the simulated MLDE exper-
iments are provided in Figure 2; summary statistics are provided
in Data S1, and a pairwise comparison of encoding effectiveness
over all simulations is provided in Data S2; we also provide addi-
tional figures on the GitHub repository associated with this work
that plot the pairwise encoding comparisons. In all, these results
show that using a more informative encoding than one-hot can
result in an improved MLDE outcome, but not always and de-
pending on the metric and screening burden used to measure
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MLDE effectiveness. The only two encoding strategies to consis-
tently show at least marginal improvement over the one-hot
baseline regardless of metric and screening burden were phys-
icochemical (Georgiev) parameters and learned embeddings
from the MSA Transformer. At a training size of 384, NDCG
was the only evaluation metric to consistently suggest that
more informative encodings improve MLDE outcome. For the
max fitness achieved, simulations run using Georgiev parame-
ters and learned embeddings from the MSA Transformer tended
to achieve marginally higher max fitness than those run using
one-hot encodings; simulations run using all other learned em-
beddings tended to achieve the same if not a slightly lower
one. For the mean fitness achieved, simulations run using the
embeddings from the Bepler model as an encoding strategy
slightly underperformed one-hot, those using embeddings
from UniRep and ProtBert-BFD performed comparably, and
those using all other encoding strategies tended to achieve a
higher mean fitness than one-hot.

For smaller training set sizes, the effect of different encodings
on MLDE outcome was less noticeable. Only simulations run us-
ing embeddings from the TAPE transformer and the MSA Trans-
former still obtained a higher NDCG than those run using one-hot
encoding; simulations using other encodings tended to yield
comparable to marginally better NDCG than those run with
one-hot. For the max fithess achieved, all non-MSA Trans-
former-learned embeddings arguably gained ground on one-
hot and Georgiev encodings, though the results are still
comparable at best. The opposite was observed for the mean
fitness achieved, with one-hot typically gaining ground on and
even slightly surpassing many learned embeddings.

Our results largely agree with recent work suggesting that
training ML models using existing learned protein embeddings
yields marginal improvement at best compared with using
simpler encodings such as one-hot or physicochemical param-
eters (Hsu et al., 2021; Shanehsazzadeh et al., 2020). Unlike pre-
vious works, however, which found that learned embeddings
tended to be superior to simpler strategies in the low-N regime
(Biswas et al., 2021; Shanehsazzadeh et al., 2020), we found
that simpler strategies remained competitive regardless of
training set size. It is possible that taking an “evotuning” strategy
like that of Biswas et al., where embedding models are further
trained on sequences more closely related to the target protein
(i.e., GB1), could improve the performance of learned embed-
dings in the low-N regime (Biswas et al., 2021); however, as
will be discussed in greater detail in later sections, this possibility
is currently untestable due to the limited availability of GB1 ho-
mologs in existing sequence databases.

We also found minimal benefit in using embeddings derived
from the larger models trained on larger corpora of protein
sequences. For instance, when trained with 384 samples, simu-
lations run using embeddings from ESM1b only slightly outper-
formed those run using embeddings from the TAPE transformer,
despite the ESM1b model being ~17-fold larger; in the low-N
regime, simulations run using embeddings from ESM1b under-
performed those run using encodings from the TAPE trans-
former. Likewise, regardless of training set size, simulations
run using embeddings from ProtBert-BFD often underperformed
many of the TAPE models, despite ProtBert-BFD being ~11-fold
larger and trained using ~70-fold more protein sequences.
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Figure 2. More informative encodings can improve MLDE outcome: Results of simulated MLDE comparing ten different encoding strategies
at three different screening burdens

Note that, for the sake of computational efficiency, 19 of the 22 inbuilt MLDE models were in the ensemble trained for simulations using the large TAPE transformer-,
the MSA Transformer-, ESM1b-, ProtBert-BFD-, UniRep-, and LSTM-derived encodings, while 22 were in the ensemble for all others. Each column of plots gives the
results of a different screening burden. Each row of plots gives the results for a different summary metric. Rows and columns share the same axes. Each violin
represents the results of 2,000 simulated MLDE experiments, and the dashed line represents the median summary value of simulations run using one-hot encoding.
In general, whether or not an encoding strategy outperformed the one-hot baseline depended on the screening burden tested and summary metric evaluated. The
only two encoding strategies to consistently show at least marginal improvement over the one-hot baseline regardless of metric and screening burden were
physicochemical (Georgiev) parameters and learned embeddings from the MSA Transformer. For summary statistics of simulation results, see also Data S1. For

pairwise comparisons of simulation results, see also Tables S1-54, Data S2, and additional figures at the GitHub associated with this work.

Indeed, the most effective model for generating learned embed-
dings was the MSA Transformer, which is 1/6 the size of ESM1b
and 1/4 the size of ProtBert-BFD. As mentioned above, the MSA
Transformer was trained on—and generates embeddings us-
ing—MSAs rather than protein sequences. It is possible that
the additional information provided by the MSA yields more
effective learned embeddings for MLDE, though this is impos-
sible to conclude working off of just the GB1 dataset. It does
stand to reason, however, that models and data sources that
more directly represent information known to be important for
protein function could lead to embeddings that are more infor-
mative for MLDE. Developing such data sources and models is
a potentially valuable avenue for future research.
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Models/training procedures more tailored for
combinatorial fithess landscapes can improve MLDE
predictive performance

Many of the learned embeddings used in the previous section
are extremely high dimensional, with the largest (LSTM)
describing each combination of four amino acids with 8,192 fea-
tures (Table S1). To better handle the high dimensionality intro-
duced by learned embeddings, in this new implementation of
MLDE we added two 1D convolutional neural network (CNN) ar-
chitectures to the ensemble of models trained, one with a single
convolutional layer and another with two (inbuilt models). CNNs
apply sliding windows (“‘convolutions”) over structured, high-
dimensional data, relying on spatial dependencies between



Cell Systems (2021), https://doi.org/10.1016/j.cels.2021.07.008

Please cite this article in press as: Wittmann et al., Informed training set design enables efficient machine learning-assisted directed protein evolution,

Cell Systems

elements of the input data to extract the most-relevant high-level
features (Jiang and Zavala, 2021; Rawat and Wang, 2017). For
instance, CNNs are often applied to image processing tasks,
where sliding 2D windows are used to extract high-level features
by aggregating information from local groupings of pixels. CNNs
can also be applied, however, to sequential data such as protein
and DNA sequences. When applied to proteins, the sliding win-
dows are 1D (hence, “1D CNN”) rather than 2D, and are applied
over the protein sequence to extract high-level features by
aggregating information from nearby members of the sequence
(Bai et al., 2018; Jaganathan et al., 2019; Xu et al., 2020). The
practice of using a sliding window to extract or aggregate infor-
mation from sequences or sequence alignments has been used
in bioinformatic analyses for decades (Proutski and Holmes,
1998; Tajima, 1991; Zhu et al., 2020). Whereas sliding windows
have historically been used to extract specific, human-defined
information, the sliding windows of 1D CNNs automatically learn
the aggregate information most relevant for relating a sequence
to a label (e.g., the high-level features that relate protein
seqguence to fitness). Recent evidence suggests that 1D CNNs
are a particularly effective model class for protein engineering
(Xu et al., 2020). We found that 1D CNNs could be beneficial
for MLDE, but that the specific architecture of the 1D CNN and
training points used to train it were important. For instance,
when trained with 384 training points, the two-layer 1D CNN
was consistently among the top-ranking models in terms of
cross-validation error during training, particularly for higher-
dimensional encodings (Table S1). The same could not be
said, however, for the single-layer 1D CNN or the two-layer 1D
CNN trained with less data (Tables S1 and S2).

In addition to 1D CNN architectures, we also integrated
XGBoost models trained with the Tweedie regression objective
to better handle the zero-inflated nature of fitness landscapes
(Chen and Guestrin, 2016; Yang et al.,, 2018; Zhou et al.,
2020). XGBoost is a Python package that implements the
gradient boosting technique, which, at a high level, is a strategy
of combining multiple weak predictors (multiple weak models)
to create a more effective predictor (Chen and Guestrin,
2016). Gradient-boosted Tweedie regression was developed
to handle regression for datasets with zero-inflated labels
(Yang et al., 2018; Zhou et al., 2020). Because most mutations
are deleterious to activity or stability, as more mutations are
made to a protein, the probability that it will still fold and function
drops (Bloom et al., 2005). The result is that combinatorial
fitness landscapes tend to be dominated by proteins with
zero or extremely low fitness (Arnold, 2011; Romero et al.,
2013), something that is highlighted by the distribution of fitness
for GB1 (Figure 3A). Training data drawn from combinatorial
fitness landscapes will thus also have an overabundance of
zeros, which can bias ML models to be more effective at pre-
dicting low-fitness variants than high-fitness ones. To test if im-
plementing the Tweedie regression objective could improve the
effectiveness of XGBoost models in MLDE, we included
XGBoost models trained with both the Tweedie and default
(root mean squared) training objectives in the ensemble of
models trained in the simulations discussed in the previous sec-
tion. We found that models trained with the Tweedie objective
on average achieved a higher NDCG than models trained with
the default objective regardless of base model (the architecture
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of the weak predictors used by XGBoost) and encoding; howev-
er, only models with a tree base on average showed improved
max and mean fithess achieved (Tables S3 and S4). Additional
supplemental images plotting a pairwise comparison of the re-
sults of XGBoost simulations run with each learning objective
(Box 1) can also be found at the GitHub repository associated
with this work.

The challenge of holes in combinatorial fithess
landscapes and the importance of informative

training data

Diversity within training data is critical to constructing an effec-
tive ML model. Often, training set diversity is thought of in terms
of exploration of the feature space, where limited resources are
intelligently committed to minimize the amount of extrapolation
that must be performed when making predictions (Figure 3B).
For instance, for protein engineering, a researcher would aim
to experimentally characterize diverse protein sequences when
gathering data to train an ML model; a model trained on a
restricted set of sequences may struggle to generalize to more
diverse sequences when used for prediction. Equally important
to feature diversity, however, is diversity in the labels: patterns
in the ground truth will not be identified if there are no patterns
in the training data (Figure 3B). The overabundance of “dead”
(zero- or very-low-fitness) variants in combinatorial fitness land-
scapes thus poses an additional challenge beyond that dis-
cussed in the previous section: a random draw for the generation
of training data is likely to be populated by primarily zero- or
extremely low-fitness variants. While potentially useful for classi-
fying dead versus functional proteins, these “holes” provide no
information about the extent to which specific combinations of
mutations benefit or harm fitness —only that fitness is destroyed
by a combination—and so have limited utility when training the
regression models used in MLDE.

We thus propose a general strategy of running MLDE with
training sets designed to contain a minimal number of holes. In
this strategy, which we call “focused training MLDE” (ffMLDE),
training data are not randomly drawn from the full combinatorial
landscape (which will return primarily holes) but are instead
drawn from diverse regions of sequence space believed to
contain functional variants. A training set drawn in this way will
consist of a greater proportion of functional variants and so will
provide more information to an ML model about the magnitude
of the effects of different mutations on fitness, enabling more
effective regression of a function to the fitness landscape.

To demonstrate the concept of ftMLDE and test its effective-
ness, we designed training data enriched in functional, but not
the fittest, protein variants, and then used it to perform simulated
ftMLDE. Because we have access to the full GB1 dataset, we
can choose what data to use for training. As such, we built
training sets consisting of 384 samples where 50% of the vari-
ants had fitness greater than or equal to a given threshold of
either 0.011, 0.034, 0.057, or 0.080 and 50% had fitness below
(high-fitness simulations). A higher fitness threshold thus meant
greater fitness enrichment in the training data (greater “focus” of
the training data on higher-fitness regions of the protein fitness
landscape) and vice versa (Figure S1). To avoid “cheating” by in-
clusion of the highest-fitness variants in the training data, we also
enforced a requirement that no variant in the training data had
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(A) The distribution of fitness in the GB1 landscape shown as a histogram. Most variants in this epistatic landscape have extremely low fitness, and the highest-
fitness variants are very rare.

(B) A demonstration of the importance of diversity in both the labels and features of training data for machine learning. Learning detailed topology is challenging if
the labels are not representative of it, even if sampled from diverse regions of feature space. Only local topology can reliably be learned if points are sampled from
a restricted region of feature space.

(C) The maximum fitness achieved for simulated ftMLDE using training data designed to be enriched in fit protein variants. Specifically, training sets were de-
signed such that 50% of the variants had fitness greater than or equal to a given threshold of either 0.011, 0.034, 0.057, or 0.080 and 50% had fitness below.
A higher fitness threshold enforces a higher mean training fitness. All data are shown as empirical cumulative distribution functions (ECDFs); vertical lines on the

x axis give the expectation value of the distribution. Each ECDF represents the

results of 2,000 simulated ftMLDE experiments.

(D) The mean fitness achieved for simulated ftMLDE using training data enriched in fit variants.

(E) The NDCG for simulated ftMLDE using training data enriched in fit variants.

fitness greater than 34% of the global maximum. By including
this upper limit, the highest-fitness variants in the GB1 landscape
could only be identified from model predictions.

The results of 2,000 simulated ftMLDE experiments using
training sets from each of the four considered thresholds are
given in Figures 3C-3E and Table S5; also included are the re-
sults of 2,000 simulated standard MLDE experiments where
training data were randomly drawn from all variants with
fithess below 34% of that of the global maximum. Compared
with standard MLDE, the ftMLDE simulations show improved
NDCG, mean fitness achieved in the top 96 predictions, and
max fitness achieved in the top 96 predictions. Training data
enrichment using even the lowest fitness threshold (0.011)
led to improvement in evaluation metrics, with NDCG
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See also Figure S1 and Table S5.

increasing ~8%, the max fitness achieved improving ~19%,
and the mean fitness achieved improving ~49%. The lowest
threshold sits at just above 1% of the fithess of the global
maximum, and so the improvement observed here suggests
that even the weakest degree of enrichment can lead to an
improvement in engineering outcome. Indeed, while further
increasing the fitness threshold did further improve outcome,
the degree of improvement was not as large. For instance,
increasing the threshold from 0.011 to 0.080 led to a further
~2% increase in NDCG, ~4% increase in max fitness
achieved, and ~10% increase in mean fitness achieved,
roughly 5-fold less overall improvement compared with mov-
ing from no threshold to a threshold of 0.011. This result sug-
gests that, although achieving a higher mean fitness in the
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training data is beneficial to ftMLDE, the more important factor
is the elimination of holes.

Zero-shot prediction as a practical training set design
strategy for ftMLDE

Of course, in practice, the full dataset for a combinatorial library
would not be available as it is for GB1, otherwise there would be
no point in applying MLDE in the first place. Instead, the protein
variants used to build ftMLDE training data must be chosen prior
to knowing their fithesses—practical application of ftMLDE re-
quires at least a weak predictor of protein fitness for training
set design. One way to accomplish this would be to take an
active learning (Box 1) approach. That is, using data from a prior
round of standard MLDE performed for the same combinatorial
library, a model could be trained to predict a diverse set of
higher-fithess variants; these variants could then be experimen-
tally evaluated and used to train models in a round of ftMLDE.
Indeed, a strategy like this was taken by Romero et al. when
evolving for improved P450 thermostability, where a classifier
trained on data from one round of evolution was used to build
a training dataset enriched in functional protein variants for the
next round of evolution (Romero et al., 2013). While this active
learning approach has proven successful, it adds an additional
round of data collection to the workflow, which is undesirable.
We thus chose to investigate zero-shot prediction strategies
for training set design.

We define zero-shot prediction strategies as those capable of
predicting protein fithess without the need for further labeled
training data collection, and thus they do not affect the overall
screening burden of ftMLDE. A number of zero-shot strategies
exist for protein functional prediction, ranging from scoring pro-
tein variants based on evolutionary sequence conservation
(Hopf et al., 2017; Ng and Henikoff, 2003; Riesselman et al.,
2018) to generative modeling (Madani et al., 2020; Riesselman
et al., 2019, 2018) and physics-based computational modeling
(e.g., prediction of AAG upon mutation) (Firnberg et al., 2014, Jac-
quier et al., 2013; Sarkisyan et al., 2016; Sirin et al., 2016; Yang
etal., 2020), to name a few. The remainder of this paper is devoted
to evaluating the effectiveness of different zero-shot strategies for
designing training data for ftMLDE. Over the next two sections,
we evaluate zero-shot strategies from each of the aforementioned
overarching zero-shot classes for their ability to predict GB1
fitness. In the final section, we use the successful zero-shot pre-
dictors to demonstrate a practical application of fftMLDE to the
GB1 landscape. We find that ftMLDE is superior to both standard
MLDE and traditional DE, with our best ftMLDE condition
achieving the global maximum in 99.70% of simulated experi-
ments compared with 8.85% for the best standard MLDE condi-
tion and 1.23% for simulated traditional DE.

Leveraging sequence data for the design of fithess-
enriched training data

Over billions of years, natural evolution has tested countless pro-
tein sequences, discarding those that were detrimental to a host
organism and propagating those that were beneficial. The list of
extant protein sequences represents those that survived the fil-
ters of evolution and so implicitly contains information about
the evolutionary and biophysical rules that enable production
of a useful protein. Driven by a combination of increased compu-
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tational power and greater availability of sequence data, recent
years have seen renewed effort to extract this implicit fitness
information contained in sequences and use it to reduce or elim-
inate the amount of experimentally acquired sequence-function
data needed for reliable prediction of protein fitness. All of these
strategies assume that a given list of functional protein se-
quences is representative of a distribution of allowed protein se-
quences and that by learning this distribution the fitness of a new
protein sequence can be inferred. Specifically, a new sequence
highly likely to belong to the learned distribution is predicted to
have high fitness and vice versa (Hopf et al., 2017; Riesselman
et al., 2018; Wittmann et al., 2021). The simplest example of a
sequence-based zero-shot strategy, for instance, is use of
BLOSUM matrices, which score the likelihood of a given amino
acid substitution based on observed substitution frequencies
in conserved protein families (Henikoff and Henikoff, 1992). Far
richer strategies than BLOSUM matrices have been developed,
however, and, in this section, we test the ability of a number of
them for zero-shot prediction of GB1 fitness.

Strategies for sequence-based zero-shot prediction can be
broadly classified as relying on local or global sequence informa-
tion. Local strategies attempt to learn the distribution of allowed
sequences from those related to a target. These strategies first
search sequence databases to build an MSA against the target,
then use that MSA to learn a representation of the underlying
sequence distribution defining allowed local protein sequences.
Global strategies, in contrast, attempt to learn the distribution of
allowed sequences from large databases of unrelated protein
sequences. The language models trained to build embeddings
of protein sequences are examples of global strategies. Indeed,
a proposed and assumed rationale for the benefit of embeddings
derived from natural language processing models is that the
embedding vectors learned during training should capture the
global rules of what defines a functional protein.

We first tested the local sequence-based zero-shot predictors
EVmutation and DeepSequence (Hopf et al., 2017; Riesselman
et al., 2018). Among other requirements, the authors of these
tools recommend training using an MSA with >10L (where “L”
is the length of the target protein) redundancy-reduced
sequences (essentially, a measure of the effective number of se-
quences given the diversity of those in the MSA—less diverse
MSAs have a lower number of redundancy-reduced sequences)
that cover the positions at which the effects of mutations are to
be predicted; at least 560 redundancy-reduced sequences
are thus the target for 56-amino-acid-long GB1. There are,
unfortunately, few recorded sequences that are homologous to
GB1, and we could at best produce an MSA with 56 redun-
dancy-reduced sequences that covered all four positions of
interest in the GB1 combinatorial landscape (alignment genera-
tion and EVmutation model training). Despite this relatively unin-
formative MSA, however, EVmutation still performed reasonably
well as a zero-shot predictor, achieving a Spearman rank
correlation coefficient (Spearman p) of 0.21 (Figure 4; Table
56). DeepSequence, in contrast, was less effective, achieving
Spearman p = 0.05 (Table S6, EVmutation/DeepSequence cal-
culations). These results align with an observation in the original
DeepSequence publication, where DeepSequence was shown
to be more susceptible to failure than EVmutation when trained
on low-quality MSAs (Riesselman et al., 2018). This is not to
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Figure 4. Zero-shot prediction for the design of fithess-enriched training data
All figures plot the predicted rank of GB1 variants (where the variants predicted to be most fit have lower rank and vice versa) against either fitness (A-C) or an
alternate summary metric (D-E). In (A-C), dots are all individual variants while the black line is the sliding median (window size = 1,000) of fitness.

(A) Results of zero-shot prediction using EVmutation.

(B) Results of zero-shot prediction using a mask-filling protocol with the MSA Transformer.

(C) Results of zero-shot prediction using predicted AAG from Triad with a fixed protein backbone.

(D) The fraction of all fit variants in the GB1 landscape captured up to and including a given rank. A “fit” variant is defined as one with fitness greater than 0.011
(which was the lowest threshold tested for the simulations performed with training data designed to be higher in fitness—see Figure 3).

(E) The cumulative fraction of fit variants captured up to and including a given rank. See also Tables S6 and S7 and Figures S2-85.

say that the predictions of EVmutation were unaffected by the
low-diversity GB1 MSA. The low information content of the
MSA made it impossible for EVmutation to assign unique proba-
bilities of fitness to all GB1 combinations, resulting in the coarse
ranking pattern shown in Figure 4.

For global sequence-based zero-shot predictors, we tested a
mask-filling protocol for each of the models made available in
the ESM GitHub repository as well as the ProtBert and Prot-
Bert-BFD models from the ProtTrans GitHub repository (Elnag-
gar et al., 2020; Rao et al., 2021; Rives et al., 2021). All of these
models were trained using a protocol known as “masked-token
prediction” (Devlin et al., 2018). When training using this proto-
col, a model is fed a sequence with the identities of amino
acids at a fraction of its positions obscured (“masked”). Given
the context of the unobscured (“unmasked”) amino acids, the
objective of the model is to then predict the correct original
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identities of the masked amino acids by modeling the probabil-
ity P(Smasked|Sunmasked ), Where s is a sequence of amino acids.
By repeating this procedure over millions (or billions, in the
case of ProtBert-BFD) of sequences, the model learns a global
sense of the distribution of allowed proteins: in particular, it
learns the probability that a given combination of amino acids
will occur in the context of a given sequence background. Us-
ing a trained model, masked-token prediction can be co-opted
for zero-shot prediction using a “mask-filling protocol.” Specif-
ically, given a sequence with positions of interest masked, the
model can be used to predict P(Smasked|Sunmaskea) for all
possible combinations of mutations at the masked positions.
Combinations of mutations with higher probability are then
assumed to have higher fitness as they more accurately
represent the learned distribution of allowed amino acid
combinations.
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The models in the ESM repository, in combination with Prot-
Bert and ProtBert-BFD, are a variety of different sizes and
were trained on varying numbers of sequences, allowing us to
test the effect of model capacity on the mask-filling protocol
for GB1. Additionally, the ESM repository contains the MSA
Transformer which, uniquely, was trained using MSAs produced
for each sequence in the UniRef50 database, making it some-
what of a hybrid between a local and global sequence model
(UniProt Consortium, 2019; Rao et al., 2021). We included the
MSA Transformer in our mask-filing zero-shot predictions to
see if the global information captured during training could
make up for the limited information provided by the small GB1
MSA used for EVmutation and DeepSequence predictions.

For zero-shot prediction with a mask-filling protocol, we calcu-
lated P(Smasked |Sunmasked) fOr every combination in the GB1 land-
scape using either naive or conditional probability (mask-filling
protocol). Note that, for all non-MSA Transformer methods, the
parent GB1 sequence was used to define symaskeq, While for
the MSA Transformer, the MSA used for EVmutation (with slight
additional processing, see mask-filing protocol in the STAR
Methods for details) was used to define Sysmasked- The MSA
Transformer thus had access to additional local evolutionary
information when making mask-filling predictions. The results
using both naive and conditional probability protocols for all
tested models are provided in Table S7; the results using naive
probability with the MSA Transformer are also depicted in
Figure 4. In all cases, we found predictions made using naive
probability to be slightly superior to predictions made using con-
ditional probability. The naive probability prediction procedure
more closely mimics the masked-token prediction procedure
used to train the ESM and ProtBert models, providing a potential
explanation for its slight superiority over the conditional predic-
tion procedure, though a reason for this observation is not imme-
diately clear.

Differences in effectiveness between the naive and conditional
probability predictions notwithstanding, for all models except
the MSA Transformer, mask filling was an ineffective zero-shot
prediction strategy. Indeed, the predictions from most models
gave a negative correlation (Spearman p) with GB1 fitness, indi-
cating a prediction that is worse than a random guess. Addition-
ally, and perhaps contrary to expectations, smaller models
trained on the same data with the same training procedure
tended to outperform larger ones. Specifically, predictions using
esmi_t6_43M_UR50S (43 million parameters) outperformed
those using esm1_t12_85M_UR50S (85 million parameters)
which in turn outcompeted those using esm1_t34_670M_UR50S
(670 million parameters). Correlations between the amount of
training data and zero-shot prediction performance are less
apparent. For instance, even though zero-shot predictions using
esmi_t34_670M_UR100 (trained on UniRef100) outcompeted
those using esm1_t34_670M_UR50 (trained on UniRef50, and
otherwise equivalent to esm1_t34_670M_UR100), predictions
using ProtBert-BFD (trained on BFD) were more or less as effec-
tive as those using ProtBert (trained on UniRef100, and other-
wise equivalent to ProtBert-BFD).

The exception to the general failure of mask filling as a zero-
shot predictor was those predictions generated by the MSA
Transformer (Figure 4), which achieved a Spearman p of 0.24
with naive probability (0.20 with conditional). Even though this
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Spearman p is comparable to that achieved using EVmutation,
it is notable that the many ties observed in the EVmutation pre-
dictions are not present in the mask-filling zero-shot predictions
from the MSA Transformer, presumably due to the global infor-
mation captured by the MSA Transformer during training. A
mask-filling protocol using the MSA Transformer could thus be
an attractive zero-shot alternative to EVmutation for proteins
for which deep, high-quality MSAs cannot be produced. It
must, of course, also be asked whether the underrepresentation
of GB1 homologs in sequence databases leads to the failure of
mask-filling zero-shot prediction by non-MSA Transformer
models. Answering this question is impossible using just the
GB1 landscape alone, however, and would require access to
other combinatorial landscapes built in proteins with varying de-
grees of representation in the sequence databases used to train
the ESM and ProtBert models.

Predicted AAG of stabilization for the design of fitness-
enriched training data

Just because a sequence motif is not represented in a sequence
database does not necessarily mean that it would be detrimental
to a protein’s function. It is possible, for example, that a natural
function that would benefit from such a motif does not exist,
that evolution has not yet explored such a region of sequence
space, or simply that humans have not yet sequenced a repre-
sentative protein. The underlying assumption of sequence-
based zero-shot strategies that evolutionarily optimized fitness
correlates to a target fitness may thus not always hold. In such
cases, using a zero-shot strategy such as predicted AAG of sta-
bilization upon mutation may be beneficial (Firnberg et al., 2014,
Jacquier et al., 2013; Sarkisyan et al., 2016; Sirin et al., 2016;
Yang et al., 2020). This approach attempts to calculate the effect
of a mutation on protein stability from first principles. Based in
physics, it is thus not subject to the assumption that the target
fitness correlates with the fitness of existing proteins, but instead
that protein stability plays a role in fithess.

The fitness of GB1 is considered to be, at least in part, a func-
tion of stability, suggesting that approaches like predicted AAG
of protein stability upon mutation might be an effective zero-shot
predictor (Olson et al., 2014; Wu et al., 2016). Indeed, we find a
correlation between single-mutant fitness data and literature
GB1 AAG data (|Spearman p| = 0.58, Figure S2A) (Nisthal
et al., 2019). Wu et al. also previously presented evidence sug-
gesting that predicted AAG could be correlated to GB1 fitness
(Wu et al., 2016).

To test the effectiveness of AAG predictions as a zero-shot
predictor for GB1 fitness, we used the Triad protein design soft-
ware suite (Protabit, Pasadena, CA, USA: https://triad.protabit.
com/) with a Rosetta energy function to predict the stability of
each of the 149,361 GB1 variants with measured fitness, then
calculated a predicted AAG of stabilization for each variant rela-
tive to the parent amino acid sequence (AAG calculations). Both
fixed backbone and flexible backbone calculations were per-
formed using a previously determined GB1 crystal structure
(PDB: 2GI9) as a scaffold (Franks et al., 2006). The predicted
AAGs from each calculation correlated with literature values of
experimentally determined AAG values for the single mutants,
though the fixed backbone calculations were more effective
(Spearman p = 0.61 for fixed backbone, Spearman p = 0.42 for
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flexible backbone, Figures S2B and S2C). Despite both ap-
proaches having predictive power for single-mutant AAG, only
the fixed backbone calculations were effective at identifying
GB1 variants enriched in fithess when ranking by predicted
AAG (Spearman p = 0.27, Figure 4, Table S6, Figure S3). If
instead, however, the GB1 variants were ranked by root-mean-
squared deviation (RMSD) of variant structures produced during
flexible backbone calculations, those variants with the lowest
RMSD tended to be enriched in fitness, though not as strongly
as in the fixed backbone calculations (Spearman p = 0.06, Table
S6; Figure S4).

Structurally conservative mutations are generally less likely
to disrupt protein function, and so the observation that
RMSD can be used for zero-shot prediction is not entirely sur-
prising. Because fixed backbone calculations will tend to
heavily penalize mutations that would require large backbone
movements to stabilize, an interesting question arises over the
extent to which structural conservation or accurate prediction
of AAG allows effective fixed backbone zero-shot prediction
of fitness in GB1. If structural conservation dominates, it is
possible that Triad could be used for zero-shot prediction
with other combinatorial libraries in proteins where variant
fitness is not related to stability, particularly when the mutated
residues in question are tightly packed together and/or buried
in the protein core as they are for the GB1 landscape used in
this study (Figure S5). Answering this question and evaluating
the generalizability of fixed backbone Triad calculations is
beyond the scope of this work, but as more fully combinatorial
datasets become available this question should be investi-
gated further.

Zero-shot predictions for training set design enable
highly effective ftMLDE on the GB1 landscape

As a final demonstration, we evaluated the performance of
ftMLDE using GB1 training data predicted to be higher in fitness
by the three successful zero-shot prediction strategies: EVmuta-
tion, mask filling using the MSA Transformer, and Triad AAG cal-
culations. To begin, we generated training data by randomly
sampling 2,000 training sets of 24, 48, and 384 variants from
the top 1,600 (1.1%), 3,200 (2.1%), 6,400 (4.3%), 9,600 (6.4%),
12,800 (8.6%), 16,000 (10.7%), and 32,000 (21.4%) variants as
ranked by each zero-shot predictor; completely random training
data (i.e., from the full landscape) were also drawn at each sam-
ple size so that standard MLDE could be performed as a control.
These splits resulted in 66 total “training data types” to test
(three random MLDE training data types plus 21 zero-shot
ftMLDE training data types for each of three zero-shot predic-
tors), each made up of 2,000 training sets. Predictive algorithms
(zero-shot predictors included) will tend to predict that similar se-
guences have similar fitness, so sampling from different percen-
tiles of the top predictions explores the exploration-exploitation
tradeoff of using zero-shot predictions for training set design. In
other words, sampling from a larger top percentile of the ranked
variants allows greater sequence diversity in the training data
(thus potentially enabling exploration of more fithess peaks as
depicted in Figure 3B) at the expense of confidence that the var-
iants will have non-zero fitness (Figure SE). While we previously
used training sample sizes of 24 and 48 to test the effectiveness
of different encodings in the low-N setting, here we include them
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to enable comparison of ftMLDE (and standard MLDE) with the
most efficient implementation of traditional DE. As discussed
previously in the encoding comparison section, traditional DE
can in principle be performed on a four-site library by determin-
istically evaluating all 20 amino acids at each position, requiring
only 80 measurements for the GB1 landscape. Again, due to the
cost of synthesizing variants individually, this approach is rarely
taken. However, use of 24- and 48-variant training sets (with 56
and 32 tested predictions, respectively) allows for direct com-
parison of the algorithms of ffMLDE and this most efficient
implementation of traditional DE.

For each of the 66 training data types, simulated MLDE was
performed using each training set with variants encoded using
either one-hot, Georgiev parameters, or learned embeddings
from the MSA Transformer (which was the most effective of
the learned embeddings tested earlier) (zero-shot simulations).
In total, testing all encodings with all training data types
amounted to 198 “training conditions” (66 training data types
x 3 encodings/type) and 396,000 simulated MLDE experiments
(198 training conditions x 2,000 simulations/condition =
396,000 simulated MLDE experiments). As before, cross-valida-
tion indices and random seeds were kept the same between sim-
ulations using different encodings but the same training data. For
each simulation, after prediction, only the top-predicted un-
sampled combinations that could be constructed by recombin-
ing combinations in the training data were evaluated (e.g., if
“AAAA” and “CCCC” were the only training examples, then
only “AAAC,” “AACGC,"” “CAAA,” etc. could be in the top M pro-
teins chosen for fitness evaluation). This approach enforced a
confidence threshold on our predictions and focused all re-
sources on regions believed to contain the highest-fithess pro-
tein variants.

The distributions of the achieved max and mean fitness for all
simulations with a training sample size of 384 are shown in Fig-
ures 5 and 6, respectively. Distributions of the achieved max
and mean fitness for simulations with smaller training sample
sizes of 24 and 48 are shownin Figures S7-S10 and summary sta-
tistics for all simulations are provided in Data S3. Both MLDE and
ftMLDE using 384 training samples outperformed traditional DE
regardless of encoding and zero-shot strategy, with the most
effective set of simulations (ftMLDE run using training data
sampled from the top-3,200 Triad predictions and the MSA
Transformer for encoding) achieving the global maximum in
99.70% of simulations. By comparison, simulated traditional
DE on the GB1 landscape reached the global optimum just
1.23% of the time (traditional directed evolution simulations). At
lower screening burdens, both MLDE and ftMLDE remained
competitive with traditional DE (in terms of mean- and median-
maximum fitness achieved over all simulations), though only
ftMLDE simulations ever achieved the global optimum more
frequently than traditional DE. Specifically, ftMLDE simulations
using 24 training samples achieved the GB1 global optimum
more frequently than traditional DE in 40 out of 63 ftMLDE training
conditions; ftMLDE simulations using 48 training samples
achieved the GB1 global optimum more frequently than tradi-
tional DE in 57 out of 63 training conditions tested. Almost all
training conditions where ftMLDE did not outcompete traditional
DE in the low-sample setting used mask filling with the MSA
Transformer as the zero-shot predictor, with 0 out of 21 such
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Figure 5. Zero-shot prediction for training set design enables highly effective fftMLDE on the GB1 landscape, as measured by maximum
fitness achieved in simulated experiments

Each subplot (A-C) shows the effect of different zero-shot predictors on the maximum fitness achieved in simulated ftMLDE experiments. Each violin (except for
the gray ones corresponding to simulated traditional DE) represents data from 2,000 simulated experiments where 384 variants were used for training and the top
96 predictions were tested. The major groupings of violins within each subplot correspond to different encoding strategies (one-hot, Georgiev parameters, or
learned embeddings from the MSA Transformer). The color of each violin corresponds to the zero-shot sampling threshold (j.e., the number of best-ranked
variants according to a zero-shot predictor from which random samples were drawn to generate training data). Results of fftMLDE are compared with the results of

simulated traditional DE (at the left of each plot, in gray) and standard MLDE (the three pink violins in each plot).
(A) The maximum fitness achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for training set design.
(B) The maximum fitness achieved by simulated ftMLDE when a mask-filling protocol using the MSA Transformer was used as the zero-shot predictor for training

set design.

(C) The maximum fitness achieved by simulated fftMLDE when predicted AAG was used as the zero-shot predictor for training set design. See also, Figures S6-58

and Data S3.

conditions outcompeting traditional DE at a training sample size
of 24 and 15 out of 21 at a training sample size of 48. It is also
notable that training on 48 samples and testing 32 tended to be
amore effective strategy than training on 24 samples and testing
56, as this result indicates that, at least for GB1, devoting
screening resources to the training stage of the MLDE workflow
may be more important than the testing phase. Indeed, the
most effective set of ftMLDE simulations at low screening burden
was with 48 training samples (from the top-3200 Triad predictions
and encoded using Georgiev parameters), where the global
maximum was achieved 9.95% of the time.

Aside from comparisons to traditional DE, the results of our
simulations allow direct comparison of ffMLDE and MLDE
and show that ffMLDE is generally a more effective strategy
for navigating the GB1 landscape than MLDE. The optimal
MLDE strategy, for instance, achieved the global optimum
just 8.85% of the time compared with the 99.70% of the
optimal ftMLDE strategy. Additionally, in almost all training con-
ditions tested, ftMLDE tended to achieve higher mean and max
fitness than the comparable MLDE control. There are some ex-
ceptions, however, that suggest that the combination of
training set diversity, zero-shot strategy, and encoding have
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Figure 6. Zero-shot prediction for training set design enables highly effective ftMLDE on the GB1 landscape, as measured by mean fitness
achieved in simulated experiments

Each subplot (A-C) shows the effect of different zero-shot predictors on the mean fitness achieved in simulated ftMLDE experiments. Each violin represents data
from 2,000 simulated experiments where 384 variants were used for training and the top 96 predictions were tested. The major groupings of violins within each
subplot correspond to different encoding strategies (one-hot, Georgiev parameters, or learned embeddings from the MSA Transformer). The color of each violin
corresponds to the zero-shot sampling threshold (i.e., the number of best-ranked variants according to a zero-shot predictor from which random samples were
drawn to generate training data). Results of ftMLDE are compared with the results of standard MLDE (the three pink violins in each plot).

(A) The mean fitness achieved by simulated ftMLDE when EVmutation was used as the zero-shot predictor for training set design.

(B) The mean fitness achieved by simulated ftMLDE when a mask-filling protocol using the MSA Transformer was used as the zero-shot predictor for training set
design.

(C) The mean fitness achieved by simulated ffMLDE when predicted AAG was used as the zero-shot predictor for training set design. See also, Figures S6, S9,
and S10 and Data S3.

an effect on the outcome of ftMLDE. For instance, all ftMLDE
training conditions tended to achieve a higher max fitness
than the relevant MLDE control except those using 384 training
points derived from the top-1,600 Triad samples and encoding
with one-hot or Georgiev parameters. Similarly, fftMLDE tended
to achieve a higher mean fitness than the relevant MLDE con-
trol in all training conditions tested except for a number
using learned embeddings from the MSA Transformer for en-
coding with 384 training points derived from sequence-based
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zero-shot predictors (EVmutation and mask filling using the
MSA Transformer).

The reasons for the observed exceptions to ftMLDE’s general
superiority over MLDE are not immediately clear, though it is
interesting to note that (1) the only training condition run using
384 training points from the top-1,600 Triad samples that
achieved higher max fitness than MLDE was the one using
MSA Transformer encodings and (2) the training conditions
where ftMLDE achieved a lower mean fitness than MLDE were
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those trained using data encoded with the MSA Transformer that
was derived from sequence-based zero-shot predictors. During
training, the embeddings of the MSA Transformer were devel-
oped to be able to predict the identity of masked amino acids
(see a discussion of the masked-token training procedure above
in leveraging sequence data for the design of fitness-enriched
training data) (Rao et al., 2021). The embeddings themselves
thus contain information about what mutations are and are not
likely in a given reference protein based on available sequence
data. Indeed, if they did not, we would be unable to successfully
make zero-shot predictions using a mask-filling protocol with the
MSA Transformer model. It is interesting to ask, then, if models
trained on data derived from zero-shot predictions made by
Triad and encoded using MSA Transformer embeddings have
access to two sets of prior information (one derived from the
data via physics-based Triad calculations and another from
sequence conservation captured in the MSA Transformer em-
beddings), thus making them more effective than models trained
with encodings that do not capture fitness information from
sequence. Similarly, it could be asked if models trained on
data derived from sequence-based zero-shot predictors and en-
coded by the MSA Transformer become overly restricted by a
“double-dose” of sequence-based prior information. Such ef-
fects could explain both observations at the beginning of this
paragraph, and, indeed, why the combination of Triad-derived
data and the MSA Transformer was the most effective ftMLDE
strategy tested. This is, of course, conjecture, and the only clear
conclusion that we can derive from these results is that there is
an interplay between training data makeup and encoding strat-
egy in determining ftMLDE outcome.

MLDE software enables wet-lab application

To facilitate further development of ftMLDE, as well as to allow for
its practical wet-lab application, we developed the MLDE soft-
ware package, available on the Arnold Lab GitHub (https:/
github.com/fhalab/MLDE). This repository contains Python
scripts for (1) performing zero-shot calculations using EVmuta-
tion, DeepSequence, and mask filling using all models from
ESM, ProtBert, and ProtBert-BFD; (2) generating encodings for
any combinatorial library using one-hot, Georgiev parameters,
embeddings from any model in ESM (including those not used
for encoding in this work), and embeddings from ProtBert and
ProtBert-BFD; and (3) performing ftMLDE as described in this
work using any encoding strategy (made available by the MLDE
repository or otherwise). The software package was designed
for use by non-computational and non-ML experts and can be
executed with a simple command line call—all that is required
for executionis a fasta file (or an .a2m/.a3m file for procedures us-
ing MSAs) with the parent protein sequence and a csv file of com-
bination-fitness data for training.

DISCUSSION

We have demonstrated improvements to MLDE that, all together,
can make it more efficient than the lowest-possible-screening-
burden form of DE for navigating an epistatic, hole-filled, combi-
natorial protein fitness landscape. While incorporation of more
informative encodings and models/regression strategies more
amenable to combinatorial protein fitness landscapes was shown
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to improve MLDE outcome somewhat, by far the greatest
improvement came from training set design. Specifically, we
show that a focused training MLDE (ftMLDE) strategy that uses
some type of predictor to avoid minimally informative extremely
low-fitness variants in the training data is typically more capable
than standard MLDE at identifying the most-fit variants in a
combinatorial landscape. From simulated experiments, we note
that the predictor used for training set design in ffMLDE does
not need to be capable of identifying particularly high-fitness var-
iants—in tests run using training data purposefully enriched in
fitness, eliminating holes had a larger effect on outcome than sub-
sequently raising training data mean fitness. The ability of the pre-
dictor to identify diverse sequences, however, is important for
improving the probability of identifying the global maximum of a
combinatorial landscape. This concept is best highlighted when
using predicted AAG of protein stability as a zero-shot strategy
for building training sets, where a balance between sequence di-
versity and sequence fitness in the training data proved important
for maximizing ftMLDE effectiveness (Figures 5C, 6C, and S6). ltis
also worth noting that there appears to be an interplay between
zero-shot and encoding strategies used and ftMLDE effective-
ness, with some combinations of zero-shot predictor and encod-
ing strategy underperforming an MLDE control.

There is, of course, no guarantee that the zero-shot strategies
found to be successful for GB1 would be effective for other pro-
teins or other functions. The use of a sequence-based zero-shot
strategy, for instance, assumes that the target fitness is well rep-
resented by evolutionarily optimized fitness, which will not be the
case for all protein engineering problems. Likewise, use of a
strategy like predicted AAG assumes that stability (or, poten-
tially, structural conservation) plays a role in fitness determina-
tion. In general, the optimal training set design strategy will
depend on the protein (Livesey and Marsh, 2020), and while
we have mainly discussed unsupervised zero-shot strategies
(i.e., those working off protein sequence or structural data alone)
in this work, alternate strategies can be imagined. For instance, if
a protein scaffold has been used in previous protein engineering
studies, a crude non-computational approach would be to avoid
mutations that previously destroyed protein function. More
robustly, a transfer learning approach could be taken, where
an ML model trained using information from related experiments
(e.g., evolution of the same protein for a different task, evolution
of a different protein for the same task, or even data from previ-
ous rounds of MLDE at different positions) is used to predict the
effects of mutations in the present experiment (Shamsi et al.,
2020). Perhaps even more effectively, fitness information from
single-site saturation mutagenesis or error-prone PCR random
mutagenesis libraries could be used to predict the fitness of
combinations. Indeed, Biswas et al., Hie et al., and Hsu et al.
each recently demonstrated approaches where ML models
trained on single-site or random mutation data were capable of
predicting the fitness of combinations of those mutations (Bis-
was et al., 2021; Hie et al., 2020; Hsu et al., 2021). The use of
Gaussian processes in the application of Hie et al. is particularly
interesting, as it enables use of the upper confidence bound al-
gorithm to explicitly balance exploration and exploitation, thus
providing a more principled way to inject sequence diversity
into training set design while maintaining high fitness (Hie
et al., 2020; Srinivas et al., 2010).
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Whatever training set design approach is taken, we would
expect its impact on the outcome of ftMLDE to be specific to
the shape and makeup of the fithess landscape. For instance,
on a non-epistatic landscape, minimalistic traditional DE will
deterministically reach the global (and only) fitness maximum;
in this case, ftMLDE could at best perform as well as traditional
DE regardless of the training set design strategy used (though it
may still be able to do so with a lower screening burden).
Similarly, as the number of holes in a landscape increases, the
probability of a random draw returning primarily uninformative
zero-fitness variants increases, and so implementation of an
effective training set design strategy will have a greater impact.
Thus, the effectiveness of ftMLDE will vary as a function of the
shape of the landscape, the number of holes in the landscape,
and the availability of robust training set design strategies. We
cannot expect that ffMLDE will always outcompete tradi-
tional DE.

Thorough evaluation of the effectiveness of ftMLDE will only
be possible once more combinatorial landscape data beyond
that provided by the GB1 landscape become available. For
now, however, ftMLDE can be used on combinatorial land-
scapes known to be highly epistatic and that either contain
few holes or else for which confident training set design strate-
gies can be employed. The strategies, concepts, and technol-
ogy presented in this work will serve as a foundation for further
evaluation of the generalizability of different encodings, model
architectures, regression strategies, and training set design
strategies for ftMLDE on combinatorial fitness landscapes. By
achieving the GB1 global maximum up to 99.70% of the time
with a total screening burden of 480 protein variants, or up to
9.95% of the time with a screening burden of just 80 variants,
the ftMLDE protocol presented here outcompeted both tradi-
tional DE—which achieved the global optimum just 1.23% of
the time—and our original implementation—which achieved
the global optimum 8.17% of the time with a screening burden
of 570 variants (Wu et al., 2019). This work thus presents a large
advance and is, to the best of our knowledge, the first proven
example of an ML approach directly outcompeting minimalistic
DE. Given the degree to which ftMLDE outcompetes traditional
DE on the GB1 landscape, we hope for many more examples
to come.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

e KEY RESOURCES TABLE
e RESOURCE AVAILABILITY

O Lead contact

O Materials availability

O Data and code availability
e METHOD DETAILS
Alignment generation and EVmutation model training
O Encoding preparation
O Zero-shot predictions
O Mask-filling protocol
o
o

@]

AAG calculations
Simulation details

18 Cell Systems 712, 1-20, November 17, 2021

Cell Systems

O High-fitness simulations
O Zero-shot simulations
O Traditional directed evolution simulations
e QUANTIFICATION AND STATISTICAL ANALYSIS
O Evaluation metrics
O MLDE programmatic implementation
O Inbuilt models
O Compute environment
O Computational hardware information

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
cels.2021.07.008.

ACKNOWLEDGMENTS

The authors thank Sabine Brinkmann-Chen, Patrick Almhjell, and Lucas
Schaus for helpful discussion and critical reading of the manuscript, Zachary
Wu, Kadina Johnston, and Amir Motmaen for helpful discussion, Suresh Gup-
tha for assistance with computational infrastructure development and mainte-
nance, and Paul Chang for assistance with Triad calculations. Additionally, the
authors thank NVIDIA Corporation for donation of two Titan V GPUs used in
this work and Amazon.com for donation of Amazon web services (AWS)
computing credits. This work was supported by the NSF Division of Chemical,
Bioengineering, Environmental and Transport Systems (CBET 1937902) and
by an Amgen Chem-Bio-Engineering Award (CBEA).

AUTHOR CONTRIBUTIONS

Conceptualization, B.J.W., Y.Y., and F.H.A.; methodology, B.J.W. and Y.Y;
software, B.J.W.; validation, B.J.W.; formal analysis, B.J.W.; investigation,
B.J.W.; writing — original draft, B.J.W., Y.Y., and F.H.A.; writing - review & edit-
ing, B.J.W., Y.Y,, and F.H.A,; visualization, B.J.W.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 15, 2020
Revised: May 6, 2021
Accepted: July 26, 2021
Published: August 19, 2021

REFERENCES

Alley, E.C., Khimulya, G., Biswas, S., AlQuraishi, M., and Church, G.M. (2019).
Unified rational protein engineering with sequence-based deep representation
learning. Nat. Methods 16, 1315-1322. https://doi.org/10.1038/s41592-019-
0598-1.

Arnold, F.H. (2011). The library of Maynard-smith: my search for meaning in the
protein universe. Microbe Magazine 6, 316-318. https://doi.org/10.1128/
microbe.6.316.1.

Amold, F.H. (2018). Directed evolution: bringing new chemistry to life. Angew.
Chem. Int. Ed. Engl. 57, 4143—-4148. https://doi.org/10.1002/anie.201708408.
Bai, S., Kolter, J.Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv,
arXiv:1803.01271v2.

Bepler, T., and Berger, B. (2019). Learning protein sequence embeddings us-
ing information from structure. arXiv, arXiv:1902.08661.

Biswas, S., Khimulya, G., Alley, E.C., Esvelt, K.M., and Church, G.M. (2021).
Low-N protein engineering with data-efficient deep learning. Nat. Methods
18, 389-396. https://doi.org/10.1038/s41592-021-01100-y.

Bloom, J.D., Silberg, J.J., Wilke, C.O., Drummond, D.A., Adami, C., and
Arnold, F.H. (2005). Thermodynamic prediction of protein neutrality. Proc.



Cell Systems (2021), https://doi.org/10.1016/j.cels.2021.07.008

Please cite this article in press as: Wittmann et al., Informed training set design enables efficient machine learning-assisted directed protein evolution,

Cell Systems

Natl. Acad. Sci.
0406744102.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language
models are few-shot learners. arXiv, arXiv:2005.14165.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O.,
Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., et al. (2013). API design
for machine learning software: experiences from the scikit-learn project. arXiv,
arXiv:1309.0238v1.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: pre-training
of deep bidirectional transformers for language understanding. arXiv,
arXiv:1810.04805v2.

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C.,
Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., et al. (2019). The
Pfam protein families database in 2019. Nucleic Acids Res 47, D427-D432.
https://doi.org/10.1093/nar/gky995.

Elnaggar, A., Heinzinger, M., Dallago, C., Rihawi, G., Wang, Y., Jones, L.,
Feher, T., Angerer, C., Bhowmik, D., and Rost, B. (2020). ProtTrans: towards
cracking the language of life’s code through self-supervised deep learning
and high performance computing. bioRxiv. https://doi.org/10.1101/2020.07.
12.199554.

Firnberg, E., Labonte, J.W., Gray, J.J., and Ostermeier, M. (2014). A compre-
hensive, high-resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 37,
1581-1592. https://doi.org/10.1093/molbev/msu081.

Franks, W.T., Wylie, B.J., Stellfox, S.A., and Rienstra, C.M. (2006). Backbone
conformational constraints in a microcrystalline U-15N-labeled protein by 3d
dipolar-shift solid-state nmr spectroscopy. J. Am. Chem. Soc. 128, 3154—
3155. hitps://doi.org/10.1021/ja058292x.

Georgiev, A.G. (2009). Interpretable numerical descriptors of amino acid
space. J. Comput. Biol. 76, 703-723. https://doi.org/10.1089/cmb.2008.0173.

Henikoff, S., and Henikoff, J.G. (1992). Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915-10919. https://doi.org/
10.1073/pnas.89.22.10915.

Hie, B., Bryson, B.D., and Berger, B. (2020). Leveraging uncertainty in machine
learning accelerates biological discovery and design. Cell Syst 71, 461—
477.e9. https://doi.org/10.1016/j.cels.2020.09.007.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Hopf, T.A., Green, A.G., Schubert, B., Mersmann, S., Scharfe, C.P.l,
Ingraham, J.B., Toth-Petroczy, A., Brock, K., Riesselman, A.J., Palmedo, P.,
et al. (2019). The EVeouplings Python framework for coevolutionary sequence
analysis. Bioinformatics 35, 1582—-1584. https://doi.org/10.1093/bioinformat-
ics/bty862.

Hopf, T.A., Ingraham, J.B., Poelwijk, F.J., Scharfe, C.P.l., Springer, M.,
Sander, C., and Marks, D.S. (2017). Mutation effects predicted from sequence
co-variation. Nat. Biotechnol. 35, 128-135. https://doi.org/10.1038/nbt.3769.
Hsu, C., Nisonoff, H., Fannjiang, C., and Listgarten, J. (2021). Combining
evolutionary and assay-labelled data for protein fitness prediction. bioRxiv.
https://doi.org/10.1101/2021.03.28.437402.

luchi, H., Matsutani, T., Yamada, K., lwano, N., Sumi, S., Hosoda, S., Zhao, S.,
Fukunaga, T., and Hamada, M. (2021). Representation learning applications in
biological sequence analysis. bioRxiv. hitps://doi.org/10.1101/2021.02.26.
433129.

Jacquier, H., Birgy, A., Le Nagard, H., Mechulam, Y., Schmitt, E., Glodt, J.,
Bercot, B., Petit, E., Poulain, J., Barnaud, G., et al. (2013). Capturing the muta-
tional landscape of the beta-lactamase TEM-1. Proc. Natl. Acad. Sci. USA 110,
13067-13072. https://doi.org/10.1073/pnas.1215206110.

Jaganathan, K., Kyriazopoulou Panagiotopoulou, S.K., McRae, J.F., Darbandi,
S.F., Knowles, D., Li, Y.l., Kosmicki, J.A., Arbelaez, J., Cui, W., Schwartz, G.B.,
et al. (2019). Predicting splicing from primary sequence with deep learning.
Cell 176, 535-548.e24. https://doi.org/10.1016/j.cell.2018.12.015.

Jarvelin, K., and Kekalainen, J. (2002). Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst. 20, 422-448. https://doi.org/10.1145/
582415.582418.

USA 102, 606-611. https://doi.org/10.1073/pnas.

¢? CellPress

Jiang, S., and Zavala, V.M. (2021). Convolutional neural nets: foundations,
computations, and new applications. arXiv, arXiv:2101.0486.

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T.,
and Kanehisa, M. (2008). AAindex: amino acid index database, progress report
2008. Nucleic Acids Res 36, D202-D205. https://doi.org/10.1093/nar/
gkm998.

Kaznatcheev, A. (2019). Computational complexity as an ultimate constraint
on evolution. Genetics 2712, 245-265. https://doi.org/10.1534/genetics.119.
302000.

Li, G., Dong, Y., and Reetz, M.T. (2019). Can machine learning revolutionize
directed evolution of selective enzymes? Adv. Synth. Catal. 367, 2377-2386.
https://doi.org/10.1002/adsc.201900149.

Li, M.M., Huang, K., and Zitnik, M. (2021). Representation learning for net-
works in biology and medicine: advancements, challenges, and opportunities.
arXiv, arXiv:2104.04883v1.

Livesey, B.J., and Marsh, J.A. (2020). Using deep mutational scanning to
benchmark variant effect predictors and identify disease mutations. Mol.
Syst. Biol. 16, €9380. https://doi.org/10.15252/msb.20199380.

Madani, A., McCann, B., Naik, N., Keskar, N.S., Anand, N., Eguchi, R.R,,
Huang, P.-S., and Socher, R. (2020). ProGen: language modeling for protein
generation. bioRxiv. https://doi.org/10.1101/2020.03.07.982272.

Mazurenko, S., Prokop, Z., and Damborsky, J. (2020). Machine learning in
enzyme engineering. ACS Catal 70, 1210-1223. https://doi.org/10.1021/acs-
catal.9b04321.

Miton, C.M., and Tokuriki, N. (2016). How mutational epistasis impairs predict-
ability in protein evolution and design. Protein Sci 25, 1260-1272. https://doi.
org/10.1002/pro.2876.

Ng, P.C., and Henikoff, S. (2003). SIFT: predicting amino acid changes that
affect protein function. Nucleic Acids Res 31, 3812-3814. https://doi.org/10.
1093/nar/gkg509.

Nisthal, A., Wang, C.Y., Ary, M.L., and Mayo, S.L. (2019). Protein stability en-
gineering insights revealed by domain-wide comprehensive mutagenesis.
Proc. Natl. Acad. Sci. USA 116, 16367-16377. https://doi.org/10.1073/pnas.
1903888116.

Ofer, D., and Linial, M. (2015). ProFET: feature engineering captures high-level
protein functions. Bioinformatics 37, 3429-3436. https://doi.org/10.1093/bio-
informatics/btv345.

Olson, C.A., Wu, N.C., and Sun, R. (2014). A comprehensive biophysical
description of pairwise epistasis throughout an entire protein domain. Curr.
Biol. 24, 2643-2651. https://doi.org/10.1016/j.cub.2014.09.072.

Proutski, V., and Holmes, E. (1998). SWAN: sliding window analysis of nucle-
otide sequence variability. Bioinformatics 74, 467-468. https://doi.org/10.
1093/bioinformatics/14.5.467.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, X., Canny, J., Abbeel,
P., and Song, Y.S. (2019). Evaluating protein transfer learning with TAPE. Adv.
Neural Inf. Process. Syst. 32, 9689-9701.

Rao, R., Liu, J., Verkuil, R., Meier, J., Canny, J.F., Abbeel, P., Sercu, T., and
Rives, A. (2021). MSA transformer. bioRxiv. https://doi.org/10.1101/2021.02.
12.430858.

Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classification: a comprehensive review. Neural Comput 29, 2352-2449.
https://doi.org/10.1162/NECO_a_00990.

Riesselman, A., Shin, J.-E., Kollasch, A., McMahon, C., Simon, E., Sander, C.,
Manglik, A., Kruse, A., and Marks, D. (2019). Accelerating protein design using
autoregressive generative models. bioRxiv. https://doi.org/10.1101/757252.

Riesselman, A.J., Ingraham, J.B., and Marks, D.S. (2018). Deep generative
models of genetic variation capture the effects of mutations. Nat. Methods
15, 816-822. https://doi.org/10.1038/s41592-018-0138-4.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick,
C.L., Ma, J., and Fergus, R. (2021). Biological structure and function emerge
from scaling unsupervised learning to 250 million protein sequences. Proc.
Natl. Acad. Sci. USA 7118. https://doi.org/10.1073/pnas.2016239118.

Cell Systems 12, 1-20, November 17, 2021 19




Cell Systems (2021), hitps://doi.org/10.1016/j.cels.2021.07.008

Please cite this article in press as: Wittmann et al., Informed training set design enables efficient machine learning-assisted directed protein evolution,

¢? CellPress

Romero, P.A., and Arnold, F.H. (2009). Exploring protein fitness landscapes by
directed evolution. Nat. Rev. Mol. Cell Biol. 710, 866-876. https://doi.org/10.
1038/nrm2805.

Romero, P.A., Krause, A.,, and Amold, F.H. (2013). Navigating the protein
fitness landscape with Gaussian processes. Proc. Natl. Acad. Sci. USA 770,
E193-E201. https://doi.org/10.1073/pnas.1215251110.

Sarkisyan, K.S., Bolotin, D.A., Meer, M.V., Usmanova, D.R., Mishin, A.S.,
Sharonov, G.V., lvankov, D.N., Bozhanova, N.G., Baranov, M.S., Soylemez,
0., et al. (2016). Local fitness landscape of the green fluorescent protein.
Nature 533, 397—401. https://doi.org/10.1038/nature17995.

Shamsi, Z., Chan, M., and Shukla, D. (2020). TLmutation: predicting the effects
of mutations using transfer learning. J. Phys. Chem. B 124, 3845-3854. https://
doi.org/10.1021/acs.jpcb.0c00197.

Shanehsazzadeh, A., Belanger, D., and Dohan, D. (2020). Is transfer learning
necessary for protein landscape prediction? arXiv, arXiv:2011.03443v1.
Siedhoff, N.E., Schwaneberg, U., and Davari, M.D. (2020). Machine learning-
assisted enzyme engineering. Methods Enzymol 643, 281-315. hitps://doi.
org/10.1016/bs.mie.2020.05.005.

Sinai, 8., and Kelsic, E. (2020). A primer on model-guided exploration of fithess
landscapes for biological sequence design. arXiv, arXiv:2010.10614.

Sirin, S., Apgar, J.R., Bennett, E.M., and Keating, A.E. (2016). AB-bind: anti-
body binding mutational database for computational affinity predictions.
Protein Sci 25, 393—409. https://doi.org/10.1002/pro.2829.

Smith, J.M. (1970). Natural selection and the concept of a protein space.
Nature 225, 563-564. https://doi.org/10.1038/225563a0.

Srinivas, N., Krause, A., Kakade, S.M., and Seeger, M. (2010). Gaussian pro-
cess optimization in the bandit setting: no regret and experimental design.
arXiv, arXiv:0912.3995.

Starr, T.N., and Thornton, J.W. (20186). Epistasis in protein evolution. Protein
Sci 25, 1204-1218. https://doi.org/10.1002/pro.2897.

Steinegger, M., and Séding, J. (2018). Clustering huge protein sequence sets
in linear time. Nat. Commun. 9, 2542. https://doi.org/10.1038/s41467-018-
04964-5.

Tajima, F. (1991). Determination of window size for analyzing DNA sequences.
J. Mol. Evol. 33, 470-473. https://doi.org/10.1007/BF02103140.

Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ACM), pp. 785-794. hittps://doi.org/
10.1145/2939672.2939785.

UniProt Consortium. (2019). UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res 47, D506-D515. https://doi.org/10.1093/nar/gky1049.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, AN.,
Kaiser, .., and Polosukhin, I. (2017). Attention is all you need. arXiv,
arXiv:1706.03762.

20 Cell Systems 712, 1-20, November 17, 2021

Cell Systems

Vig, J., Madani, A., Varshney, L.R., Xiong, C., Socher, R., and Rajani, N.F.
(2020). BERTology meets biology: interpreting attention in protein language
models. arXiv, arXiv:2006.15222.

Wittmann, B.J., Johnston, K.E., Wu, Z., and Arnold, F.H. (2021). Advances in
machine learning for directed evolution. Curr. Opin. Struct. Biol. 69, 11-18.
https://doi.org/10.1016/].sbi.2021.01.008.

Wu, N.C., Dai, L., Olson, C.A., Lloyd-Smith, J.O., and Sun, R. (2016).
Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife
5, e16965. https://doi.org/10.7554/¢eLife.16965.

Wu, Z., Kan, S.B.J., Lewis, R.D., Wittmann, B.J., and Arnold, F.H. (2019).
Machine learning-assisted directed protein evolution with combinatorial li-
braries. Proc. Natl. Acad. Sci. USA 116, 8852-8858. https://doi.org/10.1073/
pnas.1901979116.

Xu, Y., Verma, D., Sheridan, R.P., Liaw, A., Ma, J., Marshall, N.M., McIntosh,
J., Sherer, E.C., Svetnik, V., and Johnston, J.M. (2020). Deep dive into machine
learning models for protein engineering. J. Chem. Inf. Model. 60, 2773-2790.
https://doi.org/10.1021/acs.jcim.0c00073.

Yang, J., Naik, N., Patel, J.S., Wylie, C.S., Gu, W., Huang, J., Ytreberg, F.M.,
Naik, M.T., Weinreich, D.M., and Rubenstein, B.M. (2020). Predicting the
viability of beta-lactamase: how folding and binding free energies correlate
with beta-lactamase fitness. PLoS One 15, €0233509. https://doi.org/10.
1371/journal.pone.0233509.

Yang, K.K., Wu, Z., and Arnold, F.H. (2019). Machine-learning-guided directed
evolution for protein engineering. Nat. Methods 76, 687-694. htips://doi.org/
10.1038/541592-019-0496-6.

Yang, Y., Qian, W., and Zou, H. (2018). Insurance premium prediction via
gradient tree-boosted tweedie compound poisson models. J. Bus. Econ.
Stat. 36, 456-470. https://doi.org/10.1080/07350015.2016.1200981.

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in
deep learning based natural language processing. IEEE Comput. Intell. Mag.
13, 55-75. https://doi.org/10.1109/MCI.2018.2840738.

Yu, F., Koltun, V., and Funkhouser, T. (2017). Dilated residual networks. arXiv,
arXiv:1705.09914.

Zhang, Y., Zhou, X., and Cai, X. (2020). Predicting gene expression from DNA
sequence using residual neural network. bioRxiv. https://doi.org/10.1101/
2020.06.21.163956.

Zhou, H., Qian, W., and Yang, Y. (2020). Tweedie gradient boosting for
extremely unbalanced zero-inflated data. Commun. Stat. Simul. Comput.
1-23. https://doi.org/10.1080/03610918.2020.1772302.

Zhu, Z., Wang, Y., Zhou, X., Yang, L., Meng, G., and Zhang, Z. (2020). SWAV: a
web-based visualization browser for sliding window analysis. Sci. Rep. 10,
149. https://doi.org/10.1038/s41598-019-57038-x.



Please cite this article in press as: Wittmann et al., Informed training set design enables efficient machine learning-assisted directed protein evolution,
Cell Systems (2021), https://doi.org/10.1016/j.cels.2021.07.008

Cell Systems

STARXxMETHODS

KEY RESOURCES TABLE

¢? CellPress

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Protein G Domain B1 (GB1) Combinatorial Wu et al., 2016 https://doi.org/10.7554/eLife. 16965

Fitness Landscape
Protein G Domain B1 (GB1) Structure
Encodings, training indices, and other information

needed for replicating this work; simulation results
by model; summary statistics for all simulations

Additional figures too numerous to include in the
supplemental

Protein Data Bank (PDB)
This Study

This Study

PDB: 2GI9
https://doi.org/10.22002/D1.1958

https://github.com/fhalab/MLDE/
SupplementalFigures; https://data.
caltech.edu/badge/latestdoi/318607673

Software and algorithms

Triad

Anaconda Package Manager

Tasks Assessing Protein Embeddings (TAPE)
Evolutionary Scale Modeling (ESM)

ProtTrans
Machine Learning-Assisted Directed Evolution (MLDE)

Keras Python Package
XGBoost Python Package
scikit-learn Python Package

Protabit, Pasadena,
CA, USA

Rao et al., 2019

Rao et al., 2021;
Rives et al., 2021

Elnaggar et al., 2020
This Study

Chen and Guestrin, 2016
Buitinck et al., 2013

https://triad.protabit.com/

https://anaconda.org/; Specific package
versions used in this work are given in the
provided mide.yml and mlde2.yml files on

the GitHub repository associated with this

work (https://github.com/fhalab/MLDE);
especially important packages are listed in
subsequent entries
https://github.com/songlab-cal/tape-neurips2019

https://github.com/facebookresearch/esm

https://github.com/agemagician/ProtTrans

https://data.caltech.edu/badge/latestdoi/
318607673

https://anaconda.org/conda-forge/keras
https://anaconda.org/conda-forge/xgboost
https://anaconda.org/anaconda/scikit-learn

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Frances Arnold

(frances@cheme.caltech.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

@ Data needed to replicate simulations have been deposited at Caltech Data and are publicly available as of the date of publi-
cation. DOls are listed in the key resources table. The raw simulation data reported in this study cannot be deposited in a public
repository because it is multiple terabytes in size. To request access, contact Bruce Wittmann at bwittman@caltech.edu. In
addition, summary statistics describing these raw data have been deposited at Caltech Data and are publicly available as
of the date of publication. DOIs are listed in the key resources table. This paper analyzes existing, publicly available data.

The accession numbers for the datasets are listed in the key resources table.

@ All original code has been deposited at Caltech Data and is publicly available as of the date of publication. DOlIs are listed in the

key resources table.

@ Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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METHOD DETAILS

Alignment generation and EVmutation model training

The EVcouplings webapp (Hopf et al., 2019) was used to both generate multiple sequence alignments (MSAs) as well as train the
EVmutation model needed for zero-shot prediction. The GB1 sequence (See encoding preparation, below) was passed into the
EVcouplings webapp, and alignments were made against the UniRef100 database for bitscore inclusion thresholds of 0.30, 0.35,
0.40, 0.45, and 0.50. All other EVcouplings parameters were kept at their default values (Alignment threshold type = Bitscore; Search
iterations = 5; Position filter = 70%; Sequence fragment filter = 50%; Removing similar sequences = 90%; Downweighting similar
sequences = 80%). A bitscore threshold of 0.40 returned an alignment with the most redundancy-reduced sequences (56) that
covered all variable positions in the GB1 landscape at >70% coverage (i.e., less than 30% of aligned sequences had gaps at the
positions of interest). Bitscores of 0.30 and 0.35 returned more redundancy-reduced sequences (2427 and 664, respectively), but
failed to cover position 54 in the landscape. Bitscores of 0.45 and 0.50 covered all positions, but returned less redundancy-reduced
sequences (30 and 27, respectively). We decided to move forward with the alignment and EVmutation model generated at a bitscore
of 0.40. The alignment (in.a2m format) and the parameters for the EVmutation model trained on it (the “.model” file) were downloaded
from the EVcouplings webapp. The alignment downloaded would also be used to train a DeepSequence VAE as well as build encod-
ings and make zero-shot predictions using the MSA Transformer (See encoding preparation, EVmutation/DeepSequence calcula-
tions, and mask-filling protocol, all below).

Encoding preparation

We investigated encoding using three different strategies: one-hot, physicochemical parameters, and learned embeddings. One-hot
encodings were prepared by first assigning each amino acid an index. To encode each GB1 variant, a 4x20 (“N amino acids per
combo” x “N possible amino acids”) matrix filled with 0’s was instantiated where the index of each row corresponded to the position
in the variant. Each row of the matrix was then populated with a single value of “1” at the index corresponding to the appropriate
amino acid. Repeating this procedure for all GB1 variants with experimentally measured fithess yielded a 149,361x4x20 tensor
representing the complete set of one-hot encodings.

Physicochemical encodings were prepared using the descriptors originally published by Georgiev (Georgiev, 2009), using the
values found in code published by Ofer & Linial (Ofer and Linial, 2015). To encode all variants, a 160,000x4x 19 tensor was instan-
tiated (“N possible combos” x “N amino acids per combo” X “N Georgiev parameters”). Every possible variant was encoded using
all 19 Georgiev parameters, and the encodings were stored in the instantiated tensor. The last two dimensions of the tensor were then
flattened to produce a 160,000x 76 matrix and each column of the matrix was mean-centered and unit-scaled. The final encoding
tensor was generated by extracting only those rows belonging to GB1 variants with experimentally measured fithess, then reshaping
the last dimension to produce a 149,361 x4x19 tensor.

Learned embeddings were prepared using the pre-trained models published in the TAPE, ESM, and ProtTrans GitHub repositories
(Alley et al., 2019; Bepler and Berger, 2019; Elnaggar et al., 2020; Rao et al., 2019, 2021; Rives et al., 2021). For the non-MSA Trans-
former models, embeddings were generated by first building fasta files containing the full amino acid sequences of all 160,000
possible GB1 variants at positions 39, 40, 41, and 54. The template sequence used was:

MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

The sequences contained in the fasta file were then embedded using the appropriate code provided by each of the repositories.
For the TAPE models (“Bepler”, “ResNet”, “UniRep”, “TAPE-Transformer”, and “LSTM") the tape-embed command from the soft-
ware associated with the original publication by Rao et al. (https://github.com/songlab-cal/tape-neurips2019) was used to generate
embeddings. For the ESM model (esm1b_t33_650M_UR50S), the example code provided in the “Quick Start” section of the GitHub
repository (https://github.com/facebookresearch/esm#quick-start-) was used to generate embeddings. For the ProtTrans model
(“ProtBert-BFD"), code from the example Jupyter notebook provided on the associated GitHub repository (https://github.com/
agemagician/ProtTrans/blob/master/Embedding/PyTorch/Advanced/ProtBert-BFD.ipynb) was used to generate embeddings.
Each of these processes generated tensors of shape 160,000xSxL (“N possible combos” X “Tokenized Sequence Length” X
“L latent dimensions™). The value of L varied by encoding used, and is given in Table S1. The tokenized sequence length (S) varied
depending on whether or not the embeddings for “<cls>" and “<eos>" tokens were returned alongside the embeddings for the
different amino acids. The value of S was taken into account in the next step, where the embeddings corresponding to amino acids
varied in the GB1 dataset (Using 0-indexing, this was indices 38, 39, 40, and 53 of the middle dimension of the output tensor if no
<cls> token was added, and 39, 40, 41, and 54 if a <cls> token was added) were extracted from the output tensor. Using the
same procedure as with the physicochemical parameters, the resultant 160,000 x4 x L tensor was mean-centered and unit-scaled
to produce a 160,000 x4L matrix. Finally, the appropriate rows were isolated and the last dimension reshaped to produce a final
learned embedding encoding tensor of shape 149,361 x4 xL.

Unlike all other models tested, the MSA Transformer takes an MSA as an input rather than a sequence. To build variant MSAs, we
used the MSA generated by the EVcouplings webserver (See alignment generation and EVmutation model training, above) as a tem-
plate. To begin, we filtered out all lowercase characters and the “.” character for each sequence in the template MSA. Next, we
removed any duplicate sequences from the filtered MSA. We used this filtered and de-duplicated MSA as a template to build an
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MSA for each mutant in the GB1 landscape. When building mutants, we changed only the GB1 reference sequence, keeping all other
sequences in the MSA constant. The resultant 160,000-mutant MSAs were then streamed through the MSA Transformer, extracting
the embeddings for the mutant GB1 positions in the first sequence of each alignment (corresponding to the mutant GB1 sequence).
This procedure resulted in a 160,000x4x 768 tensor (where “768" is the number of latent dimensions assigned to each token by the
MSA Transformer). This tensor was then mean-centered and unit-scaled following the same procedure as for all other encodings
before being filtered to produce a tensor of shape 149,361 x4 x768.

The encodings generated from the above procedures are made available at Caltech Data. Code provided on the MLDE repository
enables replication of the encodings generated for the GB1 combinatorial landscape.

Zero-shot predictions

EVmutation/DeepSequence calculations

EVmutation calculations were run using the model downloaded from the EVcouplings webserver (See alignment generation and
EVmutation model training, above). This model had been trained on the MSA of the GB1 reference sequence generated against
the UniRef100 database with a bitscore inclusion threshold of 0.40. The example code provided in the EVcouplings GitHub repository
was used as a template for making zero-shot predictions of GB1 fitness using the downloaded EVmutation model (https://github.
com/debbiemarkslab/EVcouplings/blob/develop/notebooks/model_parameters_mutation_effects.ipynb). Code is provided in the
MLDE GitHub repository for replicating the predictions made in this work, as well as for applying EVmutation to any other combina-
torial landscape.

To perform DeepSequence calculations, the associated variational autoencoder (VAE) first needed to be trained. Using the same
MSA downloaded along with the EVmutation model, we trained the DeepSequence VAE using code provided in the DeepSequence
GitHub repository (https://github.com/debbiemarkslab/DeepSequence/blob/master/examples/run_svi.py). The code was modified
to allow passing in the GB1 MSA. Predictions were subsequently made using the trained VAE by following additional example code
provided on the DeepSequence GitHub repository (https://github.com/debbiemarkslab/DeepSequence/blob/master/examples/
Mutation%20Effect%20Prediction.ipynb). We used 2000 prediction iterations for making predictions. Code for training a
DeepSequence VAE on any combinatorial landscape is provided in the MLDE GitHub. Code for making predictions using a trained
DeepSequence VAE is also provided.

Mask-filling protocol

Zero-shot predictions using a mask-filling protocol were performed for all models provided in the ESM GitHub repository as well as
the models ProtBert and ProtBert-BFD in the ProtTrans GitHub repository (Elnaggar et al., 2020; Rao et al., 2021; Rives et al., 2021).
For each of these models, we tested both a naive and conditional mask-filling strategy for making zero-shot predictions of GB1
fitness. For GB1, both protocols model the probability

P(combo|sconst) = P(a@32224088418854|Sconst) (Equation 2)

where s¢opst is the sequence of the non-varying positions in the combinatorial landscape and aa, gives the identity of the amino acid at
position x in combination “combo”. The difference between the naive and conditional probability protocols is how the probability
P(aazgaasnaas1aas4|Sconst) is calculated. Naive probability assumes that variable positions are independent, and so calculates

P(combo|Sconst) = P(aass |Sconst)P(8@40|Sconst )P (@@41|Sconst )P(@8s4|Sconst ) - (Equation 3)

Conditional probability, in contrast, does not assume independence of the variable positions and instead directly solves the prob-
ability given by Equation 2 using the product rule of probability. Note that, for all non-MSA Transformer methods, the parent GB1
sequence was used to define s;qnst, While for the MSA Transformer, the MSA used for EVmutation (after applying the same filtering
and de-duplication procedure from encoding preparation, above) was used to define s¢qnst- Only the variable positions in the refer-
ence sequence of this MSA were masked (rather than the full alignment column corresponding to variable positions), so the MSA
Transformer maintained full access to the information provided by other sequences in the MSA.

The naive mask-filling protocol began by masking all variable positions in the GB1 reference sequence. This masked sequence (or
masked alignment) was then passed into the model and the logits of the masked positions were extracted to yield a 4 XA matrix,
where “A” is the alphabet size of the model being used. A softmax function was then applied over the alphabet dimension to yield
the probability of each amino acid (and other special characters included in the alphabet, though the probability of these was vanish-
ingly small) occurring at each position given the context of the non-varying GB1 sequence (e.g., the probability P(aay|Sconst) for x =
39, 40, 41 and 54, where the position along the first axis of the matrix corresponds to a given x); the log of the matrix was next taken
to convert probability to log-probability. Finally, log-probability of a combination was calculated using

log(P(combo|Sconst)) = log(P(aass|Sconst)) +109(P(aa40[Sconst)) + 109 (P(@a41|Sconst) ) + 10g(P(aa@s4|Sconst)),

where spst is the sequence of the non-varying positions in the combinatorial landscape and aa, gives the identity of the amino acid at
position x in combination “combo”.

The conditional mask-filling protocol allowed for dependencies between the amino acid identities at the variable positions. We
calculated conditional probability by summing all possible factorizations of P(combo|sconst) using the product rule of probability.
For instance, one possible factorization using the product rule is
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P(combo|Sconst) = P(a839884082418854|Sconst)
= P(aaseaasnaas |aassSconst)P(@as4[Sconst)

P(aasgaaso|aas1a@saSconst )P (8841|8854 const )P (@854|Sconst)
= P(aaag|adsoaas aasaSconst )P (8840|88418854Sconst )P (@841 |8854Sconst ) P(@&s4|Sconst ) -

In words, this factorization translates to (1) the probability of a specific amino acid at position 54 when all other variable
positions are masked multiplied by (2) the probability of a specific amino acid at position 41 given the specific amino acid a
position 54 but masking positions 39 and 40 multiplied by (3) the probability of a specific amino acid at position 40 given the
specific amino acids at positions 41 and 54 but masking position 39 multiplied by (4) the probability of a specific amino acid at
position 39 given the specific amino acids at positions 40, 41, and 54; all probabilities are calculated within the context of the remain-
ing GB1 sequence. Of course, the order of factorization is arbitrary (for instance, in the first step we could have instead factored to
P(aasnaasiaass|aaseSconst)P(aaas|Sconst)), and any ordering of factorization can reconstruct the probability P(aaszsaasoaas1aasa[Sconst)-
There are 24 total factorizations possible (all permutations of the 4 variable positions), and the final conditional probability
P(aasgaasoaas1aass|Sconst) Was calculated by summing them all together.

Calculation of the conditional probability was much more expensive than the calculation of naive probability. For instance, while
determination of naive probability for GB1 required calculating just the variable-position logits of the GB1 sequence with variable po-
sitions masked (a single pass through a model), calculation of conditional probability required calculating the variable-position logits
of all 34,481 possible masked combinations. While trivial for smaller models, calculating conditional probability using larger models
with complex transformations (such as the MSA Transformer or ESM1b) could become expensive. Regardless, calculation of
component probabilities used for calculating the overall conditional probably was performed in the same way as for naive probability.
For each component probability: (1) appropriate positions in the GB1 sequence were masked, (2) a softmax was taken over the al-
phabet dimension, and (3) the appropriate probabilities were extracted from the resultant probability matrix. Note that, unlike for naive
calculation, we did not take the log of the calculated probability matrices —the necessity of calculating a sum over the different fac-
torizations precluded this possibility. While such a practice may lead to numerical instability for large combinatorial libraries, we
observed no such problems for GB1.

Code for calculating the naive and conditional probabilities of any combinatorial library using any model evaluated in this study is
provided in the MLDE package.

AAG calculations

AAG calculations were performed using a local copy of the Triad software suite (version 2.1.1, Protabit, Pasadena, CA, USA: hitps://
triad.protabit.com/). To begin, the template protein crystal structure (PDB: 2GI9) was prepared for calculations via the below
command:

$ ~/triad-2.1.2/triad.sh ~/triad-2.1.2/apps/preparation/proteinProcess.py -struct 2GI9.pdb -crosetta

This command generated two files: 2GI9_process.pdb and 2GI9_prepared.pdb (Franks et al., 2006). The “_process” pdb file
is the 2GI9.pdb file prepared for downstream Triad calculations but without any structural minimization. The “_prepared” pdb
file is the 2GI9.pdb file prepared for downstream Triad calculations but with an added constrained minimization. The flexible
backbone calculations were run using the standard Rosetta scoring function and the “_prepared” pdb file. The command
line call is below:

$ ~/triad-2.1.2/tools/openmpi/bin/mpirun -np 96 ~/triad-2.1.2/triad.sh ~/triad-2.1.2/apps/cleanSequences_BjwMod.py -struct./
2GI9_prepared.pdb -inputSequences 2GI9.mut -crosetta -calculateRmsd -minDesign -inputSequenceFormat pid —floatNear-
byResidues 2>8&1 | tee $OUTPUT

Note that the cleanSequences_BjwMod.py file is a version of the inbuilt Triad script cleanSequences.py modified to also output
root mean squared deviation (RMSD) of the protein backbone. The ‘inputSequences’ file ‘2GI9.mut’ describes the mutations for
all 149,360 GB1 variants relative to the parent GB1 protein. The fixed backbone calculations were run with the “_process” pdb
file using a Rosetta scoring function that has a Van der Waals term with a softer inner wall, reducing the chance that steric clashes
produce overly high energies. The command line call for the flexible backbone calculations is below:

$ ~/triad-2.1.2/tools/openmpi/bin/mpirun -np 12 ~/triad-2.1.2/triad.sh ~/triad-2.1.2/apps/cleanSequences.py -struct../pdbs/
2GI9_process.pdb -inputSequences../2GI9.mut -rosetta -inputSequenceFormat pid -floatNearbyResidues -soft 2>&1 | tee
$OUTPUT

There was no output file directly produced by the cleanSequence.py script, hence the captured output. The captured output file
generated was parsed to extract AG values for each protein variant, which were in turn used to calculate AAG values relative to the
parent protein. In this work, we defined a negative AAG to be stabilizing and a positive AAG to be destabilizing relative to the parent
protein; this necessitated flipping the sign of the literature AAG values when building Figure S2, as Nisthal et al. defined opposite
meanings of the sign of AAG (Nisthal et al., 2019).
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Simulation details

Encoding comparison simulations

The simulation procedure for comparing encoding strategies was designed to enable pairwise comparison of simulation results using
the different encodings. For a given simulation, each of the tested encodings shared the same training set (same variant identities),
cross-validation indices, and random seeds used to initialize models that rely on randomness for training.

All encoding comparison simulations were run with a randomly drawn training set of 384, 48, or 24 variants (drawn without replace-
ment) and five-fold cross-validation. Some model classes scale poorly with large input spaces, and so, due to computational
expense, not all inbuilt MLDE models were used when encoding using learned embeddings from the TAPE transformer, the MSA
Transformer, ESM1b, ProtBert-BFD, UniRep, and the TAPE LSTM. For these encoding strategies, when training size was 384, the
sklearn RandomForestRegressor, sklearn BaggingRegressor, and sklearn KNeighborsRegressor classes were omitted from the
ensemble of models trained. When training size was 24 or 48, the sklearn ARDRegression, sklearn BaggingRegressor, and sklearn
KNeighborsRegressor classes were omitted from the ensemble of models trained. All other simulations for the other encodings were
performed using all 22 inbuilt MLDE models (inbuilt models for architectures). Trained models were then ranked according to their
cross-validation mean squared error (MSE) and the predictions of the top three were averaged to predict the fitness of the remaining
variants (MLDE programmatic implementation for details on model averaging). The values of NDCG, max achieved fitness, and mean
achieved fithess reported for this set of simulations are all based on these predictions.

High-fitness simulations

A training set of designed high-fitness training data was produced by sampling variants such that 50% had a fitness greater than or
equal to the value of a given threshold and 50% had fitness below. Additionally, it was enforced that no variant with fitness greater
than 0.34 could be chosen. Threshold values of 0.011, 0.034, 0.057, and 0.080 were used in this study to design fitness-enriched
training sets.

To generate multiple training sets for a given threshold, the GB1 dataset was first filtered to exclude all variants with fitness greater
than 0.34. The remaining data were then split into two sets: one set had all variants with fithess greater than or equal to the threshold
and the other set had all variants with fitness less than the threshold. Equal numbers of samples were then drawn at random from the
two sets without replacement. Training data for the “no-threshold” control discussed in the results section and presented in Figures
3C-3E (“100% Training Fitness > 0”) was generated by sampling at random from the GB1 dataset filtered to exclude variants with
fitness greater than 0.34.

For each of the four thresholds and the no-threshold control, 2000 training sets were generated, each containing 384 vari-
ants (10,000 training sets of 384 variants in total). Each training set was then fed into the simulated MLDE pipeline using Georgiev
parameters for variant encoding and 5-fold cross-validation for model selection. For the sake of computational efficiency, only
CPU-bound models (those from scikit-learn and XGBoost) were trained for these simulations. Trained models were then ranked
according to their cross-validation MSE and the predictions of the top three were averaged to predict the fitness of the unlabeled
variants. The values of NDCG, max achieved fitness, and mean achieved fitness reported for this set of simulations are all based
on these predictions.

Zero-shot simulations

To generate training data using a zero-shot predictor, the GB1 dataset was first ranked by the zero-shot predictions. Next,
the top 1600 variants (i.e., the 1600 variants predicted to have the highest fitness) were identified, and 2000 random samples
of 384 were drawn at random without replacement. This process was repeated for the top-ranked 3200, 6400, 9600, 12,800,
16,000, and 32,000 variants, resulting in 14,000 total training sets per zero-shot predictor, each containing 384 random
samples, for 42,000 training sets in total (3 zero-shot strategies x 14,000 training sets/zero-shot strategy = 42,000 total training
sets).

For the 384-training-sample simulations, each of the 42,000 training sets was then fed into the simulated MLDE pipeline.
Again, for the sake of computational efficiency, only CPU-bound (scikit-learn and XGBoost) models were evaluated. Simulations
were performed using one-hot, Georgiev parameters, and learned embeddings from the MSA Transformer for encoding with
5-fold cross-validation for determining model effectiveness. As with the encoding comparison simulations, the models from
the sklearn classes RandomForestRegressor, BaggingRegressor, and KNeighborsRegressor were omitted when encoding
using the MSA Transformer due to poor scaling with input feature size. Trained models were ranked according to their
cross-validation MSE and the predictions of the top three were averaged to predict the fithess of the remaining variants.
Only the top-predicted unsampled combinations that could be constructed by recombining combinations in the training data
were evaluated, enforcing a confidence threshold on our predictions and focusing all resources on regions believed to contain
the highest-fitness protein variants. The reported values of max achieved fitness and mean achieved fitness reported for this set
of simulations are all derived from this restricted set of evaluated proteins, though the fitness value returned is still normalized to
the full unsampled set. For a given simulation, the global maximum is considered to be achieved if it is present in either the
training data or the evaluated predictions. The random controls presented in the results and in Figures 5 and 6 are derived
from the encoding comparison simulations, but only evaluating the CPU models and employing the same confidence threshold
strategy for evaluating predictions.
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For the 24- and 48-training-sample simulations, the first 24 and 48 variants in each of the full 384-sample training sets were used
for training, respectively. The models ARDRegression, BaggingRegressor, and KNeighborsRegressor were omitted from the
ensemble trained when using the MSA Transformer for variant encoding. Otherwise, the procedure was the same as for the 384-
training-sample simulations.

Traditional directed evolution simulations

Traditional DE simulations were performed from every variant in the GB1 landscape with non-zero starting fitness. Zero-fitness var-
iants were omitted from these simulations as a researcher would never begin a DE study from such a variant. As in the MLDE sim-
ulations, variants with imputed fitness in the GB1 dataset were ignored for these simulations.

A greedy walk simulation begins with 4 potential positions to evaluate. One of these positions is selected, the fitness values of all
amino acids at this position are evaluated, and the best mutation is fixed. In the next round, there are three positions to evaluate. One
of these positions is selected, all mutants are evaluated, and the best mutation is fixed again. This process continues until all positions
have been evaluated; the fitness of the best variant identified in the last round is returned. The results reported for the greedy walk
simulations consider all possible paths from all non-zero-fitness starting variants (with 24 paths per starting variant and 119,814 non-
zero fitness starting points, this is 2,877,216 simulated greedy walks in total).

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics

The evaluation metrics used in this work include (1) the max normalized true fitness of the M-highest-ranked variants, (2) the mean
normalized true fitness of the M-highest-ranked variants, and (3) the ranking metric “normalized discounted cumulative gain” (NDCG)
of all predictions (where “gain” is defined as the normalized fitness of unsampled variants). NDCG was calculated using scikit-learn’s
‘ndecg_score()* function, which uses the form

N f, N ‘I
NDCG = (fz_;log z(i+1))/(,z_1:log 2(i+1))’

where f is the true fitness of all (N) unsampled variants ranked by predicted fitness and ¥’ is the true fitness of all unsampled variants
ranked by true fitness (i.e., the ideal ordering). When evaluating a single MLDE simulation, the fitness was normalized to the highest-
fitness variant in the unsampled data. Typically, this was equivalent to normalizing to the highest fitness in the entire GB1 dataset, as it
was extremely unlikely that the highest-fitness variant in the dataset was drawn in the training set. Still, normalizing to the highest
unsampled fitness allowed us to make more fair comparisons between MLDE simulations in the rare case that the highest-fitness
value appeared in the training data.

MLDE programmatic implementation

The MLDE algorithm takes as input all encodings corresponding to the combinations of amino acids found in the training data along
with their measured fitness values. During the training stage, these sampled combinations are used to train a version of all inbuilt
model architectures (inbuilt models). Specifically, k-fold cross-validation (Box 1) is performed to train each model using the default
model parameters; mean validation error (Box 1) from the k-fold cross-validation (mean squared error) is recorded for each architec-
ture. All model instances trained during k-fold cross-validation are also stored for later use. For instance, if evaluating all 22 inbuilt
model architectures with 5-fold cross-validation, 22 x 5 = 110 total trained model instances are recorded. For making predictions,
the top N model architectures (those with the lowest cross-validation error) are first identified. For each of the top N model architec-
tures, predictions are made on the unsampled combinations by averaging the predictions of the kxN model instances stored during
cross-validation. For instance, if testing the top 3 model architectures identified from 5-fold cross-validation, this means that the pre-
dictions of 3 x 5 = 15 total models (3 architectures x 5 model instances/architecture saved during cross-validation) are used for pre-
diction. For all simulations presented in this work, we evaluated model architectures using 5-fold cross-validation and then made
predictions using the top 3 (again, meaning that the predictions of 3 x 5 = 15 total models were averaged for each simulation).

Inbuilt models

Keras

Five separate neural network architectures were implemented using the Python package Keras: three fully connected neural network
architectures and two 1D-convolutional neural network architectures. The identities and default values of tunable hyperparameters
are given in Table S8. All neural networks were trained with a batch size of 32 using the “adam” optimizer for at most 1000 epochs
with early stopping after 10 epochs with no improvement in validation error (calculated against the cross-validation test data).

The fully connected neural networks differed in the number of hidden layers: zero, one, or two. After each hidden layer, a batch
normalization layer was employed, followed by an exponential linear unit (ELU) nonlinearity. A single dropout layer was used before
the output layer. The output layer was a scalar value passed through an ELU nonlinearity.

The convolutional neural networks differed in the number 1D convolutional layers: one or two. After each convolutional layer, a
batch normalization layer was employed followed by an ELU nonlinearity. Following the convolutional layers, the output matrix
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was flattened with a GlobalAveragePooling1D layer. After flattening, a single dropout layer was used before the output layer. The
output layer was a scalar value passed through an ELU nonlinearity.

XGBoost

Four gradient boosting approaches were implemented in MLDE using the Python package XGBoost (Chen and Guestrin, 2016): both
tree and linear base models were implemented with both “reg:squarederror” and “reg:tweedie” objectives. For reg:tweedie,
‘tweedie_variance_power‘ was set to 1.5. The identities and default values for tunable XGBoost hyperparameters are given in Table
S9. Unless explicitly mentioned in Table S9, all XGBoost parameters were held at their default values as detailed in the official
XGBoost documentation. The descriptions for all parameters can also be found in the official XGBoost documentation. All XGBoost
models used in this work were implemented with early stopping: ‘eval_metric* was set to “rmse” when the “reg:squarederror” was
used and “tweedie-nloglik@1.5” when the “reg:tweedie” objective was used; validation error was calculated against the cross-vali-
dation test data; training was terminated if validation error did not decrease for 10 epochs or 1000 total training epochs had passed.
Scikit-learn

Only scikit-learn models were used in our original implementation of MLDE (Buitinck et al., 2013; Wu et al., 2019). To remain consis-
tent with this first implementation, the regressor models from scikit-learn that were procedurally effective (i.e., those that did not
consistently error during operation or else take a very long time to train) while using default parameters in our previous implementation
were also used in this version. The identities and default values for tunable scikit-learn hyperparameters are given in Table S10. Un-
less explicitly mentioned in Table S10, all scikit-learn parameters were held at their default values as detailed in the official scikit-learn
documentation. The descriptions for all parameters can also be found in the official documentation.

Compute environment
All MLDE code is written in Python using Anaconda as the environment manager. The Anaconda environments "mide.yml" and
“mlide2.yml” within the MLDE GitHub page can be used to build environments in which MLDE is known to be stable.

Computational hardware information

Simulations were performed across three workstations, a local server, and an r5.24xlarge Amazon Web Services (AWS) EC2
instance. All three workstations ran on Ubuntu 18.04.3 LTS. Two of the workstations contained Intel i7-8700 processors with an
NVIDIA Titan V and NVIDIA GeForce RTX 2070 GPU; the third workstation contained an AMD Ryzen 9 3900x processor with two
NVIDIA RTX 2070 GPUs. The local server ran on Ubuntu 20.04.02 LTS and contained 2 X Intel Xeon Gold 6248R processors; there
were no GPUs in the local server. Triad calculations were performed on an Intel-containing desktop (fixed backbone) and a
c5.24xlarge AWS EC2 instance (flexible backbone). Information regarding which computer ran which specific simulation/computa-
tion with which specific piece of hardware is available upon request.
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