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ABSTRACT

When a formerly rare pathogen emerges to cause a pandemic, it is critical to understand the ecology of the disease dynamics
and its potential effects on disease control. Here, we take advantage of newly available experimental data to parameterize a
temperature-dependent dynamical model of Zika virus (ZIKV) transmission, and analyze the effects of temperature variability
and the parameters related to control strategies on ZIKV R0 and the final epidemic size (i.e., total number of human cases).
Sensitivity analyses identified that R0 and the final epidemic size were largely driven by different parameters, with the exception
of temperature, which is the dominant driver of epidemic dynamics in the models. Our estimate of R0 had a single optimum
temperature (≈ 30o C), comparable to recently published results (≈ 29o)1. However, the total number of human cases (“final
epidemic size”) is maximized across a wider temperature range, from 24 to 36oC. The models indicate that the disease is highly
sensitive to seasonal temperature variation. For example, although the model predicts that Zika transmission cannot occur at a
constant temperature of 22oC, with seasonal variation of 5oC around a mean of 22oC, the model predicts a larger epidemic than
what would occur at a constant 30oC, the temperature predicted to maximize R0. This suggests that the potential geographic
range of Zika is wider than indicated from static R0 models, underscoring the importance of climate dynamics and variation on
emerging infectious diseases.

Introduction
Vector-borne viruses (arboviruses) are emerging threats to both human and animal health. The global expansion of dengue virus
(DENV), West Nile virus (WNV), chikungunya (CHIKV) and most recently Zika virus (ZIKV) are prominent examples of how
quickly mosquito-transmitted viruses can emerge and spread through naive host populations. Currently 3.9 billion people living
within 120 countries are at risk of mosquito-borne arboviral diseases2 with effects on human well-being that can be devastating
(e.g., death, illness, as well as social and human ramifications of Zika induced-microcephaly and other congenital disorders)3.
Anticipating and preventing outbreaks of emerging mosquito-borne viruses across these host populations is a major challenge.

Despite growing research to develop new therapeutics and vaccines, mitigating arbovirus disease spread still depends on
conventional mosquito control methods, often with mixed success. Developing tools that allow us to successfully predict
outbreaks of these viruses and efficiently target current and future interventions to specific times and locations can aid
effective mosquito and disease control. Such efforts are often limited by gaps in knowledge on the relationships among
mosquito vectors, pathogens, and the environment, especially for emerging arboviruses such as CHIKV and ZIKV. Even in
well-researched disease systems (e.g. malaria and DENV), key transmission parameters are only estimated from a few studies4–6.

Variation in environmental temperature has a strong impact on the environmental suitability for transmission risk across
a diversity of vector-borne disease systems7–10. Mosquitoes are small ectothermic organisms, and their fitness11, 12, life his-
tory13–18, and vectorial capacity4–6, 17, 19–22 exhibit non-linear, unimodal relationships with environmental temperature. Recent
work by Tesla et al.20 demonstrates such temperature-transmission relationships for ZIKV, a recently emerging pathogen. These



temperature-transmission relationships have significant ramifications on how disease transmission varies seasonally, across
geographic locations, and with future climate and land use change. Control tools being considered for use within integrated
vector management (IVM) strategies may also be affected by temperature, such as conventional chemical insecticides that
target a diverse range of insect pests23–28, including mosquitoes29, 30. Further, there is evidence that temperature could mod-
ify the efficacy of novel control interventions, such as mosquito lines transinfected with the intracellular bacteria Wolbachia31–34.

Several modeling frameworks have been used to predict environmental suitability for vector-borne disease transmission,
including, most recently, temperature-dependent R0 models4–6, 19, 20 and compartmental models of vector-borne disease dy-
namics9, 35, 36. The parameter R0 is broadly considered to be the most important summary statistic in epidemiology and
disease ecology. It is defined as the expected number of new human (respectively, mosquito) cases generated by a single
infectious human (respectively, mosquito) introduced into a fully susceptible human (respectively, mosquito) population
throughout the period within which that human (respectively, mosquito) is infectious37. As a simple metric, it can easily
incorporate the non-linear influence of multiple temperature-dependent mosquito and pathogen traits, and has been applied to
define the thermal optimum and limits for malaria5, 6, 38, DENV, CHIKV4, 39, 40, ZIKV4, 20, and Ross River virus19. However,
temperature-dependent R0 formulations only define the relative risk of disease emergence and do not predict the final epidemic
size (or incidence). The derivation, interpretation, and validation of R0 models is thus problematic in highly variable systems41.
Dynamical models of transmission that track densities of infectious individuals over time, on the other hand, can more readily
capture the impact of varying environmental conditions.

To better understand potential climate effects on control strategies for ZIKV, we developed a temperature-dependent dynamical
model based on recent experimental work characterizing temperature-trait relationships between ZIKV vector competence,
extrinsic incubation rate, and the per capita daily mosquito mortality rate20. Through numerical and sensitivity analyses we
analyze effects of control parameters and temperature on R0 and the final epidemic size. The model addresses the following
questions: 1) How do the thermal optima and ranges for R0 compare to those for the human final epidemic size? 2) How
does seasonal temperature variation affect the final epidemic size relative to a constant temperature environment? 3) Which
parameters have the greatest impact on R0 and the final epidemic size that can inform control efforts? 4) Are different thermal
environments more or less suitable for specific control strategies?

Our results show that R0 and the final epidemic size were largely driven by different parameters, with the exception of
temperature being the dominant driver of both transmission metrics. Further, the human final epidemic size was maximized
across a wider range of temperatures than what would have been predicted from the temperature-dependent R0 model. The
human final epidemic size was highly sensitive to seasonal temperature variation, suggesting the potential invasion map of
ZIKV may be wider than previously reported. Further, the effectiveness of potential control strategies (e.g., vaccines, drug
treatment, and insecticides) are predicted to be sensitive to such differences in seasonal temperature variation.

Methods
We construct a temperature-dependent compartmentalized model of ZIKV dynamics with and without seasonal temperature
change. Where possible, model parameters are estimated from the most recent laboratory experiments on temperature effects
on the life cycle of the virus4, 42. We compare how temperature dependence affects R0, the human “final epidemic size”(total
number of infected individuals over the course of the epidemic), and key ecological characteristics of the system, such as
extrinsic incubation period, the probability of transmission from the mosquito to the human, the probability of transmission
from the human to the mosquito, and daily rates of mosquito and egg to adult survival. We then analyze the combined effects of
disease control parameters and temperature on R0 and the final epidemic size. Through a Latin-Hypercube Sampling-based43

sensitivity analysis we identify key parameters that most drive the epidemiological outcomes (R0 and the final epidemic size).

The basic dynamic model
The model apportions humans into four groups based on ZIKV infection status that changes over time, t: susceptible Sh (not
infected), latent Eh (contracted the virus, but not yet infectious), infectious Ih (contracted the virus and can transmit it), and
recovered Rh with lifelong immunity. The mosquito population is divided into similar classes, where the state variables have
subscript v, but without an immune class since it is assumed that infectious mosquitoes do not clear the virus once it is in the
salivary glands. The total human and mosquito populations are Nh = Sh +Eh + Ih +Rh and Nv = Sv +Ev + Iv.

We assume that the human population is constant during an outbreak (relevant for short epidemics). Susceptible humans
acquire the virus at rate (force of infection) λvh(Iv,Nh) =

bvβvhIv
Nh

, while susceptible mosquitoes acquire the virus at rate

λhv(Ih,Nh) =
bvβhvIh

Nh
, where bv is the number of human bites per mosquito per unit time, βvh is the probability that an infectious

2/16



mosquito successfully transmits the virus while taking a blood meal from a susceptible human (i.e., the transmission rate),
and βhv is the probability that an infectious human successfully transmits the virus to a biting, susceptible mosquito (i.e. the
infection rate). The respective average residence times of infected humans and mosquitoes in the latent classes are 1/σh and
1/σv, while the respective rates at which humans and mosquitoes become infectious are σh and σv. Humans are infectious
for approximately 1/γh days before recovering with permanent immunity (γh is the per capita human recovery rate), while
infectious mosquitoes remain infectious until they die. Mosquito recruitment occurs at a per capita rate f (Iv) = αv

(
1− Nv

κv

)
,

where κv is the carrying capacity (maximum number of mosquitoes a breeding site can support). Further, αv = θvνvφv/µv,
consistes of θv, or the number of eggs a female mosquito produces per day; νv, the probability of surviving from egg to adult;
and φv, the rate at which an egg develops into an adult mosquito. Mosquitoes die naturally at per capita rate µv, where 1/µv is
the average lifespan of mosquitoes. See Fig. 1 for a schematic of the model and Table 1 for details on parameter values. The
dynamic model for the Zika virus is described by the equations:

Ṡh = −bvβvhIv

Nh
Sh,

Ėh =
bvβvhIv

Nh
Sh −σhEh,

İh = σhEh − γhIh,

Ṙh = γhIh, (1)

Ṡv = αvNv

(
1− Nv

κv

)
−
(

bvβhvIh

Nh
+µv

)
Sv,

Ėv =
bvβhvIh

Nh
Sv − (σv +µv)Ev,

İv = σvEv −µvIv.

Dots denote differentiation with respect to time, t. The dynamics of the total human population and mosquito populations are
described by the equations:

Ṅh = 0, and Ṅv =

(
αv

(
1− Nv

κv

)
−µv

)
Nv. (2)

Without Zika virus, the mosquito population grows according to Eq. (2), or Nv(t) = N∗
v /(1+(N∗

v /N0
v −1)e−(αv−µv)t), where

N0
v is the initial mosquito population and N∗

v = κv

(
1− µv

αv

)
> 0 for αv > µv is the positive equilibrium obtained by setting

the right-hand-side of the equation to zero. Observe that Nv(0) = N0
v , and that when αv > µv, the total mosquito population

relaxes on the equilibrium population (N∗
v ) in the long-run. Therefore, the equilibrium point N∗

v is stable when αv > µv and
vanishes when αv < µv. The case for which αv < µv results in a trivial mosquito equilibrium represents a situation in which the
mosquito population becomes extinct.

In the presence of the Zika virus, the basic reproduction number of system (1) is:

R0 =

√
b2

vβvhβhvσv

γhµv(σv +µv)

N∗
v

Nh
. (3)

The main difference between this R0 calculation and that from the Ross-MacDonald model is in the probability that the mosquito
survives the latent period. The Zika virus can spread when R0 > 1 and can be contained when R0 < 1.

For the purposes of exploring control strategies, we also consider a variant of this model that includes vaccination, where
vaccinated susceptible humans are assumed to enter the immune class directly. For this special case, the first and fourth
equations of (1) are replaced by Ṡh =−

(
bvβvhIv

Nh
+δh

)
Sh and Ṙh = δhSh + γhIh, respectively, where δh represents the per capita

rate human vaccination rate.

Introducing temperature
The majority of the parameters associated with the mosquito vector (θev, νv, φv, bv, µv), as well as ZIKV transmission (βhv)
and replication (σv), are known to be influenced by environmental and climate conditions1, 4. We investigate the effects of
temperature variation on the dynamics of the mosquito population and ZIKV transmission over time. We follow the approach
in9 and model temperature-dependent parameters with the functional forms presented in Table 2. We rely on values and ranges
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of temperature-dependent parameters from recent laboratory-generated analyses for Zika virus1 and Ae. aegypti life history
parameters (e.g., the biting rate of mosquitoes, the number of eggs a female mosquito lays per day, the probability of an egg
surviving to an adult mosquito, and the rate at which an egg develops into an adult mosquito) from4 as specified in Table 2. As
in4, the functional forms for the temperature dependent parameters are based on the quadratic and Briere44 forms.

Eggs per female mosquito per day: θv(T ) = cθvT (T −T 0
θv
)(T m

θv
−T )

1
2 ,

Egg-adult survival probability: νv(T ) = cνv(T −T 0
νv)(T −T m

νv ),

Egg-adult development rate: φv(T ) = cφvT (T −T 0
φv
)(T m

φv
−T )

1
2 ,

Mosquito biting rate: bv(T ) = cbv T (T −T 0
bv
)(T m

bv
−T )

1
2 , (4)

Infectivity of infectious humans: βhv(T ) = cbhv(T −T 0
βhv

)(T −T m
βhv

),

Extrinsic incubation rate: σv(T ) = cσv T (T −T 0
σv)(T

m
σv −T )

1
2 ,

Vector mortality rate: µv(T ) =
1

cls(T −T 0
ls)(T −T m

ls )
,

These relationships between some model parameters, model outcomes, and temperature are illustrated in Fig. 2. We further
introduce seasonal variation in the system by modeling temperature through the functional form:

T (t) = Tm +Ta sin
(

2π

365

)
t, (5)

where Tm is the mean annual temperature and Ta is the amplitude (divergence from mean temperature or mid-point between the
lowest and highest annual temperatures). Temperature-dependent parameters used in our analyses are presented in Table 2.

Control strategies
To analyze the relationship between temperature and Zika control, we identified the following parameters of the system that
correspond to potential control strategies: vaccination (δh) decreases susceptibility and is directly incorporated into the models
as described above; recovery rates (γh) can, for example, be increased through treatment with antiviral medication; vector biting
rates (bv) can be reduced through decreasing exposure to mosquitoes with personal protection or household improvements;
vector-to-human transmission probability (βvh) can decrease with transmission-blocking Wolbachia; the vector carrying capacity
(κv) can be reduced by eliminating vector breeding grounds near human habitats; egg-adult survival probability (νv) can be
reduced through larvicides; and adult mosquito survival rate (µv) can be decreased through indoor spraying and the use of
aldulticides. We investigate how the interactions of these control parameters and temperature influence R0 and the final epidemic
size, total Ih.

Sensitivity analysis
Two types of sensitivity analyses - local and global - were used to explore the impact of temperature and selected control
parameters on the basic reproduction number (R0) and the human final epidemic size (total Ih). The local sensitivity analysis
was conducted by varying only one parameter while holding all other parameters fixed, or varying both temperature and a
control parameter while holding the other parameters fixed. Each varied parameter was divided into 50, 100, and 250 equally
spaced points within biologically feasible bounds. See Figs. 2-6 for results. As the human vaccination rate (δh) does not
appear explicitly in the expression of R0, we cannot assess the impact of temperature on this control parameter on the basic
reproduction number. However, we explore the impact of temperature on the human vaccination rate and associated implications
for Ih, the human final epidemic size (Fig. 3).

Global sensitivity analysis is presented in Fig. 7. The analysis is carried out using the Latin-hypercube Sampling (LHS)
and Partial Rank Correlation Coefficient (PRCC) technique43. The process involves identifying a biologically feasible mean,
minimum and maximum value for each of the parameters (see, for example,1, 4) and subdividing the range of each parameter
into 1000 equal sub-intervals, assuming a uniform distribution between the minimum and maximum values of each parameter.
We then sample at random and without replacement from the parameter distributions to generate an m×n latin-hypercube
sampling matrix, whose m rows (i.e., 1000 rows) consist of different values for each of the model parameters and the n columns
(corresponding to the number of parameters in the system) consist of different values for the same parameter. Thus, each row of
the Latin hypercube sampling matrix provides a parameter regime that is used for computing the basic reproduction number,
solving the dynamic system, and computing the human final epidemic size. The parameters, basic reproduction number, and

4/16



the human final epidemic size are then ranked with partial correlation coefficients estimated for each parameter along with
corresponding p-values. PRCCs range from −1 to 1 and are used to examine the correlation between model parameters and
model outputs (R0 and the final epidemic size). This method thus identifies parameters with the most significant influence on
model outputs; it does not quantify the effect of a change in a parameter on the output.

Mapping Seasonal Control
We mapped the R0 as a function of monthly mean temperature (Fig. 5). Globally gridded monthly mean current temperature
were downloaded from WorldClim.org45, at a 5 arc-minute resolution (approximately 10 km2 at the equator), and predicted rates
as a function of temperature at 0.20 C were mapped to the global grids. All raster calculations and graphics were conducted in
R, using package raster46.

Results
Impact of temperature on model parameters and key outputs
The models show unimodal relationships between temperature and the temperature-dependent parameters, resulting in an
optimal temperature that maximizes parameter values and a critical minimum and maximum temperature at which parameter
values go to zero. Figure 2 presents the effects of temperature on mosquito and pathogen parameters, the final epidemic size
in humans (total number of infected individuals over the course of the epidemic) and mosquitoes, and the basic reproduction
number, R0 (via temperature effects on mosquito and ZIKV parameters).

The response of R0 to temperature is strongly peaked as has been demonstrated in other systems (e.g., dengue, malaria,
Ross River virus)4, 42. In contrast, the relationship between the final epidemic size and temperature discretely changes when
temperature enters into a thermal range, but has little or no change to temperature variation within that range (Fig. 2 (i) versus
(j)). At temperatures associated with lower epidemic peaks, there are longer epidemic periods, resulting in the same total
number of infected individuals over the course of the epidemic (Figure 2 (l)).

Zika virus control
For most control-related parameters, effects on the final epidemic size were largely independent of temperature (color bands
are vertical for most of the plots, (Fig. 3(a-h)). However, vaccination and recovery were less influential on the final epidemic
size at optimal temperatures, indicating a higher proportion of the population needs to be vaccinated at optimal temperatures
than at sub-optimal temperatures to achieve a given reduction in the overall final epidemic size (Fig. 3(c)). Thus, warming
temperatures (for most countries) will generally make it more difficult to control Zika through vaccination and drugs.

The effects on the basic reproduction number (R0) of most control parameters were more dependent on temperature (Fig. 4)
than was the case for the final epidemic size (total Ih), with the greatest effect involving the clearance rate of infection (γh), the
probability of transmission from an infectious human to a susceptible mosquito (βhv), mosquito carrying capacity (κv), and the
mosquito mortality rate (µv).

Seasonal variation
Seasonal temperature variation affects outcomes by providing transient temperatures (variation from the mean) where the basic
reproduction number changes and can rise above 1 allowing for transmission to occur. At constant temperatures, epidemics
only occur in humans between 230 - 370 C. Seasonal temperature variation of ±60 C allows large epidemics to occur between
mean temperatures of 15 - 340 C (Fig. 6 (a)). Thus temperate regions with large seasonal variation can support large epidemics,
comparable to that of warmer tropical climates with less seasonal variation. In contrast to the models without seasonal variation
(Fig. 3), the models with seasonal variation (Fig. 6) indicate that the effectiveness of control parameters on the final epidemic
size is generally sensitive to changes in temperature (e.g., the color bands in the subplots of Fig. 6 are diagonal in more of the
parameter space than they are in (Fig. 3 ). Fig. 5 shows how the thermal conditions that are suitable for Zika (where R0 > 1)
change with seasonal temperature variation across the globe.

Global uncertainty and sensitivity analysis
A global sensitivity analysis using Latin Hypercube sampling showed that R0 and the final epidemic size are largely sensitive to
different parameters. However, temperature is a dominant driver of variation in both the basic reproduction number (R0) and
the final epidemic size (total Ih) when it is included in the model (Fig. 7(c-e)). The human recovery rate, γh, was a consistently
influential driver of the final epidemic size. In contrast, the basic reproduction number was not sensitive to recovery in the
models with and without temperature. While R0 was also sensitive to vector competence (βvh and βhv), biting rate (bv), and
mosquito lifespan (1/µ), total infection burden was far less sensitive to these parameters and was mainly sensitive to human
recovery rate (γh) (Fig. 7(a)-(b)).
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Discussion

We are interested in what drives arbovirus epidemics with Zika as a model and how to reduce the burden of these diseases,
focusing on temperature and key parameters that correspond to existing or potential control methods (e.g., pesticides, reduced
breeding habitats, vaccines, or treatment). We investigated temperature-dependent dynamic transmission models that incor-
porated recent empirical estimates of the relationships between temperature and Zika infection, transmission, and mosquito
lifespan1. These dynamical models that can measure final epidemic size and account for temperature variation generate
qualitatively different results than static R0 variables. Temperature had an overwhelmingly strong impact on both R0 and the
final epidemic size (total infectious individuals, equivalent to area under the Ih epidemic curve), but the response was much
more gradual and had a clear optimum for R0, while the final epidemic size responded as a threshold function (Fig. 2(i)-(j)).
This is because, while epidemics have a higher peak at the max R0 (at optimal temperatures), the epidemics are longer at
sub-optimal temperatures (lower R0). Thus, Zika virus is capable of spreading efficiently through the host population (high Ih)
across a broad range of temperatures for which R0 > 1, spanning from 17-37o C in constant environments (Fig. 6) (a)9. This is
broadly consistent with the high seroprevalence of Zika found in a number of countries47, 48. This suitable temperature region
expanded and shifted toward cooler mean temperatures under seasonally varying environments (Fig. 6 (a)).

These results have two key implications. First, large epidemics can occur under realistic, seasonally varying, tempera-
ture environments even in regions where the mean temperature alone would be expected to suppress transmission, for example
in a location with a mean of 15o C and a seasonal amplitude of 7o C. Second, temperature determines both upper and lower
thresholds for whether or not epidemics are possible9. However, within the predicted suitable temperature range defined by R0,
the final epidemic size is largely limited by the density of susceptible hosts (Figs. 2, 6 (a))9. More broadly, the results highlight
the important principle that metrics of transmission (e.g., R0) have a nonlinear relationship with the human final epidemic size
(total Ih) and contribute distinct implications for our understanding of the transmission process.

Whether or not temperature affects the potential for disease control via vector control, reduction in host biting rate, vac-
cination, or drug administration is an important applied question for designing public health campaigns. Temperature did
not strongly affect the impact of most control-related parameters on the final epidemic size when the models did not include
seasonal variation. When the models included seasonal variation, the effectiveness of most control parameters depended on
temperature. In all models, human vaccination rate required to control epidemics varied strongly with mean temperature
(Figs. 3-6). Achieving herd immunity and thereby suppressing transmission via vaccination is more difficult when temperatures
are highly suitable (200-350 C under constant temperatures or 150-320 C under varying temperatures; Figs. 3-6). By contrast,
the effects of the human recovery rate (γh) and the vector mortality rate (µv) on R0 were sensitive to temperature, but their
effects on the final epidemic size were not sensitive to temperature.

Similar to previous work on dengue9, our results show that Zika can invade and cause large outbreaks during the sum-
mer in seasonally varying environments with lower average temperatures, such as temperate regions of the U.S., Europe,
and Asia. This implies that differences in the size of epidemics in tropical versus temperate locations occur not just because
of differences in temperature (and its impacts on R0) but also because of differences in vector breeding habitat availability,
humidity, human mosquito exposure, and other socio-ecological factors. Much of the globe—including regions in temperate,
subtropical, and tropical climates—is already suitable for Zika transmission for all or part of the year, and climate change is
likely to expand this suitability geographically and seasonally (Ryan et al., in review). However, processes that increase the
density of susceptible human populations and their exposure to mosquitoes, including urbanization and urban poverty, human
population growth, and the growth and geographic expansion of vector populations, are likely to expand the burden of Zika
even more dramatically in the future.

There are several limitations of such a modeling study. First, the parameters are determined by a combination of lab-
based estimates as well as from literature on dengue, instead of being fitted to empirical data on the spatio-temporal dynamics
of Zika from the field. Such divergent approaches can generate different parameter estimates. Further, the projections of the
model on potential geographic distribution of Zika are based on average of temperatures by country and season with constant
parameters. In reality, there is substantial heterogeneity of temperature and parameters over time and space, which have
important implications for disease dynamics. For this reason, further investigation of Zika models that are calibrated from field
based dynamics will be valuable for a fuller understanding of effects of temperature variation on Zika control.
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Conclusion
The unexpected emergence and global expansion of Zika in 2015-2017 and its association with Zika congenital syndrome and
Guillain-Barre syndrome revealed once again how poorly prepared the global community is for the looming and expanding
threat of vector-borne diseases. Given the recent history of Aedes aegypti-transmitted viruses, including dengue, chikungunya,
and Zika, rapidly expanding worldwide and the challenges of controlling these epidemics without specific vaccines or drugs,
understanding the ecological drivers of transmission and their effects on potential disease control tools is crucial for improving
preparedness for future vector-borne disease emergence. If a Zika vaccine becomes available, then the precisely defined
temperature thresholds for large epidemics predicted in our model imply that vaccination targets should be set based on climate.
By contrast, because other potential interventions that would reduce vector population sizes, biting rates, and human recovery
rates act more independently of temperature, targets could be set based on other socio-ecological factors in a given epidemic
setting. This dynamic temperature-dependent modeling framework, which depends most strongly on vector and host parameters
that are virus-independent, may be a useful first step for responding to future Aedes-borne disease epidemics.
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Figure 1. Compartmental model of Zika virus transmission. Compartments are divided into humans (blue), and vectors (red),
representing disease status, with transitions between compartments (rates) in solid lines. The transmission of Zika virus from
humans to vectors is denoted by dashed lines, and from vectors to humans by dashed-dotted line. Rates of demographic change
(births and deaths) in the vector population are denoted by dotted lines.
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Figure 2. Effect of temperature, T on mosquito and pathogen parameters: (a) mosquito biting rate, bv; (b) the pathogen
transmission probability from humans to mosquitoes, βhv; (c) the inverse of the pathogen extrinsic incubation period, σv, (d)
the average mosquito lifespan, 1/µv; (e) the vector competence, vc = βhvβvh; (f) the number of eggs laid by a female mosquito
per day, θv; (g) the egg-to-adult mosquito development rate, φv; (h) the egg-to-adult mosquito survival probability, νv; (i) the
basic reproduction number, R0; (j and k) the total infectious human population, Ih in thousands, and total vector population, Iv
in hundreds of thousands; and (l) the infectious human population. Time, t in (l) is in hundreds of days. The number of
infectious individuals rises with temperature up to an optimal temperature between 29oC and 32oC. As temperatures are
increased beyond the optimal, the number of infectious individuals falls.
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Figure 3. Effect of temperature and control parameters on human the final epidemic size (total infectious human population):
(a) vector biting rate, bv; (b) human recovery rate, γh; (c) human vaccination rate, δh; (d) the probability of transmission from
the mosquito to the human, βvh; (e) the probability of transmission from the human to the mosquito, βhv; (f) vector mortality
rate, µv; (g) vector carrying capacity, κv; (h) and the vector egg-adult survival probability, νv. With the exception of the human
vaccination and recovery rates, temperature does not substantially alter the effects of most control parameters on the human
final epidemic size (the color bands have little gradient in the parameter space).
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Figure 4. Effect on the basic reproduction number, R0, of temperature and control parameters: (a) the mosquito biting rate, bv;
(b) the human recovery rate, γh; (c) the probability of transmission from the mosquito to the human, βvh; (d) the probability of
transmission from the human to the mosquito, βhv; (e) the mosquito carrying capacity, κv; and (f) the mosquito mortality rate,
µv. (Vaccination δh and the egg-to-adult mosquito survival probability, νv, do not appear explicitly the in R0 model.) The effect
of these parameters on R0 is more dependent on temperature than their effects on the final epidemic size (e.g., the color bands
are less vertical and more diagonal in parts of the parameter space).
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Figure 5. Estimated basic reproduction number R0, for different mean monthly temperatures, globally. The color bar
represents increasing R0 values with the lowest values denoted by dark blue and the highest values denoted by light yellow. A
value of R0 below 1 means the disease cannot take off. Note the month-to-month variation in locations such as Australia,
demonstrating the impact of seasonal temperature variation on R0, and therefore on the control level needed to reduce or
eradicate disease.
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Figure 6. The human final epidemic size is sensitive to the annual mean (oscillation) temperature, Tm, and several important
control-related parameters: (a) the seasonal divergence of the annual temperature from the mean, Ta; (b) the human recovery
rate, γh; (c) the human vaccination rate, δh; (d) the scaling factor of vector biting rate, cbv ; (e) the probability of transmission
from the mosquito to the human, βvh; (f) the scaling factor of the probability of transmission from the human to the mosauito,
cβhv

; (g) the scaling factor of the vector mortality rate, cls (g); (h) the vector carrying capacity, κv; (i) and the egg survival
probability scaling factor, cνv . The annual mean (oscillation) temperature varies along the x-axis, the seasonal divergence of the
annual temperature from the mean and the other control parameters vary along the y-axes, and the color scale indicates the total
infectious humans. Apart from (a), where the temperature amplitude (Ta) is varying, the amplitude is set at 10o C for the other
plots. Plot (a) shows that there can be large epidemics even when mean temperatures are low if the seasonal variation (the
amplitude) is high enough, as would be found in subtropical and temperate regions.
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(b)
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Figure 7. Global sensitivity analysis indicates the sensitivity of the basic reproduction number, R0 (a and c), and the final
epidemic size, total Ih (b, d, and e), to all model parameters. Bars indicate partial rank correlation coefficients (PRCC),
illustrating the contribution of parameters to variability or uncertainty in the model outputs (R0 and Ih). (a)-(b) No temperature
dependence; (b)-(c) temperature dependence but no temperature variation; (e) temperature dependence and temperature
variation. Without accounting for temperature, models show different sets of drivers for R0 (a) than burden (b). When
temperature is included, it is the dominant contributor to model sensitivity for all models (c)-(e).
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Tables

Parameter Description Value Range Source
γ
−1
h Human infectious period 5 days 4-7 days 49

σ
−1
h Intrinsic incubation period 5.9 days 3-14 days 50, 51

σ−1
v Extrinsic incubation period 10 days 8-12 days 52, 53

βvh Probability of a mosquito infecting a human 0.33 0.1-0.75 54, 55

βhv Probability of a human infecting a mosquito 0.33 0.1-0.75 54, 55

µ−1
v Mosquito lifespan 14 days 7-30 days 56

κv Vector carrying capacity 2×104 (1-5)×104 Assumed

Table 1. Parameter (P) definitions and baseline values for system without temperature dependence.

c T 0 T m

Trait Mean Range Mean Range Mean Range Source
θv(T ) 8.56×10−3 [3.78,14.1]×10−3 14.58 [8,08,20.60] 34.61 [34,35.77] 4

νv(T ) −5.99×10−3 [−6.82,−5.13]×10−3 13.56 [12.56,14.51] 38.29 [38.29,39.02] 4

φv(T ) 7.86×10−5 [5.75,9.93]×10−5 11.36 [7.19,15.03] 39.17 [39.17,39.54] 4

bv(T ) 2.02×10−4 [1.2,2.8]×10−4 13.35 [5.84,14.82] 40.08 [36.60,40.51] 4

βhv(T ) −3.54×10−3 [−5.6,−1.8]×10−3 22.72 [21.09,24] 38.38 [36.46,40.25] 1

σv(T ) 1.74×10−4 [5.4,30.4]×10−5 18.27 [7.68,24] 42.31 [39.26,45] 1

1/µv(T ) −3.02×10−1 [−4.68,−1.34]×10−1 11.25 [6.3,15.06] 37.22 [34.79,39.57] 1

Table 2. Parameter values for temperature-dependent functional forms. The temperature in degrees Celsius, the minimum
temperature, and the maximum temperature are denoted by T , T0, and Tm, respectively. The parameter c, is a rate scaling factor,
and the subscripts denote the corresponding traits, e.g., cθv ,T

0
θv

and T m
θv

are for the number of eggs laid by a female mosquito
per day, θv. See Eqs. (4) for brief descriptions of the temperature-dependent parameters.
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