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Abstract The potential for adaptive evolution to enable species persistence under a changing

climate is one of the most important questions for understanding impacts of future climate change.

Climate adaptation may be particularly likely for short-lived ectotherms, including many pest,

pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for

accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple

theoretical framework used in conservation biology—evolutionary rescue models—can be used to

investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as

a focal case. Synthesizing current evidence, we find that short mosquito generation times, high

population growth rates, and strong temperature-imposed selection favor thermal adaptation.

However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal

tolerance within mosquito populations, the environmental sensitivity of selection, and the role of

phenotypic plasticity constrain our ability to make more precise estimates. We describe how

common garden and selection experiments can be used to fill these data gaps. Lastly, we

investigate the consequences of mosquito climate adaptation on disease transmission using Aedes

aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here

can be applied to any disease vector or pest species and type of environmental change.

Introduction
Climate change is expected to have major impacts on species distributions in coming decades, and

predicting these impacts is an area of intense research interest. As their basic physiological and eco-

logical traits depend heavily on temperature, climate impacts are expected to be particularly strong

for ectotherms (Deutsch et al., 2008). This encompasses many taxa that threaten human health and

well-being, including agricultural and forest pests, wildlife and plant pathogens, and disease vectors,

for which accurately predicting distributions under climate change is critical for protecting human

and animal health. Several prominent reviews have found that climate change is expected to

increase, decrease, or, most commonly, shift the distributions of these taxa due to nonlinear and

interactive effects of temperature and other climatic factors (Porter et al., 1991; Harvell et al.,

Couper et al. eLife 2021;10:e69630. DOI: https://doi.org/10.7554/eLife.69630 1 of 36

REVIEW ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.69630
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


2002; Deutsch et al., 2008; Rohr et al., 2011; Altizer et al., 2013; Lafferty and Mordecai, 2016;

Pinsky et al., 2019; Lehmann et al., 2020; Rohr and Cohen, 2020). However, these predictions

largely assume that species climate responses are fixed, ignoring the potential for adaptive

responses.

Evidence of evolutionary adaptation to contemporary climate change has emerged for diverse

taxa including mammals (Réale et al., 2003), fish (Kovach et al., 2012), plants (Franks et al., 2007;

Exposito-Alonso et al., 2018), birds (Nussey et al., 2005; Karell et al., 2011), reptiles

(Logan et al., 2018), and insects (Umina et al., 2005). However, while climate adaptation has typi-

cally been studied in the context of conservation biology, population genetics theory suggests that

evolutionary adaptation is most likely for short-lived species with high population growth rates—

properties of many pest, pathogen, and vector species (Lynch and Lande, 1993; Bürger and Lynch,

1995; Kingsolver, 2009). For several of these species, recent research demonstrates the potential

for climate adaptation within a few decades. For example, in the European gypsy moth (Lymantria

dispar)—one of the world’s most destructive forest pests (Montgomery and Wallner, 1988)—shifts

in thermal tolerance were evident within 30 years of population expansion (Friedline et al., 2019).

Similarly, in the Asian tiger mosquito (Aedes albopictus)—a vector of yellow fever, dengue, and chi-

kungunya viruses—adaptive responses to novel temperature conditions were detected within 10–30

years of population expansions (Medley, 2010; Urbanski et al., 2012; Egizi et al., 2015;

Medley et al., 2019). Despite this emerging evidence of the potential for rapid climate adaptation

in pest and vector taxa, a general strategy for understanding and estimating their climate adaptive

potential is lacking.

The potential for climate adaptation is a particularly important open question in mosquito-borne

disease biology (Mordecai et al., 2019; Franklinos et al., 2019). Mosquito-borne diseases are a

major public health burden, causing an estimated 500 million cases and millions of deaths globally

each year (World Health Organization, 2014; World Health Organization, 2018). Environmental

drivers of mosquito-borne disease transmission have been relatively well studied, and consistently

highlight temperature—and by extension, climate warming—as a fundamental driver (Shragai et al.,

2017; Mordecai et al., 2019; Franklinos et al., 2019; Shocket et al., 2021). Temperature influences

mosquito-borne disease dynamics because it directly affects mosquito physiology, life cycles, behav-

ior, and competence for disease transmission (Cator et al., 2020). For mosquitoes and other ecto-

therms, temperature has strong, nonlinear effects on traits such as survival and fecundity that lead to

unimodal effects of temperature on fitness, where temperatures above and below intermediate ther-

mal optima limit mosquito population growth (Huey and Stevenson, 1979; Huey and Berrigan,

2001; Angilletta, 2009; Amarasekare and Savage, 2012; Mordecai et al., 2019). Recent forecasts

based on the unimodal relationship with temperature predict that in some areas where disease risk

is currently high, future warming will decrease transmission risk as temperatures exceed mosquito

thermal optima and limits (Gething et al., 2010; Ryan et al., 2015; Ryan et al., 2019;

Mordecai et al., 2019; Mordecai et al., 2020). However, these predictions are likely to underesti-

mate future disease risk if mosquitoes adapt to climate warming. As a result, estimating the poten-

tial for mosquito thermal adaptation is critical for more accurate predictive modeling.

Here, we outline a theoretical framework for investigating climate adaptive potential in ectotherm

pests and pathogens, which draws from evolutionary rescue models typically used in conservation

biology. We use mosquito adaptation to warming temperature as a focal case given the high global

health burden of mosquito-borne disease and substantial recent research progress on mosquito

thermal biology. In the following sections, we: (1) outline the theoretical framework and the specific

parameters needed to estimate adaptive potential, (2) synthesize available information for mosquito

thermal adaptation and identify key data gaps for predictive modeling, (3) highlight priorities and

describe specific empirical approaches for filling these gaps, (4) explore the consequences of mos-

quito thermal adaptation on disease transmission, and (5) discuss the application of this framework

to other vector and pest species. We focus here on adaptation to warming temperatures that

exceed current mosquito thermal optima. We consider temperature in isolation despite its influence

on relative humidity, which has strong impacts on mosquito population dynamics and host-seeking

behavior and is predicted to shift with anthropogenic climate change. Several studies have
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Figure 1. Framework for investigating climate adaptive potential. Several mechanisms may enable in situ population persistence (evolutionary

adaptations in physiology, phenotypic plasticity, phenological shifts, and life history adjustments; panels A and B). Investigating the potential for

evolutionary climate adaptation requires first identifying the climate factors and traits limiting population persistence (panel C), then comparing the rate

of projected climatic change to potential evolutionary rates (panel D). Evolutionary rates can be estimated based on evolutionary potential (strength of

selection, and heritability and variation in the trait of interest), population demographic characteristics (maximum growth rate and generation time), and

trait – environment relationships (phenotypic plasticity and environmental sensitivity of selection) (panel E). In the strength of selection image (top left,

Figure 1 continued on next page
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investigated mosquito adaptation to desiccation (e.g. Kearney et al., 2009; Simard et al., 2009;

Fouet et al., 2012), but few have investigated mosquito responses to simultaneous variation in tem-

perature and humidity (but see Yamana and Eltahir, 2013; Yamana et al., 2016). Given this lack of

empirical data, we focus on temperature specifically, but we discuss the inclusion of aridity in predic-

tive modeling approaches (see ‘Climate factors currently limiting population persistence’). Similarly,

we do not include non-climate factors such as biotic interactions, land use change, and human activi-

ties that may impact mosquito population persistence, because their effects on mosquito responses

to temperature and thermal adaptive potential remain poorly understood. We discuss the adaptive

potential of mosquitoes broadly, but our principal interest is in populations of major disease vector

species (e.g. Aedes aegypti, Ae. albopictus, Anopheles gambiae, Culex pipiens, Cx. quinquefascia-

tus, which transmit dengue, chikungunya, Zika, and West Nile viruses, malaria, and other pathogens)

and we discuss species-specific responses where possible. After presenting mosquito thermal adap-

tation as a focal case, we discuss how the approach we describe here can be applied to study the

adaptive potential of any species in response to any specific environmental change.

Framework for investigating climate adaptation
Species may respond to warming temperatures through three primary mechanisms: tracking suitable

temperatures through range shifts, avoiding or temporarily coping with stressful temperatures

through phenotypic plasticity (e.g. shifting biting activity to cooler times), and tolerating warming

through genetic evolutionary adaptation (e.g. evolved shifts in thermal tolerance resulting from

selection). Here, we focus on evolutionary adaptation as it would enable in situ population persis-

tence under sustained environmental change and is currently the least well-understood climate

response (Merilä and Hendry, 2014; Urban et al., 2016; González-Tokman et al., 2020). Investi-

gating the potential for evolutionary climate adaptation requires identifying: (1) the climate factors

currently limiting population persistence, (2) the most climate-sensitive and fitness-relevant traits,

and (3) the potential evolutionary rates of these traits (Figure 1). We describe these factors further

below, using mosquito thermal adaptation as a focal case.

Climate factors currently limiting population persistence
Temperature fundamentally limits mosquito ranges and persistence through its influence on mos-

quito survival, development, and reproductive rates. However, the precise aspects of temperature

that determine these limits remain unclear (Christophers, 1960; Yang et al., 2009; Brady et al.,

2013; Shapiro et al., 2017; Tesla et al., 2018; Shocket et al., 2018; Mordecai et al., 2019). Tem-

perature averages, variability, extremes, and interactions among these factors all impact ectotherm

fitness (Nene et al., 2007; Lambrechts et al., 2011; Bozinovic et al., 2011; Kingsolver et al.,

2013; Paaijmans et al., 2013; Blanford et al., 2013; Dowd et al., 2015; Buckley and Huey, 2016;

Ma et al., 2021). The temperature variable that most strongly constrains persistence for a particular

mosquito population will likely vary based on breeding and resting habitat preferences and by loca-

tion, as thermal regimes can differ greatly between water sources used for oviposition, between

indoor and outdoor environments, and by latitude and altitude (Paaijmans et al., 2008;

Paaijmans et al., 2010; Paaijmans and Thomas, 2011). For example, changes in diurnal tempera-

ture variation may impose strong selection on East African An. arabiensis populations that primarily

rest outdoors (Githeko et al., 1996), but have less impact on An. gambiae s.s and An. funestus pop-

ulations that primarily rest indoors, where temperatures vary less drastically (Bødker et al., 2003;

Minakawa et al., 2006). Similarly, endemic populations of a given species may experience vastly dif-

ferent climate regimes than invasive populations, leading to different constraints on their persistence

(Moran and Alexander, 2014; Egizi et al., 2015). For example, Aedes japonicus japonicus popula-

tions in their native range in East Asia must contend with extreme cold winter temperatures, which

they survive as diapausing eggs, while invasive populations in Hawaii and the southeastern U.S.

experience warmer year-round temperatures (Reeves and Korecki, 2004; Larish and Savage, 2005;

Figure 1 continued

panel E), the dashed and solid lines indicate the population before and after natural selection, respectively. In the heritability panel (bottom left), P1

and F1 denote the parental and offspring generations, respectively.

Couper et al. eLife 2021;10:e69630. DOI: https://doi.org/10.7554/eLife.69630 4 of 36

Review Article Ecology

https://doi.org/10.7554/eLife.69630


Kaufman and Fonseca, 2014). Based on evidence from other arthropod species, maximum annual

temperature has been identified as the strongest driver of species extinctions (out of the 19 World-

Clim Bioclimatic variables; Román-Palacios and Wiens, 2020), thus changes in maximum tempera-

tures may exert the strongest selection pressure on mosquito populations near their warm range

limits. As most temperature – trait responses are studied under constant temperatures

(Deutsch et al., 2008; Angilletta, 2009; Paaijmans et al., 2013; Vasseur et al., 2014; Dowd et al.,

2015; Buckley and Huey, 2016), we consider mosquito responses to increases in mean temperature

as a focal example. Similarly, we consider the independent effects of temperature on mosquitoes

despite its influence on moisture availability. Restrictions on moisture availability can readily be incor-

porated into predictive models by setting thresholds for annual precipitation or vegetative green-

ness (an indicator of local moisture availability; Suzuki et al., 2006), and masking out regions falling

below these levels. For example, in estimating future temperature-based suitability of malaria trans-

mission, Ryan et al., 2015 applied a threshold for Normalized Difference Vegetation Index (NDVI)—

two consecutive months of NDVI above 0.125—and masked out all regions falling below this limit. In

general, the framework we present can readily be applied to any specific measure of temperature or

other environmental variable, such as temperature extremes, precipitation, wind patterns, land use

change, and human activities (Reiter, 2001; Patz et al., 2008; Paaijmans and Thomas, 2011;

Mordecai et al., 2019; Franklinos et al., 2019; Rocklöv and Dubrow, 2020).

Box 1. Evolutionary rescue model formula (Chevin et al.,
2010) and parameter definitions.

hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2rmaxg

T

r

h2s2

B� bj j

T: population generation time: (for populations with discrete, non-overlapping generations),

the mean time between reproduction in one cohort to reproduction in the successive cohort.

rmax: maximum population growth rate: the intrinsic rate of increase under optimal conditions

(i.e. no intra- or inter-specific competition).

s
2: phenotypic variance: the measured variance in the trait of interest.

h2: heritability: the proportion of phenotypic variance in a trait attributable to additive genetic

effects.

g: strength of selection: the impact on fitness from deviations from the optimal trait value

under a given environment. As in Kearney et al., 2009, a standardized version of selection

strength can be approximated from temperature-dependent survival rates by:

i¼ 2:2014� 0:04884sþ 0:000558 s2 � 0:0000029 s3

where s is the percentage survival under a given environmental change, and i is given as the

change in phenotype (in standard deviations) between the starting and selected populations

(Falconer and Mackay, 1996; Matsumura et al., 2012).

b: phenotypic plasticity: the ability of individual genotypes to produce alternative phenotypes

in different environments (Via et al., 1995). Here, plasticity encompasses thermal acclimation,

dormancy and behavioral thermoregulation including shifts in mosquito biting, microhabitat

usage, and oviposition sites and timing.

B: environmental sensitivity of selection: the change in the optimum phenotype with environ-

mental change.

hc: maximum rate of environmental change: the highest rate of sustained environmental

change under which long-term population persistence is possible.
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Mosquito traits
As selection acts on specific phenotypes, ‘adaptation’ here refers to a change in the thermal toler-

ance of a specific mosquito trait—an emergent property that reflects underlying physiological

changes (e.g. changes in protein thermal sensitivity; Somero, 1995, Somero, 2003, Somero, 2010,

González-Tokman et al., 2020). The critical traits to examine are those with the strongest climate

sensitivity and the strongest impact on overall mosquito fitness. We hypothesize that mosquito life

history traits with the lowest critical thermal maxima will experience the strongest thermal selection

as environmental temperatures that exceed this limit have especially strong negative impacts on

ectotherm fitness (Deutsch et al., 2008; Kingsolver et al., 2013). For several mosquito vector spe-

cies, these traits are adult lifespan and fecundity, suggesting thermal selection may be strongest on

the adult life stage (Figure 1; reviewed in Mordecai et al., 2019). However, whether these life his-

tory traits also pose the strongest constraints on mosquito fitness and persistence at high tempera-

tures remains poorly understood because prior work has largely focused on mosquito traits related

to disease transmission during the activity season, but there may be additional traits that help mos-

quitoes tolerate climate extremes (e.g. diapause, aestivation). For this reason, we consider several

fitness-relevant mosquito life history traits (e.g. survival, development rates, and fecundity). Addi-

tionally, we consider various metrics that describe trait thermal tolerance (e.g. time to partial paraly-

sis, known as ‘knockdown time’ at high temperatures; trait performances at high temperatures; and

temperatures causing 50% sample mortality) because they may provide differing information on spe-

cies adaptive potential (Hangartner and Hoffmann, 2016). The framework outlined here can be

applied to any specific trait and measurement.

Potential evolutionary rates of climate-sensitive traits
After identifying the climate factors and mosquito traits that limit population persistence, we can

now compare their rates of change to predict whether populations can adapt apace with environ-

mental change (Figure 1). To do so, we turn to evolutionary rescue models, which estimate the max-

imum rate of evolutionary change (i.e. adaptive genetic turnover) of a population and compare it to

the projected rate of environmental change. Populations can persist only when their maximum sus-

tainable evolutionary rate exceeds the required rate of evolution dictated by the environment

(Bell and Gonzalez, 2009; Hoffmann and Sgrò, 2011; Gomulkiewicz and Shaw, 2013;

Gonzalez et al., 2013; Carlson et al., 2014; Bell, 2017). Evolutionary rescue models explicitly

model demographic rates and assume that populations are comprised of different genotypes with

different reproductive advantages. As these models track population responses to sustained, direc-

tional environmental change, they are well-suited to estimating the potential for thermal adaptation

in response to climate warming (Huey and Kingsolver, 1993; Bürger and Lynch, 1995;

Chevin et al., 2010; Bay et al., 2017; Cotto et al., 2017; Diniz-Filho et al., 2019), and have pro-

vided valuable estimates of climate adaptation potential across a range of taxa (Gienapp et al.,

2013; Bush et al., 2016; Cotto et al., 2017; Diniz-Filho et al., 2019). Even with incomplete or

imprecise knowledge of all parameters, these models can place bounds on the climate response

space to indicate where adaptation is highly unlikely and to inform future data collection efforts.

Here, we consider the analytic, quantitative-genetic evolutionary rescue model described by

Chevin et al., 2010. This model estimates population adaptive potential under climate warming

using (Box 1; Figure 1): (1) the maximum population growth rate under optimal conditions rmaxð ), (2)

the population generation time (T), (3) the phenotypic variance in the trait of interest s
2ð Þ, (4) the

strength of selection imposed by temperature change gð Þ, (5) the trait heritability (h2Þ, (6) the degree

of phenotypic plasticity in thermal tolerance (b), (7) how the trait optimum changes with temperature

(i.e. environmental sensitivity of selection; B), and (8) the expected rate of temperature change dur-

ing the time period hcð Þ. Although the simplicity of this analytic evolutionary rescue model may con-

strain the accuracy of its projections, it illustrates the basic factors likely to affect population

persistence, which we consider to be the minimum information needed to make initial predictions

(see Appendix 1 for additional unmodeled factors and the ‘Priorities and approaches’ section for

methods to incorporate additional complexity). We present the main findings from the available

information below, including information from the closely related model organism Drosophila when

little information is available for mosquitoes.
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Mosquito thermal adaptation: evidence and data gaps
Generation time (T) and maximum population growth rate (rmax)
Short generation times enable rapid evolutionary responses (Lynch and Lande, 1993; Bürger and

Lynch, 1995), and high intrinsic population growth rates reduce the chance of extinction prior to

adaptation (Bürger and Lynch, 1995; Orr and Unckless, 2008; Gomulkiewicz and Houle, 2009).

The generally rapid life cycles and large population sizes of mosquitoes favor rapid evolution, but

precise demographic estimates under natural conditions are unavailable for most species (but see

Appendix 2—table 1 for growth rates and generation times for Ae. aegypti, Anopheles spp., and

Cx. pipiens) and will vary with biotic and abiotic conditions. However, even high estimates of mos-

quito lifespans of approximately 3 months (Macdonald, 1952; Nayar and Sauerman, 1971;

Papadopoulos et al., 2016; Joubert et al., 2016) are on par with or well below those of other spe-

cies that have already demonstrated evolutionary responses to climate change (e.g. Drosophila sub-

obscura, Rodrı́guez-Trelles and Rodrı́guez, 1998; Balanyá et al., 2006; Tamiaschirus hudsonicus,

Réale et al., 2003; Brassica rapa, Franks et al., 2007, several bird species, Gienapp et al., 2007;

Cepaea nemoralis, Ożgo and Schilthuizen, 2012; Oncorhynchus gorbuscha, Kovach et al., 2012).

Further, high intrinsic population growth rates (r) of 0.19–0.38 per generation have been calculated

for several major vector species (Appendix 2—table 1, Equation 1, Figure 1; Amarasekare and

Savage, 2012; Johnson et al., 2015; Mordecai et al., 2017; Shocket et al., 2020) and census pop-

ulation size estimates on the order of 1,000–10,000 individuals have been found across studies of

varying mosquito species and settings (Touré et al., 1998; Lehmann et al., 1998; Maciel-de-

Freitas et al., 2008; Neira et al., 2014; Le Goff et al., 2019). Placing these mosquito results in con-

text, a Drosophila modeling study showed that growth rates and population sizes in this range

Table 1. State of knowledge on evolutionary rescue model parameters for mosquito and Drosophila species.

Numbers correspond to references; colors correspond to data availability. Purple indicates that data for these parameters are readily

available (but not for all species or contexts). Blue indicates that some data are available, but further collection is warranted. Green

indicates that minimal or indirect data are available (e.g. dormancy mechanisms suspected based on rapid mosquito population

increases following the dry season). Yellow indicates that no estimates are available on these parameters (to our knowledge). Measure-

ments on variation in thermal tolerance are designated as ‘inter-population’ or ‘intra-population.’.

Available data

State of knowledgeSome data

Minimal or

indirect data

No data Mosquitoes Drosophila

Generation time Mordecai et al., 2017; Johnson et al., 2015; Shocket et al., 2020 Crow and Chung, 1967; Lin et al., 2014; Fernández-Moreno et al., 2007;

Ashburner, 1989; Emiljanowicz et al., 2014

Maximum population growth

rate

Mordecai et al., 2017; Johnson et al., 2015; Shocket et al., 2020;

Amarasekare and Savage, 2012

Siddiqui and Barlow, 1972; Emiljanowicz et al., 2014; Chiang and Hodson, 1950;

Mueller and Ayala, 1981

Variation in thermal

tolerance

[Inter-population variation] Ruybal et al., 2016; Dodson et al., 2012; Reisen, 1995;

Mogi, 1992; Chu et al., 2019; Vorhees et al., 2013; Rocca et al., 2009

[Intra-population variation] Rolandi et al., 2018; Fallis et al., 2011

[Between-population variation] Sørensen et al., 2001; Sgrò et al.,

2010Hangartner and Hoffmann, 2016; ; Rashkovetsky et al., 2006;

Lockwood et al., 2018

Heritability Mitchell and Hoffmann, 2010; Huey et al., 1992; Hangartner and Hoffmann, 2016;

Jenkins and Hoffmann, 1994; McColl et al., 1996; Castañeda et al., 2019

Strength of selection reviewed in Mordecai et al., 2019 Rezende et al., 2020; Huey et al., 1991; Huey et al., 1992; Loeschcke and

Hoffmann, 2007

Phenotypic

plasticity

Acclimation Gray, 2013; Lyons et al., 2012; Benedict et al., 1991; Armbruster et al., 1999;

Sivan et al., 2021

MacLean et al., 2019; Hoffmann and Watson, 1993; Sgrò et al., 2010;

Overgaard et al., 2011; Berrigan and Hoffmann, 1998

Behavioral

thermo-

regulation

Reisen and Aslamkhan, 1978; Voorham, 2002; Barrera et al., 2008; Haufe and

Burgess, 1956; Verhulst et al., 2020; Blanford et al., 2013; Thomson, 1938

Castañeda et al., 2013; Dillon et al., 2009; MacLean et al., 2019; Huey and

Pascual, 2009; Wang et al., 2008; ; Feder et al., 1997; Gibbs et al., 2003

Dormancy Dao et al., 2014; Lehmann et al., 2010; Adamou et al., 2011; Yaro et al., 2012 Tatar et al., 2001

Environmental sensitivity of

selection

Couper et al. eLife 2021;10:e69630. DOI: https://doi.org/10.7554/eLife.69630 7 of 36

Review Article Ecology

https://doi.org/10.7554/eLife.69630


facilitated population persistence for over 300 generations under heat-knockdown selection

(Willi and Hoffmann, 2009). Mosquito demographic characteristics therefore favor thermal

adaptation.

Variation in thermal tolerance (s2)
Higher genetically based variance in a trait results in higher rates of phenotypic evolution

(Lande, 1976). While no studies (to our knowledge) have measured within-population variation in

mosquito thermal tolerance, several studies have investigated variation between populations

(Mogi, 1992; Reisen, 1995; Dodson et al., 2012; Vorhees et al., 2013; Ruybal et al., 2016;

Chu et al., 2019). Overall, these studies find genetically based, but often trait-specific variation that

did not always clearly support local thermal adaptation (i.e. a correlation between trait values and

local climatic conditions; Appendix 3—table 1). Some studies have found thermal tolerance varying

predictably with the population’s thermal environment of origin. For example, upper thermal limits

of mosquito respiration and survival after heat shock were positively correlated with the temperature

of origin for Cx. tarsalis and An. gambiae, respectively (Rocca et al., 2009; Vorhees et al., 2013).

However, several other studies have found the opposite pattern (Ruybal et al., 2016), found minimal

or no variation in thermal responses between populations (Dodson et al., 2012; Mogi, 1992), or

found that certain populations had uniformly higher or lower trait performance at all experimental

temperatures independent of their climate of origin (Ruybal et al., 2016; Reisen, 1995; Chu et al.,

2019; Dodson et al., 2012). Taken together, mosquito populations do sometimes vary in their ther-

mal performance, but there is no clear evidence for existing local thermal adaptation across temper-

ature gradients of similar magnitude to those predicted by climate change over the next several

decades. This may suggest either barriers to thermal adaptation or relatively weak selection on ther-

mal performance (see ‘Strength of selection’ section). However, the lack of within-population sam-

pling and/or idiosyncratic, trait-specific temperature relationships may have obscured true patterns

of local adaptation (Bradshaw et al., 2000).

Heritability of thermal tolerance h
2

� �

Higher heritability—the proportion of phenotypic variance in a population attributable to genetic

effects—enables faster evolutionary rates because populations respond more efficiently to selection

(Falconer and Mackay, 1996). To our knowledge, there are no estimates of the heritability of trait

thermal tolerance for mosquitoes. However, evolutionary theory and empirical work in other ecto-

therm taxa suggest that thermal tolerance heritability is generally low. In particular, highly polygenic,

complex, or environmentally-dependent traits—as expected for thermal tolerances—typically have

low heritability (Bay et al., 2017). Supporting this expectation, a meta-analysis of heritability data

for upper thermal limits in Drosophila resulted in an overall estimate of 0.28 (i.e. 28% of the popula-

tions phenotypic variance is due to genetic variance; Diamond, 2017), which is similar to heritability

estimates for other Drosophila life history traits (average h2 = 0.26; Roff and Mousseau, 1987,

Mousseau and Roff, 1987) and indicates moderately low heritability (but see Jenkins and Hoff-

mann, 1994, h2 = 0.5). However, more recent evidence suggests Drosophila can rapidly adapt to

novel temperatures through multiple, alternative genetic pathways that lead to similar increases in

thermal tolerance (i.e. ‘genetic redundancy’), challenging the notion that highly polygenic traits have

low heritability (Barghi et al., 2019). In general, uncertainty surrounding the ecological relevance of

laboratory measurements of insect thermal tolerance (Terblanche et al., 2007; Chown et al., 2009;

Mitchell and Hoffmann, 2010) and the divergent evolutionary histories of Drosopholids and mos-

quitoes limit our understanding of thermal tolerance trait heritability in mosquitoes.

Strength of selection (g)
For heritable traits, stronger natural selection—the differential survival or reproduction of mosqui-

toes with different trait values—would lead to faster adaptive responses, despite causing high initial

mortality (Box 1; Lynch and Lande, 1993; Hartl and Clark, 1997). Temperature-imposed selection

on mosquitoes, which can be approximated from temperature-dependent survival rates (Box 1,g;

Falconer and Mackay, 1996), is likely to be strong. Upper thermal limits for adult and larval survival

are as low as 32–38˚C (reviewed in Mordecai et al., 2019), which many mosquito populations—par-

ticularly those in the tropics—already experience and will increasingly face in a warming climate
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(Deutsch et al., 2008). Further, steep declines in survival between thermal optima and critical limits

have been observed across mosquito species (Focks et al., 1993; Alto and Juliano, 2001;

Kamimura et al., 2002; Delatte et al., 2009; Muturi et al., 2011; Mordecai et al., 2019). This high

selection pressure may facilitate mosquito adaptation, provided that heritable variation in trait ther-

mal tolerance exists.

Phenotypic plasticity (b)
Phenotypic plasticity—the ability of individual genotypes to produce varying phenotypes based on

the environment (West-Eberhard, 2003)—provides an alternative mechanism for coping with cli-

mate change that is more rapid than evolutionary adaptation. However, because plasticity impedes

natural selection on genetically based variation, it may ultimately inhibit population persistence

under long-term directional change (Gienapp et al., 2008; Whitman and Agrawal, 2009;

Chevin et al., 2010; Chevin et al., 2013; Merilä and Hendry, 2014). For mosquitoes, potentially

important plastic responses include changes in activity patterns, biting behavior, or microhabitat

selection, thermal acclimation, and initiation of dormancy, as reviewed below (and see Appendix 3—

table 2). Phenotypic plasticity may itself vary across genotypes and thus could evolve in response to

environmental change, but experimental evidence of the evolution of plasticity is lacking

(Dewitt et al., 1998; Scheiner and Berrigan, 1998; Stinchcombe et al., 2004). Overall, mosquitoes

possess a variety of potential plastic responses, but the capacity for these responses to increase

thermal tolerance, their potential fitness costs, and how these plastic responses might interact with

the process of evolutionary adaptation remain poorly understood. Below, we review current knowl-

edge of different potential plastic responses.

Behavioral thermoregulation
Larval and adult mosquitoes could temporarily cope with warming, particularly high-temperature

extremes, through behavioral avoidance. In laboratory thermal preference studies, Aedes, Anophe-

les, and Culex spp. have demonstrated behavioral avoidance of high temperatures when exposed to

a thermal gradient (Thomson, 1938; Blanford et al., 2009; Verhulst et al., 2020). In natural set-

tings, several studies have shown shifts in the biting time or habitat selection of mosquitoes, particu-

larly An. gambiae, seasonally or in response to insecticide spraying (Taylor, 1975; Reisen and

Aslamkhan, 1978; Voorham, 2002; Pates and Curtis, 2005; Manda et al., 2011). While such

behavioral shifts have not been conclusively linked to temperature, studies have found increasing

usage of underground or shaded oviposition sites that was correlated with increasing temperature,

and not associated with change in habitat availability or accompanied by genetic differentiation (Ae.

aegypti, Somers et al., 2011; Chadee and Martinez, 2016). Similarly, larvae in permafrost regions

were observed to rest in deeper, cooler pond water when surface water temperatures became

exceptionally high (Ae. communis, a non-vector species; Haufe and Burgess, 1956). Seeking out

and accessing cooler microclimates may buffer mosquitoes from warm temperature extremes, reduc-

ing mortality and decreasing the strength of selection. However, evidence for mosquito behavioral

thermoregulation more generally remains limited (Paaijmans and Thomas, 2011; Waldock et al.,

2013), and trade-offs in resource acquisition from restricted foraging and activity time, and a lack of

readily available cooler microhabitats would constrain this behavior (Angilletta, 2009; Sears et al.,

2016; Huey and Kingsolver, 2019). Conversely, the absence of evidence for this phenomenon may

be due to measurement challenges associated with observing mosquitoes in the field

(Paaijmans and Thomas, 2011).

Thermal acclimation
Increases in thermal tolerance after exposure to warmer temperatures during development—a form

of thermal acclimation—have been documented in several mosquito species (An. albimanus,

Benedict et al., 1991; An. arabiensis and An. funestus, Lyons et al., 2012; Cx. pipiens, Gray, 2013;

Ae. aegypti, Sivan et al., 2021). However, increases in thermal limits were typically minimal, sug-

gesting a limited capacity for thermal acclimation to reduce mortality at high temperatures and

enable population persistence. For example, the critical thermal limits of respirometry, motor func-

tion, or survival increased by less than 2˚C for populations developing in 5˚C warmer environments

(Benedict et al., 1991; Lyons et al., 2012; Gray, 2013). Similarly, critical thermal maxima varied
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minimally with acclimation temperatures across a diverse range of over 200 ectotherm species

(Gunderson and Stillman, 2015; Somero et al., 2016; Heerwaarden et al., 2016; Rohr et al.,

2018).

Dormancy
Temporarily unfavorable environmental conditions could be overcome through dormancy—the inter-

ruption or reduction of metabolic activity through diapause or quiescence—a response that has

been demonstrated in all major vector species (reviewed in Diniz et al., 2017). Dry-season dormancy

(i.e. aestivation) is likely one mechanism enabling An. gambiae and An. coluzzi to persist during the

3- to 6-month long dry season in the Sahel, as evidenced by very low population sizes during the dry

season followed by rapid increases after the first rain (Lehmann et al., 2010; Lehmann et al., 2014;

Adamou et al., 2011; Yaro et al., 2012; Dao et al., 2014). However, there are no known examples

of dormancy mechanisms in ectotherms that respond solely to high temperatures, thus this may be

an unlikely response for mosquitoes, particularly tropical species facing warming temperatures in

humid environments.

Environmental sensitivity of selection (B)
Environmental sensitivity of selection refers to how the optimum phenotype shifts with changes in

the environment and is typically measured as the slope of the relationship between the optimal trait

value and the environmental variable (e.g. the rate of change in the optimal upper thermal limit of

adult life span against maximum summer temperature; Figure 1; Chevin et al., 2010, Chevin et al.,

2015). A larger difference between the environmental sensitivity of selection and phenotypic plastic-

ity (i.e. a greater deviation in the phenotype from the optimal value) necessitates faster adaptation

(Chevin et al., 2010). For mosquitoes, as for nearly all other organisms, the environmental sensitivity

of trait thermal tolerance has not been empirically measured (Chevin et al., 2010). However, across

mosquito populations (Lyons et al., 2012; Vorhees et al., 2013) and species (Mordecai et al.,

2019), upper thermal limits for most mosquito life history traits were less variable than lower thermal

limits and optima. These patterns could reflect strong environmental sensitivity on lower thermal tol-

erance, intermediate sensitivity for the optimum, and weak sensitivity on upper thermal tolerance.

However, it may more likely reflect evolutionary constraints on upper thermal tolerance

(Kellermann et al., 2012; Hoffmann et al., 2013), or result from competing selection pressures,

greater metabolic costs of heat versus cold tolerance, genetic constraints, or gene flow hindering

thermal adaptation (Angilletta, 2009; Kristensen et al., 2016).

Expected rate of environmental change (hc)
Rates of environmental change will vary based on the specific temperature variable being considered

(e.g. mean temperature of the hottest month or quarter, maximum temperature in the dry season,

etc.), and depend on climate policy: projections of global mean annual surface temperatures in 2100

vary by over 3˚C depending on the future climate scenario (Collins et al., 2013). However, while

greater warming is projected for higher latitudes (IPCC, 2007), faster rates of adaptation may be

necessary for tropical mosquito populations that already experience environmental temperatures

close to their thermal optima and may experience large fitness costs under additional warming in

the absence of adaptation (Deutsch et al., 2008; Somero, 2010; Ryan et al., 2015;

Mordecai et al., 2019). For example, although Ae. aegypti and Ae. albopictus are highly adaptable

and have expanded into temperate climates, they are vulnerable to climate warming in their tropical

ranges as temperatures here are expected to exceed their thermal optima and upper thermal limits

in coming decades (Ryan et al., 2019).

Priorities and approaches for measuring adaptive potential
Addressing several key data and knowledge gaps will improve our ability to estimate mosquito

adaptive potential (Table 1). As outlined above, there are virtually no estimates of the heritability of

thermal tolerance traits, environmental sensitivity of selection, and within-population variation (and

few estimates of between-population variation) in thermal tolerance for mosquitoes specifically.

Additionally, we have a limited understanding of the role of phenotypic plasticity, particularly behav-

ioral thermoregulation, in mosquito thermal tolerance. Although other parameters of the
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evolutionary rescue model (i.e. the strength of selection imposed by temperature change, mosquito

generation time, and maximum population growth rate) are often not measured directly or precisely,

we have relatively more information about these parameters and they are unlikely to be the primary

constraints on evolutionary adaptation (see ‘Estimating evolutionary rates’). We therefore recom-

mend that future research focus on measuring environmental sensitivity of selection, plasticity, and

within-population variation and heritability in thermal tolerance. We discuss the most promising and

feasible approaches for doing so below.

Selection experiments are a powerful tool for investigating the evolution of complex traits

(reviewed in Fuller et al., 2005; Garland and Rose, 2009; Swallow et al., 2009) that can be used

to estimate several of the parameters in evolutionary rescue model parameters. In artificial selection

experiments, where individuals are chosen to advance to the next generation based on their value

for a particular trait (e.g. time to thermal knockdown), heritability can be measured as: h2 ¼ R= isp

� �

(Falconer and Mackay, 1996). Here, R is the mean difference in the trait between control and

selected lines, sp is the trait standard deviation in the control lines, and i, the intensity of selection,

is determined based on what proportion of the population is selected each generation (see Box 1).

In laboratory natural selection—in which the treatment conditions, rather than the researcher,

impose the selection pressure—selection strength itself can be approximated based on the survival

rates between generations held at specific temperatures (see Box 1). Both selection designs have

been used extensively with model organisms such as Drosophila spp., Daphnia spp., and Escherichia

coli to measure changes in upper limits of trait thermal tolerance. While no thermal selection experi-

ments have yet been published on mosquitoes (Dennington et al., in prep), several major vector spe-

cies, including Ae. aegypti and Cx. quinquefasciatus, can be readily maintained and manipulated in

the lab (Munstermann, 1997; Kauffman et al., 2017) and can therefore be used in experiments to

obtain estimates of the heritability of thermal tolerance and the selection strength imposed by differ-

ent temperature conditions.

Common garden experiments, where traits are measured for distinct populations or genotypes

exposed to the same environmental conditions, enable measurement of nearly all rescue model

parameters (Clausen et al., 1941; Merilä and Hendry, 2014; de Villemereuil et al., 2016;

Berend et al., 2019). In mosquitoes, common garden experiments have been used to investigate

variation in thermal tolerance between populations sampled across a thermal gradient (Mogi, 1992;

Reisen, 1995; Rocca et al., 2009; Vorhees et al., 2013; Ruybal et al., 2016; Chu et al., 2019), but

this approach could also be used to measure within-population variation if thermal tolerance traits

were measured at the individual level. For example, larval development rates or adult survival time

could be measured by tracking mosquitoes housed individually under different temperature condi-

tions (as in Bedhomme et al., 2003). To measure genetically based variation in thermal tolerance,

and to avoid confounding parental effects and thermal acclimation in the original environment, col-

lected populations should be reared for at least one generation in the lab before experimentation.

However, plasticity itself can be measured by, for example, varying larval rearing temperature

(Dodson et al., 2012) or measuring thermoregulatory behavior as the trait of interest (e.g.

Logan et al., 2018). Common garden experiments can also be used to measure the environmental

sensitivity of selection if fitness is measured in addition to thermal tolerance traits (Chevin et al.,

2010). Lastly, by tracking parentage and measuring thermal tolerance traits (e.g. by housing mating

pairs of mosquitoes separately), the heritability of thermal tolerance can be measured based on the

slope of the trait values of parent and offspring (Falconer and Mackay, 1996).

In addition to providing estimates of rescue model parameters, common garden experiments can

be combined with genomic approaches to identify genetic variants associated with climate-adaptive

traits (for examples in non-mosquito species, see De Kort et al., 2014; de Villemereuil et al., 2016;

Exposito-Alonso et al., 2019; Capblancq et al., 2020). In the closest example of this approach in

mosquito populations, the hypothesized thermo-adaptive role of a particular genotype (chromo-

somal inversion 2La) associated with aridity clines in Africa in An. gambiae (Coluzzi et al., 1979) was

confirmed based on thermal tolerance experiments on the two genotypes (homokaryotypic popula-

tions 2La+ and 2La) (Rocca et al., 2009). In other taxa, common garden experiments have been

combined with genome scans to quantify and predict climate-driven selection along the genome of

the plant Arabidopsis thaliana (Exposito-Alonso et al., 2019), and to identify 162 candidate genes

underlying climate adaptation in the harlequin fly Chironomus riparius (Waldvogel et al., 2018). In

Couper et al. eLife 2021;10:e69630. DOI: https://doi.org/10.7554/eLife.69630 11 of 36

Review Article Ecology

https://doi.org/10.7554/eLife.69630


these studies, whole-genome sequencing would provide greater power to detect causal loci, thus

this approach would be most feasible for mosquito species with available reference genomes,

namely Ae. aegypti (e.g. Nene et al., 2007; Matthews et al., 2018), Ae. albopictus (Chen et al.,

2015), An. darlingi (Marinotti et al., 2013), An. gambiae (Holt et al., 2002), and An. stephensi

(Jiang et al., 2014).

Selection experiments and common garden experiments provide the means to obtain critical

missing information on mosquito adaptive potential, but there are several challenges to these

approaches. For any experimental test of adaptive potential, regardless of the methodology used,

one must identify appropriate temperature treatments and assess thermal tolerance on the mosquito

life history traits most relevant for fitness. Arbitrary choices for these details make it more difficult to

extrapolate from these results to natural systems. Experiments commonly use treatments with con-

stant temperatures above mean ambient temperatures. However, temperature minima or maxima,

seasonal variability, and/or accumulated thermal stress may be more relevant to adaptive potential.

For example, increases in minimum temperatures affect overnight recovery from heat stress in mos-

quitoes (Murdock et al., 2012; Bai et al., 2019). Further, given trade-offs in isolating the effect of

temperature versus incorporating realistic ecological variation and in maximizing replication between

versus within populations, no single study can definitively determine a species’ adaptive potential.

As a first step, controlled and replicated lab studies measuring mosquito fitness (either directly or as

a composite of individual life history traits) under realistic projected thermal regimes that incorporate

natural diurnal variation in temperature, combined with genomics approaches, will greatly improve

our understanding on current and potential mosquito thermal adaptation (Andriamifidy et al.,

2019). Such studies will inform parameters of evolutionary rescue models and, more broadly, enable

investigation of the dynamics and limits of thermal adaptation.

While these empirical approaches will address data gaps that we have emphasized within the

evolutionary rescue framework (Table 1), the model itself (Chevin et al., 2010) has several important

limitations. Notably, these include the lack of potential genotype-by-environment interactions in the

expression of phenotypes, evolution in plasticity, gene flow, genetic correlations between traits asso-

ciated with thermal tolerance, and demographic or environmental stochasticity (Chevin et al.,

2010). These simplifying assumptions make the model tractable but may limit the accuracy of the

predictions if these factors play a large role in adaptation. Adding complexity would require addi-

tional data collection and may make predictive models too computationally intensive to solve analyt-

ically but can be implemented through simulations (Bürger and Lynch, 1995). Several studies have

effectively used simulations to incorporate environmental stochasticity (Ashander et al., 2016),

demographic stochasticity (Martin et al., 2013), dispersal (Schiffers et al., 2013), carrying capacity

(Bridle et al., 2010), and evolution in plasticity (Scheiner et al., 2017) into an evolutionary rescue

model framework. Simulation results can be used to investigate transient evolutionary dynamics and

can be compared with analytic results to determine the impact of these processes on evolutionary

rescue. For example, Ashander et al., 2016 estimated population extinction risk using both analytic

approximations and simulations to find that evolving plasticity only facilitated evolutionary rescue

when the environmental change was sufficiently predictable. Using simulation to model more realisti-

cally complex evolutionary scenarios will likely be necessary when more precise forecasting is a prior-

ity, and is becoming a more approachable method through the availability of individual-based

evolutionary simulation tools such as SLiM (Haller and Messer, 2017). For example, Matz et al.,

2020 used the SLiM framework to estimate the adaptive potential of a coral metapopulation under

varying levels of mutation, migration, and selection efficiency, enabling them to identify the main

predictors of adaptive potential and the scenarios enabling long-term coral persistence.

Consequences for disease transmission
Current modeling approaches for predicting mosquito-borne disease transmission under climate

change do not incorporate evolutionary adaptation in mosquito thermal tolerance. In particular, sev-

eral studies have used a temperature-dependent R0 modeling approach (where R0 is the average

number of secondary cases that result from a single infected individual introduced into a fully sus-

ceptible population) to estimate transmission of mosquito-borne diseases including dengue, chikun-

gunya, Zika, and malaria under projected temperature conditions (e.g. Ryan et al., 2015;

Ryan et al., 2019; Mordecai et al., 2017; Tesla et al., 2018). These studies rely on relationships

between temperature and mosquito life history traits previously measured in the lab and currently

Couper et al. eLife 2021;10:e69630. DOI: https://doi.org/10.7554/eLife.69630 12 of 36

Review Article Ecology

https://doi.org/10.7554/eLife.69630


provide the best estimates of mosquito-borne disease transmission under climate warming. How-

ever, if mosquito thermal optima and upper thermal limits increase, these predictions would under-

estimate future disease risk.

To investigate the consequences of shifts in mosquito thermal limits on disease transmission pre-

dictions, we consider a case study using Aedes aegypti-transmitted dengue virus in Northern Brazil

(Appendix 4). This region, which includes the North and Northeastern Brazilian macroregions, expe-

riences approximately 250,000 dengue cases annually (National Notifiable Diseases Information

System (SINAN), 2019), primarily transmitted by Aedes aegypti (Chouin-Carneiro and Barreto dos

Santos, 2017). In the absence of mosquito thermal adaptation, Ryan et al., 2019 projected that

year-round transmission suitability would decrease in this area by 2080 under an upper climate

change scenario (representative concentration pathway (RCP) 8.5). We repeat the modeling

approach used in this projection to examine the rate of evolutionary adaptation required by Aedes

aegypti to maintain current levels of dengue transmission suitability (Appendix 4). We use the same

temperature-dependent R0 model to estimate the number of months per year where temperatures

do not prevent dengue transmission (i.e. R0 Tð Þ > 0, as defined previously in Ryan et al., 2019) under

current (2021) climate conditions and in 2080 under RCP 8.5. We then estimate the amount of evolu-

tionary change in Aedes aegypti thermal limits necessary to maintain current levels of transmission

suitability. We assume that adult fecundity is the mosquito trait under thermal selection as it has the

lowest critical thermal maximum (34.61˚C) of the Ae. aegypti and dengue virus life history traits and

thus sets the warm temperature limit for dengue transmission (Mordecai et al., 2017;

Mordecai et al., 2019). As in Ryan et al., 2019, we use mean monthly temperature when estimating

temperature-based suitability for transmission, although this is not necessarily the climate factor that

most strongly limits Ae. aegypti persistence in this region.

We find that in the absence of thermal adaptation in Ae. aegypti fecundity, the average number

of months per year with suitable temperatures for dengue transmission in Northern Brazil would

decrease from 12.0 in 2021 to 10.3 in 2080 (Figure 2). To maintain current (2021) levels of dengue

transmission suitability under 2080 temperatures, the critical thermal maximum of Ae. aegypti fecun-

dity would need to increase by an average of 1.57˚C in this time period, or roughly 0.03˚C/year. This

evolutionary rate is on par with sustainable evolutionary rates estimated for other taxa and traits in

the face of climate warming (e.g. great tit breeding time: 0.03–0.10˚C/year; Gienapp et al., 2013).

However, determining whether this is a plausible rate of evolutionary change in fecundity for Ae.

aegypti in this region will require collecting missing information on the evolutionary rescue model

parameters (Table 1) through the empirical approaches described above. In this case study, estimat-

ing the thermal adaptive potential of Ae. aegypti fecundity would help determine whether or not

the dengue transmission season may decrease by nearly 2 months in a region containing approxi-

mately 69 million people (IBGE, 2010).

As explored in the case study, maintaining disease transmission under climate warming may

require evolved increases in mosquito upper thermal limits. However, such evolutionary shifts could

maintain, increase, or decrease transmission depending on whether they are accompanied by shifts

in lower thermal limits, on the strength of thermodynamic constraints, and on genetic correlations

between traits. In the absence of other changes to thermal performance, upward shifts in thermal

limits could maintain current levels of disease transmission under rising temperatures, particularly if

lower temperatures are infrequently experienced. However, disease transmission may increase if

peak performances for mosquito traits like fecundity and biting rate increase with their thermal

optima. This is an expectation of the ‘hotter-is-better’ hypothesis, but how the shape of thermal per-

formance curves evolves is a point of ongoing debate and empirical uncertainty (Angilletta et al.,

2010; Latimer et al., 2011; Kontopoulos et al., 2020). Regardless, genetic correlations between

mosquito traits under direct selection and other traits that may impact disease transmission (e.g.,

development time and immunocompetence, as observed in Ae. aegypti; Koella and Boëte, 2002)

could still constrain mosquito-borne disease transmission under thermal adaptation (Lande and

Arnold, 1983).

Mosquitoes, like other ectotherms, may cope with warming temperatures through a variety of

other mechanisms besides shifts in thermal physiology, such as accelerated life cycles, phenological

shifts, and behavioral thermoregulation, with varying consequences for disease transmission

(Huey and Kingsolver, 1993; Bradshaw et al., 2000; Stearns et al., 2000; Angilletta et al., 2003;

Waldvogel et al., 2020). Evolved increases in life cycle speed can mitigate increases in daily
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mortality rates, and were suggested to occur in Anopheles spp. in response to vector control inter-

ventions (Ferguson et al., 2012). Adult mosquito longevity is already the main limitation on trans-

mission near upper thermal limits for many major mosquito-borne diseases (Mordecai et al., 2019).

Further reductions in adult lifespan could cause large declines in transmission for pathogens with

longer incubation periods. In particular, transmission of malaria parasites, which have a minimum

incubation period of approximately nine days (Paaijmans et al., 2012; Blanford et al., 2013), may

be more negatively impacted under shortened mosquito lifespans than viral pathogens such as den-

gue virus and chikungunya virus, which have generally faster incubation periods—as low as three to

five days at temperatures above 30˚C (Tjaden et al., 2013; Rudolph et al., 2014; Mordecai et al.,

2019; Winokur et al., 2020). The implications of warming-driven life cycle adaptation therefore

depend on the interaction between vector and pathogen traits, which vary across species and

environments.

Behavioral thermoregulation and phenological shifts could increase, maintain, or decrease disease

transmission, primarily depending on how these shifts impact mosquito – human contact rates and

the effectiveness of vector control activities (Ferreira et al., 2017). For example, if rising tempera-

tures promote shifts in biting activity towards the cooler, night-time hours when humans are more

likely to be protected by bed nets, disease transmission may be reduced (Taylor, 1975; Pates and

Curtis, 2005; Moiroux et al., 2012; Thomsen et al., 2017; Carrasco et al., 2019). However, in the

absence of vector control, shifts towards night-time biting, as well as thermoregulatory shifts favor-

ing indoor versus outdoor biting, could increase mosquito – human contact rates and transmission
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Figure 2. Case study on Ae. aegypti-transmitted dengue suitability. Under current conditions, monthly dengue transmission suitability (i.e., R0 Tð Þ > 0)

based on mean monthly temperatures is high throughout Northern Brazil (A, B). Transmission suitability is projected to decline by 2080 under the RCP

8.5 climate scenario (C), as temperatures exceed mosquito upper thermal limits. To maintain current monthly transmission suitability under

temperatures projected for 2080, evolutionary change, in the form of an increased critical thermal maximum of Ae. aegypti fecundity (D) may be

required, with greater evolutionary change required in areas with greater projected warming.
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(Takken, 2002). Similarly, phenological shifts in mosquito activity could lead to changes in the length

or timing of disease transmission, potentially maintaining, increasing, or decreasing disease transmis-

sion. For example, increasing monthly mean temperatures in portions of California have effectively

doubled the potential transmission season of St. Louis encephalitis virus, such that elderly persons

traveling to California for the winter are newly at risk (Patz and Reisen, 2001). Failing to account for

phenological shifts in mosquito activity may render vector control programs less effective at reduc-

ing mosquito populations and disease transmission. In general, the impact of mosquito thermal

adaptation on disease transmission will vary based on the mechanism of thermal adaptation, making

identifying what adaptive strategies are most likely in different contexts a priority for future

research.

Applications to other vector and pest taxa
The same properties favoring mosquito thermal adaptation—short generation times, high popula-

tion growth rates, and strong climate sensitivity—apply to many insect taxa that threaten human,

animal, and plant health. These include vectors of major human, wildlife, and plant disease (e.g., spe-

cies of tsetse flies, biting midges, psyllids, and aphids), as well as pests of crops and forest resources

(e.g., species of beetles, moths, fruit flies, and fire ants). Despite the substantial societal cost adapta-

tion in pest and disease vector species could impose, their potential to adapt to climate change

remains poorly understood. This remains challenging to predict given the many determinants of evo-

lutionary rates, incomplete data on these determinants for most taxa, and the inability to perform a

single, conclusive experiment.

Drawing from conservation biology techniques used to study climate adaptive potentials in

threatened and endangered species, we have outlined a framework and empirical approaches for

investigating mosquito thermal adaptation that can be applied to any vector or pest species and

type of environmental change. For example, in the Eastern U.S., range retractions of the invasive

European gypsy moth have been linked to the duration of exposure above the optimal temperature

for larval and pupal development (28˚C; Tobin et al., 2014). Further, a recent common garden

experiment found moth populations at the southern range edge, which experience the strongest

thermal selection, have higher thermal tolerance in egg hatching, highlighting the potential for

adaptive evolution in this species (Faske et al., 2019). The climate adaptive potential of this species

could thus be estimated by comparing the potential evolutionary rates of thermal limits in immature

development with projected rates of warming in this region. More precisely estimating the thermal

adaptive potential of this pest species would enable forest management personnel to tailor interven-

tion and control strategies in the face of ongoing warming. Similarly, estimates of mosquito thermal

adaptive potential would enable vector control personnel to better target surveillance and insecti-

cide applications to the appropriate locations and seasons of mosquito activity. More broadly,

understanding and estimating the potential for climate adaptation in taxa of concern to human

health is critical for accurately predicting and preparing for their persistence or shifts in their distribu-

tions under climate change.

Conclusion: How will mosquitoes adapt to climate warming?
Our synthesis makes clear that some general aspects of mosquito demographics and strong temper-

ature-imposed selection may facilitate rapid evolution and adaptation to climate warming. In particu-

lar, typical mosquito generation times and population growth rates are on par with those of species

that have already demonstrated evolutionary responses to climate change. Further, the steep

declines in survival at temperatures exceeding mosquito thermal optima, as well as evidence of

some population-level variation in mosquito temperature-trait responses, indicate that the selective

pressures and raw genetic material necessary for evolutionary adaptation exist. However, making

more accurate predictions about mosquito persistence and adaptation under climate warming will

require identifying: (1) which life history traits experience the strongest thermal selection for a partic-

ular mosquito population, (2) how the optimal trait thermal tolerance varies with environmental tem-

perature, (3) the extent of heritability and within-population variation in trait thermal tolerance, and

(4) the role of phenotypic plasticity (particularly behavioral thermoregulation) in evolutionary adapta-

tion and persistence. Empirical approaches such as common garden or selection experiments to

obtain multiple pieces of missing information at once and leveraging information from related taxa
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where applicable can be used to address these key knowledge gaps. This would enable better esti-

mates of mosquito adaptive potential and its implications for the future of mosquito-borne disease

in a warming climate.
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Koella JC, Boëte C. 2002. A genetic correlation between age at Pupation and melanization immune response of
the yellow fever mosquito Aedes aegypti. Evolution 56:1074–1079. DOI: https://doi.org/10.1111/j.0014-3820.
2002.tb01419.x

Kontopoulos DG, Sebille E, Lange M, Yvon-Durocher G, Barraclough TG, Pawar S. 2020. Phytoplankton thermal
responses adapt in the absence of hard thermodynamic constraints. Evolution 74:775–790. DOI: https://doi.
org/10.1111/evo.13946

Kopp M, Matuszewski S. 2014. Rapid evolution of quantitative traits: theoretical perspectives. Evolutionary
Applications 7:169–191. DOI: https://doi.org/10.1111/eva.12127, PMID: 24454555

Kovach RP, Gharrett AJ, Tallmon DA. 2012. Genetic change for earlier migration timing in a pink salmon
population. Proceedings of the Royal Society B: Biological Sciences 279:3870–3878. DOI: https://doi.org/10.
1098/rspb.2012.1158

Kristensen TN, Kjeldal H, Schou MF, Nielsen JL. 2016. Proteomic data reveals a physiological basis for costs and
benefits associated with thermal acclimation. Journal of Experimental Biology 16:969–976. DOI: https://doi.
org/10.1242/jeb.132696

Lafferty KD, Mordecai EA. 2016. The rise and fall of infectious disease in a warmer world. F1000Research 5:
2040. DOI: https://doi.org/10.12688/f1000research.8766.1, PMID: 27610227

Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. 2011. Impact of daily
temperature fluctuations on dengue virus transmission by aedes aegypti. PNAS 108:7460–7465. DOI: https://
doi.org/10.1073/pnas.1101377108, PMID: 21502510

Lande R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334.
DOI: https://doi.org/10.2307/2407703

Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. Evolution 37:1210–1226.
DOI: https://doi.org/10.2307/2408842

Larish LB, Savage HM. 2005. Introduction and establishment of Aedes (Finlaya) Japonicus japonicus (Theobald)
on the island of hawaii: implications for arbovirus transmission. Journal of the American Mosquito Control
Association 21:318–321. DOI: https://doi.org/10.2987/8756-971X(2005)21[318:IAEOAF]2.0.CO;2,
PMID: 16252525

Latimer CA, Wilson RS, Chenoweth SF. 2011. Quantitative genetic variation for thermal performance curves
within and among natural populations of Drosophila serrata. Journal of Evolutionary Biology 24:965–975.
DOI: https://doi.org/10.1111/j.1420-9101.2011.02227.x, PMID: 21306462

Le Goff G, Damiens D, Ruttee AH, Payet L, Lebon C, Dehecq JS, Gouagna LC. 2019. Field evaluation of seasonal
trends in relative population sizes and dispersal pattern of aedes albopictus males in support of the design of a
sterile male release strategy. Parasites & Vectors 12:81. DOI: https://doi.org/10.1186/s13071-019-3329-7,
PMID: 30755268

Lehmann T, Hawley WA, Grebert H, Collins FH. 1998. The effective population size of anopheles gambiae in
Kenya: implications for population structure. Molecular Biology and Evolution 15:264–276. DOI: https://doi.
org/10.1093/oxfordjournals.molbev.a025923, PMID: 9501493

Lehmann T, Dao A, Yaro AS, Adamou A, Kassogue Y, Diallo M, Sékou T, Coscaron-Arias C. 2010. Aestivation of
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Appendix 1

Additional factors influencing population persistence
In addition to the eight parameters in the Chevin et al., 2010 evolutionary rescue model (main text,

Box 1), other factors influence a population’s potential for thermal adaptation. The starting popula-

tion size informs the probability of obtaining rescue variants, and thus the probability of adaptation

(Orr and Unckless, 2008; Bell, 2013; Martin et al., 2013; Carlson et al., 2014). The degree of sto-

chasticity in temperature change influences an organism’s ability to respond via plastic changes

(Manenti et al., 2014; Catullo et al., 2015). The breadth of thermal performance and the genetic

architecture of thermal tolerance inform the strength of selection (Huey and Kingsolver, 1993;

Kopp and Matuszewski, 2014). Rates of gene flow and dispersal may hinder local adaptation due

to the influx of maladapted genes but may promote evolutionary rescue through increasing genetic

variation and bolstering small population sizes (Garant et al., 2007; Baskett and Gomulkiewicz,

2011; Kirkpatrick and Peischl, 2013; Schiffers et al., 2013; Bourne et al., 2014; Carlson et al.,

2014). The degree of density dependence determines the strength of genetic bottlenecks

(Nordstrom et al., 2020). Biotic interactions such as interspecific competition or predation may alter

selection pressures (Culler et al., 2015), constraining rates of adaptation (Barbour et al., 2020), or

limit population persistence despite sufficient rates of adaptation (Angilletta, 2009; Carlson et al.,

2014; Johnson et al., 2019; Huey and Kingsolver, 2019). Fitness costs of phenotypic plasticity,

such as reduced foraging associated with behavioral thermoregulation or energetic costs associated

with maintaining the physiological machinery for acclimation may constrain levels of plasticity

(Dewitt et al., 1998; Angilletta, 2009; Chevin et al., 2010).
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Appendix 2

Methods for calculating mosquito population growth rate
The formula for population growth rate (r) as a function of temperature (T) is derived from the Euler-

Lotka equation (Amarasekare and Savage, 2012) as follows:

rðTÞ ¼��ðTÞþMDRðTÞW
EðTÞe

�ðTÞ�
�jðTÞ

MDRðTÞ

MDRðTÞ

0

B

B

B

@

1

C

C

C

A

(S1)

Population growth rate is a function of adult mortality (m), mosquito development rate (MDR),

fecundity (E), and juvenile mortality (mj). W is the upper branch of the Lambert function.

Appendix 2—figure 1. Population growth rate as a function of temperature for vector species listed

in Appendix 2—table 1.

Appendix 2—table 1. Measurements of mosquito demographic rates for major mosquito vector

species.

Maximum population growth rates (r) were calculated using trait thermal responses from the referen-

ces cited below and Equation S1 (Amarasekare and Savage, 2012). The temperature at which the

maximum growth rate occurs, and the upper thermal limit for population growth (i.e., r = 0) are pro-

vided. The generation time is calculated as the sum of the immature development time, the gonotro-

phic period, and a minimum estimate of the host-blood meal and egg-laying time (4 days). We report

the minimum generation time based on temperature.

Species
Max growth
rate (r)

Max growth rate
temperature

Upper thermal limit
for growth rate

Minimum
generation time
(days) Reference

Ae. aegypti 0.335 30.3˚C 35.3˚C 14 Mordecai et al.,
2017

Anopheles
spp.

0.187 26.2˚C 31.6˚C 17 Johnson et al.,
2015

Cx. pipiens 0.379 28.1˚C 34.6˚C 17 Shocket et al.,
2020
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Appendix 3

Appendix 3—table 1. Measurements of between-population variation in mosquito thermal

tolerance.

‘Evidence of local thermal adaptation’ refers to measurements where populations from warmer source

environments had higher thermal tolerance than those from cooler environments.

Species
Variation in source
thermal environment

Thermal
tolerance
measurement

Evidence of
local
thermal
adaptation? Main finding Reference

Cx.
pipiens

~3˚C in mean summer
temperature

larval survival no Population from the coolest
environment had the lowest
survival at all temperatures

Ruybal et al.,
2016

adult survival no Population from the coolest
environment had the lowest
survival at cool temperatures,
but highest survival at the
warmest temperature

development
rate

no Population from the warmest
environment had the highest
development rate at all
temperatures

biting rate no Population rank order varied
with temperature

An.
darlingi

~7, 6, 13˚C in annual
mean, min, and max
temperature,
respectively

adult lifespan no Population rank order varied
with temperature

Chu et al.,
2019

larval
development

no Population from the highest
minimum temperature
environment developed faster
at all temperatures

wing length no Population from the coolest
environment had the longest
wing length at all temperatures

Cx.
tarsalis

~5, 6, 15˚C in mean
daily, mean daily max,
and max recorded
temperature (in
summer)

metabolic
activity

yes Critical thermal limits
correlated positively with mean
daily max temperature of
source environment (but not
with mean daily or max
recorded temperature)

Vorhees et al.,
2013

Cx.
tarsalis

Unspecified.
Populations reared
from two sites in CA,
USA

larval
development
rate

no Minimal variation between
populations

Dodson et al.,
2012

% larval
survival

no Variation in survival that was
strongest at the high
temperature extreme

pupal
development
rate

no Minimal variation between
populations

% pupal
survival

no Variation in survival that was
strongest at the high
temperature extreme

wing length no No variation between
populations

Continued on next page
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Appendix 3—table 1 continued

Species
Variation in source
thermal environment

Thermal
tolerance
measurement

Evidence of
local
thermal
adaptation? Main finding Reference

Cx.
tarsalis

~3˚C difference in
annual mean
temperature

immature
development
rate

no Population from warmer
environment developed more
quickly at all temperatures

Reisen, 1995

development
rate

no Population from warmer
environment developed more
quickly at all temperatures

adult lifespan no Population from warmer
environment had higher
survival at intermediate, but
not extreme temperatures

Cx.
quinque-
fasciastus

Unspecified.
Populations reared
from sites in New
Zealand, Fiji, and Japan

larval
development

no No variation between
populations

Mogi, 1992

adult
emergence
rate

no No variation between
populations

biting rate no Population rank order varied
with temperature

ovariole
numbers

no Population from the
intermediate environment had
the greatest number of
ovarioles at all temperatures

egg
maturation

no Minimal variation between
populations

Appendix 3—table 2. Measurements of phenotypic plasticity in mosquito thermal tolerance,

categorized as thermal acclimation, behavioral thermoregulation, and aestivation (see main text,

‘Phenotypic plasticity’).

Form Species Main finding Reference

Thermal
acclimation

Cx. pipiens Critical thermal maxima increased 1˚C when developed at
26˚C versus 18˚C

Gray, 2013

Thermal
acclimation

An. arabiensis
and An.
funestus

Little variation in critical thermal maxima (typically
increased by <2˚C) after thermal acclimation

Lyons et al., 2012

Thermal
acclimation

An. albimanus Heat tolerance increased with warming developmental
temperatures and with a prior heat shock exposure, but
mosquitoes from all treatments died at 40–43˚C

Benedict et al.,
1991

Thermal
acclimation

W. smithii Larval and adult survival after heat shock increased ~0–
30% in populations subjected to fluctuating hot/cold
temperatures during development

Armbruster et al.,
1999

Thermal
acclimation

Ae. aegypti Larvae pre-acclimated to warmer temperatures (37–39˚C)
survived longer at higher temperature extremes (43–45˚C)

Sivan et al., 2021

Behavioral
thermoregulation

Anopheles sp. Observed seasonal shifts in feeding time, with biting
occurring at dusk in cooler times of the year and late at
night during warmer times

Reisen and
Aslamkhan, 1978

Behavioral
thermoregulation

An. darlingi Observed correlation between time of year and
crepuscular biting rates, and high within-population
variation in biting time

Voorham, 2002

Behavioral
thermoregulation

Ae. communis Observed larvae resting in deeper, cooler waters when
surface water temperatures became exceptionally high

Haufe and
Burgess, 1956

Behavioral
thermoregulation

Ae. aegypti, Ae.
japonicus

Observed preference for 30˚C when exposed to thermal
gradient of 30–45˚C in laboratory trials

Verhulst et al.,
2020

Continued on next page
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Appendix 3—table 2 continued

Form Species Main finding Reference

Behavioral
thermoregulation

An. stephensi Observed preference for resting at ~26˚C when exposed
to thermal gradient of 14–38˚C in laboratory trials

Blanford et al.,
2009

Behavioral
thermoregulation

Cx. fatigans Observed avoidance of high temperatures when exposed
to thermal gradient of 25–30˚C in laboratory trials

Thomson, 1938

Aestivation An. gambiae,
An. coluzzii

Lower reproductive rates during the 3–6 month dry period
were followed by rapidly rebounding population sizes
after the first rain, suggesting persistence through
aestivation

Yaro et al., 2012,
Dao et al., 2014
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Appendix 4

Methods for ‘Consequences for disease transmission’ case study: Aedes
aegypti-transmitted dengue virus in Northern Brazil
Case study context

In this case study, we estimate the monthly temperature suitability for dengue virus transmission by

Aedes aegypti in Northern Brazil. This includes the North and Northeast macroregions, with a com-

bined population size of approximately 69 million people (Instituto Brasileiro de Geografia e Esta-

tistica and população, 2016) and 250,000 probable dengue cases per year (National Notifiable

Diseases Information System (SINAN), 2019). Based on model projections that do not incorporate

mosquito thermal adaptation (Ryan et al., 2019), Ae. aegypti-transmitted dengue suitability is

expected to decline in this region by 2080 under an upper climate change scenario (RCP 8.5) as

warming temperatures exceed mosquito upper thermal limits. Thermal adaptation by Ae. aegypti in

this region could enable dengue transmission suitability to be maintained.

Modeling approach

We use a temperature-dependent model of R0 —the number of secondary infections expected from

a single infected individual introduced into a fully susceptible population—using the following

expression (Mordecai et al., 2013):

R0 Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a Tð Þ2b Tð Þc Tð Þe�
� Tð Þ

PDR Tð ÞEFD Tð ÞpEA Tð ÞMDR Tð Þ

Nr� Tð Þ3

v

u

u

t

(S2)

where (T) indicates a temperature-dependent trait, a is the mosquito biting rate, b is the proportion

of infectious mosquito bites resulting in infected humans, c is the proportion of bites on infected

humans resulting in infected mosquitoes, m is the adult mosquito mortality rate (here calculated as 1/

lifespan), PDR is the parasite development rate, EFD is the number of eggs laid per female per day,

pEA is the mosquito egg-to-adulthood survival probability, MDR is the sub-adult mosquito develop-

ment rate, N is the density of humans, and r is the human recovery rate.

We use the data compiled by Mordecai et al., 2017 on the temperature-dependence of Aedes

aegypti and dengue virus traits involved in transmission to parameterize the model. We use this

model to estimate the number of months per year in which temperatures are suitable for dengue

transmission (i.e., the number of months in which R0 Tð Þ>0), a conservative threshold that defines the

range of temperatures at which dengue transmission is not prohibited (Ryan et al., 2019).

We first estimate the number of suitable months for transmission under current (2021) and future

(2080) temperatures assuming no mosquito adaptation. We then estimate the extent of mosquito

thermal adaptation needed to maintain current levels of transmission suitability under future temper-

atures. We assume adult fecundity to be the life history trait under thermal selection as it has lowest

critical thermal maximum (CTmax; 34.61˚C) of the Ae. aegypti and dengue virus life history traits

(MacLean et al., 2019) and is thus the trait that determines the maximum temperature for dengue

transmission. Current mean monthly temperatures do not exceed the CTmax for fecundity at any loca-

tion within Northern Brazil in 2021. By 2080 under RCP 8.5, mean monthly temperatures are often

expected to exceed CTmax, indicating temperatures are projected to be unsuitable for dengue trans-

mission (i.e., R0 Tð Þ ¼ 0). We ask: What degree of increase in the CTmax of Ae. aegypti fecundity

would enable current monthly transmission suitability to be maintained in 2080? In this example, we

consider fecundity as the only trait under thermal selection, although future temperatures may

exceed the CTmax of other Ae. aegypti and dengue virus life history traits, and there may be genetic

correlations between fecundity and mosquito survival and development.

Climate data
For consistency with Ryan et al., 2019, we use mean monthly temperature when estimating R0 Tð Þ:

Other climate variables such as diurnal temperature variation or monthly precipitation may limit

future Ae. aegypti persistence in this region, but their effects on mosquito life history traits are less

well understood than those of mean temperature, and thus they are not considered here for
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simplicity. Regions in which extreme drought or other limiting climate conditions are projected could

be masked from the analyses as in Ryan et al., 2015 for more precise estimates. For current and

projected mean monthly temperature data, we used the Hadley general circulation model (GCM)

(HadGEM2-ES), which has high performance in Brazil and is the most commonly used GCM

(Ryan et al., 2019; Almagro et al., 2020). Data were accessed through the Earth System Grid Fed-

eration. We used temperature projections made under representative concentration pathway (RCP)

8.5 for consistency with Ryan et al., 2019. RCP 8.5 is considered a ‘business-as-usual’ fossil fuel

emissions scenario and corresponds to an 8.5 W=m2 increase in solar radiation by 2100 (Riahi et al.,

2011).

All climate analyses and mapping were conducted in R version 4.0.2. The R code and climate

data files used in the analysis are available on Github (https://github.com/lcouper/

MosquitoAdaptationCaseStudy).
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